;; ARM 926EJ-S Pipeline Description ;; Copyright (C) 2003-2021 Free Software Foundation, Inc. ;; Written by CodeSourcery, LLC. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. */

;; These descriptions are based on the information contained in the ;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM ;; Limited. ;;

;; This automaton provides a pipeline description for the ARM ;; 926EJ-S core. ;; ;; The model given here assumes that the condition for all conditional ;; instructions is “true”, i.e., that all of the instructions are ;; actually executed.

(define_automaton “arm926ejs”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Pipelines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; There is a single pipeline ;; ;; The ALU pipeline has fetch, decode, execute, memory, and ;; write stages. We only need to model the execute, memory and write ;; stages.

(define_cpu_unit “e,m,w” “arm926ejs”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ALU instructions require three cycles to execute, and use the ALU ;; pipeline in each of the three stages. The results are available ;; after the execute stage has finished. ;; ;; If the destination register is the PC, the pipelines are stalled ;; for several cycles. That case is not modeled here.

;; ALU operations with no shifted operand (define_insn_reservation “9_alu_op” 1 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “alu_imm,alus_imm,logic_imm,logics_imm,
alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
adr,bfm,rev,
alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,
logic_shift_imm,logics_shift_imm,
shift_imm,shift_reg,extend,
mov_imm,mov_reg,mov_shift,
mvn_imm,mvn_reg,mvn_shift,
multiple”)) “e,m,w”)

;; ALU operations with a shift-by-register operand ;; These really stall in the decoder, in order to read ;; the shift value in a second cycle. Pretend we take two cycles in ;; the execute stage. (define_insn_reservation “9_alu_shift_reg_op” 2 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift_reg,mvn_shift_reg”)) “e*2,m,w”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Multiplication Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Multiplication instructions loop in the execute stage until the ;; instruction has been passed through the multiplier array enough ;; times. Multiply operations occur in both the execute and memory ;; stages of the pipeline

(define_insn_reservation “9_mult1” 3 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “smlalxy,mul,mla”)) “e*2,m,w”)

(define_insn_reservation “9_mult2” 4 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “muls,mlas”)) “e*3,m,w”)

(define_insn_reservation “9_mult3” 4 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “umull,umlal,smull,smlal”)) “e*3,m,w”)

(define_insn_reservation “9_mult4” 5 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “umulls,umlals,smulls,smlals”)) “e*4,m,w”)

(define_insn_reservation “9_mult5” 2 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “smulxy,smlaxy,smlawx”)) “e,m,w”)

(define_insn_reservation “9_mult6” 3 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “smlalxy”)) “e*2,m,w”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/Store Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; The models for load/store instructions do not accurately describe ;; the difference between operations with a base register writeback ;; (such as “ldm!”). These models assume that all memory references ;; hit in dcache.

;; Loads with a shifted offset take 3 cycles, and are (a) probably the ;; most common and (b) the pessimistic assumption will lead to fewer stalls. (define_insn_reservation “9_load1_op” 3 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “load_4,load_byte”)) “e*2,m,w”)

(define_insn_reservation “9_store1_op” 0 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “store_4”)) “e,m,w”)

;; multiple word loads and stores (define_insn_reservation “9_load2_op” 3 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “load_8”)) “e,m*2,w”)

(define_insn_reservation “9_load3_op” 4 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “load_12”)) “e,m*3,w”)

(define_insn_reservation “9_load4_op” 5 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “load_16”)) “e,m*4,w”)

(define_insn_reservation “9_store2_op” 0 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “store_8”)) “e,m*2,w”)

(define_insn_reservation “9_store3_op” 0 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “store_12”)) “e,m*3,w”)

(define_insn_reservation “9_store4_op” 0 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “store_16”)) “e,m*4,w”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branch and Call Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Branch instructions are difficult to model accurately. The ARM ;; core can predict most branches. If the branch is predicted ;; correctly, and predicted early enough, the branch can be completely ;; eliminated from the instruction stream. Some branches can ;; therefore appear to require zero cycles to execute. We assume that ;; all branches are predicted correctly, and that the latency is ;; therefore the minimum value.

(define_insn_reservation “9_branch_op” 0 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “branch”)) “nothing”)

;; The latency for a call is not predictable. Therefore, we use 32 as ;; roughly equivalent to positive infinity.

(define_insn_reservation “9_call_op” 32 (and (eq_attr “tune” “arm926ejs”) (eq_attr “type” “call”)) “nothing”)