blob: 24bd0313126fd6ede858c4f7c9702a1264391708 [file] [log] [blame]
<
/* Diagnostic subroutines for printing source-code
Copyright (C) 1999-2021 Free Software Foundation, Inc.
Contributed by Gabriel Dos Reis <gdr@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "version.h"
#include "demangle.h"
#include "intl.h"
#include "backtrace.h"
#include "diagnostic.h"
#include "diagnostic-color.h"
#include "gcc-rich-location.h"
#include "selftest.h"
#include "selftest-diagnostic.h"
#include "cpplib.h"
#ifdef HAVE_TERMIOS_H
# include <termios.h>
#endif
#ifdef GWINSZ_IN_SYS_IOCTL
# include <sys/ioctl.h>
#endif
/* Disable warnings about quoting issues in the pp_xxx calls below
that (intentionally) don't follow GCC diagnostic conventions. */
#if __GNUC__ >= 10
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wformat-diag"
#endif
/* Classes for rendering source code and diagnostics, within an
anonymous namespace.
The work is done by "class layout", which embeds and uses
"class colorizer" and "class layout_range" to get things done. */
namespace {
/* The state at a given point of the source code, assuming that we're
in a range: which range are we in, and whether we should draw a caret at
this point. */
struct point_state
{
int range_idx;
bool draw_caret_p;
};
/* A class to inject colorization codes when printing the diagnostic locus.
It has one kind of colorization for each of:
- normal text
- range 0 (the "primary location")
- range 1
- range 2
The class caches the lookup of the color codes for the above.
The class also has responsibility for tracking which of the above is
active, filtering out unnecessary changes. This allows
layout::print_source_line and layout::print_annotation_line
to simply request a colorization code for *every* character they print,
via this class, and have the filtering be done for them here. */
class colorizer
{
public:
colorizer (diagnostic_context *context,
diagnostic_t diagnostic_kind);
~colorizer ();
void set_range (int range_idx)
{
/* Normally we emphasize the primary location, then alternate between
two colors for the secondary locations.
But if we're printing a run of events in a diagnostic path, that
makes no sense, so print all of them with the same colorization. */
if (m_diagnostic_kind == DK_DIAGNOSTIC_PATH)
set_state (0);
else
set_state (range_idx);
}
void set_normal_text () { set_state (STATE_NORMAL_TEXT); }
void set_fixit_insert () { set_state (STATE_FIXIT_INSERT); }
void set_fixit_delete () { set_state (STATE_FIXIT_DELETE); }
private:
void set_state (int state);
void begin_state (int state);
void finish_state (int state);
const char *get_color_by_name (const char *);
private:
static const int STATE_NORMAL_TEXT = -1;
static const int STATE_FIXIT_INSERT = -2;
static const int STATE_FIXIT_DELETE = -3;
diagnostic_context *m_context;
diagnostic_t m_diagnostic_kind;
int m_current_state;
const char *m_range1;
const char *m_range2;
const char *m_fixit_insert;
const char *m_fixit_delete;
const char *m_stop_color;
};
/* In order to handle multibyte sources properly, all of this logic needs to be
aware of the distinction between the number of bytes and the number of
display columns occupied by a character, which are not the same for non-ASCII
characters. For example, the Unicode pi symbol, U+03C0, is encoded in UTF-8
as "\xcf\x80", and thus occupies 2 bytes of space while only occupying 1
display column when it is output. A typical emoji, such as U+1F602 (in
UTF-8, "\xf0\x9f\x98\x82"), requires 4 bytes and has a display width of 2.
The below example line, which is also used for selftests below, shows how the
display column and byte column are related:
0000000001111111111222222 display
1234567890123456789012345 columns
SS_foo = P_bar.SS_fieldP;
0000000111111111222222223 byte
1356789012456789134567891 columns
Here SS represents the two display columns for the U+1F602 emoji, and P
represents the one display column for the U+03C0 pi symbol. As an example, a
diagnostic pointing to the final P on this line is at byte column 29 and
display column 24. This reflects the fact that the three extended characters
before the final P occupy cumulatively 5 more bytes than they do display
columns (a difference of 2 for each of the two SSs, and one for the other P).
One or the other of the two column units is more useful depending on the
context. For instance, in order to output the caret at the correct location,
we need to count display columns; in order to colorize a source line, we need
to count the bytes. All locations are provided to us as byte counts, which
we augment with the display column on demand so that it can be used when
needed. This is not the most efficient way to do things since it requires
looping over the whole line each time, but it should be fine for the purpose
of outputting diagnostics.
In order to keep straight which units (byte or display) are in use at a
given time, the following enum lets us specify that explicitly. */
enum column_unit {
/* Measured in raw bytes. */
CU_BYTES = 0,
/* Measured in display units. */
CU_DISPLAY_COLS,
/* For arrays indexed by column_unit. */
CU_NUM_UNITS
};
/* Utility class to augment an exploc with the corresponding display column. */
class exploc_with_display_col : public expanded_location
{
public:
exploc_with_display_col (const expanded_location &exploc, int tabstop)
: expanded_location (exploc),
m_display_col (location_compute_display_column (exploc, tabstop))
{}
int m_display_col;
};
/* A point within a layout_range; similar to an exploc_with_display_col,
but after filtering on file. */
class layout_point
{
public:
layout_point (const exploc_with_display_col &exploc)
: m_line (exploc.line)
{
m_columns[CU_BYTES] = exploc.column;
m_columns[CU_DISPLAY_COLS] = exploc.m_display_col;
}
linenum_type m_line;
int m_columns[CU_NUM_UNITS];
};
/* A class for use by "class layout" below: a filtered location_range. */
class layout_range
{
public:
layout_range (const exploc_with_display_col &start_exploc,
const exploc_with_display_col &finish_exploc,
enum range_display_kind range_display_kind,
const exploc_with_display_col &caret_exploc,
unsigned original_idx,
const range_label *label);
bool contains_point (linenum_type row, int column,
enum column_unit col_unit) const;
bool intersects_line_p (linenum_type row) const;
layout_point m_start;
layout_point m_finish;
enum range_display_kind m_range_display_kind;
layout_point m_caret;
unsigned m_original_idx;
const range_label *m_label;
};
/* A struct for use by layout::print_source_line for telling
layout::print_annotation_line the extents of the source line that
it printed, so that underlines can be clipped appropriately. Units
are 1-based display columns. */
struct line_bounds
{
int m_first_non_ws_disp_col;
int m_last_non_ws_disp_col;
line_bounds ()
{
m_first_non_ws_disp_col = INT_MAX;
m_last_non_ws_disp_col = 0;
}
};
/* A range of contiguous source lines within a layout (e.g. "lines 5-10"
or "line 23"). During the layout ctor, layout::calculate_line_spans
splits the pertinent source lines into a list of disjoint line_span
instances (e.g. lines 5-10, lines 15-20, line 23). */
class line_span
{
public:
line_span (linenum_type first_line, linenum_type last_line)
: m_first_line (first_line), m_last_line (last_line)
{
gcc_assert (first_line <= last_line);
}
linenum_type get_first_line () const { return m_first_line; }
linenum_type get_last_line () const { return m_last_line; }
bool contains_line_p (linenum_type line) const
{
return line >= m_first_line && line <= m_last_line;
}
static int comparator (const void *p1, const void *p2)
{
const line_span *ls1 = (const line_span *)p1;
const line_span *ls2 = (const line_span *)p2;
int first_line_cmp = compare (ls1->m_first_line, ls2->m_first_line);
if (first_line_cmp)
return first_line_cmp;
return compare (ls1->m_last_line, ls2->m_last_line);
}
linenum_type m_first_line;
linenum_type m_last_line;
};
#if CHECKING_P
/* Selftests for line_span. */
static void
test_line_span ()
{
line_span line_one (1, 1);
ASSERT_EQ (1, line_one.get_first_line ());
ASSERT_EQ (1, line_one.get_last_line ());
ASSERT_FALSE (line_one.contains_line_p (0));
ASSERT_TRUE (line_one.contains_line_p (1));
ASSERT_FALSE (line_one.contains_line_p (2));
line_span lines_1_to_3 (1, 3);
ASSERT_EQ (1, lines_1_to_3.get_first_line ());
ASSERT_EQ (3, lines_1_to_3.get_last_line ());
ASSERT_TRUE (lines_1_to_3.contains_line_p (1));
ASSERT_TRUE (lines_1_to_3.contains_line_p (3));
ASSERT_EQ (0, line_span::comparator (&line_one, &line_one));
ASSERT_GT (line_span::comparator (&lines_1_to_3, &line_one), 0);
ASSERT_LT (line_span::comparator (&line_one, &lines_1_to_3), 0);
/* A linenum > 2^31. */
const linenum_type LARGEST_LINE = 0xffffffff;
line_span largest_line (LARGEST_LINE, LARGEST_LINE);
ASSERT_EQ (LARGEST_LINE, largest_line.get_first_line ());
ASSERT_EQ (LARGEST_LINE, largest_line.get_last_line ());
ASSERT_GT (line_span::comparator (&largest_line, &line_one), 0);
ASSERT_LT (line_span::comparator (&line_one, &largest_line), 0);
}
#endif /* #if CHECKING_P */
/* A class to control the overall layout when printing a diagnostic.
The layout is determined within the constructor.
It is then printed by repeatedly calling the "print_source_line",
"print_annotation_line" and "print_any_fixits" methods.
We assume we have disjoint ranges. */
class layout
{
public:
layout (diagnostic_context *context,
rich_location *richloc,
diagnostic_t diagnostic_kind);
bool maybe_add_location_range (const location_range *loc_range,
unsigned original_idx,
bool restrict_to_current_line_spans);
int get_num_line_spans () const { return m_line_spans.length (); }
const line_span *get_line_span (int idx) const { return &m_line_spans[idx]; }
int get_linenum_width () const { return m_linenum_width; }
int get_x_offset_display () const { return m_x_offset_display; }
void print_gap_in_line_numbering ();
bool print_heading_for_line_span_index_p (int line_span_idx) const;
expanded_location get_expanded_location (const line_span *) const;
void print_line (linenum_type row);
private:
bool will_show_line_p (linenum_type row) const;
void print_leading_fixits (linenum_type row);
line_bounds print_source_line (linenum_type row, const char *line,
int line_bytes);
bool should_print_annotation_line_p (linenum_type row) const;
void start_annotation_line (char margin_char = ' ') const;
void print_annotation_line (linenum_type row, const line_bounds lbounds);
void print_any_labels (linenum_type row);
void print_trailing_fixits (linenum_type row);
bool annotation_line_showed_range_p (linenum_type line, int start_column,
int finish_column) const;
void show_ruler (int max_column) const;
bool validate_fixit_hint_p (const fixit_hint *hint);
void calculate_line_spans ();
void calculate_linenum_width ();
void calculate_x_offset_display ();
void print_newline ();
bool
get_state_at_point (/* Inputs. */
linenum_type row, int column,
int first_non_ws, int last_non_ws,
enum column_unit col_unit,
/* Outputs. */
point_state *out_state);
int
get_x_bound_for_row (linenum_type row, int caret_column,
int last_non_ws);
void
move_to_column (int *column, int dest_column, bool add_left_margin);
private:
diagnostic_context *m_context;
pretty_printer *m_pp;
location_t m_primary_loc;
exploc_with_display_col m_exploc;
colorizer m_colorizer;
bool m_colorize_source_p;
bool m_show_labels_p;
bool m_show_line_numbers_p;
bool m_diagnostic_path_p;
auto_vec <layout_range> m_layout_ranges;
auto_vec <const fixit_hint *> m_fixit_hints;
auto_vec <line_span> m_line_spans;
int m_linenum_width;
int m_x_offset_display;
};
/* Implementation of "class colorizer". */
/* The constructor for "colorizer". Lookup and store color codes for the
different kinds of things we might need to print. */
colorizer::colorizer (diagnostic_context *context,
diagnostic_t diagnostic_kind) :
m_context (context),
m_diagnostic_kind (diagnostic_kind),
m_current_state (STATE_NORMAL_TEXT)
{
m_range1 = get_color_by_name ("range1");
m_range2 = get_color_by_name ("range2");
m_fixit_insert = get_color_by_name ("fixit-insert");
m_fixit_delete = get_color_by_name ("fixit-delete");
m_stop_color = colorize_stop (pp_show_color (context->printer));
}
/* The destructor for "colorize". If colorization is on, print a code to
turn it off. */
colorizer::~colorizer ()
{
finish_state (m_current_state);
}
/* Update state, printing color codes if necessary if there's a state
change. */
void
colorizer::set_state (int new_state)
{
if (m_current_state != new_state)
{
finish_state (m_current_state);
m_current_state = new_state;
begin_state (new_state);
}
}
/* Turn on any colorization for STATE. */
void
colorizer::begin_state (int state)
{
switch (state)
{
case STATE_NORMAL_TEXT:
break;
case STATE_FIXIT_INSERT:
pp_string (m_context->printer, m_fixit_insert);
break;
case STATE_FIXIT_DELETE:
pp_string (m_context->printer, m_fixit_delete);
break;
case 0:
/* Make range 0 be the same color as the "kind" text
(error vs warning vs note). */
pp_string
(m_context->printer,
colorize_start (pp_show_color (m_context->printer),
diagnostic_get_color_for_kind (m_diagnostic_kind)));
break;
case 1:
pp_string (m_context->printer, m_range1);
break;
case 2:
pp_string (m_context->printer, m_range2);
break;
default:
/* For ranges beyond 2, alternate between color 1 and color 2. */
{
gcc_assert (state > 2);
pp_string (m_context->printer,
state % 2 ? m_range1 : m_range2);
}
break;
}
}
/* Turn off any colorization for STATE. */
void
colorizer::finish_state (int state)
{
if (state != STATE_NORMAL_TEXT)
pp_string (m_context->printer, m_stop_color);
}
/* Get the color code for NAME (or the empty string if
colorization is disabled). */
const char *
colorizer::get_color_by_name (const char *name)
{
return colorize_start (pp_show_color (m_context->printer), name);
}
/* Implementation of class layout_range. */
/* The constructor for class layout_range.
Initialize various layout_point fields from expanded_location
equivalents; we've already filtered on file. */
layout_range::layout_range (const exploc_with_display_col &start_exploc,
const exploc_with_display_col &finish_exploc,
enum range_display_kind range_display_kind,
const exploc_with_display_col &caret_exploc,
unsigned original_idx,
const range_label *label)
: m_start (start_exploc),
m_finish (finish_exploc),
m_range_display_kind (range_display_kind),
m_caret (caret_exploc),
m_original_idx (original_idx),
m_label (label)
{
}
/* Is (column, row) within the given range?
We've already filtered on the file.
Ranges are closed (both limits are within the range).
Example A: a single-line range:
start: (col=22, line=2)
finish: (col=38, line=2)
|00000011111111112222222222333333333344444444444
|34567890123456789012345678901234567890123456789
--+-----------------------------------------------
01|bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
02|bbbbbbbbbbbbbbbbbbbSwwwwwwwwwwwwwwwFaaaaaaaaaaa
03|aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Example B: a multiline range with
start: (col=14, line=3)
finish: (col=08, line=5)
|00000011111111112222222222333333333344444444444
|34567890123456789012345678901234567890123456789
--+-----------------------------------------------
01|bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
02|bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
03|bbbbbbbbbbbSwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
04|wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
05|wwwwwFaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
06|aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
--+-----------------------------------------------
Legend:
- 'b' indicates a point *before* the range
- 'S' indicates the start of the range
- 'w' indicates a point within the range
- 'F' indicates the finish of the range (which is
within it).
- 'a' indicates a subsequent point *after* the range.
COL_UNIT controls whether we check the byte column or
the display column; one or the other is more convenient
depending on the context. */
bool
layout_range::contains_point (linenum_type row, int column,
enum column_unit col_unit) const
{
gcc_assert (m_start.m_line <= m_finish.m_line);
/* ...but the equivalent isn't true for the columns;
consider example B in the comment above. */
if (row < m_start.m_line)
/* Points before the first line of the range are
outside it (corresponding to line 01 in example A
and lines 01 and 02 in example B above). */
return false;
if (row == m_start.m_line)
/* On same line as start of range (corresponding
to line 02 in example A and line 03 in example B). */
{
if (column < m_start.m_columns[col_unit])
/* Points on the starting line of the range, but
before the column in which it begins. */
return false;
if (row < m_finish.m_line)
/* This is a multiline range; the point
is within it (corresponds to line 03 in example B
from column 14 onwards) */
return true;
else
{
/* This is a single-line range. */
gcc_assert (row == m_finish.m_line);
return column <= m_finish.m_columns[col_unit];
}
}
/* The point is in a line beyond that containing the
start of the range: lines 03 onwards in example A,
and lines 04 onwards in example B. */
gcc_assert (row > m_start.m_line);
if (row > m_finish.m_line)
/* The point is beyond the final line of the range
(lines 03 onwards in example A, and lines 06 onwards
in example B). */
return false;
if (row < m_finish.m_line)
{
/* The point is in a line that's fully within a multiline
range (e.g. line 04 in example B). */
gcc_assert (m_start.m_line < m_finish.m_line);
return true;
}
gcc_assert (row == m_finish.m_line);
return column <= m_finish.m_columns[col_unit];
}
/* Does this layout_range contain any part of line ROW? */
bool
layout_range::intersects_line_p (linenum_type row) const
{
gcc_assert (m_start.m_line <= m_finish.m_line);
if (row < m_start.m_line)
return false;
if (row > m_finish.m_line)
return false;
return true;
}
#if CHECKING_P
/* Default for when we don't care what the tab expansion is set to. */
static const int def_tabstop = 8;
/* Create some expanded locations for testing layout_range. The filename
member of the explocs is set to the empty string. This member will only be
inspected by the calls to location_compute_display_column() made from the
layout_point constructors. That function will check for an empty filename
argument and not attempt to open it, rather treating the non-existent data
as if the display width were the same as the byte count. Tests exercising a
real difference between byte count and display width are performed later,
e.g. in test_diagnostic_show_locus_one_liner_utf8(). */
static layout_range
make_range (int start_line, int start_col, int end_line, int end_col)
{
const expanded_location start_exploc
= {"", start_line, start_col, NULL, false};
const expanded_location finish_exploc
= {"", end_line, end_col, NULL, false};
return layout_range (exploc_with_display_col (start_exploc, def_tabstop),
exploc_with_display_col (finish_exploc, def_tabstop),
SHOW_RANGE_WITHOUT_CARET,
exploc_with_display_col (start_exploc, def_tabstop),
0, NULL);
}
/* Selftests for layout_range::contains_point and
layout_range::intersects_line_p. */
/* Selftest for layout_range, where the layout_range
is a range with start==end i.e. a single point. */
static void
test_layout_range_for_single_point ()
{
layout_range point = make_range (7, 10, 7, 10);
/* Tests for layout_range::contains_point. */
for (int i = 0; i != CU_NUM_UNITS; ++i)
{
const enum column_unit col_unit = (enum column_unit) i;
/* Before the line. */
ASSERT_FALSE (point.contains_point (6, 1, col_unit));
/* On the line, but before start. */
ASSERT_FALSE (point.contains_point (7, 9, col_unit));
/* At the point. */
ASSERT_TRUE (point.contains_point (7, 10, col_unit));
/* On the line, after the point. */
ASSERT_FALSE (point.contains_point (7, 11, col_unit));
/* After the line. */
ASSERT_FALSE (point.contains_point (8, 1, col_unit));
}
/* Tests for layout_range::intersects_line_p. */
ASSERT_FALSE (point.intersects_line_p (6));
ASSERT_TRUE (point.intersects_line_p (7));
ASSERT_FALSE (point.intersects_line_p (8));
}
/* Selftest for layout_range, where the layout_range
is the single-line range shown as "Example A" above. */
static void
test_layout_range_for_single_line ()
{
layout_range example_a = make_range (2, 22, 2, 38);
/* Tests for layout_range::contains_point. */
for (int i = 0; i != CU_NUM_UNITS; ++i)
{
const enum column_unit col_unit = (enum column_unit) i;
/* Before the line. */
ASSERT_FALSE (example_a.contains_point (1, 1, col_unit));
/* On the line, but before start. */
ASSERT_FALSE (example_a.contains_point (2, 21, col_unit));
/* On the line, at the start. */
ASSERT_TRUE (example_a.contains_point (2, 22, col_unit));
/* On the line, within the range. */
ASSERT_TRUE (example_a.contains_point (2, 23, col_unit));
/* On the line, at the end. */
ASSERT_TRUE (example_a.contains_point (2, 38, col_unit));
/* On the line, after the end. */
ASSERT_FALSE (example_a.contains_point (2, 39, col_unit));
/* After the line. */
ASSERT_FALSE (example_a.contains_point (2, 39, col_unit));
}
/* Tests for layout_range::intersects_line_p. */
ASSERT_FALSE (example_a.intersects_line_p (1));
ASSERT_TRUE (example_a.intersects_line_p (2));
ASSERT_FALSE (example_a.intersects_line_p (3));
}
/* Selftest for layout_range, where the layout_range
is the multi-line range shown as "Example B" above. */
static void
test_layout_range_for_multiple_lines ()
{
layout_range example_b = make_range (3, 14, 5, 8);
/* Tests for layout_range::contains_point. */
for (int i = 0; i != CU_NUM_UNITS; ++i)
{
const enum column_unit col_unit = (enum column_unit) i;
/* Before first line. */
ASSERT_FALSE (example_b.contains_point (1, 1, col_unit));
/* On the first line, but before start. */
ASSERT_FALSE (example_b.contains_point (3, 13, col_unit));
/* At the start. */
ASSERT_TRUE (example_b.contains_point (3, 14, col_unit));
/* On the first line, within the range. */
ASSERT_TRUE (example_b.contains_point (3, 15, col_unit));
/* On an interior line.
The column number should not matter; try various boundary
values. */
ASSERT_TRUE (example_b.contains_point (4, 1, col_unit));
ASSERT_TRUE (example_b.contains_point (4, 7, col_unit));
ASSERT_TRUE (example_b.contains_point (4, 8, col_unit));
ASSERT_TRUE (example_b.contains_point (4, 9, col_unit));
ASSERT_TRUE (example_b.contains_point (4, 13, col_unit));
ASSERT_TRUE (example_b.contains_point (4, 14, col_unit));
ASSERT_TRUE (example_b.contains_point (4, 15, col_unit));
/* On the final line, before the end. */
ASSERT_TRUE (example_b.contains_point (5, 7, col_unit));
/* On the final line, at the end. */
ASSERT_TRUE (example_b.contains_point (5, 8, col_unit));
/* On the final line, after the end. */
ASSERT_FALSE (example_b.contains_point (5, 9, col_unit));
/* After the line. */
ASSERT_FALSE (example_b.contains_point (6, 1, col_unit));
}
/* Tests for layout_range::intersects_line_p. */
ASSERT_FALSE (example_b.intersects_line_p (2));
ASSERT_TRUE (example_b.intersects_line_p (3));
ASSERT_TRUE (example_b.intersects_line_p (4));
ASSERT_TRUE (example_b.intersects_line_p (5));
ASSERT_FALSE (example_b.intersects_line_p (6));
}
#endif /* #if CHECKING_P */
/* Given a source line LINE of length LINE_BYTES bytes, determine the length
(still in bytes, not display cols) without any trailing whitespace. */
static int
get_line_bytes_without_trailing_whitespace (const char *line, int line_bytes)
{
int result = line_bytes;
while (result > 0)
{
char ch = line[result - 1];
if (ch == ' ' || ch == '\t' || ch == '\r')
result--;
else
break;
}
gcc_assert (result >= 0);
gcc_assert (result <= line_bytes);
gcc_assert (result == 0 ||
(line[result - 1] != ' '
&& line[result -1] != '\t'
&& line[result -1] != '\r'));
return result;
}
#if CHECKING_P
/* A helper function for testing get_line_bytes_without_trailing_whitespace. */
static void
assert_eq (const char *line, int expected_bytes)
{
int actual_value
= get_line_bytes_without_trailing_whitespace (line, strlen (line));
ASSERT_EQ (actual_value, expected_bytes);
}
/* Verify that get_line_bytes_without_trailing_whitespace is sane for
various inputs. It is not required to handle newlines. */
static void
test_get_line_bytes_without_trailing_whitespace ()
{
assert_eq ("", 0);
assert_eq (" ", 0);
assert_eq ("\t", 0);
assert_eq ("\r", 0);
assert_eq ("hello world", 11);
assert_eq ("hello world ", 11);
assert_eq ("hello world \t\t ", 11);
assert_eq ("hello world\r", 11);
}
#endif /* #if CHECKING_P */
/* Helper function for layout's ctor, for sanitizing locations relative
to the primary location within a diagnostic.
Compare LOC_A and LOC_B to see if it makes sense to print underlines
connecting their expanded locations. Doing so is only guaranteed to
make sense if the locations share the same macro expansion "history"
i.e. they can be traced through the same macro expansions, eventually
reaching an ordinary map.
This may be too strong a condition, but it effectively sanitizes
PR c++/70105, which has an example of printing an expression where the
final location of the expression is in a different macro, which
erroneously was leading to hundreds of lines of irrelevant source
being printed. */
static bool
compatible_locations_p (location_t loc_a, location_t loc_b)
{
if (IS_ADHOC_LOC (loc_a))
loc_a = get_location_from_adhoc_loc (line_table, loc_a);
if (IS_ADHOC_LOC (loc_b))
loc_b = get_location_from_adhoc_loc (line_table, loc_b);
/* If either location is one of the special locations outside of a
linemap, they are only compatible if they are equal. */
if (loc_a < RESERVED_LOCATION_COUNT
|| loc_b < RESERVED_LOCATION_COUNT)
return loc_a == loc_b;
const line_map *map_a = linemap_lookup (line_table, loc_a);
linemap_assert (map_a);
const line_map *map_b = linemap_lookup (line_table, loc_b);
linemap_assert (map_b);
/* Are they within the same map? */
if (map_a == map_b)
{
/* Are both within the same macro expansion? */
if (linemap_macro_expansion_map_p (map_a))
{
/* If so, then they're only compatible if either both are
from the macro definition, or both from the macro arguments. */
bool loc_a_from_defn
= linemap_location_from_macro_definition_p (line_table, loc_a);
bool loc_b_from_defn
= linemap_location_from_macro_definition_p (line_table, loc_b);
if (loc_a_from_defn != loc_b_from_defn)
return false;
/* Expand each location towards the spelling location, and
recurse. */
const line_map_macro *macro_map = linemap_check_macro (map_a);
location_t loc_a_toward_spelling
= linemap_macro_map_loc_unwind_toward_spelling (line_table,
macro_map,
loc_a);
location_t loc_b_toward_spelling
= linemap_macro_map_loc_unwind_toward_spelling (line_table,
macro_map,
loc_b);
return compatible_locations_p (loc_a_toward_spelling,
loc_b_toward_spelling);
}
/* Otherwise they are within the same ordinary map. */
return true;
}
else
{
/* Within different maps. */
/* If either is within a macro expansion, they are incompatible. */
if (linemap_macro_expansion_map_p (map_a)
|| linemap_macro_expansion_map_p (map_b))
return false;
/* Within two different ordinary maps; they are compatible iff they
are in the same file. */
const line_map_ordinary *ord_map_a = linemap_check_ordinary (map_a);
const line_map_ordinary *ord_map_b = linemap_check_ordinary (map_b);
return ord_map_a->to_file == ord_map_b->to_file;
}
}
/* Comparator for sorting fix-it hints. */
static int
fixit_cmp (const void *p_a, const void *p_b)
{
const fixit_hint * hint_a = *static_cast<const fixit_hint * const *> (p_a);
const fixit_hint * hint_b = *static_cast<const fixit_hint * const *> (p_b);
return hint_a->get_start_loc () - hint_b->get_start_loc ();
}
/* Implementation of class layout. */
/* Constructor for class layout.
Filter the ranges from the rich_location to those that we can
sanely print, populating m_layout_ranges and m_fixit_hints.
Determine the range of lines that we will print, splitting them
up into an ordered list of disjoint spans of contiguous line numbers.
Determine m_x_offset_display, to ensure that the primary caret
will fit within the max_width provided by the diagnostic_context. */
layout::layout (diagnostic_context * context,
rich_location *richloc,
diagnostic_t diagnostic_kind)
: m_context (context),
m_pp (context->printer),
m_primary_loc (richloc->get_range (0)->m_loc),
m_exploc (richloc->get_expanded_location (0), context->tabstop),
m_colorizer (context, diagnostic_kind),
m_colorize_source_p (context->colorize_source_p),
m_show_labels_p (context->show_labels_p),
m_show_line_numbers_p (context->show_line_numbers_p),
m_diagnostic_path_p (diagnostic_kind == DK_DIAGNOSTIC_PATH),
m_layout_ranges (richloc->get_num_locations ()),
m_fixit_hints (richloc->get_num_fixit_hints ()),
m_line_spans (1 + richloc->get_num_locations ()),
m_linenum_width (0),
m_x_offset_display (0)
{
for (unsigned int idx = 0; idx < richloc->get_num_locations (); idx++)
{
/* This diagnostic printer can only cope with "sufficiently sane" ranges.
Ignore any ranges that are awkward to handle. */
const location_range *loc_range = richloc->get_range (idx);
maybe_add_location_range (loc_range, idx, false);
}
/* Populate m_fixit_hints, filtering to only those that are in the
same file. */
for (unsigned int i = 0; i < richloc->get_num_fixit_hints (); i++)
{
const fixit_hint *hint = richloc->get_fixit_hint (i);
if (validate_fixit_hint_p (hint))
m_fixit_hints.safe_push (hint);
}
/* Sort m_fixit_hints. */
m_fixit_hints.qsort (fixit_cmp);
/* Populate the indicated members. */
calculate_line_spans ();
calculate_linenum_width ();
calculate_x_offset_display ();
if (context->show_ruler_p)
show_ruler (m_x_offset_display + m_context->caret_max_width);
}
/* Attempt to add LOC_RANGE to m_layout_ranges, filtering them to
those that we can sanely print.
ORIGINAL_IDX is the index of LOC_RANGE within its rich_location,
(for use as extrinsic state by label ranges FIXME).
If RESTRICT_TO_CURRENT_LINE_SPANS is true, then LOC_RANGE is also
filtered against this layout instance's current line spans: it
will only be added if the location is fully within the lines
already specified by other locations.
Return true iff LOC_RANGE was added. */
bool
layout::maybe_add_location_range (const location_range *loc_range,
unsigned original_idx,
bool restrict_to_current_line_spans)
{
gcc_assert (loc_range);
/* Split the "range" into caret and range information. */
source_range src_range = get_range_from_loc (line_table, loc_range->m_loc);
/* Expand the various locations. */
expanded_location start
= linemap_client_expand_location_to_spelling_point
(src_range.m_start, LOCATION_ASPECT_START);
expanded_location finish
= linemap_client_expand_location_to_spelling_point
(src_range.m_finish, LOCATION_ASPECT_FINISH);
expanded_location caret
= linemap_client_expand_location_to_spelling_point
(loc_range->m_loc, LOCATION_ASPECT_CARET);
/* If any part of the range isn't in the same file as the primary
location of this diagnostic, ignore the range. */
if (start.file != m_exploc.file)
return false;
if (finish.file != m_exploc.file)
return false;
if (loc_range->m_range_display_kind == SHOW_RANGE_WITH_CARET)
if (caret.file != m_exploc.file)
return false;
/* Sanitize the caret location for non-primary ranges. */
if (m_layout_ranges.length () > 0)
if (loc_range->m_range_display_kind == SHOW_RANGE_WITH_CARET)
if (!compatible_locations_p (loc_range->m_loc, m_primary_loc))
/* Discard any non-primary ranges that can't be printed
sanely relative to the primary location. */
return false;
/* Everything is now known to be in the correct source file,
but it may require further sanitization. */
layout_range ri (exploc_with_display_col (start, m_context->tabstop),
exploc_with_display_col (finish, m_context->tabstop),
loc_range->m_range_display_kind,
exploc_with_display_col (caret, m_context->tabstop),
original_idx, loc_range->m_label);
/* If we have a range that finishes before it starts (perhaps
from something built via macro expansion), printing the
range is likely to be nonsensical. Also, attempting to do so
breaks assumptions within the printing code (PR c/68473).
Similarly, don't attempt to print ranges if one or both ends
of the range aren't sane to print relative to the
primary location (PR c++/70105). */
if (start.line > finish.line
|| !compatible_locations_p (src_range.m_start, m_primary_loc)
|| !compatible_locations_p (src_range.m_finish, m_primary_loc))
{
/* Is this the primary location? */
if (m_layout_ranges.length () == 0)
{
/* We want to print the caret for the primary location, but
we must sanitize away m_start and m_finish. */
ri.m_start = ri.m_caret;
ri.m_finish = ri.m_caret;
}
else
/* This is a non-primary range; ignore it. */
return false;
}
/* Potentially filter to just the lines already specified by other
locations. This is for use by gcc_rich_location::add_location_if_nearby.
The layout ctor doesn't use it, and can't because m_line_spans
hasn't been set up at that point. */
if (restrict_to_current_line_spans)
{
if (!will_show_line_p (start.line))
return false;
if (!will_show_line_p (finish.line))
return false;
if (loc_range->m_range_display_kind == SHOW_RANGE_WITH_CARET)
if (!will_show_line_p (caret.line))
return false;
}
/* Passed all the tests; add the range to m_layout_ranges so that
it will be printed. */
m_layout_ranges.safe_push (ri);
return true;
}
/* Return true iff ROW is within one of the line spans for this layout. */
bool
layout::will_show_line_p (linenum_type row) const
{
for (int line_span_idx = 0; line_span_idx < get_num_line_spans ();
line_span_idx++)
{
const line_span *line_span = get_line_span (line_span_idx);
if (line_span->contains_line_p (row))
return true;
}
return false;
}
/* Print a line showing a gap in the line numbers, for showing the boundary
between two line spans. */
void
layout::print_gap_in_line_numbering ()
{
gcc_assert (m_show_line_numbers_p);
pp_emit_prefix (m_pp);
for (int i = 0; i < m_linenum_width + 1; i++)
pp_character (m_pp, '.');
pp_newline (m_pp);
}
/* Return true iff we should print a heading when starting the
line span with the given index. */
bool
layout::print_heading_for_line_span_index_p (int line_span_idx) const
{
/* We print a heading for every change of line span, hence for every
line span after the initial one. */
if (line_span_idx > 0)
return true;
/* We also do it for the initial span if the primary location of the
diagnostic is in a different span. */
if (m_exploc.line > (int)get_line_span (0)->m_last_line)
return true;
return false;
}
/* Get an expanded_location for the first location of interest within
the given line_span.
Used when printing a heading to indicate a new line span. */
expanded_location
layout::get_expanded_location (const line_span *line_span) const
{
/* Whenever possible, use the caret location. */
if (line_span->contains_line_p (m_exploc.line))
return m_exploc;
/* Otherwise, use the start of the first range that's present
within the line_span. */
for (unsigned int i = 0; i < m_layout_ranges.length (); i++)
{
const layout_range *lr = &m_layout_ranges[i];
if (line_span->contains_line_p (lr->m_start.m_line))
{
expanded_location exploc = m_exploc;
exploc.line = lr->m_start.m_line;
exploc.column = lr->m_start.m_columns[CU_BYTES];
return exploc;
}
}
/* Otherwise, use the location of the first fixit-hint present within
the line_span. */
for (unsigned int i = 0; i < m_fixit_hints.length (); i++)
{
const fixit_hint *hint = m_fixit_hints[i];
location_t loc = hint->get_start_loc ();
expanded_location exploc = expand_location (loc);
if (line_span->contains_line_p (exploc.line))
return exploc;
}
/* It should not be possible to have a line span that didn't
contain any of the layout_range or fixit_hint instances. */
gcc_unreachable ();
return m_exploc;
}
/* Determine if HINT is meaningful to print within this layout. */
bool
layout::validate_fixit_hint_p (const fixit_hint *hint)
{
if (LOCATION_FILE (hint->get_start_loc ()) != m_exploc.file)
return false;
if (LOCATION_FILE (hint->get_next_loc ()) != m_exploc.file)
return false;
return true;
}
/* Determine the range of lines affected by HINT.
This assumes that HINT has already been filtered by
validate_fixit_hint_p, and so affects the correct source file. */
static line_span
get_line_span_for_fixit_hint (const fixit_hint *hint)
{
gcc_assert (hint);
int start_line = LOCATION_LINE (hint->get_start_loc ());
/* For line-insertion fix-it hints, add the previous line to the
span, to give the user more context on the proposed change. */
if (hint->ends_with_newline_p ())
if (start_line > 1)
start_line--;
return line_span (start_line,
LOCATION_LINE (hint->get_next_loc ()));
}
/* We want to print the pertinent source code at a diagnostic. The
rich_location can contain multiple locations. This will have been
filtered into m_exploc (the caret for the primary location) and
m_layout_ranges, for those ranges within the same source file.
We will print a subset of the lines within the source file in question,
as a collection of "spans" of lines.
This function populates m_line_spans with an ordered, disjoint list of
the line spans of interest.
Printing a gap between line spans takes one line, so, when printing
line numbers, we allow a gap of up to one line between spans when
merging, since it makes more sense to print the source line rather than a
"gap-in-line-numbering" line. When not printing line numbers, it's
better to be more explicit about what's going on, so keeping them as
separate spans is preferred.
For example, if the primary range is on lines 8-10, with secondary ranges
covering lines 5-6 and lines 13-15:
004
005 |RANGE 1
006 |RANGE 1
007
008 |PRIMARY RANGE
009 |PRIMARY CARET
010 |PRIMARY RANGE
011
012
013 |RANGE 2
014 |RANGE 2
015 |RANGE 2
016
With line numbering on, we want two spans: lines 5-10 and lines 13-15.
With line numbering off (with span headers), we want three spans: lines 5-6,
lines 8-10, and lines 13-15. */
void
layout::calculate_line_spans ()
{
/* This should only be called once, by the ctor. */
gcc_assert (m_line_spans.length () == 0);
/* Populate tmp_spans with individual spans, for each of
m_exploc, and for m_layout_ranges. */
auto_vec<line_span> tmp_spans (1 + m_layout_ranges.length ());
tmp_spans.safe_push (line_span (m_exploc.line, m_exploc.line));
for (unsigned int i = 0; i < m_layout_ranges.length (); i++)
{
const layout_range *lr = &m_layout_ranges[i];
gcc_assert (lr->m_start.m_line <= lr->m_finish.m_line);
tmp_spans.safe_push (line_span (lr->m_start.m_line,
lr->m_finish.m_line));
}
/* Also add spans for any fix-it hints, in case they cover other lines. */
for (unsigned int i = 0; i < m_fixit_hints.length (); i++)
{
const fixit_hint *hint = m_fixit_hints[i];
gcc_assert (hint);
tmp_spans.safe_push (get_line_span_for_fixit_hint (hint));
}
/* Sort them. */
tmp_spans.qsort(line_span::comparator);
/* Now iterate through tmp_spans, copying into m_line_spans, and
combining where possible. */
gcc_assert (tmp_spans.length () > 0);
m_line_spans.safe_push (tmp_spans[0]);
for (unsigned int i = 1; i < tmp_spans.length (); i++)
{
line_span *current = &m_line_spans[m_line_spans.length () - 1];
const line_span *next = &tmp_spans[i];
gcc_assert (next->m_first_line >= current->m_first_line);
const int merger_distance = m_show_line_numbers_p ? 1 : 0;
if ((linenum_arith_t)next->m_first_line
<= (linenum_arith_t)current->m_last_line + 1 + merger_distance)
{
/* We can merge them. */
if (next->m_last_line > current->m_last_line)
current->m_last_line = next->m_last_line;
}
else
{
/* No merger possible. */
m_line_spans.safe_push (*next);
}
}
/* Verify the result, in m_line_spans. */
gcc_assert (m_line_spans.length () > 0);
for (unsigned int i = 1; i < m_line_spans.length (); i++)
{
const line_span *prev = &m_line_spans[i - 1];
const line_span *next = &m_line_spans[i];
/* The individual spans must be sane. */
gcc_assert (prev->m_first_line <= prev->m_last_line);
gcc_assert (next->m_first_line <= next->m_last_line);
/* The spans must be ordered. */
gcc_assert (prev->m_first_line < next->m_first_line);
/* There must be a gap of at least one line between separate spans. */
gcc_assert ((prev->m_last_line + 1) < next->m_first_line);
}
}
/* Determine how many display columns need to be reserved for line numbers,
based on the largest line number that will be needed, and populate
m_linenum_width. */
void
layout::calculate_linenum_width ()
{
gcc_assert (m_line_spans.length () > 0);
const line_span *last_span = &m_line_spans[m_line_spans.length () - 1];
int highest_line = last_span->m_last_line;
if (highest_line < 0)
highest_line = 0;
m_linenum_width = num_digits (highest_line);
/* If we're showing jumps in the line-numbering, allow at least 3 chars. */
if (m_line_spans.length () > 1)
m_linenum_width = MAX (m_linenum_width, 3);
/* If there's a minimum margin width, apply it (subtracting 1 for the space
after the line number. */
m_linenum_width = MAX (m_linenum_width, m_context->min_margin_width - 1);
}
/* Calculate m_x_offset_display, which improves readability in case the source
line of interest is longer than the user's display. All lines output will be
shifted to the left (so that their beginning is no longer displayed) by
m_x_offset_display display columns, so that the caret is in a reasonable
location. */
void
layout::calculate_x_offset_display ()
{
m_x_offset_display = 0;
const int max_width = m_context->caret_max_width;
if (!max_width)
{
/* Nothing to do, the width is not capped. */
return;
}
const char_span line = location_get_source_line (m_exploc.file,
m_exploc.line);
if (!line)
{
/* Nothing to do, we couldn't find the source line. */
return;
}
int caret_display_column = m_exploc.m_display_col;
const int line_bytes
= get_line_bytes_without_trailing_whitespace (line.get_buffer (),
line.length ());
int eol_display_column
= cpp_display_width (line.get_buffer (), line_bytes, m_context->tabstop);
if (caret_display_column > eol_display_column
|| !caret_display_column)
{
/* This does not make sense, so don't try to do anything in this case. */
return;
}
/* Adjust caret and eol positions to include the left margin. If we are
outputting line numbers, then the left margin is equal to m_linenum_width
plus three for the " | " which follows it. Otherwise the left margin width
is equal to 1, because layout::print_source_line() will prefix each line
with a space. */
const int source_display_cols = eol_display_column;
int left_margin_size = 1;
if (m_show_line_numbers_p)
left_margin_size = m_linenum_width + 3;
caret_display_column += left_margin_size;
eol_display_column += left_margin_size;
if (eol_display_column <= max_width)
{
/* Nothing to do, everything fits in the display. */
return;
}
/* The line is too long for the display. Calculate an offset such that the
caret is not too close to the right edge of the screen. It will be
CARET_LINE_MARGIN display columns from the right edge, unless it is closer
than that to the end of the source line anyway. */
int right_margin_size = CARET_LINE_MARGIN;
right_margin_size = MIN (eol_display_column - caret_display_column,
right_margin_size);
if (right_margin_size + left_margin_size >= max_width)
{
/* The max_width is very small, so anything we try to do will not be very
effective; just punt in this case and output with no offset. */
return;
}
const int max_caret_display_column = max_width - right_margin_size;
if (caret_display_column > max_caret_display_column)
{
m_x_offset_display = caret_display_column - max_caret_display_column;
/* Make sure we don't offset the line into oblivion. */
static const int min_cols_visible = 2;
if (source_display_cols - m_x_offset_display < min_cols_visible)
m_x_offset_display = 0;
}
}
/* Print line ROW of source code, potentially colorized at any ranges, and
return the line bounds. LINE is the source line (not necessarily
0-terminated) and LINE_BYTES is its length in bytes. In order to handle both
colorization and tab expansion, this function tracks the line position in
both byte and display column units. */
line_bounds
layout::print_source_line (linenum_type row, const char *line, int line_bytes)
{
m_colorizer.set_normal_text ();
pp_emit_prefix (m_pp);
if (m_show_line_numbers_p)
{
int width = num_digits (row);
for (int i = 0; i < m_linenum_width - width; i++)
pp_space (m_pp);
pp_printf (m_pp, "%i | ", row);
}
else
pp_space (m_pp);
/* We will stop printing the source line at any trailing whitespace. */
line_bytes = get_line_bytes_without_trailing_whitespace (line,
line_bytes);
/* This object helps to keep track of which display column we are at, which is
necessary for computing the line bounds in display units, for doing
tab expansion, and for implementing m_x_offset_display. */
cpp_display_width_computation dw (line, line_bytes, m_context->tabstop);
/* Skip the first m_x_offset_display display columns. In case the leading
portion that will be skipped ends with a character with wcwidth > 1, then
it is possible we skipped too much, so account for that by padding with
spaces. Note that this does the right thing too in case a tab was the last
character to be skipped over; the tab is effectively replaced by the
correct number of trailing spaces needed to offset by the desired number of
display columns. */
for (int skipped_display_cols = dw.advance_display_cols (m_x_offset_display);
skipped_display_cols > m_x_offset_display; --skipped_display_cols)
pp_space (m_pp);
/* Print the line and compute the line_bounds. */
line_bounds lbounds;
while (!dw.done ())
{
/* Assuming colorization is enabled for the caret and underline
characters, we may also colorize the associated characters
within the source line.
For frontends that generate range information, we color the
associated characters in the source line the same as the
carets and underlines in the annotation line, to make it easier
for the reader to see the pertinent code.
For frontends that only generate carets, we don't colorize the
characters above them, since this would look strange (e.g.
colorizing just the first character in a token). */
if (m_colorize_source_p)
{
bool in_range_p;
point_state state;
const int start_byte_col = dw.bytes_processed () + 1;
in_range_p = get_state_at_point (row, start_byte_col,
0, INT_MAX,
CU_BYTES,
&state);
if (in_range_p)
m_colorizer.set_range (state.range_idx);
else
m_colorizer.set_normal_text ();
}
/* Get the display width of the next character to be output, expanding
tabs and replacing some control bytes with spaces as necessary. */
const char *c = dw.next_byte ();
const int start_disp_col = dw.display_cols_processed () + 1;
const int this_display_width = dw.process_next_codepoint ();
if (*c == '\t')
{
/* The returned display width is the number of spaces into which the
tab should be expanded. */
for (int i = 0; i != this_display_width; ++i)
pp_space (m_pp);
continue;
}
if (*c == '\0' || *c == '\r')
{
/* cpp_wcwidth() promises to return 1 for all control bytes, and we
want to output these as a single space too, so this case is
actually the same as the '\t' case. */
gcc_assert (this_display_width == 1);
pp_space (m_pp);
continue;
}
/* We have a (possibly multibyte) character to output; update the line
bounds if it is not whitespace. */
if (*c != ' ')
{
lbounds.m_last_non_ws_disp_col = dw.display_cols_processed ();
if (lbounds.m_first_non_ws_disp_col == INT_MAX)
lbounds.m_first_non_ws_disp_col = start_disp_col;
}
/* Output the character. */
while (c != dw.next_byte ()) pp_character (m_pp, *c++);
}
print_newline ();
return lbounds;
}
/* Determine if we should print an annotation line for ROW.
i.e. if any of m_layout_ranges contains ROW. */
bool
layout::should_print_annotation_line_p (linenum_type row) const
{
layout_range *range;
int i;
FOR_EACH_VEC_ELT (m_layout_ranges, i, range)
{
if (range->m_range_display_kind == SHOW_LINES_WITHOUT_RANGE)
return false;
if (range->intersects_line_p (row))
return true;
}
return false;
}
/* Begin an annotation line. If m_show_line_numbers_p, print the left
margin, which is empty for annotation lines. Otherwise, do nothing. */
void
layout::start_annotation_line (char margin_char) const
{
pp_emit_prefix (m_pp);
if (m_show_line_numbers_p)
{
/* Print the margin. If MARGIN_CHAR != ' ', then print up to 3
of it, right-aligned, padded with spaces. */
int i;
for (i = 0; i < m_linenum_width - 3; i++)
pp_space (m_pp);
for (; i < m_linenum_width; i++)
pp_character (m_pp, margin_char);
pp_string (m_pp, " |");
}
}
/* Print a line consisting of the caret/underlines for the given
source line. */
void
layout::print_annotation_line (linenum_type row, const line_bounds lbounds)
{
int x_bound = get_x_bound_for_row (row, m_exploc.m_display_col,
lbounds.m_last_non_ws_disp_col);
start_annotation_line ();
pp_space (m_pp);
for (int column = 1 + m_x_offset_display; column < x_bound; column++)
{
bool in_range_p;
point_state state;
in_range_p = get_state_at_point (row, column,
lbounds.m_first_non_ws_disp_col,
lbounds.m_last_non_ws_disp_col,
CU_DISPLAY_COLS,
&state);
if (in_range_p)
{
/* Within a range. Draw either the caret or an underline. */
m_colorizer.set_range (state.range_idx);
if (state.draw_caret_p)
{
/* Draw the caret. */
char caret_char;
if (state.range_idx < rich_location::STATICALLY_ALLOCATED_RANGES)
caret_char = m_context->caret_chars[state.range_idx];
else
caret_char = '^';
pp_character (m_pp, caret_char);
}
else
pp_character (m_pp, '~');
}
else
{
/* Not in a range. */
m_colorizer.set_normal_text ();
pp_character (m_pp, ' ');
}
}
print_newline ();
}
/* Implementation detail of layout::print_any_labels.
A label within the given row of source. */
class line_label
{
public:
line_label (diagnostic_context *context, int state_idx, int column,
label_text text)
: m_state_idx (state_idx), m_column (column),
m_text (text), m_label_line (0), m_has_vbar (true)
{
const int bytes = strlen (text.m_buffer);
m_display_width
= cpp_display_width (text.m_buffer, bytes, context->tabstop);
}
/* Sorting is primarily by column, then by state index. */
static int comparator (const void *p1, const void *p2)
{
const line_label *ll1 = (const line_label *)p1;
const line_label *ll2 = (const line_label *)p2;
int column_cmp = compare (ll1->m_column, ll2->m_column);
if (column_cmp)
return column_cmp;
/* Order by reverse state index, so that labels are printed
in order of insertion into the rich_location when the
sorted list is walked backwards. */
return -compare (ll1->m_state_idx, ll2->m_state_idx);
}
int m_state_idx;
int m_column;
label_text m_text;
size_t m_display_width;
int m_label_line;
bool m_has_vbar;
};
/* Print any labels in this row. */
void
layout::print_any_labels (linenum_type row)
{
int i;
auto_vec<line_label> labels;
/* Gather the labels that are to be printed into "labels". */
{
layout_range *range;
FOR_EACH_VEC_ELT (m_layout_ranges, i, range)
{
/* Most ranges don't have labels, so reject this first. */
if (range->m_label == NULL)
continue;
/* The range's caret must be on this line. */
if (range->m_caret.m_line != row)
continue;
/* Reject labels that aren't fully visible due to clipping
by m_x_offset_display. */
const int disp_col = range->m_caret.m_columns[CU_DISPLAY_COLS];
if (disp_col <= m_x_offset_display)
continue;
label_text text;
text = range->m_label->get_text (range->m_original_idx);
/* Allow for labels that return NULL from their get_text
implementation (so e.g. such labels can control their own
visibility). */
if (text.m_buffer == NULL)
continue;
labels.safe_push (line_label (m_context, i, disp_col, text));
}
}
/* Bail out if there are no labels on this row. */
if (labels.length () == 0)
return;
/* Sort them. */
labels.qsort(line_label::comparator);
/* Figure out how many "label lines" we need, and which
one each label is printed in.
For example, if the labels aren't too densely packed,
we can fit them on the same line, giving two "label lines":
foo + bar
~~~ ~~~
| | : label line 0
l0 l1 : label line 1
If they would touch each other or overlap, then we need
additional "label lines":
foo + bar
~~~ ~~~
| | : label line 0
| label 1 : label line 1
label 0 : label line 2
Place the final label on label line 1, and work backwards, adding
label lines as needed.
If multiple labels are at the same place, put them on separate
label lines:
foo + bar
^ : label line 0
| : label line 1
label 0 : label line 2
label 1 : label line 3. */
int max_label_line = 1;
{
int next_column = INT_MAX;
line_label *label;
FOR_EACH_VEC_ELT_REVERSE (labels, i, label)
{
/* Would this label "touch" or overlap the next label? */
if (label->m_column + label->m_display_width >= (size_t)next_column)
{
max_label_line++;
/* If we've already seen labels with the same column, suppress the
vertical bar for subsequent ones in this backwards iteration;
hence only the one with the highest label_line has m_has_vbar set. */
if (label->m_column == next_column)
label->m_has_vbar = false;
}
label->m_label_line = max_label_line;
next_column = label->m_column;
}
}
/* Print the "label lines". For each label within the line, print
either a vertical bar ('|') for the labels that are lower down, or the
labels themselves once we've reached their line. */
{
for (int label_line = 0; label_line <= max_label_line; label_line++)
{
start_annotation_line ();
pp_space (m_pp);
int column = 1 + m_x_offset_display;
line_label *label;
FOR_EACH_VEC_ELT (labels, i, label)
{
if (label_line > label->m_label_line)
/* We've printed all the labels for this label line. */
break;
if (label_line == label->m_label_line)
{
gcc_assert (column <= label->m_column);
move_to_column (&column, label->m_column, true);
/* Colorize the text, unless it's for events in a
diagnostic_path. */
if (!m_diagnostic_path_p)
m_colorizer.set_range (label->m_state_idx);
pp_string (m_pp, label->m_text.m_buffer);
m_colorizer.set_normal_text ();
column += label->m_display_width;
}
else if (label->m_has_vbar)
{
gcc_assert (column <= label->m_column);
move_to_column (&column, label->m_column, true);
m_colorizer.set_range (label->m_state_idx);
pp_character (m_pp, '|');
m_colorizer.set_normal_text ();
column++;
}
}
print_newline ();
}
}
/* Clean up. */
{
line_label *label;
FOR_EACH_VEC_ELT (labels, i, label)
label->m_text.maybe_free ();
}
}
/* If there are any fixit hints inserting new lines before source line ROW,
print them.
They are printed on lines of their own, before the source line
itself, with a leading '+'. */
void
layout::print_leading_fixits (linenum_type row)
{
for (unsigned int i = 0; i < m_fixit_hints.length (); i++)
{
const fixit_hint *hint = m_fixit_hints[i];
if (!hint->ends_with_newline_p ())
/* Not a newline fixit; print it in print_trailing_fixits. */
continue;
gcc_assert (hint->insertion_p ());
if (hint->affects_line_p (m_exploc.file, row))
{
/* Printing the '+' with normal colorization
and the inserted line with "insert" colorization
helps them stand out from each other, and from
the surrounding text. */
m_colorizer.set_normal_text ();
start_annotation_line ('+');
pp_character (m_pp, '+');
m_colorizer.set_fixit_insert ();
/* Print all but the trailing newline of the fix-it hint.
We have to print the newline separately to avoid
getting additional pp prefixes printed. */
for (size_t i = 0; i < hint->get_length () - 1; i++)
pp_character (m_pp, hint->get_string ()[i]);
m_colorizer.set_normal_text ();
pp_newline (m_pp);
}
}
}
/* Subroutine of layout::print_trailing_fixits.
Determine if the annotation line printed for LINE contained
the exact range from START_COLUMN to FINISH_COLUMN (in display units). */
bool
layout::annotation_line_showed_range_p (linenum_type line, int start_column,
int finish_column) const
{
layout_range *range;
int i;
FOR_EACH_VEC_ELT (m_layout_ranges, i, range)
if (range->m_start.m_line == line
&& range->m_start.m_columns[CU_DISPLAY_COLS] == start_column
&& range->m_finish.m_line == line
&& range->m_finish.m_columns[CU_DISPLAY_COLS] == finish_column)
return true;
return false;
}
/* Classes for printing trailing fix-it hints i.e. those that
don't add new lines.
For insertion, these can look like:
new_text
For replacement, these can look like:
------------- : underline showing affected range
new_text
For deletion, these can look like:
------------- : underline showing affected range
This can become confusing if they overlap, and so we need
to do some preprocessing to decide what to print.
We use the list of fixit_hint instances affecting the line
to build a list of "correction" instances, and print the
latter.
For example, consider a set of fix-its for converting
a C-style cast to a C++ const_cast.
Given:
..000000000111111111122222222223333333333.
..123456789012345678901234567890123456789.
foo *f = (foo *)ptr->field;
^~~~~
and the fix-it hints:
- replace col 10 (the open paren) with "const_cast<"
- replace col 16 (the close paren) with "> ("
- insert ")" before col 27
then we would get odd-looking output:
foo *f = (foo *)ptr->field;
^~~~~
-
const_cast<
-
> ( )
It would be better to detect when fixit hints are going to
overlap (those that require new lines), and to consolidate
the printing of such fixits, giving something like:
foo *f = (foo *)ptr->field;
^~~~~
-----------------
const_cast<foo *> (ptr->field)
This works by detecting when the printing would overlap, and
effectively injecting no-op replace hints into the gaps between
such fix-its, so that the printing joins up.
In the above example, the overlap of:
- replace col 10 (the open paren) with "const_cast<"
and:
- replace col 16 (the close paren) with "> ("
is fixed by injecting a no-op:
- replace cols 11-15 with themselves ("foo *")
and consolidating these, making:
- replace cols 10-16 with "const_cast<" + "foo *" + "> ("
i.e.:
- replace cols 10-16 with "const_cast<foo *> ("
This overlaps with the final fix-it hint:
- insert ")" before col 27
and so we repeat the consolidation process, by injecting
a no-op:
- replace cols 17-26 with themselves ("ptr->field")
giving:
- replace cols 10-26 with "const_cast<foo *> (" + "ptr->field" + ")"
i.e.:
- replace cols 10-26 with "const_cast<foo *> (ptr->field)"
and is thus printed as desired. */
/* A range of (byte or display) columns within a line. */
class column_range
{
public:
column_range (int start_, int finish_) : start (start_), finish (finish_)
{
/* We must have either a range, or an insertion. */
gcc_assert (start <= finish || finish == start - 1);
}
bool operator== (const column_range &other) const
{
return start == other.start && finish == other.finish;
}
int start;
int finish;
};
/* Get the range of bytes or display columns that HINT would affect. */
static column_range
get_affected_range (diagnostic_context *context,
const fixit_hint *hint, enum column_unit col_unit)
{
expanded_location exploc_start = expand_location (hint->get_start_loc ());
expanded_location exploc_finish = expand_location (hint->get_next_loc ());
--exploc_finish.column;
int start_column;
int finish_column;
if (col_unit == CU_DISPLAY_COLS)
{
start_column
= location_compute_display_column (exploc_start, context->tabstop);
if (hint->insertion_p ())
finish_column = start_column - 1;
else
finish_column
= location_compute_display_column (exploc_finish, context->tabstop);
}
else
{
start_column = exploc_start.column;
finish_column = exploc_finish.column;
}
return column_range (start_column, finish_column);
}
/* Get the range of display columns that would be printed for HINT. */
static column_range
get_printed_columns (diagnostic_context *context, const fixit_hint *hint)
{
expanded_location exploc = expand_location (hint->get_start_loc ());
int start_column = location_compute_display_column (exploc, context->tabstop);
int hint_width = cpp_display_width (hint->get_string (), hint->get_length (),
context->tabstop);
int final_hint_column = start_column + hint_width - 1;
if (hint->insertion_p ())
{
return column_range (start_column, final_hint_column);
}
else
{
exploc = expand_location (hint->get_next_loc ());
--exploc.column;
int finish_column
= location_compute_display_column (exploc, context->tabstop);
return column_range (start_column,
MAX (finish_column, final_hint_column));
}
}
/* A correction on a particular line.
This describes a plan for how to print one or more fixit_hint
instances that affected the line, potentially consolidating hints
into corrections to make the result easier for the user to read. */
class correction
{
public:
correction (column_range affected_bytes,
column_range affected_columns,
column_range printed_columns,
const char *new_text, size_t new_text_len,
int tabstop)
: m_affected_bytes (affected_bytes),
m_affected_columns (affected_columns),
m_printed_columns (printed_columns),
m_text (xstrdup (new_text)),
m_byte_length (new_text_len),
m_tabstop (tabstop),
m_alloc_sz (new_text_len + 1)
{
compute_display_cols ();
}
~correction () { free (m_text); }
bool insertion_p () const
{
return m_affected_bytes.start == m_affected_bytes.finish + 1;
}
void ensure_capacity (size_t len);
void ensure_terminated ();
void compute_display_cols ()
{
m_display_cols = cpp_display_width (m_text, m_byte_length, m_tabstop);
}
void overwrite (int dst_offset, const char_span &src_span)
{
gcc_assert (dst_offset >= 0);
gcc_assert (dst_offset + src_span.length () < m_alloc_sz);
memcpy (m_text + dst_offset, src_span.get_buffer (),
src_span.length ());
}
/* If insert, then start: the column before which the text
is to be inserted, and finish is offset by the length of
the replacement.
If replace, then the range of columns affected. */
column_range m_affected_bytes;
column_range m_affected_columns;
/* If insert, then start: the column before which the text
is to be inserted, and finish is offset by the length of
the replacement.
If replace, then the range of columns affected. */
column_range m_printed_columns;
/* The text to be inserted/used as replacement. */
char *m_text;
size_t m_byte_length; /* Not including null-terminator. */
int m_display_cols;
int m_tabstop;
size_t m_alloc_sz;
};
/* Ensure that m_text can hold a string of length LEN
(plus 1 for 0-termination). */
void
correction::ensure_capacity (size_t len)
{
/* Allow 1 extra byte for 0-termination. */
if (m_alloc_sz < (len + 1))
{
size_t new_alloc_sz = (len + 1) * 2;
m_text = (char *)xrealloc (m_text, new_alloc_sz);
m_alloc_sz = new_alloc_sz;
}
}
/* Ensure that m_text is 0-terminated. */
void
correction::ensure_terminated ()
{
/* 0-terminate the buffer. */
gcc_assert (m_byte_length < m_alloc_sz);
m_text[m_byte_length] = '\0';
}
/* A list of corrections affecting a particular line.
This is used by layout::print_trailing_fixits for planning
how to print the fix-it hints affecting the line. */
class line_corrections
{
public:
line_corrections (diagnostic_context *context, const char *filename,
linenum_type row)
: m_context (context), m_filename (filename), m_row (row)
{}
~line_corrections ();
void add_hint (const fixit_hint *hint);
diagnostic_context *m_context;
const char *m_filename;
linenum_type m_row;
auto_vec <correction *> m_corrections;
};
/* struct line_corrections. */
line_corrections::~line_corrections ()
{
unsigned i;
correction *c;
FOR_EACH_VEC_ELT (m_corrections, i, c)
delete c;
}
/* A struct wrapping a particular source line, allowing
run-time bounds-checking of accesses in a checked build. */
class source_line
{
public:
source_line (const char *filename, int line);
char_span as_span () { return char_span (chars, width); }
const char *chars;
int width;
};
/* source_line's ctor. */
source_line::source_line (const char *filename, int line)
{
char_span span = location_get_source_line (filename, line);
chars = span.get_buffer ();
width = span.length ();
}
/* Add HINT to the corrections for this line.
Attempt to consolidate nearby hints so that they will not
overlap with printed. */
void
line_corrections::add_hint (const fixit_hint *hint)
{
column_range affected_bytes = get_affected_range (m_context, hint, CU_BYTES);
column_range affected_columns = get_affected_range (m_context, hint,
CU_DISPLAY_COLS);
column_range printed_columns = get_printed_columns (m_context, hint);
/* Potentially consolidate. */
if (!m_corrections.is_empty ())
{
correction *last_correction
= m_corrections[m_corrections.length () - 1];
/* The following consolidation code assumes that the fix-it hints
have been sorted by start (done within layout's ctor). */
gcc_assert (affected_bytes.start
>= last_correction->m_affected_bytes.start);
gcc_assert (printed_columns.start
>= last_correction->m_printed_columns.start);
if (printed_columns.start <= last_correction->m_printed_columns.finish)
{
/* We have two hints for which the printed forms of the hints
would touch or overlap, so we need to consolidate them to avoid
confusing the user.
Attempt to inject a "replace" correction from immediately
after the end of the last hint to immediately before the start
of the next hint. */
column_range between (last_correction->m_affected_bytes.finish + 1,
affected_bytes.start - 1);
/* Try to read the source. */
source_line line (m_filename, m_row);
if (line.chars && between.finish < line.width)
{
/* Consolidate into the last correction:
add a no-op "replace" of the "between" text, and
add the text from the new hint. */
int old_byte_len = last_correction->m_byte_length;
gcc_assert (old_byte_len >= 0);
int between_byte_len = between.finish + 1 - between.start;
gcc_assert (between_byte_len >= 0);
int new_byte_len
= old_byte_len + between_byte_len + hint->get_length ();
gcc_assert (new_byte_len >= 0);
last_correction->ensure_capacity (new_byte_len);
last_correction->overwrite
(old_byte_len,
line.as_span ().subspan (between.start - 1,
between.finish + 1 - between.start));
last_correction->overwrite (old_byte_len + between_byte_len,
char_span (hint->get_string (),
hint->get_length ()));
last_correction->m_byte_length = new_byte_len;
last_correction->ensure_terminated ();
last_correction->m_affected_bytes.finish
= affected_bytes.finish;
last_correction->m_affected_columns.finish
= affected_columns.finish;
int prev_display_cols = last_correction->m_display_cols;
last_correction->compute_display_cols ();
last_correction->m_printed_columns.finish
+= last_correction->m_display_cols - prev_display_cols;
return;
}
}
}
/* If no consolidation happened, add a new correction instance. */
m_corrections.safe_push (new correction (affected_bytes,
affected_columns,
printed_columns,
hint->get_string (),
hint->get_length (),
m_context->tabstop));
}
/* If there are any fixit hints on source line ROW, print them.
They are printed in order, attempting to combine them onto lines, but
starting new lines if necessary.
Fix-it hints that insert new lines are handled separately,
in layout::print_leading_fixits. */
void
layout::print_trailing_fixits (linenum_type row)
{
/* Build a list of correction instances for the line,
potentially consolidating hints (for the sake of readability). */
line_corrections corrections (m_context, m_exploc.file, row);
for (unsigned int i = 0; i < m_fixit_hints.length (); i++)
{
const fixit_hint *hint = m_fixit_hints[i];
/* Newline fixits are handled by layout::print_leading_fixits. */
if (hint->ends_with_newline_p ())
continue;
if (hint->affects_line_p (m_exploc.file, row))
corrections.add_hint (hint);
}
/* Now print the corrections. */
unsigned i;
correction *c;
int column = m_x_offset_display;
if (!corrections.m_corrections.is_empty ())
start_annotation_line ();
FOR_EACH_VEC_ELT (corrections.m_corrections, i, c)
{
/* For now we assume each fixit hint can only touch one line. */
if (c->insertion_p ())
{
/* This assumes the insertion just affects one line. */
int start_column = c->m_printed_columns.start;
move_to_column (&column, start_column, true);
m_colorizer.set_fixit_insert ();
pp_string (m_pp, c->m_text);
m_colorizer.set_normal_text ();
column += c->m_display_cols;
}
else
{
/* If the range of the replacement wasn't printed in the
annotation line, then print an extra underline to
indicate exactly what is being replaced.
Always show it for removals. */
int start_column = c->m_affected_columns.start;
int finish_column = c->m_affected_columns.finish;
if (!annotation_line_showed_range_p (row, start_column,
finish_column)
|| c->m_byte_length == 0)
{
move_to_column (&column, start_column, true);
m_colorizer.set_fixit_delete ();
for (; column <= finish_column; column++)
pp_character (m_pp, '-');
m_colorizer.set_normal_text ();
}
/* Print the replacement text. REPLACE also covers
removals, so only do this extra work (potentially starting
a new line) if we have actual replacement text. */
if (c->m_byte_length > 0)
{
move_to_column (&column, start_column, true);
m_colorizer.set_fixit_insert ();
pp_string (m_pp, c->m_text);
m_colorizer.set_normal_text ();
column += c->m_display_cols;
}
}
}
/* Add a trailing newline, if necessary. */
move_to_column (&column, 0, false);
}
/* Disable any colorization and emit a newline. */
void
layout::print_newline ()
{
m_colorizer.set_normal_text ();
pp_newline (m_pp);
}
/* Return true if (ROW/COLUMN) is within a range of the layout.
If it returns true, OUT_STATE is written to, with the
range index, and whether we should draw the caret at
(ROW/COLUMN) (as opposed to an underline). COL_UNIT controls
whether all inputs and outputs are in bytes or display column units. */
bool
layout::get_state_at_point (/* Inputs. */
linenum_type row, int column,
int first_non_ws, int last_non_ws,
enum column_unit col_unit,
/* Outputs. */
point_state *out_state)
{
layout_range *range;
int i;
FOR_EACH_VEC_ELT (m_layout_ranges, i, range)
{
if (range->m_range_display_kind == SHOW_LINES_WITHOUT_RANGE)
/* Bail out early, so that such ranges don't affect underlining or
source colorization. */
continue;
if (range->contains_point (row, column, col_unit))
{
out_state->range_idx = i;
/* Are we at the range's caret? is it visible? */
out_state->draw_caret_p = false;
if (range->m_range_display_kind == SHOW_RANGE_WITH_CARET
&& row == range->m_caret.m_line
&& column == range->m_caret.m_columns[col_unit])
out_state->draw_caret_p = true;
/* Within a multiline range, don't display any underline
in any leading or trailing whitespace on a line.
We do display carets, however. */
if (!out_state->draw_caret_p)
if (column < first_non_ws || column > last_non_ws)
return false;
/* We are within a range. */
return true;
}
}
return false;
}
/* Helper function for use by layout::print_line when printing the
annotation line under the source line.
Get the display column beyond the rightmost one that could contain a caret
or range marker, given that we stop rendering at trailing whitespace.
ROW is the source line within the given file.
CARET_COLUMN is the display column of range 0's caret.
LAST_NON_WS_COLUMN is the last display column containing a non-whitespace
character of source (as determined when printing the source line). */
int
layout::get_x_bound_for_row (linenum_type row, int caret_column,
int last_non_ws_column)
{
int result = caret_column + 1;
layout_range *range;
int i;
FOR_EACH_VEC_ELT (m_layout_ranges, i, range)
{
if (row >= range->m_start.m_line)
{
if (range->m_finish.m_line == row)
{
/* On the final line within a range; ensure that
we render up to the end of the range. */
const int disp_col = range->m_finish.m_columns[CU_DISPLAY_COLS];
if (result <= disp_col)
result = disp_col + 1;
}
else if (row < range->m_finish.m_line)
{
/* Within a multiline range; ensure that we render up to the
last non-whitespace column. */
if (result <= last_non_ws_column)
result = last_non_ws_column + 1;
}
}
}
return result;
}
/* Given *COLUMN as an x-coordinate, print spaces to position
successive output at DEST_COLUMN, printing a newline if necessary,
and updating *COLUMN. If ADD_LEFT_MARGIN, then print the (empty)
left margin after any newline. */
void
layout::move_to_column (int *column, int dest_column, bool add_left_margin)
{
/* Start a new line if we need to. */
if (*column > dest_column)
{
print_newline ();
if (add_left_margin)
start_annotation_line ();
*column = m_x_offset_display;
}
while (*column < dest_column)
{
pp_space (m_pp);
(*column)++;
}
}
/* For debugging layout issues, render a ruler giving column numbers
(after the 1-column indent). */
void
layout::show_ruler (int max_column) const
{
/* Hundreds. */
if (max_column > 99)
{
start_annotation_line ();
pp_space (m_pp);
for (int column = 1 + m_x_offset_display; column <= max_column; column++)
if (column % 10 == 0)
pp_character (m_pp, '0' + (column / 100) % 10);
else
pp_space (m_pp);
pp_newline (m_pp);
}
/* Tens. */
start_annotation_line ();
pp_space (m_pp);
for (int column = 1 + m_x_offset_display; column <= max_column; column++)
if (column % 10 == 0)
pp_character (m_pp, '0' + (column / 10) % 10);
else
pp_space (m_pp);
pp_newline (m_pp);
/* Units. */
start_annotation_line ();
pp_space (m_pp);
for (int column = 1 + m_x_offset_display; column <= max_column; column++)
pp_character (m_pp, '0' + (column % 10));
pp_newline (m_pp);
}
/* Print leading fix-its (for new lines inserted before the source line)
then the source line, followed by an annotation line
consisting of any caret/underlines, then any fixits.
If the source line can't be read, print nothing. */
void
layout::print_line (linenum_type row)
{
char_span line = location_get_source_line (m_exploc.file, row);
if (!line)
return;
print_leading_fixits (row);
const line_bounds lbounds
= print_source_line (row, line.get_buffer (), line.length ());
if (should_print_annotation_line_p (row))
print_annotation_line (row, lbounds);
if (m_show_labels_p)
print_any_labels (row);
print_trailing_fixits (row);
}
} /* End of anonymous namespace. */
/* If LOC is within the spans of lines that will already be printed for
this gcc_rich_location, then add it as a secondary location and return true.
Otherwise return false. */
bool
gcc_rich_location::add_location_if_nearby (location_t loc,
bool restrict_to_current_line_spans,
const range_label *label)
{
/* Use the layout location-handling logic to sanitize LOC,
filtering it to the current line spans within a temporary
layout instance. */
layout layout (global_dc, this, DK_ERROR);
location_range loc_range;
loc_range.m_loc = loc;
loc_range.m_range_display_kind = SHOW_RANGE_WITHOUT_CARET;
if (!layout.maybe_add_location_range (&loc_range, 0,
restrict_to_current_line_spans))
return false;
add_range (loc, SHOW_RANGE_WITHOUT_CARET, label);
return true;
}
/* Print the physical source code corresponding to the location of
this diagnostic, with additional annotations. */
void
diagnostic_show_locus (diagnostic_context * context,
rich_location *richloc,
diagnostic_t diagnostic_kind)
{
location_t loc = richloc->get_loc ();
/* Do nothing if source-printing has been disabled. */
if (!context->show_caret)
return;
/* Don't attempt to print source for UNKNOWN_LOCATION and for builtins. */
if (loc <= BUILTINS_LOCATION)
return;
/* Don't print the same source location twice in a row, unless we have
fix-it hints, or multiple locations, or a label. */
if (loc == context->last_location
&& richloc->get_num_fixit_hints () == 0
&& richloc->get_num_locations () == 1
&& richloc->get_range (0)->m_label == NULL)
return;
context->last_location = loc;
layout layout (context, richloc, diagnostic_kind);
for (int line_span_idx = 0; line_span_idx < layout.get_num_line_spans ();
line_span_idx++)
{
const line_span *line_span = layout.get_line_span (line_span_idx);
if (context->show_line_numbers_p)
{
/* With line numbers, we should show whenever the line-numbering
"jumps". */
if (line_span_idx > 0)
layout.print_gap_in_line_numbering ();
}
else
{
/* Without line numbers, we print headings for some line spans. */
if (layout.print_heading_for_line_span_index_p (line_span_idx))
{
expanded_location exploc
= layout.get_expanded_location (line_span);
context->start_span (context, exploc);
}
}
/* Iterate over the lines within this span (using linenum_arith_t to
avoid overflow with 0xffffffff causing an infinite loop). */
linenum_arith_t last_line = line_span->get_last_line ();
for (linenum_arith_t row = line_span->get_first_line ();
row <= last_line; row++)
layout.print_line (row);
}
}
#if CHECKING_P
namespace selftest {
/* Selftests for diagnostic_show_locus. */
/* For precise tests of the layout, make clear where the source line will
start. test_left_margin sets the total byte count from the left side of the
screen to the start of source lines, after the line number and the separator,
which consists of the three characters " | ". */
static const int test_linenum_sep = 3;
static const int test_left_margin = 7;
/* Helper function for test_layout_x_offset_display_utf8(). */
static void
test_offset_impl (int caret_byte_col, int max_width,
int expected_x_offset_display,
int left_margin = test_left_margin)
{
test_diagnostic_context dc;
dc.caret_max_width = max_width;
/* diagnostic_context::min_margin_width sets the minimum space reserved for
the line number plus one space after. */
dc.min_margin_width = left_margin - test_linenum_sep + 1;
dc.show_line_numbers_p = true;
rich_location richloc (line_table,
linemap_position_for_column (line_table,
caret_byte_col));
layout test_layout (&dc, &richloc, DK_ERROR);
ASSERT_EQ (left_margin - test_linenum_sep,
test_layout.get_linenum_width ());
ASSERT_EQ (expected_x_offset_display,
test_layout.get_x_offset_display ());
}
/* Test that layout::calculate_x_offset_display() works. */
static void
test_layout_x_offset_display_utf8 (const line_table_case &case_)
{
const char *content
= "This line is very long, so that we can use it to test the logic for "
"clipping long lines. Also this: \xf0\x9f\x98\x82\xf0\x9f\x98\x82 is a "
"pair of emojis that occupies 8 bytes and 4 display columns, starting at "
"column #102.\n";
/* Number of bytes in the line, subtracting one to remove the newline. */
const int line_bytes = strlen (content) - 1;
/* Number of display columns occupied by the line; each of the 2 emojis
takes up 2 fewer display columns than it does bytes. */
const int line_display_cols = line_bytes - 2*2;
/* The column of the first emoji. Byte or display is the same as there are
no multibyte characters earlier on the line. */
const int emoji_col = 102;
temp_source_file tmp (SELFTEST_LOCATION, ".c", content);
line_table_test ltt (case_);
linemap_add (line_table, LC_ENTER, false, tmp.get_filename (), 1);
location_t line_end = linemap_position_for_column (line_table, line_bytes);
/* Don't attempt to run the tests if column data might be unavailable. */
if (line_end > LINE_MAP_MAX_LOCATION_WITH_COLS)
return;
ASSERT_STREQ (tmp.get_filename (), LOCATION_FILE (line_end));
ASSERT_EQ (1, LOCATION_LINE (line_end));
ASSERT_EQ (line_bytes, LOCATION_COLUMN (line_end));
char_span lspan = location_get_source_line (tmp.get_filename (), 1);
ASSERT_EQ (line_display_cols,
cpp_display_width (lspan.get_buffer (), lspan.length (),
def_tabstop));
ASSERT_EQ (line_display_cols,
location_compute_display_column (expand_location (line_end),
def_tabstop));
ASSERT_EQ (0, memcmp (lspan.get_buffer () + (emoji_col - 1),
"\xf0\x9f\x98\x82\xf0\x9f\x98\x82", 8));
/* (caret_byte, max_width, expected_x_offset_display, [left_margin]) */
/* No constraint on the width -> no offset. */
test_offset_impl (emoji_col, 0, 0);
/* Caret is before the beginning -> no offset. */
test_offset_impl (0, 100, 0);
/* Caret is past the end of the line -> no offset. */
test_offset_impl (line_bytes+1, 100, 0);
/* Line fits in the display -> no offset. */
test_offset_impl (line_bytes, line_display_cols + test_left_margin, 0);
test_offset_impl (emoji_col, line_display_cols + test_left_margin, 0);
/* Line is too long for the display but caret location is OK
anyway -> no offset. */
static const int small_width = 24;
test_offset_impl (1, small_width, 0);
/* Width constraint is very small -> no offset. */
test_offset_impl (emoji_col, CARET_LINE_MARGIN, 0);
/* Line would be offset, but due to large line numbers, offsetting
would remove the whole line -> no offset. */
static const int huge_left_margin = 100;
test_offset_impl (emoji_col, huge_left_margin, 0, huge_left_margin);
/* Line is the same length as the display, but the line number makes it too
long, so offset is required. Caret is at the end so padding on the right
is not in effect. */
for (int excess = 1; excess <= 3; ++excess)
test_offset_impl (line_bytes, line_display_cols + test_left_margin - excess,
excess);
/* Line is much too long for the display, caret is near the end ->
offset should be such that the line fits in the display and caret
remains the same distance from the end that it was. */
for (int caret_offset = 0, max_offset = MIN (CARET_LINE_MARGIN, 10);
caret_offset <= max_offset; ++caret_offset)
test_offset_impl (line_bytes - caret_offset, small_width,
line_display_cols + test_left_margin - small_width);
/* As previous case but caret is closer to the middle; now we want it to end
up CARET_LINE_MARGIN bytes from the end. */
ASSERT_GT (line_display_cols - emoji_col, CARET_LINE_MARGIN);
test_offset_impl (emoji_col, small_width,
emoji_col + test_left_margin
- (small_width - CARET_LINE_MARGIN));
/* Test that the source line is offset as expected when printed. */
{
test_diagnostic_context dc;
dc.caret_max_width = small_width - 6;
dc.min_margin_width = test_left_margin - test_linenum_sep + 1;
dc.show_line_numbers_p = true;
dc.show_ruler_p = true;
rich_location richloc (line_table,
linemap_position_for_column (line_table,
emoji_col));
layout test_layout (&dc, &richloc, DK_ERROR);
test_layout.print_line (1);
ASSERT_STREQ (" | 1 \n"
" | 1 \n"
" | 234567890123456789\n"
" 1 | \xf0\x9f\x98\x82\xf0\x9f\x98\x82 is a pair of emojis "
"that occupies 8 bytes and 4 display columns, starting at "
"column #102.\n"
" | ^\n\n",
pp_formatted_text (dc.printer));
}
/* Similar to the previous example, but now the offset called for would split
the first emoji in the middle of the UTF-8 sequence. Check that we replace
it with a padding space in this case. */
{
test_diagnostic_context dc;
dc.caret_max_width = small_width - 5;
dc.min_margin_width = test_left_margin - test_linenum_sep + 1;
dc.show_line_numbers_p = true;
dc.show_ruler_p = true;
rich_location richloc (line_table,
linemap_position_for_column (line_table,
emoji_col + 2));
layout test_layout (&dc, &richloc, DK_ERROR);
test_layout.print_line (1);
ASSERT_STREQ (" | 1 1 \n"
" | 1 2 \n"
" | 3456789012345678901\n"
" 1 | \xf0\x9f\x98\x82 is a pair of emojis "
"that occupies 8 bytes and 4 display columns, starting at "
"column #102.\n"
" | ^\n\n",
pp_formatted_text (dc.printer));
}
}
static void
test_layout_x_offset_display_tab (const line_table_case &case_)
{
const char *content
= "This line is very long, so that we can use it to test the logic for "
"clipping long lines. Also this: `\t' is a tab that occupies 1 byte and "
"a variable number of display columns, starting at column #103.\n";
/* Number of bytes in the line, subtracting one to remove the newline. */
const int line_bytes = strlen (content) - 1;
/* The column where the tab begins. Byte or display is the same as there are
no multibyte characters earlier on the line. */
const int tab_col = 103;
/* Effective extra size of the tab beyond what a single space would have taken
up, indexed by tabstop. */
static const int num_tabstops = 11;
int extra_width[num_tabstops];
for (int tabstop = 1; tabstop != num_tabstops; ++tabstop)
{
const int this_tab_size = tabstop - (tab_col - 1) % tabstop;
extra_width[tabstop] = this_tab_size - 1;
}
/* Example of this calculation: if tabstop is 10, the tab starting at column
#103 has to expand into 8 spaces, covering columns 103-110, so that the
next character is at column #111. So it takes up 7 more columns than
a space would have taken up. */
ASSERT_EQ (7, extra_width[10]);
temp_source_file tmp (SELFTEST_LOCATION, ".c", content);
line_table_test ltt (case_);
linemap_add (line_table, LC_ENTER, false, tmp.get_filename (), 1);
location_t line_end = linemap_position_for_column (line_table, line_bytes);
/* Don't attempt to run the tests if column data might be unavailable. */
if (line_end > LINE_MAP_MAX_LOCATION_WITH_COLS)
return;
/* Check that cpp_display_width handles the tabs as expected. */
char_span lspan = location_get_source_line (tmp.get_filename (), 1);
ASSERT_EQ ('\t', *(lspan.get_buffer () + (tab_col - 1)));
for (int tabstop = 1; tabstop != num_tabstops; ++tabstop)
{
ASSERT_EQ (line_bytes + extra_width[tabstop],
cpp_display_width (lspan.get_buffer (), lspan.length (),
tabstop));
ASSERT_EQ (line_bytes + extra_width[tabstop],
location_compute_display_column (expand_location (line_end),
tabstop));
}
/* Check that the tab is expanded to the expected number of spaces. */
rich_location richloc (line_table,
linemap_position_for_column (line_table,
tab_col + 1));
for (int tabstop = 1; tabstop != num_tabstops; ++tabstop)
{
test_diagnostic_context dc;
dc.tabstop = tabstop;
layout test_layout (&dc, &richloc, DK_ERROR);
test_layout.print_line (1);
const char *out = pp_formatted_text (dc.printer);
ASSERT_EQ (NULL, strchr (out, '\t'));
const char *left_quote = strchr (out, '`');
const char *right_quote = strchr (out, '\'');
ASSERT_NE (NULL, left_quote);
ASSERT_NE (NULL, right_quote);
ASSERT_EQ (right_quote - left_quote, extra_width[tabstop] + 2);
}
/* Check that the line is offset properly and that the tab is broken up
into the expected number of spaces when it is the last character skipped
over. */
for (int tabstop = 1; tabstop != num_tabstops; ++tabstop)
{
test_diagnostic_context dc;
dc.tabstop = tabstop;
static const int small_width = 24;
dc.caret_max_width = small_width - 4;
dc.min_margin_width = test_left_margin - test_linenum_sep + 1;
dc.show_line_numbers_p = true;
layout test_layout (&dc, &richloc, DK_ERROR);
test_layout.print_line (1);
/* We have arranged things so that two columns will be printed before
the caret. If the tab results in more than one space, this should
produce two spaces in the output; otherwise, it will be a single space
preceded by the opening quote before the tab character. */
const char *output1
= " 1 | ' is a tab that occupies 1 byte and a variable number of "
"display columns, starting at column #103.\n"
" | ^\n\n";
const char *output2
= " 1 | ` ' is a tab that occupies 1 byte and a variable number of "
"display columns, starting at column #103.\n"
" | ^\n\n";
const char *expected_output = (extra_width[tabstop] ? output1 : output2);
ASSERT_STREQ (expected_output, pp_formatted_text (dc.printer));
}
}
/* Verify that diagnostic_show_locus works sanely on UNKNOWN_LOCATION. */
static void
test_diagnostic_show_locus_unknown_location ()
{
test_diagnostic_context dc;
rich_location richloc (line_table, UNKNOWN_LOCATION);
diagnostic_show_locus (&dc, &richloc, DK_ERROR);
ASSERT_STREQ ("", pp_formatted_text (dc.printer));
}
/* Verify that diagnostic_show_locus works sanely for various
single-line cases.
All of these work on the following 1-line source file:
.0000000001111111
.1234567890123456
"foo = bar.field;\n"
which is set up by test_diagnostic_show_locus_one_liner and calls