blob: 7af92d1c893321a7acd44aecf744b462aed17dc3 [file] [log] [blame]
/* Functions to determine/estimate number of iterations of a loop.
Copyright (C) 2004-2021 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "stor-layout.h"
#include "fold-const.h"
#include "calls.h"
#include "intl.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-dfa.h"
#include "gimple-range.h"
/* The maximum number of dominator BBs we search for conditions
of loop header copies we use for simplifying a conditional
expression. */
#define MAX_DOMINATORS_TO_WALK 8
/*
Analysis of number of iterations of an affine exit test.
*/
/* Bounds on some value, BELOW <= X <= UP. */
struct bounds
{
mpz_t below, up;
};
static bool number_of_iterations_popcount (loop_p loop, edge exit,
enum tree_code code,
class tree_niter_desc *niter);
/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
static void
split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
{
tree type = TREE_TYPE (expr);
tree op0, op1;
bool negate = false;
*var = expr;
mpz_set_ui (offset, 0);
switch (TREE_CODE (expr))
{
case MINUS_EXPR:
negate = true;
/* Fallthru. */
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
op0 = TREE_OPERAND (expr, 0);
op1 = TREE_OPERAND (expr, 1);
if (TREE_CODE (op1) != INTEGER_CST)
break;
*var = op0;
/* Always sign extend the offset. */
wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
if (negate)
mpz_neg (offset, offset);
break;
case INTEGER_CST:
*var = build_int_cst_type (type, 0);
wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
break;
default:
break;
}
}
/* From condition C0 CMP C1 derives information regarding the value range
of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
static void
refine_value_range_using_guard (tree type, tree var,
tree c0, enum tree_code cmp, tree c1,
mpz_t below, mpz_t up)
{
tree varc0, varc1, ctype;
mpz_t offc0, offc1;
mpz_t mint, maxt, minc1, maxc1;
bool no_wrap = nowrap_type_p (type);
bool c0_ok, c1_ok;
signop sgn = TYPE_SIGN (type);
switch (cmp)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
STRIP_SIGN_NOPS (c0);
STRIP_SIGN_NOPS (c1);
ctype = TREE_TYPE (c0);
if (!useless_type_conversion_p (ctype, type))
return;
break;
case EQ_EXPR:
/* We could derive quite precise information from EQ_EXPR, however,
such a guard is unlikely to appear, so we do not bother with
handling it. */
return;
case NE_EXPR:
/* NE_EXPR comparisons do not contain much of useful information,
except for cases of comparing with bounds. */
if (TREE_CODE (c1) != INTEGER_CST
|| !INTEGRAL_TYPE_P (type))
return;
/* Ensure that the condition speaks about an expression in the same
type as X and Y. */
ctype = TREE_TYPE (c0);
if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
return;
c0 = fold_convert (type, c0);
c1 = fold_convert (type, c1);
if (operand_equal_p (var, c0, 0))
{
mpz_t valc1;
/* Case of comparing VAR with its below/up bounds. */
mpz_init (valc1);
wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
if (mpz_cmp (valc1, below) == 0)
cmp = GT_EXPR;
if (mpz_cmp (valc1, up) == 0)
cmp = LT_EXPR;
mpz_clear (valc1);
}
else
{
/* Case of comparing with the bounds of the type. */
wide_int min = wi::min_value (type);
wide_int max = wi::max_value (type);
if (wi::to_wide (c1) == min)
cmp = GT_EXPR;
if (wi::to_wide (c1) == max)
cmp = LT_EXPR;
}
/* Quick return if no useful information. */
if (cmp == NE_EXPR)
return;
break;
default:
return;
}
mpz_init (offc0);
mpz_init (offc1);
split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
/* We are only interested in comparisons of expressions based on VAR. */
if (operand_equal_p (var, varc1, 0))
{
std::swap (varc0, varc1);
mpz_swap (offc0, offc1);
cmp = swap_tree_comparison (cmp);
}
else if (!operand_equal_p (var, varc0, 0))
{
mpz_clear (offc0);
mpz_clear (offc1);
return;
}
mpz_init (mint);
mpz_init (maxt);
get_type_static_bounds (type, mint, maxt);
mpz_init (minc1);
mpz_init (maxc1);
value_range r;
/* Setup range information for varc1. */
if (integer_zerop (varc1))
{
wi::to_mpz (0, minc1, TYPE_SIGN (type));
wi::to_mpz (0, maxc1, TYPE_SIGN (type));
}
else if (TREE_CODE (varc1) == SSA_NAME
&& INTEGRAL_TYPE_P (type)
&& get_range_query (cfun)->range_of_expr (r, varc1)
&& r.kind () == VR_RANGE)
{
gcc_assert (wi::le_p (r.lower_bound (), r.upper_bound (), sgn));
wi::to_mpz (r.lower_bound (), minc1, sgn);
wi::to_mpz (r.upper_bound (), maxc1, sgn);
}
else
{
mpz_set (minc1, mint);
mpz_set (maxc1, maxt);
}
/* Compute valid range information for varc1 + offc1. Note nothing
useful can be derived if it overflows or underflows. Overflow or
underflow could happen when:
offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
mpz_add (minc1, minc1, offc1);
mpz_add (maxc1, maxc1, offc1);
c1_ok = (no_wrap
|| mpz_sgn (offc1) == 0
|| (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
|| (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
if (!c1_ok)
goto end;
if (mpz_cmp (minc1, mint) < 0)
mpz_set (minc1, mint);
if (mpz_cmp (maxc1, maxt) > 0)
mpz_set (maxc1, maxt);
if (cmp == LT_EXPR)
{
cmp = LE_EXPR;
mpz_sub_ui (maxc1, maxc1, 1);
}
if (cmp == GT_EXPR)
{
cmp = GE_EXPR;
mpz_add_ui (minc1, minc1, 1);
}
/* Compute range information for varc0. If there is no overflow,
the condition implied that
(varc0) cmp (varc1 + offc1 - offc0)
We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
or the below bound if cmp is GE_EXPR.
To prove there is no overflow/underflow, we need to check below
four cases:
1) cmp == LE_EXPR && offc0 > 0
(varc0 + offc0) doesn't overflow
&& (varc1 + offc1 - offc0) doesn't underflow
2) cmp == LE_EXPR && offc0 < 0
(varc0 + offc0) doesn't underflow
&& (varc1 + offc1 - offc0) doesn't overfloe
In this case, (varc0 + offc0) will never underflow if we can
prove (varc1 + offc1 - offc0) doesn't overflow.
3) cmp == GE_EXPR && offc0 < 0
(varc0 + offc0) doesn't underflow
&& (varc1 + offc1 - offc0) doesn't overflow
4) cmp == GE_EXPR && offc0 > 0
(varc0 + offc0) doesn't overflow
&& (varc1 + offc1 - offc0) doesn't underflow
In this case, (varc0 + offc0) will never overflow if we can
prove (varc1 + offc1 - offc0) doesn't underflow.
Note we only handle case 2 and 4 in below code. */
mpz_sub (minc1, minc1, offc0);
mpz_sub (maxc1, maxc1, offc0);
c0_ok = (no_wrap
|| mpz_sgn (offc0) == 0
|| (cmp == LE_EXPR
&& mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
|| (cmp == GE_EXPR
&& mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
if (!c0_ok)
goto end;
if (cmp == LE_EXPR)
{
if (mpz_cmp (up, maxc1) > 0)
mpz_set (up, maxc1);
}
else
{
if (mpz_cmp (below, minc1) < 0)
mpz_set (below, minc1);
}
end:
mpz_clear (mint);
mpz_clear (maxt);
mpz_clear (minc1);
mpz_clear (maxc1);
mpz_clear (offc0);
mpz_clear (offc1);
}
/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
in TYPE to MIN and MAX. */
static void
determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
mpz_t min, mpz_t max)
{
int cnt = 0;
mpz_t minm, maxm;
basic_block bb;
wide_int minv, maxv;
enum value_range_kind rtype = VR_VARYING;
/* If the expression is a constant, we know its value exactly. */
if (integer_zerop (var))
{
mpz_set (min, off);
mpz_set (max, off);
return;
}
get_type_static_bounds (type, min, max);
/* See if we have some range info from VRP. */
if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
{
edge e = loop_preheader_edge (loop);
signop sgn = TYPE_SIGN (type);
gphi_iterator gsi;
/* Either for VAR itself... */
value_range var_range;
get_range_query (cfun)->range_of_expr (var_range, var);
rtype = var_range.kind ();
if (!var_range.undefined_p ())
{
minv = var_range.lower_bound ();
maxv = var_range.upper_bound ();
}
/* Or for PHI results in loop->header where VAR is used as
PHI argument from the loop preheader edge. */
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
value_range phi_range;
if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
&& get_range_query (cfun)->range_of_expr (phi_range,
gimple_phi_result (phi))
&& phi_range.kind () == VR_RANGE)
{
if (rtype != VR_RANGE)
{
rtype = VR_RANGE;
minv = phi_range.lower_bound ();
maxv = phi_range.upper_bound ();
}
else
{
minv = wi::max (minv, phi_range.lower_bound (), sgn);
maxv = wi::min (maxv, phi_range.upper_bound (), sgn);
/* If the PHI result range are inconsistent with
the VAR range, give up on looking at the PHI
results. This can happen if VR_UNDEFINED is
involved. */
if (wi::gt_p (minv, maxv, sgn))
{
value_range vr;
get_range_query (cfun)->range_of_expr (vr, var);
rtype = vr.kind ();
if (!vr.undefined_p ())
{
minv = vr.lower_bound ();
maxv = vr.upper_bound ();
}
break;
}
}
}
}
mpz_init (minm);
mpz_init (maxm);
if (rtype != VR_RANGE)
{
mpz_set (minm, min);
mpz_set (maxm, max);
}
else
{
gcc_assert (wi::le_p (minv, maxv, sgn));
wi::to_mpz (minv, minm, sgn);
wi::to_mpz (maxv, maxm, sgn);
}
/* Now walk the dominators of the loop header and use the entry
guards to refine the estimates. */
for (bb = loop->header;
bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
edge e;
tree c0, c1;
gimple *cond;
enum tree_code cmp;
if (!single_pred_p (bb))
continue;
e = single_pred_edge (bb);
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
cond = last_stmt (e->src);
c0 = gimple_cond_lhs (cond);
cmp = gimple_cond_code (cond);
c1 = gimple_cond_rhs (cond);
if (e->flags & EDGE_FALSE_VALUE)
cmp = invert_tree_comparison (cmp, false);
refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
++cnt;
}
mpz_add (minm, minm, off);
mpz_add (maxm, maxm, off);
/* If the computation may not wrap or off is zero, then this
is always fine. If off is negative and minv + off isn't
smaller than type's minimum, or off is positive and
maxv + off isn't bigger than type's maximum, use the more
precise range too. */
if (nowrap_type_p (type)
|| mpz_sgn (off) == 0
|| (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
|| (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
{
mpz_set (min, minm);
mpz_set (max, maxm);
mpz_clear (minm);
mpz_clear (maxm);
return;
}
mpz_clear (minm);
mpz_clear (maxm);
}
/* If the computation may wrap, we know nothing about the value, except for
the range of the type. */
if (!nowrap_type_p (type))
return;
/* Since the addition of OFF does not wrap, if OFF is positive, then we may
add it to MIN, otherwise to MAX. */
if (mpz_sgn (off) < 0)
mpz_add (max, max, off);
else
mpz_add (min, min, off);
}
/* Stores the bounds on the difference of the values of the expressions
(var + X) and (var + Y), computed in TYPE, to BNDS. */
static void
bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
bounds *bnds)
{
int rel = mpz_cmp (x, y);
bool may_wrap = !nowrap_type_p (type);
mpz_t m;
/* If X == Y, then the expressions are always equal.
If X > Y, there are the following possibilities:
a) neither of var + X and var + Y overflow or underflow, or both of
them do. Then their difference is X - Y.
b) var + X overflows, and var + Y does not. Then the values of the
expressions are var + X - M and var + Y, where M is the range of
the type, and their difference is X - Y - M.
c) var + Y underflows and var + X does not. Their difference again
is M - X + Y.
Therefore, if the arithmetics in type does not overflow, then the
bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
(X - Y, X - Y + M). */
if (rel == 0)
{
mpz_set_ui (bnds->below, 0);
mpz_set_ui (bnds->up, 0);
return;
}
mpz_init (m);
wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
mpz_add_ui (m, m, 1);
mpz_sub (bnds->up, x, y);
mpz_set (bnds->below, bnds->up);
if (may_wrap)
{
if (rel > 0)
mpz_sub (bnds->below, bnds->below, m);
else
mpz_add (bnds->up, bnds->up, m);
}
mpz_clear (m);
}
/* From condition C0 CMP C1 derives information regarding the
difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
and stores it to BNDS. */
static void
refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
tree vary, mpz_t offy,
tree c0, enum tree_code cmp, tree c1,
bounds *bnds)
{
tree varc0, varc1, ctype;
mpz_t offc0, offc1, loffx, loffy, bnd;
bool lbound = false;
bool no_wrap = nowrap_type_p (type);
bool x_ok, y_ok;
switch (cmp)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
STRIP_SIGN_NOPS (c0);
STRIP_SIGN_NOPS (c1);
ctype = TREE_TYPE (c0);
if (!useless_type_conversion_p (ctype, type))
return;
break;
case EQ_EXPR:
/* We could derive quite precise information from EQ_EXPR, however, such
a guard is unlikely to appear, so we do not bother with handling
it. */
return;
case NE_EXPR:
/* NE_EXPR comparisons do not contain much of useful information, except for
special case of comparing with the bounds of the type. */
if (TREE_CODE (c1) != INTEGER_CST
|| !INTEGRAL_TYPE_P (type))
return;
/* Ensure that the condition speaks about an expression in the same type
as X and Y. */
ctype = TREE_TYPE (c0);
if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
return;
c0 = fold_convert (type, c0);
c1 = fold_convert (type, c1);
if (TYPE_MIN_VALUE (type)
&& operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
{
cmp = GT_EXPR;
break;
}
if (TYPE_MAX_VALUE (type)
&& operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
{
cmp = LT_EXPR;
break;
}
return;
default:
return;
}
mpz_init (offc0);
mpz_init (offc1);
split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
/* We are only interested in comparisons of expressions based on VARX and
VARY. TODO -- we might also be able to derive some bounds from
expressions containing just one of the variables. */
if (operand_equal_p (varx, varc1, 0))
{
std::swap (varc0, varc1);
mpz_swap (offc0, offc1);
cmp = swap_tree_comparison (cmp);
}
if (!operand_equal_p (varx, varc0, 0)
|| !operand_equal_p (vary, varc1, 0))
goto end;
mpz_init_set (loffx, offx);
mpz_init_set (loffy, offy);
if (cmp == GT_EXPR || cmp == GE_EXPR)
{
std::swap (varx, vary);
mpz_swap (offc0, offc1);
mpz_swap (loffx, loffy);
cmp = swap_tree_comparison (cmp);
lbound = true;
}
/* If there is no overflow, the condition implies that
(VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
The overflows and underflows may complicate things a bit; each
overflow decreases the appropriate offset by M, and underflow
increases it by M. The above inequality would not necessarily be
true if
-- VARX + OFFX underflows and VARX + OFFC0 does not, or
VARX + OFFC0 overflows, but VARX + OFFX does not.
This may only happen if OFFX < OFFC0.
-- VARY + OFFY overflows and VARY + OFFC1 does not, or
VARY + OFFC1 underflows and VARY + OFFY does not.
This may only happen if OFFY > OFFC1. */
if (no_wrap)
{
x_ok = true;
y_ok = true;
}
else
{
x_ok = (integer_zerop (varx)
|| mpz_cmp (loffx, offc0) >= 0);
y_ok = (integer_zerop (vary)
|| mpz_cmp (loffy, offc1) <= 0);
}
if (x_ok && y_ok)
{
mpz_init (bnd);
mpz_sub (bnd, loffx, loffy);
mpz_add (bnd, bnd, offc1);
mpz_sub (bnd, bnd, offc0);
if (cmp == LT_EXPR)
mpz_sub_ui (bnd, bnd, 1);
if (lbound)
{
mpz_neg (bnd, bnd);
if (mpz_cmp (bnds->below, bnd) < 0)
mpz_set (bnds->below, bnd);
}
else
{
if (mpz_cmp (bnd, bnds->up) < 0)
mpz_set (bnds->up, bnd);
}
mpz_clear (bnd);
}
mpz_clear (loffx);
mpz_clear (loffy);
end:
mpz_clear (offc0);
mpz_clear (offc1);
}
/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
The subtraction is considered to be performed in arbitrary precision,
without overflows.
We do not attempt to be too clever regarding the value ranges of X and
Y; most of the time, they are just integers or ssa names offsetted by
integer. However, we try to use the information contained in the
comparisons before the loop (usually created by loop header copying). */
static void
bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
{
tree type = TREE_TYPE (x);
tree varx, vary;
mpz_t offx, offy;
mpz_t minx, maxx, miny, maxy;
int cnt = 0;
edge e;
basic_block bb;
tree c0, c1;
gimple *cond;
enum tree_code cmp;
/* Get rid of unnecessary casts, but preserve the value of
the expressions. */
STRIP_SIGN_NOPS (x);
STRIP_SIGN_NOPS (y);
mpz_init (bnds->below);
mpz_init (bnds->up);
mpz_init (offx);
mpz_init (offy);
split_to_var_and_offset (x, &varx, offx);
split_to_var_and_offset (y, &vary, offy);
if (!integer_zerop (varx)
&& operand_equal_p (varx, vary, 0))
{
/* Special case VARX == VARY -- we just need to compare the
offsets. The matters are a bit more complicated in the
case addition of offsets may wrap. */
bound_difference_of_offsetted_base (type, offx, offy, bnds);
}
else
{
/* Otherwise, use the value ranges to determine the initial
estimates on below and up. */
mpz_init (minx);
mpz_init (maxx);
mpz_init (miny);
mpz_init (maxy);
determine_value_range (loop, type, varx, offx, minx, maxx);
determine_value_range (loop, type, vary, offy, miny, maxy);
mpz_sub (bnds->below, minx, maxy);
mpz_sub (bnds->up, maxx, miny);
mpz_clear (minx);
mpz_clear (maxx);
mpz_clear (miny);
mpz_clear (maxy);
}
/* If both X and Y are constants, we cannot get any more precise. */
if (integer_zerop (varx) && integer_zerop (vary))
goto end;
/* Now walk the dominators of the loop header and use the entry
guards to refine the estimates. */
for (bb = loop->header;
bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
if (!single_pred_p (bb))
continue;
e = single_pred_edge (bb);
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
cond = last_stmt (e->src);
c0 = gimple_cond_lhs (cond);
cmp = gimple_cond_code (cond);
c1 = gimple_cond_rhs (cond);
if (e->flags & EDGE_FALSE_VALUE)
cmp = invert_tree_comparison (cmp, false);
refine_bounds_using_guard (type, varx, offx, vary, offy,
c0, cmp, c1, bnds);
++cnt;
}
end:
mpz_clear (offx);
mpz_clear (offy);
}
/* Update the bounds in BNDS that restrict the value of X to the bounds
that restrict the value of X + DELTA. X can be obtained as a
difference of two values in TYPE. */
static void
bounds_add (bounds *bnds, const widest_int &delta, tree type)
{
mpz_t mdelta, max;
mpz_init (mdelta);
wi::to_mpz (delta, mdelta, SIGNED);
mpz_init (max);
wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
mpz_add (bnds->up, bnds->up, mdelta);
mpz_add (bnds->below, bnds->below, mdelta);
if (mpz_cmp (bnds->up, max) > 0)
mpz_set (bnds->up, max);
mpz_neg (max, max);
if (mpz_cmp (bnds->below, max) < 0)
mpz_set (bnds->below, max);
mpz_clear (mdelta);
mpz_clear (max);
}
/* Update the bounds in BNDS that restrict the value of X to the bounds
that restrict the value of -X. */
static void
bounds_negate (bounds *bnds)
{
mpz_t tmp;
mpz_init_set (tmp, bnds->up);
mpz_neg (bnds->up, bnds->below);
mpz_neg (bnds->below, tmp);
mpz_clear (tmp);
}
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
static tree
inverse (tree x, tree mask)
{
tree type = TREE_TYPE (x);
tree rslt;
unsigned ctr = tree_floor_log2 (mask);
if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT ix;
unsigned HOST_WIDE_INT imask;
unsigned HOST_WIDE_INT irslt = 1;
gcc_assert (cst_and_fits_in_hwi (x));
gcc_assert (cst_and_fits_in_hwi (mask));
ix = int_cst_value (x);
imask = int_cst_value (mask);
for (; ctr; ctr--)
{
irslt *= ix;
ix *= ix;
}
irslt &= imask;
rslt = build_int_cst_type (type, irslt);
}
else
{
rslt = build_int_cst (type, 1);
for (; ctr; ctr--)
{
rslt = int_const_binop (MULT_EXPR, rslt, x);
x = int_const_binop (MULT_EXPR, x, x);
}
rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
}
return rslt;
}
/* Derives the upper bound BND on the number of executions of loop with exit
condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
that the loop ends through this exit, i.e., the induction variable ever
reaches the value of C.
The value C is equal to final - base, where final and base are the final and
initial value of the actual induction variable in the analysed loop. BNDS
bounds the value of this difference when computed in signed type with
unbounded range, while the computation of C is performed in an unsigned
type with the range matching the range of the type of the induction variable.
In particular, BNDS.up contains an upper bound on C in the following cases:
-- if the iv must reach its final value without overflow, i.e., if
NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
-- if final >= base, which we know to hold when BNDS.below >= 0. */
static void
number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
bounds *bnds, bool exit_must_be_taken)
{
widest_int max;
mpz_t d;
tree type = TREE_TYPE (c);
bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
|| mpz_sgn (bnds->below) >= 0);
if (integer_onep (s)
|| (TREE_CODE (c) == INTEGER_CST
&& TREE_CODE (s) == INTEGER_CST
&& wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
TYPE_SIGN (type)) == 0)
|| (TYPE_OVERFLOW_UNDEFINED (type)
&& multiple_of_p (type, c, s)))
{
/* If C is an exact multiple of S, then its value will be reached before
the induction variable overflows (unless the loop is exited in some
other way before). Note that the actual induction variable in the
loop (which ranges from base to final instead of from 0 to C) may
overflow, in which case BNDS.up will not be giving a correct upper
bound on C; thus, BNDS_U_VALID had to be computed in advance. */
no_overflow = true;
exit_must_be_taken = true;
}
/* If the induction variable can overflow, the number of iterations is at
most the period of the control variable (or infinite, but in that case
the whole # of iterations analysis will fail). */
if (!no_overflow)
{
max = wi::mask <widest_int> (TYPE_PRECISION (type)
- wi::ctz (wi::to_wide (s)), false);
wi::to_mpz (max, bnd, UNSIGNED);
return;
}
/* Now we know that the induction variable does not overflow, so the loop
iterates at most (range of type / S) times. */
wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
/* If the induction variable is guaranteed to reach the value of C before
overflow, ... */
if (exit_must_be_taken)
{
/* ... then we can strengthen this to C / S, and possibly we can use
the upper bound on C given by BNDS. */
if (TREE_CODE (c) == INTEGER_CST)
wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
else if (bnds_u_valid)
mpz_set (bnd, bnds->up);
}
mpz_init (d);
wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
mpz_fdiv_q (bnd, bnd, d);
mpz_clear (d);
}
/* Determines number of iterations of loop whose ending condition
is IV <> FINAL. TYPE is the type of the iv. The number of
iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
we know that the exit must be taken eventually, i.e., that the IV
ever reaches the value FINAL (we derived this earlier, and possibly set
NITER->assumptions to make sure this is the case). BNDS contains the
bounds on the difference FINAL - IV->base. */
static bool
number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
tree final, class tree_niter_desc *niter,
bool exit_must_be_taken, bounds *bnds)
{
tree niter_type = unsigned_type_for (type);
tree s, c, d, bits, assumption, tmp, bound;
mpz_t max;
niter->control = *iv;
niter->bound = final;
niter->cmp = NE_EXPR;
/* Rearrange the terms so that we get inequality S * i <> C, with S
positive. Also cast everything to the unsigned type. If IV does
not overflow, BNDS bounds the value of C. Also, this is the
case if the computation |FINAL - IV->base| does not overflow, i.e.,
if BNDS->below in the result is nonnegative. */
if (tree_int_cst_sign_bit (iv->step))
{
s = fold_convert (niter_type,
fold_build1 (NEGATE_EXPR, type, iv->step));
c = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, iv->base),
fold_convert (niter_type, final));
bounds_negate (bnds);
}
else
{
s = fold_convert (niter_type, iv->step);
c = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, final),
fold_convert (niter_type, iv->base));
}
mpz_init (max);
number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
exit_must_be_taken);
niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
TYPE_SIGN (niter_type));
mpz_clear (max);
/* Compute no-overflow information for the control iv. This can be
proven when below two conditions are satisfied:
1) IV evaluates toward FINAL at beginning, i.e:
base <= FINAL ; step > 0
base >= FINAL ; step < 0
2) |FINAL - base| is an exact multiple of step.
Unfortunately, it's hard to prove above conditions after pass loop-ch
because loop with exit condition (IV != FINAL) usually will be guarded
by initial-condition (IV.base - IV.step != FINAL). In this case, we
can alternatively try to prove below conditions:
1') IV evaluates toward FINAL at beginning, i.e:
new_base = base - step < FINAL ; step > 0
&& base - step doesn't underflow
new_base = base - step > FINAL ; step < 0
&& base - step doesn't overflow
2') |FINAL - new_base| is an exact multiple of step.
Please refer to PR34114 as an example of loop-ch's impact, also refer
to PR72817 as an example why condition 2') is necessary.
Note, for NE_EXPR, base equals to FINAL is a special case, in
which the loop exits immediately, and the iv does not overflow. */
if (!niter->control.no_overflow
&& (integer_onep (s) || multiple_of_p (type, c, s)))
{
tree t, cond, new_c, relaxed_cond = boolean_false_node;
if (tree_int_cst_sign_bit (iv->step))
{
cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
if (TREE_CODE (type) == INTEGER_TYPE)
{
/* Only when base - step doesn't overflow. */
t = TYPE_MAX_VALUE (type);
t = fold_build2 (PLUS_EXPR, type, t, iv->step);
t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
if (integer_nonzerop (t))
{
t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
new_c = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, t),
fold_convert (niter_type, final));
if (multiple_of_p (type, new_c, s))
relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
t, final);
}
}
}
else
{
cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
if (TREE_CODE (type) == INTEGER_TYPE)
{
/* Only when base - step doesn't underflow. */
t = TYPE_MIN_VALUE (type);
t = fold_build2 (PLUS_EXPR, type, t, iv->step);
t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
if (integer_nonzerop (t))
{
t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
new_c = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, final),
fold_convert (niter_type, t));
if (multiple_of_p (type, new_c, s))
relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
t, final);
}
}
}
t = simplify_using_initial_conditions (loop, cond);
if (!t || !integer_onep (t))
t = simplify_using_initial_conditions (loop, relaxed_cond);
if (t && integer_onep (t))
niter->control.no_overflow = true;
}
/* First the trivial cases -- when the step is 1. */
if (integer_onep (s))
{
niter->niter = c;
return true;
}
if (niter->control.no_overflow && multiple_of_p (type, c, s))
{
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
return true;
}
/* Let nsd (step, size of mode) = d. If d does not divide c, the loop
is infinite. Otherwise, the number of iterations is
(inverse(s/d) * (c/d)) mod (size of mode/d). */
bits = num_ending_zeros (s);
bound = build_low_bits_mask (niter_type,
(TYPE_PRECISION (niter_type)
- tree_to_uhwi (bits)));
d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
build_int_cst (niter_type, 1), bits);
s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
if (!exit_must_be_taken)
{
/* If we cannot assume that the exit is taken eventually, record the
assumptions for divisibility of c. */
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
assumption, build_int_cst (niter_type, 0));
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
if (integer_onep (s))
{
niter->niter = c;
}
else
{
tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
}
return true;
}
/* Checks whether we can determine the final value of the control variable
of the loop with ending condition IV0 < IV1 (computed in TYPE).
DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
of the step. The assumptions necessary to ensure that the computation
of the final value does not overflow are recorded in NITER. If we
find the final value, we adjust DELTA and return TRUE. Otherwise
we return false. BNDS bounds the value of IV1->base - IV0->base,
and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
true if we know that the exit must be taken eventually. */
static bool
number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
class tree_niter_desc *niter,
tree *delta, tree step,
bool exit_must_be_taken, bounds *bnds)
{
tree niter_type = TREE_TYPE (step);
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
tree tmod;
mpz_t mmod;
tree assumption = boolean_true_node, bound, noloop;
bool ret = false, fv_comp_no_overflow;
tree type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
if (TREE_CODE (mod) != INTEGER_CST)
return false;
if (integer_nonzerop (mod))
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
tmod = fold_convert (type1, mod);
mpz_init (mmod);
wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
mpz_neg (mmod, mmod);
/* If the induction variable does not overflow and the exit is taken,
then the computation of the final value does not overflow. This is
also obviously the case if the new final value is equal to the
current one. Finally, we postulate this for pointer type variables,
as the code cannot rely on the object to that the pointer points being
placed at the end of the address space (and more pragmatically,
TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
if (integer_zerop (mod) || POINTER_TYPE_P (type))
fv_comp_no_overflow = true;
else if (!exit_must_be_taken)
fv_comp_no_overflow = false;
else
fv_comp_no_overflow =
(iv0->no_overflow && integer_nonzerop (iv0->step))
|| (iv1->no_overflow && integer_nonzerop (iv1->step));
if (integer_nonzerop (iv0->step))
{
/* The final value of the iv is iv1->base + MOD, assuming that this
computation does not overflow, and that
iv0->base <= iv1->base + MOD. */
if (!fv_comp_no_overflow)
{
bound = fold_build2 (MINUS_EXPR, type1,
TYPE_MAX_VALUE (type1), tmod);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
if (integer_zerop (assumption))
goto end;
}
if (mpz_cmp (mmod, bnds->below) < 0)
noloop = boolean_false_node;
else if (POINTER_TYPE_P (type))
noloop = fold_build2 (GT_EXPR, boolean_type_node,
iv0->base,
fold_build_pointer_plus (iv1->base, tmod));
else
noloop = fold_build2 (GT_EXPR, boolean_type_node,
iv0->base,
fold_build2 (PLUS_EXPR, type1,
iv1->base, tmod));
}
else
{
/* The final value of the iv is iv0->base - MOD, assuming that this
computation does not overflow, and that
iv0->base - MOD <= iv1->base. */
if (!fv_comp_no_overflow)
{
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MIN_VALUE (type1), tmod);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
if (integer_zerop (assumption))
goto end;
}
if (mpz_cmp (mmod, bnds->below) < 0)
noloop = boolean_false_node;
else if (POINTER_TYPE_P (type))
noloop = fold_build2 (GT_EXPR, boolean_type_node,
fold_build_pointer_plus (iv0->base,
fold_build1 (NEGATE_EXPR,
type1, tmod)),
iv1->base);
else
noloop = fold_build2 (GT_EXPR, boolean_type_node,
fold_build2 (MINUS_EXPR, type1,
iv0->base, tmod),
iv1->base);
}
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions,
assumption);
if (!integer_zerop (noloop))
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero,
noloop);
bounds_add (bnds, wi::to_widest (mod), type);
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
ret = true;
end:
mpz_clear (mmod);
return ret;
}
/* Add assertions to NITER that ensure that the control variable of the loop
with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
are TYPE. Returns false if we can prove that there is an overflow, true
otherwise. STEP is the absolute value of the step. */
static bool
assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
class tree_niter_desc *niter, tree step)
{
tree bound, d, assumption, diff;
tree niter_type = TREE_TYPE (step);
if (integer_nonzerop (iv0->step))
{
/* for (i = iv0->base; i < iv1->base; i += iv0->step) */
if (iv0->no_overflow)
return true;
/* If iv0->base is a constant, we can determine the last value before
overflow precisely; otherwise we conservatively assume
MAX - STEP + 1. */
if (TREE_CODE (iv0->base) == INTEGER_CST)
{
d = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, TYPE_MAX_VALUE (type)),
fold_convert (niter_type, iv0->base));
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
}
else
diff = fold_build2 (MINUS_EXPR, niter_type, step,
build_int_cst (niter_type, 1));
bound = fold_build2 (MINUS_EXPR, type,
TYPE_MAX_VALUE (type), fold_convert (type, diff));
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
}
else
{
/* for (i = iv1->base; i > iv0->base; i += iv1->step) */
if (iv1->no_overflow)
return true;
if (TREE_CODE (iv1->base) == INTEGER_CST)
{
d = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, iv1->base),
fold_convert (niter_type, TYPE_MIN_VALUE (type)));
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
}
else
diff = fold_build2 (MINUS_EXPR, niter_type, step,
build_int_cst (niter_type, 1));
bound = fold_build2 (PLUS_EXPR, type,
TYPE_MIN_VALUE (type), fold_convert (type, diff));
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
}
if (integer_zerop (assumption))
return false;
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
iv0->no_overflow = true;
iv1->no_overflow = true;
return true;
}
/* Add an assumption to NITER that a loop whose ending condition
is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
bounds the value of IV1->base - IV0->base. */
static void
assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
class tree_niter_desc *niter, bounds *bnds)
{
tree assumption = boolean_true_node, bound, diff;
tree mbz, mbzl, mbzr, type1;
bool rolls_p, no_overflow_p;
widest_int dstep;
mpz_t mstep, max;
/* We are going to compute the number of iterations as
(iv1->base - iv0->base + step - 1) / step, computed in the unsigned
variant of TYPE. This formula only works if
-step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
(where MAX is the maximum value of the unsigned variant of TYPE, and
the computations in this formula are performed in full precision,
i.e., without overflows).
Usually, for loops with exit condition iv0->base + step * i < iv1->base,
we have a condition of the form iv0->base - step < iv1->base before the loop,
and for loops iv0->base < iv1->base - step * i the condition
iv0->base < iv1->base + step, due to loop header copying, which enable us
to prove the lower bound.
The upper bound is more complicated. Unless the expressions for initial
and final value themselves contain enough information, we usually cannot
derive it from the context. */
/* First check whether the answer does not follow from the bounds we gathered
before. */
if (integer_nonzerop (iv0->step))
dstep = wi::to_widest (iv0->step);
else
{
dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
dstep = -dstep;
}
mpz_init (mstep);
wi::to_mpz (dstep, mstep, UNSIGNED);
mpz_neg (mstep, mstep);
mpz_add_ui (mstep, mstep, 1);
rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
mpz_init (max);
wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
mpz_add (max, max, mstep);
no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
/* For pointers, only values lying inside a single object
can be compared or manipulated by pointer arithmetics.
Gcc in general does not allow or handle objects larger
than half of the address space, hence the upper bound
is satisfied for pointers. */
|| POINTER_TYPE_P (type));
mpz_clear (mstep);
mpz_clear (max);
if (rolls_p && no_overflow_p)
return;
type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
/* Now the hard part; we must formulate the assumption(s) as expressions, and
we must be careful not to introduce overflow. */
if (integer_nonzerop (iv0->step))
{
diff = fold_build2 (MINUS_EXPR, type1,
iv0->step, build_int_cst (type1, 1));
/* We need to know that iv0->base >= MIN + iv0->step - 1. Since
0 address never belongs to any object, we can assume this for
pointers. */
if (!POINTER_TYPE_P (type))
{
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MIN_VALUE (type), diff);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
}
/* And then we can compute iv0->base - diff, and compare it with
iv1->base. */
mbzl = fold_build2 (MINUS_EXPR, type1,
fold_convert (type1, iv0->base), diff);
mbzr = fold_convert (type1, iv1->base);
}
else
{
diff = fold_build2 (PLUS_EXPR, type1,
iv1->step, build_int_cst (type1, 1));
if (!POINTER_TYPE_P (type))
{
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MAX_VALUE (type), diff);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
}
mbzl = fold_convert (type1, iv0->base);
mbzr = fold_build2 (MINUS_EXPR, type1,
fold_convert (type1, iv1->base), diff);
}
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
if (!rolls_p)
{
mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero, mbz);
}
}
/* Determines number of iterations of loop whose ending condition
is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
The number of iterations is stored to NITER. */
static bool
number_of_iterations_until_wrap (class loop *, tree type, affine_iv *iv0,
affine_iv *iv1, class tree_niter_desc *niter)
{
tree niter_type = unsigned_type_for (type);
tree step, num, assumptions, may_be_zero;
wide_int high, low, max, min;
may_be_zero = fold_build2 (LE_EXPR, boolean_type_node, iv1->base, iv0->base);
if (integer_onep (may_be_zero))
return false;
int prec = TYPE_PRECISION (type);
signop sgn = TYPE_SIGN (type);
min = wi::min_value (prec, sgn);
max = wi::max_value (prec, sgn);
/* n < {base, C}. */
if (integer_zerop (iv0->step) && !tree_int_cst_sign_bit (iv1->step))
{
step = iv1->step;
/* MIN + C - 1 <= n. */
tree last = wide_int_to_tree (type, min + wi::to_wide (step) - 1);
assumptions = fold_build2 (LE_EXPR, boolean_type_node, last, iv0->base);
if (integer_zerop (assumptions))
return false;
num = fold_build2 (MINUS_EXPR, niter_type, wide_int_to_tree (type, max),
iv1->base);
high = max;
if (TREE_CODE (iv1->base) == INTEGER_CST)
low = wi::to_wide (iv1->base) - 1;
else if (TREE_CODE (iv0->base) == INTEGER_CST)
low = wi::to_wide (iv0->base);
else
low = min;
}
/* {base, -C} < n. */
else if (tree_int_cst_sign_bit (iv0->step) && integer_zerop (iv1->step))
{
step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv0->step), iv0->step);
/* MAX - C + 1 >= n. */
tree last = wide_int_to_tree (type, max - wi::to_wide (step) + 1);
assumptions = fold_build2 (GE_EXPR, boolean_type_node, last, iv1->base);
if (integer_zerop (assumptions))
return false;
num = fold_build2 (MINUS_EXPR, niter_type, iv0->base,
wide_int_to_tree (type, min));
low = min;
if (TREE_CODE (iv0->base) == INTEGER_CST)
high = wi::to_wide (iv0->base) + 1;
else if (TREE_CODE (iv1->base) == INTEGER_CST)
high = wi::to_wide (iv1->base);
else
high = max;
}
else
return false;
/* (delta + step - 1) / step */
step = fold_convert (niter_type, step);
num = fold_convert (niter_type, num);
num = fold_build2 (PLUS_EXPR, niter_type, num, step);
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, num, step);
widest_int delta, s;
delta = widest_int::from (high, sgn) - widest_int::from (low, sgn);
s = wi::to_widest (step);
delta = delta + s - 1;
niter->max = wi::udiv_floor (delta, s);
niter->may_be_zero = may_be_zero;
if (!integer_nonzerop (assumptions))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumptions);
niter->control.no_overflow = false;
return true;
}
/* Determines number of iterations of loop whose ending condition
is IV0 < IV1. TYPE is the type of the iv. The number of
iterations is stored to NITER. BNDS bounds the difference
IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
that the exit must be taken eventually. */
static bool
number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
affine_iv *iv1, class tree_niter_desc *niter,
bool exit_must_be_taken, bounds *bnds)
{
tree niter_type = unsigned_type_for (type);
tree delta, step, s;
mpz_t mstep, tmp;
if (integer_nonzerop (iv0->step))
{
niter->control = *iv0;
niter->cmp = LT_EXPR;
niter->bound = iv1->base;
}
else
{
niter->control = *iv1;
niter->cmp = GT_EXPR;
niter->bound = iv0->base;
}
/* {base, -C} < n, or n < {base, C} */
if (tree_int_cst_sign_bit (iv0->step)
|| (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step)))
return number_of_iterations_until_wrap (loop, type, iv0, iv1, niter);
delta = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, iv1->base),
fold_convert (niter_type, iv0->base));
/* First handle the special case that the step is +-1. */
if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
|| (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
{
/* for (i = iv0->base; i < iv1->base; i++)
or
for (i = iv1->base; i > iv0->base; i--).
In both cases # of iterations is iv1->base - iv0->base, assuming that
iv1->base >= iv0->base.
First try to derive a lower bound on the value of
iv1->base - iv0->base, computed in full precision. If the difference
is nonnegative, we are done, otherwise we must record the
condition. */
if (mpz_sgn (bnds->below) < 0)
niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
iv1->base, iv0->base);
niter->niter = delta;
niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
TYPE_SIGN (niter_type));
niter->control.no_overflow = true;
return true;
}
if (integer_nonzerop (iv0->step))
step = fold_convert (niter_type, iv0->step);
else
step = fold_convert (niter_type,
fold_build1 (NEGATE_EXPR, type, iv1->step));
/* If we can determine the final value of the control iv exactly, we can
transform the condition to != comparison. In particular, this will be
the case if DELTA is constant. */
if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
exit_must_be_taken, bnds))
{
affine_iv zps;
zps.base = build_int_cst (niter_type, 0);
zps.step = step;
/* number_of_iterations_lt_to_ne will add assumptions that ensure that
zps does not overflow. */
zps.no_overflow = true;
return number_of_iterations_ne (loop, type, &zps,
delta, niter, true, bnds);
}
/* Make sure that the control iv does not overflow. */
if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
return false;
/* We determine the number of iterations as (delta + step - 1) / step. For
this to work, we must know that iv1->base >= iv0->base - step + 1,
otherwise the loop does not roll. */
assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
s = fold_build2 (MINUS_EXPR, niter_type,
step, build_int_cst (niter_type, 1));
delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
mpz_init (mstep);
mpz_init (tmp);
wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
mpz_add (tmp, bnds->up, mstep);
mpz_sub_ui (tmp, tmp, 1);
mpz_fdiv_q (tmp, tmp, mstep);
niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
TYPE_SIGN (niter_type));
mpz_clear (mstep);
mpz_clear (tmp);
return true;
}
/* Determines number of iterations of loop whose ending condition
is IV0 <= IV1. TYPE is the type of the iv. The number of
iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
we know that this condition must eventually become false (we derived this
earlier, and possibly set NITER->assumptions to make sure this
is the case). BNDS bounds the difference IV1->base - IV0->base. */
static bool
number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
affine_iv *iv1, class tree_niter_desc *niter,
bool exit_must_be_taken, bounds *bnds)
{
tree assumption;
tree type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
/* Say that IV0 is the control variable. Then IV0 <= IV1 iff
IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
value of the type. This we must know anyway, since if it is
equal to this value, the loop rolls forever. We do not check
this condition for pointer type ivs, as the code cannot rely on
the object to that the pointer points being placed at the end of
the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
not defined for pointers). */
if (!exit_must_be_taken && !POINTER_TYPE_P (type))
{
if (integer_nonzerop (iv0->step))
assumption = fold_build2 (NE_EXPR, boolean_type_node,
iv1->base, TYPE_MAX_VALUE (type));
else
assumption = fold_build2 (NE_EXPR, boolean_type_node,
iv0->base, TYPE_MIN_VALUE (type));
if (integer_zerop (assumption))
return false;
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
if (integer_nonzerop (iv0->step))
{
if (POINTER_TYPE_P (type))
iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
else
iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
build_int_cst (type1, 1));
}
else if (POINTER_TYPE_P (type))
iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
else
iv0->base = fold_build2 (MINUS_EXPR, type1,
iv0->base, build_int_cst (type1, 1));
bounds_add (bnds, 1, type1);
return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
bnds);
}
/* Dumps description of affine induction variable IV to FILE. */
static void
dump_affine_iv (FILE *file, affine_iv *iv)
{
if (!integer_zerop (iv->step))
fprintf (file, "[");
print_generic_expr (dump_file, iv->base, TDF_SLIM);
if (!integer_zerop (iv->step))
{
fprintf (file, ", + , ");
print_generic_expr (dump_file, iv->step, TDF_SLIM);
fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
}
}
/* Determine the number of iterations according to condition (for staying
inside loop) which compares two induction variables using comparison
operator CODE. The induction variable on left side of the comparison
is IV0, the right-hand side is IV1. Both induction variables must have
type TYPE, which must be an integer or pointer type. The steps of the
ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
LOOP is the loop whose number of iterations we are determining.
ONLY_EXIT is true if we are sure this is the only way the loop could be
exited (including possibly non-returning function calls, exceptions, etc.)
-- in this case we can use the information whether the control induction
variables can overflow or not in a more efficient way.
if EVERY_ITERATION is true, we know the test is executed on every iteration.
The results (number of iterations and assumptions as described in
comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
Returns false if it fails to determine number of iterations, true if it
was determined (possibly with some assumptions). */
static bool
number_of_iterations_cond (class loop *loop,
tree type, affine_iv *iv0, enum tree_code code,
affine_iv *iv1, class tree_niter_desc *niter,
bool only_exit, bool every_iteration)
{
bool exit_must_be_taken = false, ret;
bounds bnds;
/* If the test is not executed every iteration, wrapping may make the test
to pass again.
TODO: the overflow case can be still used as unreliable estimate of upper
bound. But we have no API to pass it down to number of iterations code
and, at present, it will not use it anyway. */
if (!every_iteration
&& (!iv0->no_overflow || !iv1->no_overflow
|| code == NE_EXPR || code == EQ_EXPR))
return false;
/* The meaning of these assumptions is this:
if !assumptions
then the rest of information does not have to be valid
if may_be_zero then the loop does not roll, even if
niter != 0. */
niter->assumptions = boolean_true_node;
niter->may_be_zero = boolean_false_node;
niter->niter = NULL_TREE;
niter->max = 0;
niter->bound = NULL_TREE;
niter->cmp = ERROR_MARK;
/* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
the control variable is on lhs. */
if (code == GE_EXPR || code == GT_EXPR
|| (code == NE_EXPR && integer_zerop (iv0->step)))
{
std::swap (iv0, iv1);
code = swap_tree_comparison (code);
}
if (POINTER_TYPE_P (type))
{
/* Comparison of pointers is undefined unless both iv0 and iv1 point
to the same object. If they do, the control variable cannot wrap
(as wrap around the bounds of memory will never return a pointer
that would be guaranteed to point to the same object, even if we
avoid undefined behavior by casting to size_t and back). */
iv0->no_overflow = true;
iv1->no_overflow = true;
}
/* If the control induction variable does not overflow and the only exit
from the loop is the one that we analyze, we know it must be taken
eventually. */
if (only_exit)
{
if (!integer_zerop (iv0->step) && iv0->no_overflow)
exit_must_be_taken = true;
else if (!integer_zerop (iv1->step) && iv1->no_overflow)
exit_must_be_taken = true;
}
/* We can handle cases which neither of the sides of the comparison is
invariant:
{iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
as if:
{iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
provided that either below condition is satisfied:
a) the test is NE_EXPR;
b) iv0.step - iv1.step is integer and iv0/iv1 don't overflow.
This rarely occurs in practice, but it is simple enough to manage. */
if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
{
tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
iv0->step, iv1->step);
/* No need to check sign of the new step since below code takes care
of this well. */
if (code != NE_EXPR
&& (TREE_CODE (step) != INTEGER_CST
|| !iv0->no_overflow || !iv1->no_overflow))
return false;
iv0->step = step;
if (!POINTER_TYPE_P (type))
iv0->no_overflow = false;
iv1->step = build_int_cst (step_type, 0);
iv1->no_overflow = true;
}
/* If the result of the comparison is a constant, the loop is weird. More
precise handling would be possible, but the situation is not common enough
to waste time on it. */
if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
return false;
/* If the loop exits immediately, there is nothing to do. */
tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
if (tem && integer_zerop (tem))
{
if (!every_iteration)
return false;
niter->niter = build_int_cst (unsigned_type_for (type), 0);
niter->max = 0;
return true;
}
/* OK, now we know we have a senseful loop. Handle several cases, depending
on what comparison operator is used. */
bound_difference (loop, iv1->base, iv0->base, &bnds);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Analyzing # of iterations of loop %d\n", loop->num);
fprintf (dump_file, " exit condition ");
dump_affine_iv (dump_file, iv0);
fprintf (dump_file, " %s ",
code == NE_EXPR ? "!="
: code == LT_EXPR ? "<"
: "<=");
dump_affine_iv (dump_file, iv1);
fprintf (dump_file, "\n");
fprintf (dump_file, " bounds on difference of bases: ");
mpz_out_str (dump_file, 10, bnds.below);
fprintf (dump_file, " ... ");
mpz_out_str (dump_file, 10, bnds.up);
fprintf (dump_file, "\n");
}
switch (code)
{
case NE_EXPR:
gcc_assert (integer_zerop (iv1->step));
ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
exit_must_be_taken, &bnds);
break;
case LT_EXPR:
ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
exit_must_be_taken, &bnds);
break;
case LE_EXPR:
ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
exit_must_be_taken, &bnds);
break;
default:
gcc_unreachable ();
}
mpz_clear (bnds.up);
mpz_clear (bnds.below);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (ret)
{
fprintf (dump_file, " result:\n");
if (!integer_nonzerop (niter->assumptions))
{
fprintf (dump_file, " under assumptions ");
print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
fprintf (dump_file, "\n");
}
if (!integer_zerop (niter->may_be_zero))
{
fprintf (dump_file, " zero if ");
print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
fprintf (dump_file, "\n");
}
fprintf (dump_file, " # of iterations ");
print_generic_expr (dump_file, niter->niter, TDF_SLIM);
fprintf (dump_file, ", bounded by ");
print_decu (niter->max, dump_file);
fprintf (dump_file, "\n");
}
else
fprintf (dump_file, " failed\n\n");
}
return ret;
}
/* Substitute NEW_TREE for OLD in EXPR and fold the result.
If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
all SSA names are replaced with the result of calling the VALUEIZE
function with the SSA name as argument. */
tree
simplify_replace_tree (tree expr, tree old, tree new_tree,
tree (*valueize) (tree, void*), void *context,
bool do_fold)
{
unsigned i, n;
tree ret = NULL_TREE, e, se;
if (!expr)
return NULL_TREE;
/* Do not bother to replace constants. */
if (CONSTANT_CLASS_P (expr))
return expr;
if (valueize)
{
if (TREE_CODE (expr) == SSA_NAME)
{
new_tree = valueize (expr, context);
if (new_tree != expr)
return new_tree;
}
}
else if (expr == old
|| operand_equal_p (expr, old, 0))
return unshare_expr (new_tree);
if (!EXPR_P (expr))
return expr;
n = TREE_OPERAND_LENGTH (expr);
for (i = 0; i < n; i++)
{
e = TREE_OPERAND (expr, i);
se = simplify_replace_tree (e, old, new_tree, valueize, context, do_fold);
if (e == se)
continue;
if (!ret)
ret = copy_node (expr);
TREE_OPERAND (ret, i) = se;
}
return (ret ? (do_fold ? fold (ret) : ret) : expr);
}
/* Expand definitions of ssa names in EXPR as long as they are simple
enough, and return the new expression. If STOP is specified, stop
expanding if EXPR equals to it. */
static tree
expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
{
unsigned i, n;
tree ret = NULL_TREE, e, ee, e1;
enum tree_code code;
gimple *stmt;
if (expr == NULL_TREE)
return expr;
if (is_gimple_min_invariant (expr))
return expr;
code = TREE_CODE (expr);
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
{
n = TREE_OPERAND_LENGTH (expr);
for (i = 0; i < n; i++)
{
e = TREE_OPERAND (expr, i);
/* SCEV analysis feeds us with a proper expression
graph matching the SSA graph. Avoid turning it
into a tree here, thus handle tree sharing
properly.
??? The SSA walk below still turns the SSA graph
into a tree but until we find a testcase do not
introduce additional tree sharing here. */
bool existed_p;
tree &cee = cache.get_or_insert (e, &existed_p);
if (existed_p)
ee = cee;
else
{
cee = e;
ee = expand_simple_operations (e, stop, cache);
if (ee != e)
*cache.get (e) = ee;
}
if (e == ee)
continue;
if (!ret)
ret = copy_node (expr);
TREE_OPERAND (ret, i) = ee;
}
if (!ret)
return expr;
fold_defer_overflow_warnings ();
ret = fold (ret);
fold_undefer_and_ignore_overflow_warnings ();
return ret;
}
/* Stop if it's not ssa name or the one we don't want to expand. */
if (TREE_CODE (expr) != SSA_NAME || expr == stop)
return expr;
stmt = SSA_NAME_DEF_STMT (expr);
if (gimple_code (stmt) == GIMPLE_PHI)
{
basic_block src, dest;
if (gimple_phi_num_args (stmt) != 1)
return expr;
e = PHI_ARG_DEF (stmt, 0);
/* Avoid propagating through loop exit phi nodes, which
could break loop-closed SSA form restrictions. */
dest = gimple_bb (stmt);
src = single_pred (dest);
if (TREE_CODE (e) == SSA_NAME
&& src->loop_father != dest->loop_father)
return expr;
return expand_simple_operations (e, stop, cache);
}
if (gimple_code (stmt) != GIMPLE_ASSIGN)
return expr;
/* Avoid expanding to expressions that contain SSA names that need
to take part in abnormal coalescing. */
ssa_op_iter iter;
FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
return expr;
e = gimple_assign_rhs1 (stmt);
code = gimple_assign_rhs_code (stmt);
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
{
if (is_gimple_min_invariant (e))
return e;
if (code == SSA_NAME)
return expand_simple_operations (e, stop, cache);
else if (code == ADDR_EXPR)
{
poly_int64 offset;
tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
&offset);
if (base
&& TREE_CODE (base) == MEM_REF)
{
ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
cache);
return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
wide_int_to_tree (sizetype,
mem_ref_offset (base)
+ offset));
}
}
return expr;
}
switch (code)
{
CASE_CONVERT:
/* Casts are simple. */
ee = expand_simple_operations (e, stop, cache);
return fold_build1 (code, TREE_TYPE (expr), ee);
case PLUS_EXPR:
case MINUS_EXPR:
if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
&& TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
return expr;
/* Fallthru. */
case POINTER_PLUS_EXPR:
/* And increments and decrements by a constant are simple. */
e1 = gimple_assign_rhs2 (stmt);
if (!is_gimple_min_invariant (e1))
return expr;
ee = expand_simple_operations (e, stop, cache);
return fold_build2 (code, TREE_TYPE (expr), ee, e1);
default:
return expr;
}
}
tree
expand_simple_operations (tree expr, tree stop)
{
hash_map<tree, tree> cache;
return expand_simple_operations (expr, stop, cache);
}
/* Tries to simplify EXPR using the condition COND. Returns the simplified
expression (or EXPR unchanged, if no simplification was possible). */
static tree
tree_simplify_using_condition_1 (tree cond, tree expr)
{
bool changed;
tree e, e0, e1, e2, notcond;
enum tree_code code = TREE_CODE (expr);
if (code == INTEGER_CST)
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
else
expr = fold_build2 (code, boolean_type_node, e0, e1);
}
return expr;
}
/* In case COND is equality, we may be able to simplify EXPR by copy/constant
propagation, and vice versa. Fold does not handle this, since it is
considered too expensive. */
if (TREE_CODE (cond) == EQ_EXPR)
{
e0 = TREE_OPERAND (cond, 0);
e1 = TREE_OPERAND (cond, 1);
/* We know that e0 == e1. Check whether we cannot simplify expr
using this fact. */
e = simplify_replace_tree (expr, e0, e1);
if (integer_zerop (e) || integer_nonzerop (e))
return e;
e = simplify_replace_tree (expr, e1, e0);
if (integer_zerop (e) || integer_nonzerop (e))
return e;
}
if (TREE_CODE (expr) == EQ_EXPR)
{
e0 = TREE_OPERAND (expr, 0);
e1 = TREE_OPERAND (expr, 1);
/* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
e = simplify_replace_tree (cond, e0, e1);
if (integer_zerop (e))
return e;
e = simplify_replace_tree (cond, e1, e0);
if (integer_zerop (e))
return e;
}
if (TREE_CODE (expr) == NE_EXPR)
{
e0 = TREE_OPERAND (expr, 0);
e1 = TREE_OPERAND (expr, 1);
/* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
e = simplify_replace_tree (cond, e0, e1);
if (integer_zerop (e))
return boolean_true_node;
e = simplify_replace_tree (cond, e1, e0);
if (integer_zerop (e))
return boolean_true_node;
}
/* Check whether COND ==> EXPR. */
notcond = invert_truthvalue (cond);
e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
if (e && integer_nonzerop (e))
return e;
/* Check whether COND ==> not EXPR. */
e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
if (e && integer_zerop (e))
return e;
return expr;
}
/* Tries to simplify EXPR using the condition COND. Returns the simplified
expression (or EXPR unchanged, if no simplification was possible).
Wrapper around tree_simplify_using_condition_1 that ensures that chains
of simple operations in definitions of ssa names in COND are expanded,
so that things like casts or incrementing the value of the bound before
the loop do not cause us to fail. */
static tree
tree_simplify_using_condition (tree cond, tree expr)
{
cond = expand_simple_operations (cond);
return tree_simplify_using_condition_1 (cond, expr);
}
/* Tries to simplify EXPR using the conditions on entry to LOOP.
Returns the simplified expression (or EXPR unchanged, if no
simplification was possible). */
tree
simplify_using_initial_conditions (class loop *loop, tree expr)
{
edge e;
basic_block bb;
gimple *stmt;
tree cond, expanded, backup;
int cnt = 0;
if (TREE_CODE (expr) == INTEGER_CST)
return expr;
backup = expanded = expand_simple_operations (expr);
/* Limit walking the dominators to avoid quadraticness in
the number of BBs times the number of loops in degenerate
cases. */
for (bb = loop->header;
bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
if (!single_pred_p (bb))
continue;
e = single_pred_edge (bb);
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
stmt = last_stmt (e->src);
cond = fold_build2 (gimple_cond_code (stmt),
boolean_type_node,
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt));
if (e->flags & EDGE_FALSE_VALUE)
cond = invert_truthvalue (cond);
expanded = tree_simplify_using_condition (cond, expanded);
/* Break if EXPR is simplified to const values. */
if (expanded
&& (integer_zerop (expanded) || integer_nonzerop (expanded)))
return expanded;
++cnt;
}
/* Return the original expression if no simplification is done. */
return operand_equal_p (backup, expanded, 0) ? expr : expanded;
}
/* Tries to simplify EXPR using the evolutions of the loop invariants
in the superloops of LOOP. Returns the simplified expression
(or EXPR unchanged, if no simplification was possible). */
static tree
simplify_using_outer_evolutions (class loop *loop, tree expr)
{
enum tree_code code = TREE_CODE (expr);
bool changed;
tree e, e0, e1, e2;
if (is_gimple_min_invariant (expr))
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
else
expr = fold_build2 (code, boolean_type_node, e0, e1);
}
return expr;
}
e = instantiate_parameters (loop, expr);
if (is_gimple_min_invariant (e))
return e;
return expr;
}
/* Returns true if EXIT is the only possible exit from LOOP. */
bool
loop_only_exit_p (const class loop *loop, basic_block *body, const_edge exit)
{
gimple_stmt_iterator bsi;
unsigned i;
if (exit != single_exit (loop))
return false;
for (i = 0; i < loop->num_nodes; i++)
for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
return false;
return true;
}
/* Stores description of number of iterations of LOOP derived from
EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
information could be derived (and fields of NITER have meaning described
in comments at class tree_niter_desc declaration), false otherwise.
When EVERY_ITERATION is true, only tests that are known to be executed
every iteration are considered (i.e. only test that alone bounds the loop).
If AT_STMT is not NULL, this function stores LOOP's condition statement in
it when returning true. */
bool
number_of_iterations_exit_assumptions (class loop *loop, edge exit,
class tree_niter_desc *niter,
gcond **at_stmt, bool every_iteration,
basic_block *body)
{
gimple *last;
gcond *stmt;
tree type;
tree op0, op1;
enum tree_code code;
affine_iv iv0, iv1;
bool safe;
/* The condition at a fake exit (if it exists) does not control its
execution. */
if (exit->flags & EDGE_FAKE)
return false;
/* Nothing to analyze if the loop is known to be infinite. */
if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
return false;
safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
if (every_iteration && !safe)
return false;
niter->assumptions = boolean_false_node;
niter->control.base = NULL_TREE;
niter->control.step = NULL_TREE;
niter->control.no_overflow = false;
last = last_stmt (exit->src);
if (!last)
return false;
stmt = dyn_cast <gcond *> (last);
if (!stmt)
return false;
/* We want the condition for staying inside loop. */
code = gimple_cond_code (stmt);
if (exit->flags & EDGE_TRUE_VALUE)
code = invert_tree_comparison (code, false);
switch (code)
{
case GT_EXPR:
case GE_EXPR:
case LT_EXPR:
case LE_EXPR:
case NE_EXPR:
break;
default:
return false;
}
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
type = TREE_TYPE (op0);
if (TREE_CODE (type) != INTEGER_TYPE
&& !POINTER_TYPE_P (type))
return false;
tree iv0_niters = NULL_TREE;
if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
op0, &iv0, safe ? &iv0_niters : NULL, false))
return number_of_iterations_popcount (loop, exit, code, niter);
tree iv1_niters = NULL_TREE;
if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
op1, &iv1, safe ? &iv1_niters : NULL, false))
return false;
/* Give up on complicated case. */
if (iv0_niters && iv1_niters)
return false;
/* We don't want to see undefined signed overflow warnings while
computing the number of iterations. */
fold_defer_overflow_warnings ();
iv0.base = expand_simple_operations (iv0.base);
iv1.base = expand_simple_operations (iv1.base);
bool body_from_caller = true;
if (!body)
{
body = get_loop_body (loop);
body_from_caller = false;
}
bool only_exit_p = loop_only_exit_p (loop, body, exit);
if (!body_from_caller)
free (body);
if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
only_exit_p, safe))
{
fold_undefer_and_ignore_overflow_warnings ();
return false;
}
/* Incorporate additional assumption implied by control iv. */
tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
if (iv_niters)
{
tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
fold_convert (TREE_TYPE (niter->niter),
iv_niters));
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
/* Refine upper bound if possible. */
if (TREE_CODE (iv_niters) == INTEGER_CST
&& niter->max > wi::to_widest (iv_niters))
niter->max = wi::to_widest (iv_niters);
}
/* There is no assumptions if the loop is known to be finite. */
if (!integer_zerop (niter->assumptions)
&& loop_constraint_set_p (loop, LOOP_C_FINITE))
niter->assumptions = boolean_true_node;
if (optimize >= 3)
{
niter->assumptions = simplify_using_outer_evolutions (loop,
niter->assumptions);
niter->may_be_zero = simplify_using_outer_evolutions (loop,
niter->may_be_zero);
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
}
niter->assumptions
= simplify_using_initial_conditions (loop,
niter->assumptions);
niter->may_be_zero
= simplify_using_initial_conditions (loop,
niter->may_be_zero);
fold_undefer_and_ignore_overflow_warnings ();
/* If NITER has simplified into a constant, update MAX. */
if (TREE_CODE (niter->niter) == INTEGER_CST)
niter->max = wi::to_widest (niter->niter);
if (at_stmt)
*at_stmt = stmt;
return (!integer_zerop (niter->assumptions));
}
/* Utility function to check if OP is defined by a stmt
that is a val - 1. */
static bool
ssa_defined_by_minus_one_stmt_p (tree op, tree val)
{
gimple *stmt;
return (TREE_CODE (op) == SSA_NAME
&& (stmt = SSA_NAME_DEF_STMT (op))
&& is_gimple_assign (stmt)
&& (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
&& val == gimple_assign_rhs1 (stmt)
&& integer_minus_onep (gimple_assign_rhs2 (stmt)));
}
/* See if LOOP is a popcout implementation, determine NITER for the loop
We match:
<bb 2>
goto <bb 4>
<bb 3>
_1 = b_11 + -1
b_6 = _1 & b_11
<bb 4>
b_11 = PHI <b_5(D)(2), b_6(3)>
exit block
if (b_11 != 0)
goto <bb 3>
else
goto <bb 5>
OR we match copy-header version:
if (b_5 != 0)
goto <bb 3>
else
goto <bb 4>
<bb 3>
b_11 = PHI <b_5(2), b_6(3)>
_1 = b_11 + -1
b_6 = _1 & b_11
exit block
if (b_6 != 0)
goto <bb 3>
else
goto <bb 4>
If popcount pattern, update NITER accordingly.
i.e., set NITER to __builtin_popcount (b)
return true if we did, false otherwise.
*/
static bool
number_of_iterations_popcount (loop_p loop, edge exit,
enum tree_code code,
class tree_niter_desc *niter)
{
bool adjust = true;
tree iter;
HOST_WIDE_INT max;
adjust = true;
tree fn = NULL_TREE;
/* Check loop terminating branch is like
if (b != 0). */
gimple *stmt = last_stmt (exit->src);
if (!stmt
|| gimple_code (stmt) != GIMPLE_COND
|| code != NE_EXPR
|| !integer_zerop (gimple_cond_rhs (stmt))
|| TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME)
return false;
gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
/* Depending on copy-header is performed, feeding PHI stmts might be in
the loop header or loop latch, handle this. */
if (gimple_code (and_stmt) == GIMPLE_PHI
&& gimple_bb (and_stmt) == loop->header
&& gimple_phi_num_args (and_stmt) == 2
&& (TREE_CODE (gimple_phi_arg_def (and_stmt,
loop_latch_edge (loop)->dest_idx))
== SSA_NAME))
{
/* SSA used in exit condition is defined by PHI stmt
b_11 = PHI <b_5(D)(2), b_6(3)>
from the PHI stmt, get the and_stmt
b_6 = _1 & b_11. */
tree t = gimple_phi_arg_def (and_stmt, loop_latch_edge (loop)->dest_idx);
and_stmt = SSA_NAME_DEF_STMT (t);
adjust = false;
}
/* Make sure it is indeed an and stmt (b_6 = _1 & b_11). */
if (!is_gimple_assign (and_stmt)
|| gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR)
return false;
tree b_11 = gimple_assign_rhs1 (and_stmt);
tree _1 = gimple_assign_rhs2 (and_stmt);
/* Check that _1 is defined by _b11 + -1 (_1 = b_11 + -1).
Also make sure that b_11 is the same in and_stmt and _1 defining stmt.
Also canonicalize if _1 and _b11 are revrsed. */
if (ssa_defined_by_minus_one_stmt_p (b_11, _1))
std::swap (b_11, _1);
else if (ssa_defined_by_minus_one_stmt_p (_1, b_11))
;
else
return false;
/* Check the recurrence:
... = PHI <b_5(2), b_6(3)>. */
gimple *phi = SSA_NAME_DEF_STMT (b_11);
if (gimple_code (phi) != GIMPLE_PHI
|| (gimple_bb (phi) != loop_latch_edge (loop)->dest)
|| (gimple_assign_lhs (and_stmt)
!= gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
return false;
/* We found a match. Get the corresponding popcount builtin. */
tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
if (TYPE_PRECISION (TREE_TYPE (src)) <= TYPE_PRECISION (integer_type_node))
fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
else if (TYPE_PRECISION (TREE_TYPE (src))
== TYPE_PRECISION (long_integer_type_node))
fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
else if (TYPE_PRECISION (TREE_TYPE (src))
== TYPE_PRECISION (long_long_integer_type_node)
|| (TYPE_PRECISION (TREE_TYPE (src))
== 2 * TYPE_PRECISION (long_long_integer_type_node)))
fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
if (!fn)
return false;
/* Update NITER params accordingly */
tree utype = unsigned_type_for (TREE_TYPE (src));
src = fold_convert (utype, src);
if (TYPE_PRECISION (TREE_TYPE (src)) < TYPE_PRECISION (integer_type_node))
src = fold_convert (unsigned_type_node, src);
tree call;
if (TYPE_PRECISION (TREE_TYPE (src))
== 2 * TYPE_PRECISION (long_long_integer_type_node))
{
int prec = TYPE_PRECISION (long_long_integer_type_node);
tree src1 = fold_convert (long_long_unsigned_type_node,
fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
unshare_expr (src),
build_int_cst (integer_type_node,
prec)));
tree src2 = fold_convert (long_long_unsigned_type_node, src);
call = build_call_expr (fn, 1, src1);
call = fold_build2 (PLUS_EXPR, TREE_TYPE (call), call,
build_call_expr (fn, 1, src2));
call = fold_convert (utype, call);
}
else
call = fold_convert (utype, build_call_expr (fn, 1, src));
if (adjust)
iter = fold_build2 (MINUS_EXPR, utype, call, build_int_cst (utype, 1));
else
iter = call;
if (TREE_CODE (call) == INTEGER_CST)
max = tree_to_uhwi (call);
else
max = TYPE_PRECISION (TREE_TYPE (src));
if (adjust)
max = max - 1;
niter->niter = iter;
niter->assumptions = boolean_true_node;
if (adjust)
{
tree may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
build_zero_cst (TREE_TYPE (src)));
niter->may_be_zero
= simplify_using_initial_conditions (loop, may_be_zero);
}
else
niter->may_be_zero = boolean_false_node;
niter->max = max;
niter->bound = NULL_TREE;
niter->cmp = ERROR_MARK;
return true;
}
/* Like number_of_iterations_exit_assumptions, but return TRUE only if
the niter information holds unconditionally. */
bool
number_of_iterations_exit (class loop *loop, edge exit,
class tree_niter_desc *niter,
bool warn, bool every_iteration,
basic_block *body)
{
gcond *stmt;
if (!number_of_iterations_exit_assumptions (loop, exit, niter,
&stmt, every_iteration, body))
return false;
if (integer_nonzerop (niter->assumptions))
return true;
if (warn && dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
"missed loop optimization: niters analysis ends up "
"with assumptions.\n");
return false;