| /* Implementation of the RANDOM intrinsics |
| Copyright (C) 2002-2021 Free Software Foundation, Inc. |
| Contributed by Lars Segerlund <seger@linuxmail.org>, |
| Steve Kargl and Janne Blomqvist. |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Ligbfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* For rand_s. */ |
| #define _CRT_RAND_S |
| |
| #include "libgfortran.h" |
| #include <gthr.h> |
| #include <string.h> |
| |
| #ifdef HAVE_UNISTD_H |
| #include <unistd.h> |
| #endif |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| #include "time_1.h" |
| #ifdef HAVE_SYS_RANDOM_H |
| #include <sys/random.h> |
| #endif |
| |
| #ifdef __MINGW32__ |
| #define HAVE_GETPID 1 |
| #include <process.h> |
| #include <_mingw.h> /* For __MINGW64_VERSION_MAJOR */ |
| #endif |
| |
| extern void random_r4 (GFC_REAL_4 *); |
| iexport_proto(random_r4); |
| |
| extern void random_r8 (GFC_REAL_8 *); |
| iexport_proto(random_r8); |
| |
| extern void arandom_r4 (gfc_array_r4 *); |
| export_proto(arandom_r4); |
| |
| extern void arandom_r8 (gfc_array_r8 *); |
| export_proto(arandom_r8); |
| |
| #ifdef HAVE_GFC_REAL_10 |
| |
| extern void random_r10 (GFC_REAL_10 *); |
| iexport_proto(random_r10); |
| |
| extern void arandom_r10 (gfc_array_r10 *); |
| export_proto(arandom_r10); |
| |
| #endif |
| |
| #ifdef HAVE_GFC_REAL_16 |
| |
| extern void random_r16 (GFC_REAL_16 *); |
| iexport_proto(random_r16); |
| |
| extern void arandom_r16 (gfc_array_r16 *); |
| export_proto(arandom_r16); |
| |
| #endif |
| |
| #ifdef __GTHREAD_MUTEX_INIT |
| static __gthread_mutex_t random_lock = __GTHREAD_MUTEX_INIT; |
| #else |
| static __gthread_mutex_t random_lock; |
| #endif |
| |
| /* Helper routines to map a GFC_UINTEGER_* to the corresponding |
| GFC_REAL_* types in the range of [0,1). If GFC_REAL_*_RADIX are 2 |
| or 16, respectively, we mask off the bits that don't fit into the |
| correct GFC_REAL_*, convert to the real type, then multiply by the |
| correct offset. */ |
| |
| |
| static void |
| rnumber_4 (GFC_REAL_4 *f, GFC_UINTEGER_4 v) |
| { |
| GFC_UINTEGER_4 mask; |
| #if GFC_REAL_4_RADIX == 2 |
| mask = ~ (GFC_UINTEGER_4) 0u << (32 - GFC_REAL_4_DIGITS); |
| #elif GFC_REAL_4_RADIX == 16 |
| mask = ~ (GFC_UINTEGER_4) 0u << ((8 - GFC_REAL_4_DIGITS) * 4); |
| #else |
| #error "GFC_REAL_4_RADIX has unknown value" |
| #endif |
| v = v & mask; |
| *f = (GFC_REAL_4) v * GFC_REAL_4_LITERAL(0x1.p-32); |
| } |
| |
| static void |
| rnumber_8 (GFC_REAL_8 *f, GFC_UINTEGER_8 v) |
| { |
| GFC_UINTEGER_8 mask; |
| #if GFC_REAL_8_RADIX == 2 |
| mask = ~ (GFC_UINTEGER_8) 0u << (64 - GFC_REAL_8_DIGITS); |
| #elif GFC_REAL_8_RADIX == 16 |
| mask = ~ (GFC_UINTEGER_8) 0u << (16 - GFC_REAL_8_DIGITS) * 4); |
| #else |
| #error "GFC_REAL_8_RADIX has unknown value" |
| #endif |
| v = v & mask; |
| *f = (GFC_REAL_8) v * GFC_REAL_8_LITERAL(0x1.p-64); |
| } |
| |
| #ifdef HAVE_GFC_REAL_10 |
| |
| static void |
| rnumber_10 (GFC_REAL_10 *f, GFC_UINTEGER_8 v) |
| { |
| GFC_UINTEGER_8 mask; |
| #if GFC_REAL_10_RADIX == 2 |
| mask = ~ (GFC_UINTEGER_8) 0u << (64 - GFC_REAL_10_DIGITS); |
| #elif GFC_REAL_10_RADIX == 16 |
| mask = ~ (GFC_UINTEGER_10) 0u << ((16 - GFC_REAL_10_DIGITS) * 4); |
| #else |
| #error "GFC_REAL_10_RADIX has unknown value" |
| #endif |
| v = v & mask; |
| *f = (GFC_REAL_10) v * GFC_REAL_10_LITERAL(0x1.p-64); |
| } |
| #endif |
| |
| #ifdef HAVE_GFC_REAL_16 |
| |
| /* For REAL(KIND=16), we only need to mask off the lower bits. */ |
| |
| static void |
| rnumber_16 (GFC_REAL_16 *f, GFC_UINTEGER_8 v1, GFC_UINTEGER_8 v2) |
| { |
| GFC_UINTEGER_8 mask; |
| #if GFC_REAL_16_RADIX == 2 |
| mask = ~ (GFC_UINTEGER_8) 0u << (128 - GFC_REAL_16_DIGITS); |
| #elif GFC_REAL_16_RADIX == 16 |
| mask = ~ (GFC_UINTEGER_8) 0u << ((32 - GFC_REAL_16_DIGITS) * 4); |
| #else |
| #error "GFC_REAL_16_RADIX has unknown value" |
| #endif |
| v2 = v2 & mask; |
| *f = (GFC_REAL_16) v1 * GFC_REAL_16_LITERAL(0x1.p-64) |
| + (GFC_REAL_16) v2 * GFC_REAL_16_LITERAL(0x1.p-128); |
| } |
| #endif |
| |
| |
| /* |
| |
| We use the xoshiro256** generator, a fast high-quality generator |
| that: |
| |
| - passes TestU1 without any failures |
| |
| - provides a "jump" function making it easy to provide many |
| independent parallel streams. |
| |
| - Long period of 2**256 - 1 |
| |
| A description can be found at |
| |
| http://prng.di.unimi.it/ |
| |
| or |
| |
| https://arxiv.org/abs/1805.01407 |
| |
| The paper includes public domain source code which is the basis for |
| the implementation below. |
| |
| */ |
| typedef struct |
| { |
| bool init; |
| uint64_t s[4]; |
| } |
| prng_state; |
| |
| |
| /* master_state is the only variable protected by random_lock. */ |
| static prng_state master_state = { .init = false, .s = { |
| 0xad63fa1ed3b55f36ULL, 0xd94473e78978b497ULL, 0xbc60592a98172477ULL, |
| 0xa3de7c6e81265301ULL } |
| }; |
| |
| |
| static __gthread_key_t rand_state_key; |
| |
| static prng_state* |
| get_rand_state (void) |
| { |
| /* For single threaded apps. */ |
| static prng_state rand_state; |
| |
| if (__gthread_active_p ()) |
| { |
| void* p = __gthread_getspecific (rand_state_key); |
| if (!p) |
| { |
| p = xcalloc (1, sizeof (prng_state)); |
| __gthread_setspecific (rand_state_key, p); |
| } |
| return p; |
| } |
| else |
| return &rand_state; |
| } |
| |
| static inline uint64_t |
| rotl (const uint64_t x, int k) |
| { |
| return (x << k) | (x >> (64 - k)); |
| } |
| |
| |
| static uint64_t |
| prng_next (prng_state* rs) |
| { |
| const uint64_t result = rotl(rs->s[1] * 5, 7) * 9; |
| |
| const uint64_t t = rs->s[1] << 17; |
| |
| rs->s[2] ^= rs->s[0]; |
| rs->s[3] ^= rs->s[1]; |
| rs->s[1] ^= rs->s[2]; |
| rs->s[0] ^= rs->s[3]; |
| |
| rs->s[2] ^= t; |
| |
| rs->s[3] = rotl(rs->s[3], 45); |
| |
| return result; |
| } |
| |
| |
| /* This is the jump function for the generator. It is equivalent to |
| 2^128 calls to prng_next(); it can be used to generate 2^128 |
| non-overlapping subsequences for parallel computations. */ |
| |
| static void |
| jump (prng_state* rs) |
| { |
| static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c }; |
| |
| uint64_t s0 = 0; |
| uint64_t s1 = 0; |
| uint64_t s2 = 0; |
| uint64_t s3 = 0; |
| for(size_t i = 0; i < sizeof JUMP / sizeof *JUMP; i++) |
| for(int b = 0; b < 64; b++) { |
| if (JUMP[i] & UINT64_C(1) << b) { |
| s0 ^= rs->s[0]; |
| s1 ^= rs->s[1]; |
| s2 ^= rs->s[2]; |
| s3 ^= rs->s[3]; |
| } |
| prng_next (rs); |
| } |
| |
| rs->s[0] = s0; |
| rs->s[1] = s1; |
| rs->s[2] = s2; |
| rs->s[3] = s3; |
| } |
| |
| |
| /* Splitmix64 recommended by xoshiro author for initializing. After |
| getting one uint64_t value from the OS, this is used to fill in the |
| rest of the xoshiro state. */ |
| |
| static uint64_t |
| splitmix64 (uint64_t x) |
| { |
| uint64_t z = (x += 0x9e3779b97f4a7c15); |
| z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; |
| z = (z ^ (z >> 27)) * 0x94d049bb133111eb; |
| return z ^ (z >> 31); |
| } |
| |
| |
| /* Get some bytes from the operating system in order to seed |
| the PRNG. */ |
| |
| static int |
| getosrandom (void *buf, size_t buflen) |
| { |
| /* rand_s is available in MinGW-w64 but not plain MinGW. */ |
| #if defined(__MINGW64_VERSION_MAJOR) |
| unsigned int* b = buf; |
| for (size_t i = 0; i < buflen / sizeof (unsigned int); i++) |
| rand_s (&b[i]); |
| return buflen; |
| #else |
| #ifdef HAVE_GETENTROPY |
| if (getentropy (buf, buflen) == 0) |
| return buflen; |
| #endif |
| int flags = O_RDONLY; |
| #ifdef O_CLOEXEC |
| flags |= O_CLOEXEC; |
| #endif |
| int fd = open("/dev/urandom", flags); |
| if (fd != -1) |
| { |
| int res = read(fd, buf, buflen); |
| close (fd); |
| return res; |
| } |
| uint64_t seed = 0x047f7684e9fc949dULL; |
| time_t secs; |
| long usecs; |
| if (gf_gettime (&secs, &usecs) == 0) |
| { |
| seed ^= secs; |
| seed ^= usecs; |
| } |
| #ifdef HAVE_GETPID |
| pid_t pid = getpid(); |
| seed ^= pid; |
| #endif |
| size_t size = buflen < sizeof (uint64_t) ? buflen : sizeof (uint64_t); |
| memcpy (buf, &seed, size); |
| return size; |
| #endif /* __MINGW64_VERSION_MAJOR */ |
| } |
| |
| |
| /* Initialize the random number generator for the current thread, |
| using the master state and the number of times we must jump. */ |
| |
| static void |
| init_rand_state (prng_state* rs, const bool locked) |
| { |
| if (!locked) |
| __gthread_mutex_lock (&random_lock); |
| if (!master_state.init) |
| { |
| uint64_t os_seed; |
| getosrandom (&os_seed, sizeof (os_seed)); |
| for (uint64_t i = 0; i < sizeof (master_state.s) / sizeof (uint64_t); i++) |
| { |
| os_seed = splitmix64 (os_seed); |
| master_state.s[i] = os_seed; |
| } |
| master_state.init = true; |
| } |
| memcpy (&rs->s, master_state.s, sizeof (master_state.s)); |
| jump (&master_state); |
| if (!locked) |
| __gthread_mutex_unlock (&random_lock); |
| rs->init = true; |
| } |
| |
| |
| /* This function produces a REAL(4) value from the uniform distribution |
| with range [0,1). */ |
| |
| void |
| random_r4 (GFC_REAL_4 *x) |
| { |
| prng_state* rs = get_rand_state(); |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| uint64_t r = prng_next (rs); |
| /* Take the higher bits, ensuring that a stream of real(4), real(8), |
| and real(10) will be identical (except for precision). */ |
| uint32_t high = (uint32_t) (r >> 32); |
| rnumber_4 (x, high); |
| } |
| iexport(random_r4); |
| |
| /* This function produces a REAL(8) value from the uniform distribution |
| with range [0,1). */ |
| |
| void |
| random_r8 (GFC_REAL_8 *x) |
| { |
| GFC_UINTEGER_8 r; |
| prng_state* rs = get_rand_state(); |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| r = prng_next (rs); |
| rnumber_8 (x, r); |
| } |
| iexport(random_r8); |
| |
| #ifdef HAVE_GFC_REAL_10 |
| |
| /* This function produces a REAL(10) value from the uniform distribution |
| with range [0,1). */ |
| |
| void |
| random_r10 (GFC_REAL_10 *x) |
| { |
| GFC_UINTEGER_8 r; |
| prng_state* rs = get_rand_state(); |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| r = prng_next (rs); |
| rnumber_10 (x, r); |
| } |
| iexport(random_r10); |
| |
| #endif |
| |
| /* This function produces a REAL(16) value from the uniform distribution |
| with range [0,1). */ |
| |
| #ifdef HAVE_GFC_REAL_16 |
| |
| void |
| random_r16 (GFC_REAL_16 *x) |
| { |
| GFC_UINTEGER_8 r1, r2; |
| prng_state* rs = get_rand_state(); |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| r1 = prng_next (rs); |
| r2 = prng_next (rs); |
| rnumber_16 (x, r1, r2); |
| } |
| iexport(random_r16); |
| |
| |
| #endif |
| |
| /* This function fills a REAL(4) array with values from the uniform |
| distribution with range [0,1). */ |
| |
| void |
| arandom_r4 (gfc_array_r4 *x) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type stride[GFC_MAX_DIMENSIONS]; |
| index_type stride0; |
| index_type dim; |
| GFC_REAL_4 *dest; |
| prng_state* rs = get_rand_state(); |
| |
| dest = x->base_addr; |
| |
| dim = GFC_DESCRIPTOR_RANK (x); |
| |
| for (index_type n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| stride[n] = GFC_DESCRIPTOR_STRIDE(x,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(x,n); |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| stride0 = stride[0]; |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| |
| while (dest) |
| { |
| /* random_r4 (dest); */ |
| uint64_t r = prng_next (rs); |
| uint32_t high = (uint32_t) (r >> 32); |
| rnumber_4 (dest, high); |
| |
| /* Advance to the next element. */ |
| dest += stride0; |
| count[0]++; |
| /* Advance to the next source element. */ |
| index_type n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| dest -= stride[n] * extent[n]; |
| n++; |
| if (n == dim) |
| { |
| dest = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| dest += stride[n]; |
| } |
| } |
| } |
| } |
| |
| /* This function fills a REAL(8) array with values from the uniform |
| distribution with range [0,1). */ |
| |
| void |
| arandom_r8 (gfc_array_r8 *x) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type stride[GFC_MAX_DIMENSIONS]; |
| index_type stride0; |
| index_type dim; |
| GFC_REAL_8 *dest; |
| prng_state* rs = get_rand_state(); |
| |
| dest = x->base_addr; |
| |
| dim = GFC_DESCRIPTOR_RANK (x); |
| |
| for (index_type n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| stride[n] = GFC_DESCRIPTOR_STRIDE(x,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(x,n); |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| stride0 = stride[0]; |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| |
| while (dest) |
| { |
| /* random_r8 (dest); */ |
| uint64_t r = prng_next (rs); |
| rnumber_8 (dest, r); |
| |
| /* Advance to the next element. */ |
| dest += stride0; |
| count[0]++; |
| /* Advance to the next source element. */ |
| index_type n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| dest -= stride[n] * extent[n]; |
| n++; |
| if (n == dim) |
| { |
| dest = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| dest += stride[n]; |
| } |
| } |
| } |
| } |
| |
| #ifdef HAVE_GFC_REAL_10 |
| |
| /* This function fills a REAL(10) array with values from the uniform |
| distribution with range [0,1). */ |
| |
| void |
| arandom_r10 (gfc_array_r10 *x) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type stride[GFC_MAX_DIMENSIONS]; |
| index_type stride0; |
| index_type dim; |
| GFC_REAL_10 *dest; |
| prng_state* rs = get_rand_state(); |
| |
| dest = x->base_addr; |
| |
| dim = GFC_DESCRIPTOR_RANK (x); |
| |
| for (index_type n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| stride[n] = GFC_DESCRIPTOR_STRIDE(x,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(x,n); |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| stride0 = stride[0]; |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| |
| while (dest) |
| { |
| /* random_r10 (dest); */ |
| uint64_t r = prng_next (rs); |
| rnumber_10 (dest, r); |
| |
| /* Advance to the next element. */ |
| dest += stride0; |
| count[0]++; |
| /* Advance to the next source element. */ |
| index_type n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| dest -= stride[n] * extent[n]; |
| n++; |
| if (n == dim) |
| { |
| dest = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| dest += stride[n]; |
| } |
| } |
| } |
| } |
| |
| #endif |
| |
| #ifdef HAVE_GFC_REAL_16 |
| |
| /* This function fills a REAL(16) array with values from the uniform |
| distribution with range [0,1). */ |
| |
| void |
| arandom_r16 (gfc_array_r16 *x) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type stride[GFC_MAX_DIMENSIONS]; |
| index_type stride0; |
| index_type dim; |
| GFC_REAL_16 *dest; |
| prng_state* rs = get_rand_state(); |
| |
| dest = x->base_addr; |
| |
| dim = GFC_DESCRIPTOR_RANK (x); |
| |
| for (index_type n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| stride[n] = GFC_DESCRIPTOR_STRIDE(x,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(x,n); |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| stride0 = stride[0]; |
| |
| if (unlikely (!rs->init)) |
| init_rand_state (rs, false); |
| |
| while (dest) |
| { |
| /* random_r16 (dest); */ |
| uint64_t r1 = prng_next (rs); |
| uint64_t r2 = prng_next (rs); |
| rnumber_16 (dest, r1, r2); |
| |
| /* Advance to the next element. */ |
| dest += stride0; |
| count[0]++; |
| /* Advance to the next source element. */ |
| index_type n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| dest -= stride[n] * extent[n]; |
| n++; |
| if (n == dim) |
| { |
| dest = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| dest += stride[n]; |
| } |
| } |
| } |
| } |
| |
| #endif |
| |
| |
| /* Number of elements in master_state array. */ |
| #define SZU64 (sizeof (master_state.s) / sizeof (uint64_t)) |
| |
| /* Equivalent number of elements in an array of GFC_INTEGER_{4,8}. */ |
| #define SZ_IN_INT_4 (SZU64 * (sizeof (uint64_t) / sizeof (GFC_INTEGER_4))) |
| #define SZ_IN_INT_8 (SZU64 * (sizeof (uint64_t) / sizeof (GFC_INTEGER_8))) |
| |
| /* Keys for scrambling the seed in order to avoid poor seeds. */ |
| |
| static const uint64_t xor_keys[] = { |
| 0xbd0c5b6e50c2df49ULL, 0xd46061cd46e1df38ULL, 0xbb4f4d4ed6103544ULL, |
| 0x114a583d0756ad39ULL |
| }; |
| |
| |
| /* Since a XOR cipher is symmetric, we need only one routine, and we |
| can use it both for encryption and decryption. */ |
| |
| static void |
| scramble_seed (uint64_t *dest, const uint64_t *src) |
| { |
| for (size_t i = 0; i < SZU64; i++) |
| dest[i] = src[i] ^ xor_keys[i]; |
| } |
| |
| |
| /* random_seed is used to seed the PRNG with either a default |
| set of seeds or user specified set of seeds. random_seed |
| must be called with no argument or exactly one argument. */ |
| |
| void |
| random_seed_i4 (GFC_INTEGER_4 *size, gfc_array_i4 *put, gfc_array_i4 *get) |
| { |
| uint64_t seed[SZU64]; |
| |
| /* Check that we only have one argument present. */ |
| if ((size ? 1 : 0) + (put ? 1 : 0) + (get ? 1 : 0) > 1) |
| runtime_error ("RANDOM_SEED should have at most one argument present."); |
| |
| if (size != NULL) |
| *size = SZ_IN_INT_4; |
| |
| prng_state* rs = get_rand_state(); |
| |
| /* Return the seed to GET data. */ |
| if (get != NULL) |
| { |
| /* If the rank of the array is not 1, abort. */ |
| if (GFC_DESCRIPTOR_RANK (get) != 1) |
| runtime_error ("Array rank of GET is not 1."); |
| |
| /* If the array is too small, abort. */ |
| if (GFC_DESCRIPTOR_EXTENT(get,0) < (index_type) SZ_IN_INT_4) |
| runtime_error ("Array size of GET is too small."); |
| |
| if (!rs->init) |
| init_rand_state (rs, false); |
| |
| /* Unscramble the seed. */ |
| scramble_seed (seed, rs->s); |
| |
| /* Then copy it back to the user variable. */ |
| for (size_t i = 0; i < SZ_IN_INT_4 ; i++) |
| memcpy (&(get->base_addr[(SZ_IN_INT_4 - 1 - i) * |
| GFC_DESCRIPTOR_STRIDE(get,0)]), |
| (unsigned char*) seed + i * sizeof(GFC_UINTEGER_4), |
| sizeof(GFC_UINTEGER_4)); |
| } |
| |
| else |
| { |
| __gthread_mutex_lock (&random_lock); |
| |
| /* From the standard: "If no argument is present, the processor assigns |
| a processor-dependent value to the seed." */ |
| if (size == NULL && put == NULL && get == NULL) |
| { |
| master_state.init = false; |
| init_rand_state (rs, true); |
| } |
| |
| if (put != NULL) |
| { |
| /* If the rank of the array is not 1, abort. */ |
| if (GFC_DESCRIPTOR_RANK (put) != 1) |
| runtime_error ("Array rank of PUT is not 1."); |
| |
| /* If the array is too small, abort. */ |
| if (GFC_DESCRIPTOR_EXTENT(put,0) < (index_type) SZ_IN_INT_4) |
| runtime_error ("Array size of PUT is too small."); |
| |
| /* We copy the seed given by the user. */ |
| for (size_t i = 0; i < SZ_IN_INT_4; i++) |
| memcpy ((unsigned char*) seed + i * sizeof(GFC_UINTEGER_4), |
| &(put->base_addr[(SZ_IN_INT_4 - 1 - i) * |
| GFC_DESCRIPTOR_STRIDE(put,0)]), |
| sizeof(GFC_UINTEGER_4)); |
| |
| /* We put it after scrambling the bytes, to paper around users who |
| provide seeds with quality only in the lower or upper part. */ |
| scramble_seed (master_state.s, seed); |
| master_state.init = true; |
| init_rand_state (rs, true); |
| } |
| |
| __gthread_mutex_unlock (&random_lock); |
| } |
| } |
| iexport(random_seed_i4); |
| |
| |
| void |
| random_seed_i8 (GFC_INTEGER_8 *size, gfc_array_i8 *put, gfc_array_i8 *get) |
| { |
| uint64_t seed[SZU64]; |
| |
| /* Check that we only have one argument present. */ |
| if ((size ? 1 : 0) + (put ? 1 : 0) + (get ? 1 : 0) > 1) |
| runtime_error ("RANDOM_SEED should have at most one argument present."); |
| |
| if (size != NULL) |
| *size = SZ_IN_INT_8; |
| |
| prng_state* rs = get_rand_state(); |
| |
| /* Return the seed to GET data. */ |
| if (get != NULL) |
| { |
| /* If the rank of the array is not 1, abort. */ |
| if (GFC_DESCRIPTOR_RANK (get) != 1) |
| runtime_error ("Array rank of GET is not 1."); |
| |
| /* If the array is too small, abort. */ |
| if (GFC_DESCRIPTOR_EXTENT(get,0) < (index_type) SZ_IN_INT_8) |
| runtime_error ("Array size of GET is too small."); |
| |
| if (!rs->init) |
| init_rand_state (rs, false); |
| |
| /* Unscramble the seed. */ |
| scramble_seed (seed, rs->s); |
| |
| /* This code now should do correct strides. */ |
| for (size_t i = 0; i < SZ_IN_INT_8; i++) |
| memcpy (&(get->base_addr[i * GFC_DESCRIPTOR_STRIDE(get,0)]), &seed[i], |
| sizeof (GFC_UINTEGER_8)); |
| } |
| |
| else |
| { |
| __gthread_mutex_lock (&random_lock); |
| |
| /* From the standard: "If no argument is present, the processor assigns |
| a processor-dependent value to the seed." */ |
| if (size == NULL && put == NULL && get == NULL) |
| { |
| master_state.init = false; |
| init_rand_state (rs, true); |
| } |
| |
| if (put != NULL) |
| { |
| /* If the rank of the array is not 1, abort. */ |
| if (GFC_DESCRIPTOR_RANK (put) != 1) |
| runtime_error ("Array rank of PUT is not 1."); |
| |
| /* If the array is too small, abort. */ |
| if (GFC_DESCRIPTOR_EXTENT(put,0) < (index_type) SZ_IN_INT_8) |
| runtime_error ("Array size of PUT is too small."); |
| |
| /* This code now should do correct strides. */ |
| for (size_t i = 0; i < SZ_IN_INT_8; i++) |
| memcpy (&seed[i], &(put->base_addr[i * GFC_DESCRIPTOR_STRIDE(put,0)]), |
| sizeof (GFC_UINTEGER_8)); |
| |
| scramble_seed (master_state.s, seed); |
| master_state.init = true; |
| init_rand_state (rs, true); |
| } |
| |
| |
| __gthread_mutex_unlock (&random_lock); |
| } |
| } |
| iexport(random_seed_i8); |
| |
| |
| #if !defined __GTHREAD_MUTEX_INIT || defined __GTHREADS |
| static void __attribute__((constructor)) |
| constructor_random (void) |
| { |
| #ifndef __GTHREAD_MUTEX_INIT |
| __GTHREAD_MUTEX_INIT_FUNCTION (&random_lock); |
| #endif |
| if (__gthread_active_p ()) |
| __gthread_key_create (&rand_state_key, &free); |
| } |
| #endif |
| |
| #ifdef __GTHREADS |
| static void __attribute__((destructor)) |
| destructor_random (void) |
| { |
| if (__gthread_active_p ()) |
| __gthread_key_delete (rand_state_key); |
| } |
| #endif |