;; MIPS Paired-Single Floating and MIPS-3D Instructions. ;; Copyright (C) 2004-2021 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

(define_c_enum “unspec” [ UNSPEC_MOVE_TF_PS UNSPEC_C

;; MIPS64/MIPS32R2 alnv.ps UNSPEC_ALNV_PS

;; MIPS-3D instructions UNSPEC_CABS

UNSPEC_ADDR_PS UNSPEC_CVT_PW_PS UNSPEC_CVT_PS_PW UNSPEC_MULR_PS UNSPEC_ABS_PS

UNSPEC_RSQRT1 UNSPEC_RSQRT2 UNSPEC_RECIP1 UNSPEC_RECIP2 UNSPEC_SINGLE_CC UNSPEC_SCC ])

(define_insn “*movcc_v2sf_” [(set (match_operand:V2SF 0 “register_operand” “=f,f”) (if_then_else:V2SF (match_operator:GPR 4 “equality_operator” [(match_operand:GPR 1 “register_operand” “d,d”) (const_int 0)]) (match_operand:V2SF 2 “register_operand” “f,0”) (match_operand:V2SF 3 “register_operand” “0,f”)))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “@ mov%T4.ps\t%0,%2,%1 mov%t4.ps\t%0,%3,%1” [(set_attr “type” “condmove”) (set_attr “mode” “SF”)])

(define_insn “mips_cond_move_tf_ps” [(set (match_operand:V2SF 0 “register_operand” “=f,f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f,0”) (match_operand:V2SF 2 “register_operand” “0,f”) (match_operand:CCV2 3 “register_operand” “z,z”)] UNSPEC_MOVE_TF_PS))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “@ movt.ps\t%0,%1,%3 movf.ps\t%0,%2,%3” [(set_attr “type” “condmove”) (set_attr “mode” “SF”)])

(define_expand “movv2sfcc” [(set (match_dup 4) (match_operand 1 “comparison_operator”)) (set (match_operand:V2SF 0 “register_operand”) (if_then_else:V2SF (match_dup 5) (match_operand:V2SF 2 “register_operand”) (match_operand:V2SF 3 “register_operand”)))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { /* We can only support MOVN.PS and MOVZ.PS. NOTE: MOVT.PS and MOVF.PS have different semantics from MOVN.PS and MOVZ.PS. MOVT.PS and MOVF.PS depend on two CC values and move each item independently. */

if (GET_MODE_CLASS (GET_MODE (XEXP (operands[1], 0))) != MODE_INT) FAIL;

mips_expand_conditional_move (operands); DONE; })

(define_insn “vec_perm_const_ps” [(set (match_operand:V2SF 0 “register_operand” “=f”) (vec_select:V2SF (vec_concat:V4SF (match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”)) (parallel [(match_operand:SI 3 “const_0_or_1_operand” "") (match_operand:SI 4 “const_2_or_3_operand” "")])))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { /* Let L be the lower part of operand and U be the upper part. The P[UL][UL].PS instruction always specifies the upper part of the result first, so the instruction is:

P<aUL><bUL>.PS %0,<aop>,<bop>

 where 0U == <aop><aUL> and 0L == <bop><bUL>.

 GCC's vector indices are specified in memory order, which means
 that vector element 0 is the lower part (L) on little-endian targets
 and the upper part (U) on big-endian targets.  vec_concat likewise
 concatenates in memory order, which means that operand 3 (being
 0 or 1) selects part of operand 1 and operand 4 (being 2 or 3)
 selects part of operand 2.

 Let:

I3 = INTVAL (operands[3])
I4 = INTVAL (operands[4]) - 2

 Taking the two endiannesses in turn:

 Little-endian:

    The semantics of the RTL pattern are:

{ 0L, 0U } = { X[I3], X[I4 + 2] }, where X = { 1L, 1U, 2L, 2U }

so: 0L = { 1L, 1U }[I3] (= <bop><bUL>)
    0U = { 2L, 2U }[I4] (= <aop><aUL>)

    <aop> = 2, <aUL> = I4 ? U : L
    <bop> = 1, <bUL> = I3 ? U : L

    [LL] !I4 && !I3   [UL] I4 && !I3
    [LU] !I4 && I3    [UU] I4 && I3

 Big-endian:

    The semantics of the RTL pattern are:

{ 0U, 0L } = { X[I3], X[I4 + 2] }, where X = { 1U, 1L, 2U, 2L }

so: 0U = { 1U, 1L }[I3] (= <aop><aUL>)
    0L = { 2U, 2L }[I4] (= <bop><bUL>)

    <aop> = 1, <aUL> = I3 ? L : U
    <bop> = 2, <bUL> = I4 ? L : U

    [UU] !I3 && !I4   [UL] !I3 && I4
    [LU] I3 && !I4    [LL] I3 && I4.  */

static const char * const mnemonics[2][4] = { /* LE / { “pll.ps\t%0,%2,%1”, “pul.ps\t%0,%2,%1”, “plu.ps\t%0,%2,%1”, “puu.ps\t%0,%2,%1” }, / BE */ { “puu.ps\t%0,%1,%2”, “pul.ps\t%0,%1,%2”, “plu.ps\t%0,%1,%2”, “pll.ps\t%0,%1,%2” }, };

unsigned mask = INTVAL (operands[3]) * 2 + (INTVAL (operands[4]) - 2); return mnemonics[BYTES_BIG_ENDIAN][mask]; } [(set_attr “type” “fmove”) (set_attr “mode” “SF”)])

;; Expanders for builtins. The instruction: ;; ;; P[UL][UL].PS , , ;; ;; says that the upper part of is taken from half of and ;; the lower part of is taken from half of . This means ;; that the P[UL][UL].PS operand order matches memory order on big-endian ;; targets; is element 0 of the V2SF result while is element 1. ;; However, the P[UL][UL].PS operand order is the reverse of memory order ;; on little-endian targets; is element 1 of the V2SF result while ;; is element 0. The arguments to vec_perm_const_ps are always in ;; memory order. ;; ;; Similarly, “U” corresponds to element 0 on big-endian targets but ;; to element 1 on little-endian targets.

(define_expand “mips_puu_ps” [(match_operand:V2SF 0 “register_operand” "") (match_operand:V2SF 1 “register_operand” "") (match_operand:V2SF 2 “register_operand” "")] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (BYTES_BIG_ENDIAN) emit_insn (gen_vec_perm_const_ps (operands[0], operands[1], operands[2], const0_rtx, const2_rtx)); else emit_insn (gen_vec_perm_const_ps (operands[0], operands[2], operands[1], const1_rtx, GEN_INT (3))); DONE; })

(define_expand “mips_pul_ps” [(match_operand:V2SF 0 “register_operand” "") (match_operand:V2SF 1 “register_operand” "") (match_operand:V2SF 2 “register_operand” "")] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (BYTES_BIG_ENDIAN) emit_insn (gen_vec_perm_const_ps (operands[0], operands[1], operands[2], const0_rtx, GEN_INT (3))); else emit_insn (gen_vec_perm_const_ps (operands[0], operands[2], operands[1], const0_rtx, GEN_INT (3))); DONE; })

(define_expand “mips_plu_ps” [(match_operand:V2SF 0 “register_operand” "") (match_operand:V2SF 1 “register_operand” "") (match_operand:V2SF 2 “register_operand” "")] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (BYTES_BIG_ENDIAN) emit_insn (gen_vec_perm_const_ps (operands[0], operands[1], operands[2], const1_rtx, const2_rtx)); else emit_insn (gen_vec_perm_const_ps (operands[0], operands[2], operands[1], const1_rtx, const2_rtx)); DONE; })

(define_expand “mips_pll_ps” [(match_operand:V2SF 0 “register_operand” "") (match_operand:V2SF 1 “register_operand” "") (match_operand:V2SF 2 “register_operand” "")] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (BYTES_BIG_ENDIAN) emit_insn (gen_vec_perm_const_ps (operands[0], operands[1], operands[2], const1_rtx, GEN_INT (3))); else emit_insn (gen_vec_perm_const_ps (operands[0], operands[2], operands[1], const0_rtx, const2_rtx)); DONE; })

; vec_init (define_expand “vec_initv2sfsf” [(match_operand:V2SF 0 “register_operand”) (match_operand:V2SF 1 "")] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { mips_expand_vector_init (operands[0], operands[1]); DONE; })

(define_insn “vec_concatv2sf” [(set (match_operand:V2SF 0 “register_operand” “=f”) (vec_concat:V2SF (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (BYTES_BIG_ENDIAN) return “cvt.ps.s\t%0,%1,%2”; else return “cvt.ps.s\t%0,%2,%1”; } [(set_attr “type” “fcvt”) (set_attr “mode” “SF”)])

;; ??? This is only generated if we perform a vector operation that has to be ;; emulated. There is no other way to get a vector mode bitfield extract ;; currently.

(define_insn “vec_extractv2sfsf” [(set (match_operand:SF 0 “register_operand” “=f”) (vec_select:SF (match_operand:V2SF 1 “register_operand” “f”) (parallel [(match_operand 2 “const_0_or_1_operand” "")])))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (INTVAL (operands[2]) == !BYTES_BIG_ENDIAN) return “cvt.s.pu\t%0,%1”; else return “cvt.s.pl\t%0,%1”; } [(set_attr “type” “fcvt”) (set_attr “mode” “SF”)])

;; ??? This is only generated if we disable the vec_init pattern. There is ;; no other way to get a vector mode bitfield store currently.

(define_expand “vec_setv2sf” [(set (match_operand:V2SF 0 “register_operand” "") (vec_select:V2SF (vec_concat:V4SF (match_operand:SF 1 “register_operand” "") (match_dup 0)) (parallel [(match_operand 2 “const_0_or_1_operand” "") (match_dup 3)])))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { /* We don't have an insert instruction, so we duplicate the float, and then use a PUL instruction. */ rtx temp = gen_reg_rtx (V2SFmode); emit_insn (gen_vec_concatv2sf (temp, operands[1], operands[1])); operands[1] = temp; operands[3] = GEN_INT (1 - INTVAL (operands[2]) + 2); })

; cvt.ps.s - Floating Point Convert Pair to Paired Single (define_expand “mips_cvt_ps_s” [(match_operand:V2SF 0 “register_operand”) (match_operand:SF 1 “register_operand”) (match_operand:SF 2 “register_operand”)] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { if (BYTES_BIG_ENDIAN) emit_insn (gen_vec_concatv2sf (operands[0], operands[1], operands[2])); else emit_insn (gen_vec_concatv2sf (operands[0], operands[2], operands[1])); DONE; })

; cvt.s.pl - Floating Point Convert Pair Lower to Single Floating Point (define_expand “mips_cvt_s_pl” [(set (match_operand:SF 0 “register_operand”) (vec_select:SF (match_operand:V2SF 1 “register_operand”) (parallel [(match_dup 2)])))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { operands[2] = GEN_INT (BYTES_BIG_ENDIAN); })

; cvt.s.pu - Floating Point Convert Pair Upper to Single Floating Point (define_expand “mips_cvt_s_pu” [(set (match_operand:SF 0 “register_operand”) (vec_select:SF (match_operand:V2SF 1 “register_operand”) (parallel [(match_dup 2)])))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { operands[2] = GEN_INT (!BYTES_BIG_ENDIAN); })

; alnv.ps - Floating Point Align Variable (define_insn “mips_alnv_ps” [(set (match_operand:V2SF 0 “register_operand” “=f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”) (match_operand:SI 3 “register_operand” “d”)] UNSPEC_ALNV_PS))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “alnv.ps\t%0,%1,%2,%3” [(set_attr “type” “fmove”) (set_attr “mode” “SF”)])

; addr.ps - Floating Point Reduction Add (define_insn “mips_addr_ps” [(set (match_operand:V2SF 0 “register_operand” “=f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”)] UNSPEC_ADDR_PS))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “addr.ps\t%0,%1,%2” [(set_attr “type” “fadd”) (set_attr “mode” “SF”)])

(define_expand “reduc_plus_scal_v2sf” [(match_operand:SF 0 “register_operand” “=f”) (match_operand:V2SF 1 “register_operand” “f”)] “TARGET_HARD_FLOAT && TARGET_MIPS3D” { rtx temp = gen_reg_rtx (V2SFmode); emit_insn (gen_mips_addr_ps (temp, operands[1], operands[1])); rtx lane = BYTES_BIG_ENDIAN ? const1_rtx : const0_rtx; emit_insn (gen_vec_extractv2sfsf (operands[0], temp, lane)); DONE; })

; cvt.pw.ps - Floating Point Convert Paired Single to Paired Word (define_insn “mips_cvt_pw_ps” [(set (match_operand:V2SF 0 “register_operand” “=f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f”)] UNSPEC_CVT_PW_PS))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “cvt.pw.ps\t%0,%1” [(set_attr “type” “fcvt”) (set_attr “mode” “SF”)])

; cvt.ps.pw - Floating Point Convert Paired Word to Paired Single (define_insn “mips_cvt_ps_pw” [(set (match_operand:V2SF 0 “register_operand” “=f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f”)] UNSPEC_CVT_PS_PW))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “cvt.ps.pw\t%0,%1” [(set_attr “type” “fcvt”) (set_attr “mode” “SF”)])

; mulr.ps - Floating Point Reduction Multiply (define_insn “mips_mulr_ps” [(set (match_operand:V2SF 0 “register_operand” “=f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”)] UNSPEC_MULR_PS))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “mulr.ps\t%0,%1,%2” [(set_attr “type” “fmul”) (set_attr “mode” “SF”)])

; abs.ps (define_expand “mips_abs_ps” [(set (match_operand:V2SF 0 “register_operand”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand”)] UNSPEC_ABS_PS))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { /* If we can ignore NaNs, this operation is equivalent to the rtl ABS code. */ if (!HONOR_NANS (V2SFmode)) { emit_insn (gen_absv2sf2 (operands[0], operands[1])); DONE; } })

(define_insn “*mips_abs_ps” [(set (match_operand:V2SF 0 “register_operand” “=f”) (unspec:V2SF [(match_operand:V2SF 1 “register_operand” “f”)] UNSPEC_ABS_PS))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “abs.ps\t%0,%1” [(set_attr “type” “fabs”) (set_attr “mode” “SF”)])

;---------------------------------------------------------------------------- ; Floating Point Comparisons for Scalars ;----------------------------------------------------------------------------

(define_insn “mips_cabs_cond_” [(set (match_operand:CC 0 “register_operand” “=z”) (unspec:CC [(match_operand:SCALARF 1 “register_operand” “f”) (match_operand:SCALARF 2 “register_operand” “f”) (match_operand 3 “const_int_operand” "")] UNSPEC_CABS))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “cabs.%Y3.\t%0,%1,%2” [(set_attr “type” “fcmp”) (set_attr “mode” “FPSW”)])

;---------------------------------------------------------------------------- ; Floating Point Comparisons for Four Singles ;----------------------------------------------------------------------------

(define_insn_and_split “mips_c_cond_4s” [(set (match_operand:CCV4 0 “register_operand” “=z”) (unspec:CCV4 [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”) (match_operand:V2SF 3 “register_operand” “f”) (match_operand:V2SF 4 “register_operand” “f”) (match_operand 5 “const_int_operand” "")] UNSPEC_C))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “#” “&& reload_completed” [(set (match_dup 6) (unspec:CCV2 [(match_dup 1) (match_dup 2) (match_dup 5)] UNSPEC_C)) (set (match_dup 7) (unspec:CCV2 [(match_dup 3) (match_dup 4) (match_dup 5)] UNSPEC_C))] { operands[6] = simplify_gen_subreg (CCV2mode, operands[0], CCV4mode, 0); operands[7] = simplify_gen_subreg (CCV2mode, operands[0], CCV4mode, 8); } [(set_attr “type” “fcmp”) (set_attr “insn_count” “2”) (set_attr “mode” “FPSW”)])

(define_insn_and_split “mips_cabs_cond_4s” [(set (match_operand:CCV4 0 “register_operand” “=z”) (unspec:CCV4 [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”) (match_operand:V2SF 3 “register_operand” “f”) (match_operand:V2SF 4 “register_operand” “f”) (match_operand 5 “const_int_operand” "")] UNSPEC_CABS))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “#” “&& reload_completed” [(set (match_dup 6) (unspec:CCV2 [(match_dup 1) (match_dup 2) (match_dup 5)] UNSPEC_CABS)) (set (match_dup 7) (unspec:CCV2 [(match_dup 3) (match_dup 4) (match_dup 5)] UNSPEC_CABS))] { operands[6] = simplify_gen_subreg (CCV2mode, operands[0], CCV4mode, 0); operands[7] = simplify_gen_subreg (CCV2mode, operands[0], CCV4mode, 8); } [(set_attr “type” “fcmp”) (set_attr “insn_count” “2”) (set_attr “mode” “FPSW”)])

;---------------------------------------------------------------------------- ; Floating Point Comparisons for Paired Singles ;----------------------------------------------------------------------------

(define_insn “mips_c_cond_ps” [(set (match_operand:CCV2 0 “register_operand” “=z”) (unspec:CCV2 [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”) (match_operand 3 “const_int_operand” "")] UNSPEC_C))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “c.%Y3.ps\t%0,%1,%2” [(set_attr “type” “fcmp”) (set_attr “mode” “FPSW”)])

(define_insn “mips_cabs_cond_ps” [(set (match_operand:CCV2 0 “register_operand” “=z”) (unspec:CCV2 [(match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”) (match_operand 3 “const_int_operand” "")] UNSPEC_CABS))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “cabs.%Y3.ps\t%0,%1,%2” [(set_attr “type” “fcmp”) (set_attr “mode” “FPSW”)])

;; An expander for generating an scc operation. (define_expand “scc_ps” [(set (match_operand:CCV2 0) (unspec:CCV2 [(match_operand 1)] UNSPEC_SCC))])

(define_insn “s_ps” [(set (match_operand:CCV2 0 “register_operand” “=z”) (unspec:CCV2 [(fcond (match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”))] UNSPEC_SCC))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “c..ps\t%0,%1,%2” [(set_attr “type” “fcmp”) (set_attr “mode” “FPSW”)])

(define_insn “s_ps” [(set (match_operand:CCV2 0 “register_operand” “=z”) (unspec:CCV2 [(swapped_fcond (match_operand:V2SF 1 “register_operand” “f”) (match_operand:V2SF 2 “register_operand” “f”))] UNSPEC_SCC))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” “c.<swapped_fcond>.ps\t%0,%2,%1” [(set_attr “type” “fcmp”) (set_attr “mode” “FPSW”)])

;---------------------------------------------------------------------------- ; Floating Point Branch Instructions. ;----------------------------------------------------------------------------

; Branch on Any of Four Floating Point Condition Codes True (define_insn “bc1any4t” [(set (pc) (if_then_else (ne (match_operand:CCV4 1 “register_operand” “z”) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “%*bc1any4t\t%1,%0%/” [(set_attr “type” “branch”)])

; Branch on Any of Four Floating Point Condition Codes False (define_insn “bc1any4f” [(set (pc) (if_then_else (ne (match_operand:CCV4 1 “register_operand” “z”) (const_int -1)) (label_ref (match_operand 0 "" "")) (pc)))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “%*bc1any4f\t%1,%0%/” [(set_attr “type” “branch”)])

; Branch on Any of Two Floating Point Condition Codes True (define_insn “bc1any2t” [(set (pc) (if_then_else (ne (match_operand:CCV2 1 “register_operand” “z”) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “%*bc1any2t\t%1,%0%/” [(set_attr “type” “branch”)])

; Branch on Any of Two Floating Point Condition Codes False (define_insn “bc1any2f” [(set (pc) (if_then_else (ne (match_operand:CCV2 1 “register_operand” “z”) (const_int -1)) (label_ref (match_operand 0 "" "")) (pc)))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “%*bc1any2f\t%1,%0%/” [(set_attr “type” “branch”)])

; Used to access one register in a CCV2 pair. Operand 0 is the register ; pair and operand 1 is the index of the register we want (a CONST_INT). (define_expand “single_cc” [(ne (unspec:CC [(match_operand 0) (match_operand 1)] UNSPEC_SINGLE_CC) (const_int 0))])

; This is a normal floating-point branch pattern, but rather than check ; a single CCmode register, it checks one register in a CCV2 pair. ; Operand 2 is the register pair and operand 3 is the index of the ; register we want. (define_insn “*branch_upper_lower” [(set (pc) (if_then_else (match_operator 1 “equality_operator” [(unspec:CC [(match_operand:CCV2 2 “register_operand” “z”) (match_operand 3 “const_int_operand”)] UNSPEC_SINGLE_CC) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] “TARGET_HARD_FLOAT” { operands[2] = gen_rtx_REG (CCmode, REGNO (operands[2]) + INTVAL (operands[3])); return mips_output_conditional_branch (insn, operands, MIPS_BRANCH (“b%F1”, “%2,%0”), MIPS_BRANCH (“b%W1”, “%2,%0”)); } [(set_attr “type” “branch”)])

; As above, but with the sense of the condition reversed. (define_insn “*branch_upper_lower_inverted” [(set (pc) (if_then_else (match_operator 1 “equality_operator” [(unspec:CC [(match_operand:CCV2 2 “register_operand” “z”) (match_operand 3 “const_int_operand”)] UNSPEC_SINGLE_CC) (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] “TARGET_HARD_FLOAT” { operands[2] = gen_rtx_REG (CCmode, REGNO (operands[2]) + INTVAL (operands[3])); return mips_output_conditional_branch (insn, operands, MIPS_BRANCH (“b%W1”, “%2,%0”), MIPS_BRANCH (“b%F1”, “%2,%0”)); } [(set_attr “type” “branch”)])

;---------------------------------------------------------------------------- ; Floating Point Reduced Precision Reciprocal Square Root Instructions. ;----------------------------------------------------------------------------

(define_insn “mips_rsqrt1_” [(set (match_operand:ANYF 0 “register_operand” “=f”) (unspec:ANYF [(match_operand:ANYF 1 “register_operand” “f”)] UNSPEC_RSQRT1))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “rsqrt1.\t%0,%1” [(set_attr “type” “frsqrt1”) (set_attr “mode” “”)])

(define_insn “mips_rsqrt2_” [(set (match_operand:ANYF 0 “register_operand” “=f”) (unspec:ANYF [(match_operand:ANYF 1 “register_operand” “f”) (match_operand:ANYF 2 “register_operand” “f”)] UNSPEC_RSQRT2))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “rsqrt2.\t%0,%1,%2” [(set_attr “type” “frsqrt2”) (set_attr “mode” “”)])

(define_insn “mips_recip1_” [(set (match_operand:ANYF 0 “register_operand” “=f”) (unspec:ANYF [(match_operand:ANYF 1 “register_operand” “f”)] UNSPEC_RECIP1))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “recip1.\t%0,%1” [(set_attr “type” “frdiv1”) (set_attr “mode” “”)])

(define_insn “mips_recip2_” [(set (match_operand:ANYF 0 “register_operand” “=f”) (unspec:ANYF [(match_operand:ANYF 1 “register_operand” “f”) (match_operand:ANYF 2 “register_operand” “f”)] UNSPEC_RECIP2))] “TARGET_HARD_FLOAT && TARGET_MIPS3D” “recip2.\t%0,%1,%2” [(set_attr “type” “frdiv2”) (set_attr “mode” “”)])

(define_expand “vcondv2sfv2sf” [(set (match_operand:V2SF 0 “register_operand”) (if_then_else:V2SF (match_operator 3 "" [(match_operand:V2SF 4 “register_operand”) (match_operand:V2SF 5 “register_operand”)]) (match_operand:V2SF 1 “register_operand”) (match_operand:V2SF 2 “register_operand”)))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { mips_expand_vcondv2sf (operands[0], operands[1], operands[2], GET_CODE (operands[3]), operands[4], operands[5]); DONE; })

(define_expand “sminv2sf3” [(set (match_operand:V2SF 0 “register_operand”) (smin:V2SF (match_operand:V2SF 1 “register_operand”) (match_operand:V2SF 2 “register_operand”)))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { mips_expand_vcondv2sf (operands[0], operands[1], operands[2], LE, operands[1], operands[2]); DONE; })

(define_expand “smaxv2sf3” [(set (match_operand:V2SF 0 “register_operand”) (smax:V2SF (match_operand:V2SF 1 “register_operand”) (match_operand:V2SF 2 “register_operand”)))] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { mips_expand_vcondv2sf (operands[0], operands[1], operands[2], LE, operands[2], operands[1]); DONE; })

(define_expand “reduc_smin_scal_v2sf” [(match_operand:SF 0 “register_operand”) (match_operand:V2SF 1 “register_operand”)] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { rtx temp = gen_reg_rtx (V2SFmode); mips_expand_vec_reduc (temp, operands[1], gen_sminv2sf3); rtx lane = BYTES_BIG_ENDIAN ? const1_rtx : const0_rtx; emit_insn (gen_vec_extractv2sfsf (operands[0], temp, lane)); DONE; })

(define_expand “reduc_smax_scal_v2sf” [(match_operand:SF 0 “register_operand”) (match_operand:V2SF 1 “register_operand”)] “TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT” { rtx temp = gen_reg_rtx (V2SFmode); mips_expand_vec_reduc (temp, operands[1], gen_smaxv2sf3); rtx lane = BYTES_BIG_ENDIAN ? const1_rtx : const0_rtx; emit_insn (gen_vec_extractv2sfsf (operands[0], temp, lane)); DONE; })