blob: 7a44ed2c41d859d64192431e6929d5be83001682 [file] [log] [blame]
/* Compiler implementation of the D programming language
* Copyright (C) 1999-2021 by The D Language Foundation, All Rights Reserved
* written by Walter Bright
* http://www.digitalmars.com
* Distributed under the Boost Software License, Version 1.0.
* http://www.boost.org/LICENSE_1_0.txt
*/
#include "root/dsystem.h"
#include "root/aav.h"
#include "dsymbol.h"
#include "aggregate.h"
#include "aliasthis.h"
#include "attrib.h"
#include "cond.h"
#include "declaration.h"
#include "enum.h"
#include "errors.h"
#include "hdrgen.h"
#include "id.h"
#include "import.h"
#include "init.h"
#include "mars.h"
#include "module.h"
#include "nspace.h"
#include "objc.h"
#include "parse.h"
#include "scope.h"
#include "statement.h"
#include "staticassert.h"
#include "target.h"
#include "template.h"
#include "utf.h"
#include "version.h"
#include "visitor.h"
bool allowsContractWithoutBody(FuncDeclaration *funcdecl);
bool checkFrameAccess(Loc loc, Scope *sc, AggregateDeclaration *ad, size_t istart = 0);
VarDeclaration *copyToTemp(StorageClass stc, const char *name, Expression *e);
Initializer *inferType(Initializer *init, Scope *sc);
void MODtoBuffer(OutBuffer *buf, MOD mod);
bool reliesOnTident(Type *t, TemplateParameters *tparams = NULL, size_t iStart = 0);
bool expressionsToString(OutBuffer &buf, Scope *sc, Expressions *exps);
bool symbolIsVisible(Scope *sc, Dsymbol *s);
Objc *objc();
static unsigned setMangleOverride(Dsymbol *s, char *sym)
{
AttribDeclaration *ad = s->isAttribDeclaration();
if (ad)
{
Dsymbols *decls = ad->include(NULL);
unsigned nestedCount = 0;
if (decls && decls->length)
for (size_t i = 0; i < decls->length; ++i)
nestedCount += setMangleOverride((*decls)[i], sym);
return nestedCount;
}
else if (s->isFuncDeclaration() || s->isVarDeclaration())
{
s->isDeclaration()->mangleOverride = sym;
return 1;
}
else
return 0;
}
/**********************************
* Decide if attributes for this function can be inferred from examining
* the function body.
* Returns:
* true if can
*/
static bool canInferAttributes(FuncDeclaration *fd, Scope *sc)
{
if (!fd->fbody)
return false;
if (fd->isVirtualMethod())
return false; // since they may be overridden
if (sc->func &&
/********** this is for backwards compatibility for the moment ********/
(!fd->isMember() || (sc->func->isSafeBypassingInference() && !fd->isInstantiated())))
return true;
if (fd->isFuncLiteralDeclaration() || // externs are not possible with literals
(fd->storage_class & STCinference) || // do attribute inference
(fd->inferRetType && !fd->isCtorDeclaration()))
return true;
if (fd->isInstantiated())
{
TemplateInstance *ti = fd->parent->isTemplateInstance();
if (ti == NULL || ti->isTemplateMixin() || ti->tempdecl->ident == fd->ident)
return true;
}
return false;
}
/*****************************************
* Initialize for inferring the attributes of this function.
*/
static void initInferAttributes(FuncDeclaration *fd)
{
//printf("initInferAttributes() for %s\n", toPrettyChars());
TypeFunction *tf = fd->type->toTypeFunction();
if (tf->purity == PUREimpure) // purity not specified
fd->flags |= FUNCFLAGpurityInprocess;
if (tf->trust == TRUSTdefault)
fd->flags |= FUNCFLAGsafetyInprocess;
if (!tf->isnothrow)
fd->flags |= FUNCFLAGnothrowInprocess;
if (!tf->isnogc)
fd->flags |= FUNCFLAGnogcInprocess;
if (!fd->isVirtual() || fd->introducing)
fd->flags |= FUNCFLAGreturnInprocess;
// Initialize for inferring STCscope
if (global.params.vsafe)
fd->flags |= FUNCFLAGinferScope;
}
static void badObjectDotD(ClassDeclaration *cd)
{
cd->error("missing or corrupt object.d");
fatal();
}
/* Bugzilla 12078, 12143 and 15733:
* While resolving base classes and interfaces, a base may refer
* the member of this derived class. In that time, if all bases of
* this class can be determined, we can go forward the semantc process
* beyond the Lancestorsdone. To do the recursive semantic analysis,
* temporarily set and unset `_scope` around exp().
*/
static Type *resolveBase(ClassDeclaration *cd, Scope *sc, Scope *&scx, Type *type)
{
if (!scx)
{
scx = sc->copy();
scx->setNoFree();
}
cd->_scope = scx;
Type *t = typeSemantic(type, cd->loc, sc);
cd->_scope = NULL;
return t;
}
static void resolveBase(ClassDeclaration *cd, Scope *sc, Scope *&scx, ClassDeclaration *sym)
{
if (!scx)
{
scx = sc->copy();
scx->setNoFree();
}
cd->_scope = scx;
dsymbolSemantic(sym, NULL);
cd->_scope = NULL;
}
class DsymbolSemanticVisitor : public Visitor
{
public:
Scope *sc;
DsymbolSemanticVisitor(Scope *sc)
{
this->sc = sc;
}
void visit(Dsymbol *dsym)
{
dsym->error("%p has no semantic routine", dsym);
}
void visit(ScopeDsymbol *) { }
void visit(Declaration *) { }
void visit(AliasThis *dsym)
{
if (dsym->semanticRun != PASSinit)
return;
if (dsym->_scope)
{
sc = dsym->_scope;
dsym->_scope = NULL;
}
if (!sc)
return;
dsym->semanticRun = PASSsemantic;
Dsymbol *p = sc->parent->pastMixin();
AggregateDeclaration *ad = p->isAggregateDeclaration();
if (!ad)
{
error(dsym->loc, "alias this can only be a member of aggregate, not %s %s",
p->kind(), p->toChars());
return;
}
assert(ad->members);
Dsymbol *s = ad->search(dsym->loc, dsym->ident);
if (!s)
{
s = sc->search(dsym->loc, dsym->ident, NULL);
if (s)
error(dsym->loc, "%s is not a member of %s", s->toChars(), ad->toChars());
else
error(dsym->loc, "undefined identifier %s", dsym->ident->toChars());
return;
}
else if (ad->aliasthis && s != ad->aliasthis)
{
error(dsym->loc, "there can be only one alias this");
return;
}
if (ad->type->ty == Tstruct && ((TypeStruct *)ad->type)->sym != ad)
{
AggregateDeclaration *ad2 = ((TypeStruct *)ad->type)->sym;
assert(ad2->type == Type::terror);
ad->aliasthis = ad2->aliasthis;
return;
}
/* disable the alias this conversion so the implicit conversion check
* doesn't use it.
*/
ad->aliasthis = NULL;
Dsymbol *sx = s;
if (sx->isAliasDeclaration())
sx = sx->toAlias();
Declaration *d = sx->isDeclaration();
if (d && !d->isTupleDeclaration())
{
Type *t = d->type;
assert(t);
if (ad->type->implicitConvTo(t) > MATCHnomatch)
{
error(dsym->loc, "alias this is not reachable as %s already converts to %s", ad->toChars(), t->toChars());
}
}
ad->aliasthis = s;
dsym->semanticRun = PASSsemanticdone;
}
void visit(AliasDeclaration *dsym)
{
if (dsym->semanticRun >= PASSsemanticdone)
return;
assert(dsym->semanticRun <= PASSsemantic);
dsym->storage_class |= sc->stc & STCdeprecated;
dsym->protection = sc->protection;
dsym->userAttribDecl = sc->userAttribDecl;
if (!sc->func && dsym->inNonRoot())
return;
aliasSemantic(dsym, sc);
}
void visit(VarDeclaration *dsym)
{
//if (dsym->semanticRun > PASSinit)
// return;
//dsym->semanticRun = PASSsemantic;
if (dsym->semanticRun >= PASSsemanticdone)
return;
Scope *scx = NULL;
if (dsym->_scope)
{
sc = dsym->_scope;
scx = sc;
dsym->_scope = NULL;
}
if (!sc)
return;
dsym->semanticRun = PASSsemantic;
/* Pick up storage classes from context, but except synchronized,
* override, abstract, and final.
*/
dsym->storage_class |= (sc->stc & ~(STCsynchronized | STCoverride | STCabstract | STCfinal));
if (dsym->storage_class & STCextern && dsym->_init)
dsym->error("extern symbols cannot have initializers");
dsym->userAttribDecl = sc->userAttribDecl;
AggregateDeclaration *ad = dsym->isThis();
if (ad)
dsym->storage_class |= ad->storage_class & STC_TYPECTOR;
/* If auto type inference, do the inference
*/
int inferred = 0;
if (!dsym->type)
{
dsym->inuse++;
// Infering the type requires running semantic,
// so mark the scope as ctfe if required
bool needctfe = (dsym->storage_class & (STCmanifest | STCstatic)) != 0;
if (needctfe) sc = sc->startCTFE();
//printf("inferring type for %s with init %s\n", dsym->toChars(), dsym->_init->toChars());
dsym->_init = inferType(dsym->_init, sc);
dsym->type = initializerToExpression(dsym->_init)->type;
if (needctfe) sc = sc->endCTFE();
dsym->inuse--;
inferred = 1;
/* This is a kludge to support the existing syntax for RAII
* declarations.
*/
dsym->storage_class &= ~STCauto;
dsym->originalType = dsym->type->syntaxCopy();
}
else
{
if (!dsym->originalType)
dsym->originalType = dsym->type->syntaxCopy();
/* Prefix function attributes of variable declaration can affect
* its type:
* pure nothrow void function() fp;
* static assert(is(typeof(fp) == void function() pure nothrow));
*/
Scope *sc2 = sc->push();
sc2->stc |= (dsym->storage_class & STC_FUNCATTR);
dsym->inuse++;
dsym->type = typeSemantic(dsym->type, dsym->loc, sc2);
dsym->inuse--;
sc2->pop();
}
//printf(" semantic type = %s\n", dsym->type ? dsym->type->toChars() : "null");
if (dsym->type->ty == Terror)
dsym->errors = true;
dsym->type->checkDeprecated(dsym->loc, sc);
dsym->linkage = sc->linkage;
dsym->parent = sc->parent;
//printf("this = %p, parent = %p, '%s'\n", dsym, dsym->parent, dsym->parent->toChars());
dsym->protection = sc->protection;
/* If scope's alignment is the default, use the type's alignment,
* otherwise the scope overrrides.
*/
dsym->alignment = sc->alignment();
if (dsym->alignment == STRUCTALIGN_DEFAULT)
dsym->alignment = dsym->type->alignment(); // use type's alignment
//printf("sc->stc = %x\n", sc->stc);
//printf("storage_class = x%x\n", dsym->storage_class);
if (global.params.vcomplex)
dsym->type->checkComplexTransition(dsym->loc);
// Calculate type size + safety checks
if (sc->func && !sc->intypeof)
{
if ((dsym->storage_class & STCgshared) && !dsym->isMember())
{
if (sc->func->setUnsafe())
dsym->error("__gshared not allowed in safe functions; use shared");
}
}
Dsymbol *parent = dsym->toParent();
Type *tb = dsym->type->toBasetype();
Type *tbn = tb->baseElemOf();
if (tb->ty == Tvoid && !(dsym->storage_class & STClazy))
{
if (inferred)
{
dsym->error("type %s is inferred from initializer %s, and variables cannot be of type void",
dsym->type->toChars(), dsym->_init->toChars());
}
else
dsym->error("variables cannot be of type void");
dsym->type = Type::terror;
tb = dsym->type;
}
if (tb->ty == Tfunction)
{
dsym->error("cannot be declared to be a function");
dsym->type = Type::terror;
tb = dsym->type;
}
if (tb->ty == Tstruct)
{
TypeStruct *ts = (TypeStruct *)tb;
if (!ts->sym->members)
{
dsym->error("no definition of struct `%s`", ts->toChars());
// Explain why the definition is required when it's part of another type
if (!dsym->type->isTypeStruct())
{
// Prefer Loc of the dependant type
Dsymbol *s = dsym->type->toDsymbol(sc);
Loc loc = s ? s->loc : dsym->loc;
errorSupplemental(loc, "required by type `%s`", dsym->type->toChars());
}
// Flag variable as error to avoid invalid error messages due to unknown size
dsym->type = Type::terror;
}
}
if ((dsym->storage_class & STCauto) && !inferred)
dsym->error("storage class `auto` has no effect if type is not inferred, did you mean `scope`?");
if (tb->ty == Ttuple)
{
/* Instead, declare variables for each of the tuple elements
* and add those.
*/
TypeTuple *tt = (TypeTuple *)tb;
size_t nelems = Parameter::dim(tt->arguments);
Expression *ie = (dsym->_init && !dsym->_init->isVoidInitializer()) ? initializerToExpression(dsym->_init) : NULL;
if (ie)
ie = expressionSemantic(ie, sc);
if (nelems > 0 && ie)
{
Expressions *iexps = new Expressions();
iexps->push(ie);
Expressions *exps = new Expressions();
for (size_t pos = 0; pos < iexps->length; pos++)
{
Lexpand1:
Expression *e = (*iexps)[pos];
Parameter *arg = Parameter::getNth(tt->arguments, pos);
arg->type = typeSemantic(arg->type, dsym->loc, sc);
//printf("[%d] iexps->length = %d, ", pos, iexps->length);
//printf("e = (%s %s, %s), ", Token::tochars[e->op], e->toChars(), e->type->toChars());
//printf("arg = (%s, %s)\n", arg->toChars(), arg->type->toChars());
if (e != ie)
{
if (iexps->length > nelems)
goto Lnomatch;
if (e->type->implicitConvTo(arg->type))
continue;
}
if (e->op == TOKtuple)
{
TupleExp *te = (TupleExp *)e;
if (iexps->length - 1 + te->exps->length > nelems)
goto Lnomatch;
iexps->remove(pos);
iexps->insert(pos, te->exps);
(*iexps)[pos] = Expression::combine(te->e0, (*iexps)[pos]);
goto Lexpand1;
}
else if (isAliasThisTuple(e))
{
VarDeclaration *v = copyToTemp(0, "__tup", e);
dsymbolSemantic(v, sc);
VarExp *ve = new VarExp(dsym->loc, v);
ve->type = e->type;
exps->setDim(1);
(*exps)[0] = ve;
expandAliasThisTuples(exps, 0);
for (size_t u = 0; u < exps->length ; u++)
{
Lexpand2:
Expression *ee = (*exps)[u];
arg = Parameter::getNth(tt->arguments, pos + u);
arg->type = typeSemantic(arg->type, dsym->loc, sc);
//printf("[%d+%d] exps->length = %d, ", pos, u, exps->length);
//printf("ee = (%s %s, %s), ", Token::tochars[ee->op], ee->toChars(), ee->type->toChars());
//printf("arg = (%s, %s)\n", arg->toChars(), arg->type->toChars());
size_t iexps_dim = iexps->length - 1 + exps->length;
if (iexps_dim > nelems)
goto Lnomatch;
if (ee->type->implicitConvTo(arg->type))
continue;
if (expandAliasThisTuples(exps, u) != -1)
goto Lexpand2;
}
if ((*exps)[0] != ve)
{
Expression *e0 = (*exps)[0];
(*exps)[0] = new CommaExp(dsym->loc, new DeclarationExp(dsym->loc, v), e0);
(*exps)[0]->type = e0->type;
iexps->remove(pos);
iexps->insert(pos, exps);
goto Lexpand1;
}
}
}
if (iexps->length < nelems)
goto Lnomatch;
ie = new TupleExp(dsym->_init->loc, iexps);
}
Lnomatch:
if (ie && ie->op == TOKtuple)
{
TupleExp *te = (TupleExp *)ie;
size_t tedim = te->exps->length;
if (tedim != nelems)
{
error(dsym->loc, "tuple of %d elements cannot be assigned to tuple of %d elements", (int)tedim, (int)nelems);
for (size_t u = tedim; u < nelems; u++) // fill dummy expression
te->exps->push(new ErrorExp());
}
}
Objects *exps = new Objects();
exps->setDim(nelems);
for (size_t i = 0; i < nelems; i++)
{
Parameter *arg = Parameter::getNth(tt->arguments, i);
OutBuffer buf;
buf.printf("__%s_field_%llu", dsym->ident->toChars(), (ulonglong)i);
const char *name = buf.extractChars();
Identifier *id = Identifier::idPool(name);
Initializer *ti;
if (ie)
{
Expression *einit = ie;
if (ie->op == TOKtuple)
{
TupleExp *te = (TupleExp *)ie;
einit = (*te->exps)[i];
if (i == 0)
einit = Expression::combine(te->e0, einit);
}
ti = new ExpInitializer(einit->loc, einit);
}
else
ti = dsym->_init ? dsym->_init->syntaxCopy() : NULL;
VarDeclaration *v = new VarDeclaration(dsym->loc, arg->type, id, ti);
v->storage_class |= STCtemp | STClocal | dsym->storage_class;
if (arg->storageClass & STCparameter)
v->storage_class |= arg->storageClass;
//printf("declaring field %s of type %s\n", v->toChars(), v->type->toChars());
dsymbolSemantic(v, sc);
if (sc->scopesym)
{
//printf("adding %s to %s\n", v->toChars(), sc->scopesym->toChars());
if (sc->scopesym->members)
sc->scopesym->members->push(v);
}
Expression *e = new DsymbolExp(dsym->loc, v);
(*exps)[i] = e;
}
TupleDeclaration *v2 = new TupleDeclaration(dsym->loc, dsym->ident, exps);
v2->parent = dsym->parent;
v2->isexp = true;
dsym->aliassym = v2;
dsym->semanticRun = PASSsemanticdone;
return;
}
/* Storage class can modify the type
*/
dsym->type = dsym->type->addStorageClass(dsym->storage_class);
/* Adjust storage class to reflect type
*/
if (dsym->type->isConst())
{
dsym->storage_class |= STCconst;
if (dsym->type->isShared())
dsym->storage_class |= STCshared;
}
else if (dsym->type->isImmutable())
dsym->storage_class |= STCimmutable;
else if (dsym->type->isShared())
dsym->storage_class |= STCshared;
else if (dsym->type->isWild())
dsym->storage_class |= STCwild;
if (StorageClass stc = dsym->storage_class & (STCsynchronized | STCoverride | STCabstract | STCfinal))
{
if (stc == STCfinal)
dsym->error("cannot be final, perhaps you meant const?");
else
{
OutBuffer buf;
stcToBuffer(&buf, stc);
dsym->error("cannot be %s", buf.peekChars());
}
dsym->storage_class &= ~stc; // strip off
}
if (dsym->storage_class & STCscope)
{
StorageClass stc = dsym->storage_class & (STCstatic | STCextern | STCmanifest | STCtls | STCgshared);
if (stc)
{
OutBuffer buf;
stcToBuffer(&buf, stc);
dsym->error("cannot be `scope` and `%s`", buf.peekChars());
}
else if (dsym->isMember())
{
dsym->error("field cannot be `scope`");
}
else if (!dsym->type->hasPointers())
{
dsym->storage_class &= ~STCscope; // silently ignore; may occur in generic code
}
}
if (dsym->storage_class & (STCstatic | STCextern | STCmanifest | STCtemplateparameter | STCtls | STCgshared | STCctfe))
{
}
else
{
AggregateDeclaration *aad = parent->isAggregateDeclaration();
if (aad)
{
if (global.params.vfield &&
dsym->storage_class & (STCconst | STCimmutable) && dsym->_init && !dsym->_init->isVoidInitializer())
{
const char *s = (dsym->storage_class & STCimmutable) ? "immutable" : "const";
message(dsym->loc, "`%s.%s` is `%s` field", ad->toPrettyChars(), dsym->toChars(), s);
}
dsym->storage_class |= STCfield;
if (tbn->ty == Tstruct && ((TypeStruct *)tbn)->sym->noDefaultCtor)
{
if (!dsym->isThisDeclaration() && !dsym->_init)
aad->noDefaultCtor = true;
}
}
InterfaceDeclaration *id = parent->isInterfaceDeclaration();
if (id)
{
dsym->error("field not allowed in interface");
}
else if (aad && aad->sizeok == SIZEOKdone)
{
dsym->error("cannot be further field because it will change the determined %s size", aad->toChars());
}
/* Templates cannot add fields to aggregates
*/
TemplateInstance *ti = parent->isTemplateInstance();
if (ti)
{
// Take care of nested templates
while (1)
{
TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance();
if (!ti2)
break;
ti = ti2;
}
// If it's a member template
AggregateDeclaration *ad2 = ti->tempdecl->isMember();
if (ad2 && dsym->storage_class != STCundefined)
{
dsym->error("cannot use template to add field to aggregate `%s`", ad2->toChars());
}
}
}
if ((dsym->storage_class & (STCref | STCparameter | STCforeach | STCtemp | STCresult)) == STCref && dsym->ident != Id::This)
{
dsym->error("only parameters or foreach declarations can be ref");
}
if (dsym->type->hasWild())
{
if (dsym->storage_class & (STCstatic | STCextern | STCtls | STCgshared | STCmanifest | STCfield) ||
dsym->isDataseg()
)
{
dsym->error("only parameters or stack based variables can be inout");
}
FuncDeclaration *func = sc->func;
if (func)
{
if (func->fes)
func = func->fes->func;
bool isWild = false;
for (FuncDeclaration *fd = func; fd; fd = fd->toParent2()->isFuncDeclaration())
{
if (((TypeFunction *)fd->type)->iswild)
{
isWild = true;
break;
}
}
if (!isWild)
{
dsym->error("inout variables can only be declared inside inout functions");
}
}
}
if (!(dsym->storage_class & (STCctfe | STCref | STCresult)) && tbn->ty == Tstruct &&
((TypeStruct *)tbn)->sym->noDefaultCtor)
{
if (!dsym->_init)
{
if (dsym->isField())
{
/* For fields, we'll check the constructor later to make sure it is initialized
*/
dsym->storage_class |= STCnodefaultctor;
}
else if (dsym->storage_class & STCparameter)
;
else
dsym->error("default construction is disabled for type %s", dsym->type->toChars());
}
}
FuncDeclaration *fd = parent->isFuncDeclaration();
if (dsym->type->isscope() && !(dsym->storage_class & STCnodtor))
{
if (dsym->storage_class & (STCfield | STCout | STCref | STCstatic | STCmanifest | STCtls | STCgshared) || !fd)
{
dsym->error("globals, statics, fields, manifest constants, ref and out parameters cannot be scope");
}
if (!(dsym->storage_class & STCscope))
{
if (!(dsym->storage_class & STCparameter) && dsym->ident != Id::withSym)
dsym->error("reference to scope class must be scope");
}
}
// Calculate type size + safety checks
if (sc->func && !sc->intypeof)
{
if (dsym->_init && dsym->_init->isVoidInitializer() && dsym->type->hasPointers()) // get type size
{
if (sc->func->setUnsafe())
dsym->error("void initializers for pointers not allowed in safe functions");
}
else if (!dsym->_init &&
!(dsym->storage_class & (STCstatic | STCextern | STCtls | STCgshared | STCmanifest | STCfield | STCparameter)) &&
dsym->type->hasVoidInitPointers())
{
if (sc->func->setUnsafe())
dsym->error("void initializers for pointers not allowed in safe functions");
}
}
if (!dsym->_init && !fd)
{
// If not mutable, initializable by constructor only
dsym->storage_class |= STCctorinit;
}
if (dsym->_init)
dsym->storage_class |= STCinit; // remember we had an explicit initializer
else if (dsym->storage_class & STCmanifest)
dsym->error("manifest constants must have initializers");
bool isBlit = false;
d_uns64 sz = 0;
if (!dsym->_init && !sc->inunion && !(dsym->storage_class & (STCstatic | STCgshared | STCextern)) && fd &&
(!(dsym->storage_class & (STCfield | STCin | STCforeach | STCparameter | STCresult))
|| (dsym->storage_class & STCout)) &&
(sz = dsym->type->size()) != 0)
{
// Provide a default initializer
//printf("Providing default initializer for '%s'\n", dsym->toChars());
if (sz == SIZE_INVALID && dsym->type->ty != Terror)
dsym->error("size of type %s is invalid", dsym->type->toChars());
Type *tv = dsym->type;
while (tv->ty == Tsarray) // Don't skip Tenum
tv = tv->nextOf();
if (tv->needsNested())
{
/* Nested struct requires valid enclosing frame pointer.
* In StructLiteralExp::toElem(), it's calculated.
*/
assert(tv->toBasetype()->ty == Tstruct);
checkFrameAccess(dsym->loc, sc, ((TypeStruct *)tbn)->sym);
Expression *e = tv->defaultInitLiteral(dsym->loc);
e = new BlitExp(dsym->loc, new VarExp(dsym->loc, dsym), e);
e = expressionSemantic(e, sc);
dsym->_init = new ExpInitializer(dsym->loc, e);
goto Ldtor;
}
if (tv->ty == Tstruct && ((TypeStruct *)tv)->sym->zeroInit == 1)
{
/* If a struct is all zeros, as a special case
* set it's initializer to the integer 0.
* In AssignExp::toElem(), we check for this and issue
* a memset() to initialize the struct.
* Must do same check in interpreter.
*/
Expression *e = new IntegerExp(dsym->loc, 0, Type::tint32);
e = new BlitExp(dsym->loc, new VarExp(dsym->loc, dsym), e);
e->type = dsym->type; // don't type check this, it would fail
dsym->_init = new ExpInitializer(dsym->loc, e);
goto Ldtor;
}
if (dsym->type->baseElemOf()->ty == Tvoid)
{
dsym->error("%s does not have a default initializer", dsym->type->toChars());
}
else if (Expression *e = dsym->type->defaultInit(dsym->loc))
{
dsym->_init = new ExpInitializer(dsym->loc, e);
}
// Default initializer is always a blit
isBlit = true;
}
if (dsym->_init)
{
sc = sc->push();
sc->stc &= ~(STC_TYPECTOR | STCpure | STCnothrow | STCnogc | STCref | STCdisable);
ExpInitializer *ei = dsym->_init->isExpInitializer();
if (ei) // Bugzilla 13424: Preset the required type to fail in FuncLiteralDeclaration::semantic3
ei->exp = inferType(ei->exp, dsym->type);
// If inside function, there is no semantic3() call
if (sc->func || sc->intypeof == 1)
{
// If local variable, use AssignExp to handle all the various
// possibilities.
if (fd &&
!(dsym->storage_class & (STCmanifest | STCstatic | STCtls | STCgshared | STCextern)) &&
!dsym->_init->isVoidInitializer())
{
//printf("fd = '%s', var = '%s'\n", fd->toChars(), dsym->toChars());
if (!ei)
{
ArrayInitializer *ai = dsym->_init->isArrayInitializer();
Expression *e;
if (ai && tb->ty == Taarray)
e = ai->toAssocArrayLiteral();
else
e = initializerToExpression(dsym->_init);
if (!e)
{
// Run semantic, but don't need to interpret
dsym->_init = initializerSemantic(dsym->_init, sc, dsym->type, INITnointerpret);
e = initializerToExpression(dsym->_init);
if (!e)
{
dsym->error("is not a static and cannot have static initializer");
e = new ErrorExp();
}
}
ei = new ExpInitializer(dsym->_init->loc, e);
dsym->_init = ei;
}
Expression *exp = ei->exp;
Expression *e1 = new VarExp(dsym->loc, dsym);
if (isBlit)
exp = new BlitExp(dsym->loc, e1, exp);
else
exp = new ConstructExp(dsym->loc, e1, exp);
dsym->canassign++;
exp = expressionSemantic(exp, sc);
dsym->canassign--;
exp = exp->optimize(WANTvalue);
if (exp->op == TOKerror)
{
dsym->_init = new ErrorInitializer();
ei = NULL;
}
else
ei->exp = exp;
if (ei && dsym->isScope())
{
Expression *ex = ei->exp;
while (ex->op == TOKcomma)
ex = ((CommaExp *)ex)->e2;
if (ex->op == TOKblit || ex->op == TOKconstruct)
ex = ((AssignExp *)ex)->e2;
if (ex->op == TOKnew)
{
// See if initializer is a NewExp that can be allocated on the stack
NewExp *ne = (NewExp *)ex;
if (dsym->type->toBasetype()->ty == Tclass)
{
if (ne->newargs && ne->newargs->length > 1)
{
dsym->mynew = true;
}
else
{
ne->onstack = true;
dsym->onstack = true;
}
}
}
else if (ex->op == TOKfunction)
{
// or a delegate that doesn't escape a reference to the function
FuncDeclaration *f = ((FuncExp *)ex)->fd;
f->tookAddressOf--;
}
}
}
else
{
// Bugzilla 14166: Don't run CTFE for the temporary variables inside typeof
dsym->_init = initializerSemantic(dsym->_init, sc, dsym->type, sc->intypeof == 1 ? INITnointerpret : INITinterpret);
}
}
else if (parent->isAggregateDeclaration())
{
dsym->_scope = scx ? scx : sc->copy();
dsym->_scope->setNoFree();
}
else if (dsym->storage_class & (STCconst | STCimmutable | STCmanifest) ||
dsym->type->isConst() || dsym->type->isImmutable())
{
/* Because we may need the results of a const declaration in a
* subsequent type, such as an array dimension, before semantic2()
* gets ordinarily run, try to run semantic2() now.
* Ignore failure.
*/
if (!inferred)
{
unsigned errors = global.errors;
dsym->inuse++;
if (ei)
{
Expression *exp = ei->exp->syntaxCopy();
bool needctfe = dsym->isDataseg() || (dsym->storage_class & STCmanifest);
if (needctfe) sc = sc->startCTFE();
exp = expressionSemantic(exp, sc);
exp = resolveProperties(sc, exp);
if (needctfe) sc = sc->endCTFE();
Type *tb2 = dsym->type->toBasetype();
Type *ti = exp->type->toBasetype();
/* The problem is the following code:
* struct CopyTest {
* double x;
* this(double a) { x = a * 10.0;}
* this(this) { x += 2.0; }
* }
* const CopyTest z = CopyTest(5.3); // ok
* const CopyTest w = z; // not ok, postblit not run
* static assert(w.x == 55.0);
* because the postblit doesn't get run on the initialization of w.
*/
if (ti->ty == Tstruct)
{
StructDeclaration *sd = ((TypeStruct *)ti)->sym;
/* Look to see if initializer involves a copy constructor
* (which implies a postblit)
*/
// there is a copy constructor
// and exp is the same struct
if (sd->postblit &&
tb2->toDsymbol(NULL) == sd)
{
// The only allowable initializer is a (non-copy) constructor
if (exp->isLvalue())
dsym->error("of type struct %s uses this(this), which is not allowed in static initialization", tb2->toChars());
}
}
ei->exp = exp;
}
dsym->_init = initializerSemantic(dsym->_init, sc, dsym->type, INITinterpret);
dsym->inuse--;
if (global.errors > errors)
{
dsym->_init = new ErrorInitializer();
dsym->type = Type::terror;
}
}
else
{
dsym->_scope = scx ? scx : sc->copy();
dsym->_scope->setNoFree();
}
}
sc = sc->pop();
}
Ldtor:
/* Build code to execute destruction, if necessary
*/
dsym->edtor = dsym->callScopeDtor(sc);
if (dsym->edtor)
{
if (sc->func && dsym->storage_class & (STCstatic | STCgshared))
dsym->edtor = expressionSemantic(dsym->edtor, sc->_module->_scope);
else
dsym->edtor = expressionSemantic(dsym->edtor, sc);
#if 0 // currently disabled because of std.stdio.stdin, stdout and stderr
if (dsym->isDataseg() && !(dsym->storage_class & STCextern))
dsym->error("static storage variables cannot have destructors");
#endif
}
dsym->semanticRun = PASSsemanticdone;
if (dsym->type->toBasetype()->ty == Terror)
dsym->errors = true;
if (sc->scopesym && !sc->scopesym->isAggregateDeclaration())
{
for (ScopeDsymbol *sym = sc->scopesym; sym && dsym->endlinnum == 0;
sym = sym->parent ? sym->parent->isScopeDsymbol() : NULL)
dsym->endlinnum = sym->endlinnum;
}
}
void visit(TypeInfoDeclaration *dsym)
{
assert(dsym->linkage == LINKc);
}
void visit(Import *imp)
{
//printf("Import::semantic('%s') %s\n", toPrettyChars(), imp->id->toChars());
if (imp->semanticRun > PASSinit)
return;
if (imp->_scope)
{
sc = imp->_scope;
imp->_scope = NULL;
}
if (!sc)
return;
imp->semanticRun = PASSsemantic;
// Load if not already done so
if (!imp->mod)
{
imp->load(sc);
if (imp->mod)
imp->mod->importAll(NULL);
}
if (imp->mod)
{
// Modules need a list of each imported module
//printf("%s imports %s\n", sc->_module->toChars(), imp->mod->toChars());
sc->_module->aimports.push(imp->mod);
if (sc->explicitProtection)
imp->protection = sc->protection;
if (!imp->aliasId && !imp->names.length) // neither a selective nor a renamed import
{
ScopeDsymbol *scopesym = NULL;
if (sc->explicitProtection)
imp->protection = sc->protection.kind;
for (Scope *scd = sc; scd; scd = scd->enclosing)
{
if (!scd->scopesym)
continue;
scopesym = scd->scopesym;
break;
}
if (!imp->isstatic)
{
scopesym->importScope(imp->mod, imp->protection);
}
imp->addPackageAccess(scopesym);
}
dsymbolSemantic(imp->mod, NULL);
if (imp->mod->needmoduleinfo)
{
//printf("module4 %s because of %s\n", sc->_module->toChars(), imp->mod->toChars());
sc->_module->needmoduleinfo = 1;
}
sc = sc->push(imp->mod);
sc->protection = imp->protection;
for (size_t i = 0; i < imp->aliasdecls.length; i++)
{
AliasDeclaration *ad = imp->aliasdecls[i];
//printf("\tImport %s alias %s = %s, scope = %p\n", toPrettyChars(), imp->aliases[i]->toChars(), imp->names[i]->toChars(), ad->_scope);
Dsymbol *sym = imp->mod->search(imp->loc, imp->names[i], IgnorePrivateImports);
if (sym)
{
if (!symbolIsVisible(sc, sym))
imp->mod->error(imp->loc, "member `%s` is not visible from module `%s`",
imp->names[i]->toChars(), sc->_module->toChars());
dsymbolSemantic(ad, sc);
// If the import declaration is in non-root module,
// analysis of the aliased symbol is deferred.
// Therefore, don't see the ad->aliassym or ad->type here.
}
else
{
Dsymbol *s = imp->mod->search_correct(imp->names[i]);
if (s)
imp->mod->error(imp->loc, "import `%s` not found, did you mean %s `%s`?", imp->names[i]->toChars(), s->kind(), s->toPrettyChars());
else
imp->mod->error(imp->loc, "import `%s` not found", imp->names[i]->toChars());
ad->type = Type::terror;
}
}
sc = sc->pop();
}
imp->semanticRun = PASSsemanticdone;
// object self-imports itself, so skip that (Bugzilla 7547)
// don't list pseudo modules __entrypoint.d, __main.d (Bugzilla 11117, 11164)
if (global.params.moduleDeps != NULL &&
!(imp->id == Id::object && sc->_module->ident == Id::object) &&
sc->_module->ident != Id::entrypoint &&
strcmp(sc->_module->ident->toChars(), "__main") != 0)
{
/* The grammar of the file is:
* ImportDeclaration
* ::= BasicImportDeclaration [ " : " ImportBindList ] [ " -> "
* ModuleAliasIdentifier ] "\n"
*
* BasicImportDeclaration
* ::= ModuleFullyQualifiedName " (" FilePath ") : " Protection|"string"
* " [ " static" ] : " ModuleFullyQualifiedName " (" FilePath ")"
*
* FilePath
* - any string with '(', ')' and '\' escaped with the '\' character
*/
OutBuffer *ob = global.params.moduleDeps;
Module* imod = sc->instantiatingModule();
if (!global.params.moduleDepsFile.length)
ob->writestring("depsImport ");
ob->writestring(imod->toPrettyChars());
ob->writestring(" (");
escapePath(ob, imod->srcfile->toChars());
ob->writestring(") : ");
// use protection instead of sc->protection because it couldn't be
// resolved yet, see the comment above
protectionToBuffer(ob, imp->protection);
ob->writeByte(' ');
if (imp->isstatic)
{
stcToBuffer(ob, STCstatic);
ob->writeByte(' ');
}
ob->writestring(": ");
if (imp->packages)
{
for (size_t i = 0; i < imp->packages->length; i++)
{
Identifier *pid = (*imp->packages)[i];
ob->printf("%s.", pid->toChars());
}
}
ob->writestring(imp->id->toChars());
ob->writestring(" (");
if (imp->mod)
escapePath(ob, imp->mod->srcfile->toChars());
else
ob->writestring("???");
ob->writeByte(')');
for (size_t i = 0; i < imp->names.length; i++)
{
if (i == 0)
ob->writeByte(':');
else
ob->writeByte(',');
Identifier *name = imp->names[i];
Identifier *alias = imp->aliases[i];
if (!alias)
{
ob->printf("%s", name->toChars());
alias = name;
}
else
ob->printf("%s=%s", alias->toChars(), name->toChars());
}
if (imp->aliasId)
ob->printf(" -> %s", imp->aliasId->toChars());
ob->writenl();
}
//printf("-Import::semantic('%s'), pkg = %p\n", imp->toChars(), imp->pkg);
}
void attribSemantic(AttribDeclaration *ad)
{
if (ad->semanticRun != PASSinit)
return;
ad->semanticRun = PASSsemantic;
Dsymbols *d = ad->include(sc);
//printf("\tAttribDeclaration::semantic '%s', d = %p\n",toChars(), d);
if (d)
{
Scope *sc2 = ad->newScope(sc);
bool errors = false;
for (size_t i = 0; i < d->length; i++)
{
Dsymbol *s = (*d)[i];
dsymbolSemantic(s, sc2);
errors |= s->errors;
}
ad->errors |= errors;
if (sc2 != sc)
sc2->pop();
}
ad->semanticRun = PASSsemanticdone;
}
void visit(AttribDeclaration *atd)
{
attribSemantic(atd);
}
void visit(AnonDeclaration *scd)
{
//printf("\tAnonDeclaration::semantic %s %p\n", isunion ? "union" : "struct", scd);
assert(sc->parent);
Dsymbol *p = sc->parent->pastMixin();
AggregateDeclaration *ad = p->isAggregateDeclaration();
if (!ad)
{
error(scd->loc, "%s can only be a part of an aggregate, not %s %s",
scd->kind(), p->kind(), p->toChars());
scd->errors = true;
return;
}
if (scd->decl)
{
sc = sc->push();
sc->stc &= ~(STCauto | STCscope | STCstatic | STCtls | STCgshared);
sc->inunion = scd->isunion;
sc->flags = 0;
for (size_t i = 0; i < scd->decl->length; i++)
{
Dsymbol *s = (*scd->decl)[i];
dsymbolSemantic(s, sc);
}
sc = sc->pop();
}
}
void visit(PragmaDeclaration *pd)
{
// Should be merged with PragmaStatement
//printf("\tPragmaDeclaration::semantic '%s'\n",toChars());
if (pd->ident == Id::msg)
{
if (pd->args)
{
for (size_t i = 0; i < pd->args->length; i++)
{
Expression *e = (*pd->args)[i];
sc = sc->startCTFE();
e = expressionSemantic(e, sc);
e = resolveProperties(sc, e);
sc = sc->endCTFE();
e = ctfeInterpretForPragmaMsg(e);
if (e->op == TOKerror)
{
errorSupplemental(pd->loc, "while evaluating pragma(msg, %s)", (*pd->args)[i]->toChars());
return;
}
StringExp *se = e->toStringExp();
if (se)
{
se = se->toUTF8(sc);
fprintf(stderr, "%.*s", (int)se->len, (char *)se->string);
}
else
fprintf(stderr, "%s", e->toChars());
}
fprintf(stderr, "\n");
}
goto Lnodecl;
}
else if (pd->ident == Id::lib)
{
if (!pd->args || pd->args->length != 1)
pd->error("string expected for library name");
else
{
StringExp *se = semanticString(sc, (*pd->args)[0], "library name");
if (!se)
goto Lnodecl;
(*pd->args)[0] = se;
char *name = (char *)mem.xmalloc(se->len + 1);
memcpy(name, se->string, se->len);
name[se->len] = 0;
if (global.params.verbose)
message("library %s", name);
if (global.params.moduleDeps && !global.params.moduleDepsFile.length)
{
OutBuffer *ob = global.params.moduleDeps;
Module *imod = sc->instantiatingModule();
ob->writestring("depsLib ");
ob->writestring(imod->toPrettyChars());
ob->writestring(" (");
escapePath(ob, imod->srcfile->toChars());
ob->writestring(") : ");
ob->writestring((char *) name);
ob->writenl();
}
mem.xfree(name);
}
goto Lnodecl;
}
else if (pd->ident == Id::startaddress)
{
if (!pd->args || pd->args->length != 1)
pd->error("function name expected for start address");
else
{
/* Bugzilla 11980:
* resolveProperties and ctfeInterpret call are not necessary.
*/
Expression *e = (*pd->args)[0];
sc = sc->startCTFE();
e = expressionSemantic(e, sc);
sc = sc->endCTFE();
(*pd->args)[0] = e;
Dsymbol *sa = getDsymbol(e);
if (!sa || !sa->isFuncDeclaration())
pd->error("function name expected for start address, not `%s`", e->toChars());
}
goto Lnodecl;
}
else if (pd->ident == Id::Pinline)
{
goto Ldecl;
}
else if (pd->ident == Id::mangle)
{
if (!pd->args)
pd->args = new Expressions();
if (pd->args->length != 1)
{
pd->error("string expected for mangled name");
pd->args->setDim(1);
(*pd->args)[0] = new ErrorExp(); // error recovery
goto Ldecl;
}
StringExp *se = semanticString(sc, (*pd->args)[0], "mangled name");
if (!se)
goto Ldecl;
(*pd->args)[0] = se; // Will be used for later
if (!se->len)
{
pd->error("zero-length string not allowed for mangled name");
goto Ldecl;
}
if (se->sz != 1)
{
pd->error("mangled name characters can only be of type char");
goto Ldecl;
}
/* Note: D language specification should not have any assumption about backend
* implementation. Ideally pragma(mangle) can accept a string of any content.
*
* Therefore, this validation is compiler implementation specific.
*/
for (size_t i = 0; i < se->len; )
{
utf8_t *p = (utf8_t *)se->string;
dchar_t c = p[i];
if (c < 0x80)
{
if ((c >= 'A' && c <= 'Z') ||
(c >= 'a' && c <= 'z') ||
(c >= '0' && c <= '9') ||
(c != 0 && strchr("$%().:?@[]_", c)))
{
++i;
continue;
}
else
{
pd->error("char 0x%02x not allowed in mangled name", c);
break;
}
}
if (const char* msg = utf_decodeChar((utf8_t *)se->string, se->len, &i, &c))
{
pd->error("%s", msg);
break;
}
if (!isUniAlpha(c))
{
pd->error("char 0x%04x not allowed in mangled name", c);
break;
}
}
}
else if (pd->ident == Id::printf || pd->ident == Id::scanf)
{
if (pd->args && pd->args->length != 0)
pd->error("takes no argument");
goto Ldecl;
}
else if (global.params.ignoreUnsupportedPragmas)
{
if (global.params.verbose)
{
/* Print unrecognized pragmas
*/
OutBuffer buf;
buf.writestring(pd->ident->toChars());
if (pd->args)
{
for (size_t i = 0; i < pd->args->length; i++)
{
Expression *e = (*pd->args)[i];
sc = sc->startCTFE();
e = expressionSemantic(e, sc);
e = resolveProperties(sc, e);
sc = sc->endCTFE();
e = e->ctfeInterpret();
if (i == 0)
buf.writestring(" (");
else
buf.writeByte(',');
buf.writestring(e->toChars());
}
if (pd->args->length)
buf.writeByte(')');
}
message("pragma %s", buf.peekChars());
}
goto Lnodecl;
}
else
error(pd->loc, "unrecognized pragma(%s)", pd->ident->toChars());
Ldecl:
if (pd->decl)
{
Scope *sc2 = pd->newScope(sc);
for (size_t i = 0; i < pd->decl->length; i++)
{
Dsymbol *s = (*pd->decl)[i];
dsymbolSemantic(s, sc2);
if (pd->ident == Id::mangle)
{
assert(pd->args && pd->args->length == 1);
if (StringExp *se = (*pd->args)[0]->toStringExp())
{
char *name = (char *)mem.xmalloc(se->len + 1);
memcpy(name, se->string, se->len);
name[se->len] = 0;
unsigned cnt = setMangleOverride(s, name);
if (cnt > 1)
pd->error("can only apply to a single declaration");
}
}
}
if (sc2 != sc)
sc2->pop();
}
return;
Lnodecl:
if (pd->decl)
{
pd->error("pragma is missing closing `;`");
goto Ldecl; // do them anyway, to avoid segfaults.
}
}
void visit(StaticIfDeclaration *sid)
{
attribSemantic(sid);
}
void visit(StaticForeachDeclaration *sfd)
{
attribSemantic(sfd);
}
Dsymbols *compileIt(CompileDeclaration *cd)
{
//printf("CompileDeclaration::compileIt(loc = %d) %s\n", cd->loc.linnum, cd->exp->toChars());
OutBuffer buf;
if (expressionsToString(buf, sc, cd->exps))
return NULL;
unsigned errors = global.errors;
const size_t len = buf.length();
const char *str = buf.extractChars();
Parser p(cd->loc, sc->_module, (const utf8_t *)str, len, false);
p.nextToken();
Dsymbols *d = p.parseDeclDefs(0);
if (global.errors != errors)
return NULL;
if (p.token.value != TOKeof)
{
cd->error("incomplete mixin declaration (%s)", str);
return NULL;
}
return d;
}
void visit(CompileDeclaration *cd)
{
//printf("CompileDeclaration::semantic()\n");
if (!cd->compiled)
{
cd->decl = compileIt(cd);
cd->AttribDeclaration::addMember(sc, cd->scopesym);
cd->compiled = true;
if (cd->_scope && cd->decl)
{
for (size_t i = 0; i < cd->decl->length; i++)
{
Dsymbol *s = (*cd->decl)[i];
s->setScope(cd->_scope);
}
}
}
attribSemantic(cd);
}
void visit(UserAttributeDeclaration *uad)
{
//printf("UserAttributeDeclaration::semantic() %p\n", this);
if (uad->decl && !uad->_scope)
uad->Dsymbol::setScope(sc); // for function local symbols
attribSemantic(uad);
}
void visit(StaticAssert *sa)
{
if (sa->semanticRun < PASSsemanticdone)
sa->semanticRun = PASSsemanticdone;
}
void visit(DebugSymbol *ds)
{
//printf("DebugSymbol::semantic() %s\n", ds->toChars());
if (ds->semanticRun < PASSsemanticdone)
ds->semanticRun = PASSsemanticdone;
}
void visit(VersionSymbol *vs)
{
if (vs->semanticRun < PASSsemanticdone)
vs->semanticRun = PASSsemanticdone;
}
void visit(Package *pkg)
{
if (pkg->semanticRun < PASSsemanticdone)
pkg->semanticRun = PASSsemanticdone;
}
void visit(Module *m)
{
if (m->semanticRun != PASSinit)
return;
//printf("+Module::semantic(this = %p, '%s'): parent = %p\n", this, m->toChars(), parent);
m->semanticRun = PASSsemantic;
// Note that modules get their own scope, from scratch.
// This is so regardless of where in the syntax a module
// gets imported, it is unaffected by context.
Scope *sc = m->_scope; // see if already got one from importAll()
if (!sc)
{
sc = Scope::createGlobal(m); // create root scope
}
//printf("Module = %p, linkage = %d\n", sc->scopesym, sc->linkage);
// Pass 1 semantic routines: do public side of the definition
for (size_t i = 0; i < m->members->length; i++)
{
Dsymbol *s = (*m->members)[i];
//printf("\tModule('%s'): '%s'.semantic()\n", m->toChars(), s->toChars());
dsymbolSemantic(s, sc);
m->runDeferredSemantic();
}
if (m->userAttribDecl)
{
dsymbolSemantic(m->userAttribDecl, sc);
}
if (!m->_scope)
{
sc = sc->pop();
sc->pop(); // 2 pops because Scope::createGlobal() created 2
}
m->semanticRun = PASSsemanticdone;
//printf("-Module::semantic(this = %p, '%s'): parent = %p\n", m, m->toChars(), parent);
}
void visit(EnumDeclaration *ed)
{
//printf("EnumDeclaration::semantic(sd = %p, '%s') %s\n", sc->scopesym, sc->scopesym->toChars(), ed->toChars());
//printf("EnumDeclaration::semantic() %p %s\n", ed, ed->toChars());
if (ed->semanticRun >= PASSsemanticdone)
return; // semantic() already completed
if (ed->semanticRun == PASSsemantic)
{
assert(ed->memtype);
error(ed->loc, "circular reference to enum base type %s", ed->memtype->toChars());
ed->errors = true;
ed->semanticRun = PASSsemanticdone;
return;
}
unsigned dprogress_save = Module::dprogress;
Scope *scx = NULL;
if (ed->_scope)
{
sc = ed->_scope;
scx = ed->_scope; // save so we don't make redundant copies
ed->_scope = NULL;
}
if (!sc)
return;
ed->parent = sc->parent;
ed->type = typeSemantic(ed->type, ed->loc, sc);
ed->protection = sc->protection;
if (sc->stc & STCdeprecated)
ed->isdeprecated = true;
ed->userAttribDecl = sc->userAttribDecl;
ed->semanticRun = PASSsemantic;
if (!ed->members && !ed->memtype) // enum ident;
{
ed->semanticRun = PASSsemanticdone;
return;
}
if (!ed->symtab)
ed->symtab = new DsymbolTable();
/* The separate, and distinct, cases are:
* 1. enum { ... }
* 2. enum : memtype { ... }
* 3. enum ident { ... }
* 4. enum ident : memtype { ... }
* 5. enum ident : memtype;
* 6. enum ident;
*/
if (ed->memtype)
{
ed->memtype = typeSemantic(ed->memtype, ed->loc, sc);
/* Check to see if memtype is forward referenced
*/
if (ed->memtype->ty == Tenum)
{
EnumDeclaration *sym = (EnumDeclaration *)ed->memtype->toDsymbol(sc);
if (!sym->memtype || !sym->members || !sym->symtab || sym->_scope)
{
// memtype is forward referenced, so try again later
ed->_scope = scx ? scx : sc->copy();
ed->_scope->setNoFree();
Module::addDeferredSemantic(ed);
Module::dprogress = dprogress_save;
//printf("\tdeferring %s\n", ed->toChars());
ed->semanticRun = PASSinit;
return;
}
else
// Ensure that semantic is run to detect. e.g. invalid forward references
dsymbolSemantic(sym, sc);
}
if (ed->memtype->ty == Tvoid)
{
ed->error("base type must not be void");
ed->memtype = Type::terror;
}
if (ed->memtype->ty == Terror)
{
ed->errors = true;
if (ed->members)
{
for (size_t i = 0; i < ed->members->length; i++)
{
Dsymbol *s = (*ed->members)[i];
s->errors = true; // poison all the members
}
}
ed->semanticRun = PASSsemanticdone;
return;
}
}
ed->semanticRun = PASSsemanticdone;
if (!ed->members) // enum ident : memtype;
return;
if (ed->members->length == 0)
{
ed->error("enum %s must have at least one member", ed->toChars());
ed->errors = true;
return;
}
Module::dprogress++;
Scope *sce;
if (ed->isAnonymous())
sce = sc;
else
{
sce = sc->push(ed);
sce->parent = ed;
}
sce = sce->startCTFE();
sce->setNoFree(); // needed for getMaxMinValue()
/* Each enum member gets the sce scope
*/
for (size_t i = 0; i < ed->members->length; i++)
{
EnumMember *em = (*ed->members)[i]->isEnumMember();
if (em)
em->_scope = sce;
}
if (!ed->added)
{
/* addMember() is not called when the EnumDeclaration appears as a function statement,
* so we have to do what addMember() does and install the enum members in the right symbol
* table
*/
ScopeDsymbol *scopesym = NULL;
if (ed->isAnonymous())
{
/* Anonymous enum members get added to enclosing scope.
*/
for (Scope *sct = sce; 1; sct = sct->enclosing)
{
assert(sct);
if (sct->scopesym)
{
scopesym = sct->scopesym;
if (!sct->scopesym->symtab)
sct->scopesym->symtab = new DsymbolTable();
break;
}
}
}
else
{
// Otherwise enum members are in the EnumDeclaration's symbol table
scopesym = ed;
}
for (size_t i = 0; i < ed->members->length; i++)
{
EnumMember *em = (*ed->members)[i]->isEnumMember();
if (em)
{
em->ed = ed;
em->addMember(sc, scopesym);
}
}
}
for (size_t i = 0; i < ed->members->length; i++)
{
EnumMember *em = (*ed->members)[i]->isEnumMember();
if (em)
dsymbolSemantic(em, em->_scope);
}
//printf("defaultval = %lld\n", defaultval);
//if (defaultval) printf("defaultval: %s %s\n", defaultval->toChars(), defaultval->type->toChars());
//printf("members = %s\n", ed->members->toChars());
}
void visit(EnumMember *em)
{
//printf("EnumMember::semantic() %s\n", em->toChars());
if (em->errors || em->semanticRun >= PASSsemanticdone)
return;
if (em->semanticRun == PASSsemantic)
{
em->error("circular reference to enum member");
Lerrors:
em->errors = true;
em->semanticRun = PASSsemanticdone;
return;
}
assert(em->ed);
dsymbolSemantic(em->ed, sc);
if (em->ed->errors)
goto Lerrors;
if (em->errors || em->semanticRun >= PASSsemanticdone)
return;
if (em->_scope)
sc = em->_scope;
if (!sc)
return;
em->semanticRun = PASSsemantic;
em->protection = em->ed->isAnonymous() ? em->ed->protection : Prot(Prot::public_);
em->linkage = LINKd;
em->storage_class |= STCmanifest;
// https://issues.dlang.org/show_bug.cgi?id=9701
if (em->ed->isAnonymous())
{
if (em->userAttribDecl)
em->userAttribDecl->userAttribDecl = em->ed->userAttribDecl;
else
em->userAttribDecl = em->ed->userAttribDecl;
}
// The first enum member is special
bool first = (em == (*em->ed->members)[0]);
if (em->origType)
{
em->origType = typeSemantic(em->origType, em->loc, sc);
em->type = em->origType;
assert(em->value()); // "type id;" is not a valid enum member declaration
}
if (em->value())
{
Expression *e = em->value();
assert(e->dyncast() == DYNCAST_EXPRESSION);
e = expressionSemantic(e, sc);
e = resolveProperties(sc, e);
e = e->ctfeInterpret();
if (e->op == TOKerror)
goto Lerrors;
if (first && !em->ed->memtype && !em->ed->isAnonymous())
{
em->ed->memtype = e->type;
if (em->ed->memtype->ty == Terror)
{
em->ed->errors = true;
goto Lerrors;
}
if (em->ed->memtype->ty != Terror)
{
/* Bugzilla 11746: All of named enum members should have same type
* with the first member. If the following members were referenced
* during the first member semantic, their types should be unified.
*/
for (size_t i = 0; i < em->ed->members->length; i++)
{
EnumMember *enm = (*em->ed->members)[i]->isEnumMember();
if (!enm || enm == em || enm->semanticRun < PASSsemanticdone || enm->origType)
continue;
//printf("[%d] enm = %s, enm->semanticRun = %d\n", i, enm->toChars(), enm->semanticRun);
Expression *ev = enm->value();
ev = ev->implicitCastTo(sc, em->ed->memtype);
ev = ev->ctfeInterpret();
ev = ev->castTo(sc, em->ed->type);
if (ev->op == TOKerror)
em->ed->errors = true;
enm->value() = ev;
}
if (em->ed->errors)
{
em->ed->memtype = Type::terror;
goto Lerrors;
}
}
}
if (em->ed->memtype && !em->origType)
{
e = e->implicitCastTo(sc, em->ed->memtype);
e = e->ctfeInterpret();
// save origValue for better json output
em->origValue = e;
if (!em->ed->isAnonymous())
{
e = e->castTo(sc, em->ed->type);
e = e->ctfeInterpret();
}
}
else if (em->origType)
{
e = e->implicitCastTo(sc, em->origType);
e = e->ctfeInterpret();
assert(em->ed->isAnonymous());
// save origValue for better json output
em->origValue = e;
}
em->value() = e;
}
else if (first)
{
Type *t;
if (em->ed->memtype)
t = em->ed->memtype;
else
{
t = Type::tint32;
if (!em->ed->isAnonymous())
em->ed->memtype = t;
}
Expression *e = new IntegerExp(em->loc, 0, Type::tint32);
e = e->implicitCastTo(sc, t);
e = e->ctfeInterpret();
// save origValue for better json output
em->origValue = e;
if (!em->ed->isAnonymous())
{
e = e->castTo(sc, em->ed->type);
e = e->ctfeInterpret();
}
em->value() = e;
}
else
{
/* Find the previous enum member,
* and set this to be the previous value + 1
*/
EnumMember *emprev = NULL;
for (size_t i = 0; i < em->ed->members->length; i++)
{
EnumMember *enm = (*em->ed->members)[i]->isEnumMember();
if (enm)
{
if (enm == em)
break;
emprev = enm;
}
}
assert(emprev);
if (emprev->semanticRun < PASSsemanticdone) // if forward reference
dsymbolSemantic(emprev, emprev->_scope); // resolve it
if (emprev->errors)
goto Lerrors;
Expression *eprev = emprev->value();
Type *tprev = eprev->type->equals(em->ed->type) ? em->ed->memtype : eprev->type;
Expression *emax = tprev->getProperty(em->ed->loc, Id::max, 0);
emax = expressionSemantic(emax, sc);
emax = emax->ctfeInterpret();
// Set value to (eprev + 1).
// But first check that (eprev != emax)
assert(eprev);
Expression *e = new EqualExp(TOKequal, em->loc, eprev, emax);
e = expressionSemantic(e, sc);
e = e->ctfeInterpret();
if (e->toInteger())
{
em->error("initialization with (%s.%s + 1) causes overflow for type `%s`", emprev->ed->toChars(), emprev->toChars(), em->ed->type->toBasetype()->toChars());
goto Lerrors;
}
// Now set e to (eprev + 1)
e = new AddExp(em->loc, eprev, new IntegerExp(em->loc, 1, Type::tint32));
e = expressionSemantic(e, sc);
e = e->castTo(sc, eprev->type);
e = e->ctfeInterpret();
// save origValue (without cast) for better json output
if (e->op != TOKerror) // avoid duplicate diagnostics
{
assert(emprev->origValue);
em->origValue = new AddExp(em->loc, emprev->origValue, new IntegerExp(em->loc, 1, Type::tint32));
em->origValue = expressionSemantic(em->origValue, sc);
em->origValue = em->origValue->ctfeInterpret();
}
if (e->op == TOKerror)
goto Lerrors;
if (e->type->isfloating())
{
// Check that e != eprev (not always true for floats)
Expression *etest = new EqualExp(TOKequal, em->loc, e, eprev);
etest = expressionSemantic(etest, sc);
etest = etest->ctfeInterpret();
if (etest->toInteger())
{
em->error("has inexact value, due to loss of precision");
goto Lerrors;
}
}
em->value() = e;
}
if (!em->origType)
em->type = em->value()->type;
assert(em->origValue);
em->semanticRun = PASSsemanticdone;
}
void visit(TemplateDeclaration *tempdecl)
{
if (tempdecl->semanticRun != PASSinit)
return; // semantic() already run
// Remember templates defined in module object that we need to know about
if (sc->_module && sc->_module->ident == Id::object)
{
if (tempdecl->ident == Id::RTInfo)
Type::rtinfo = tempdecl;
}
/* Remember Scope for later instantiations, but make
* a copy since attributes can change.
*/
if (!tempdecl->_scope)
{
tempdecl->_scope = sc->copy();
tempdecl->_scope->setNoFree();
}
tempdecl->semanticRun = PASSsemantic;
tempdecl->parent = sc->parent;
tempdecl->protection = sc->protection;
tempdecl->isstatic = tempdecl->toParent()->isModule() || (tempdecl->_scope->stc & STCstatic);
if (!tempdecl->isstatic)
{
if (AggregateDeclaration *ad = tempdecl->parent->pastMixin()->isAggregateDeclaration())
ad->makeNested();
}
// Set up scope for parameters
ScopeDsymbol *paramsym = new ScopeDsymbol();
paramsym->parent = tempdecl->parent;
Scope *paramscope = sc->push(paramsym);
paramscope->stc = 0;
if (global.params.doDocComments)
{
tempdecl->origParameters = new TemplateParameters();
tempdecl->origParameters->setDim(tempdecl->parameters->length);
for (size_t i = 0; i < tempdecl->parameters->length; i++)
{
TemplateParameter *tp = (*tempdecl->parameters)[i];
(*tempdecl->origParameters)[i] = tp->syntaxCopy();
}
}
for (size_t i = 0; i < tempdecl->parameters->length; i++)
{
TemplateParameter *tp = (*tempdecl->parameters)[i];
if (!tp->declareParameter(paramscope))
{
error(tp->loc, "parameter `%s` multiply defined", tp->ident->toChars());
tempdecl->errors = true;
}
if (!tpsemantic(tp, paramscope, tempdecl->parameters))
{
tempdecl->errors = true;
}
if (i + 1 != tempdecl->parameters->length && tp->isTemplateTupleParameter())
{
tempdecl->error("template tuple parameter must be last one");
tempdecl->errors = true;
}
}
/* Calculate TemplateParameter::dependent
*/
TemplateParameters tparams;
tparams.setDim(1);
for (size_t i = 0; i < tempdecl->parameters->length; i++)
{
TemplateParameter *tp = (*tempdecl->parameters)[i];
tparams[0] = tp;
for (size_t j = 0; j < tempdecl->parameters->length; j++)
{
// Skip cases like: X(T : T)
if (i == j)
continue;
if (TemplateTypeParameter *ttp = (*tempdecl->parameters)[j]->isTemplateTypeParameter())
{
if (reliesOnTident(ttp->specType, &tparams))
tp->dependent = true;
}
else if (TemplateAliasParameter *tap = (*tempdecl->parameters)[j]->isTemplateAliasParameter())
{
if (reliesOnTident(tap->specType, &tparams) ||
reliesOnTident(isType(tap->specAlias), &tparams))
{
tp->dependent = true;
}
}
}
}
paramscope->pop();
// Compute again
tempdecl->onemember = NULL;
if (tempdecl->members)
{
Dsymbol *s;
if (Dsymbol::oneMembers(tempdecl->members, &s, tempdecl->ident) && s)
{
tempdecl->onemember = s;
s->parent = tempdecl;
}
}
/* BUG: should check:
* o no virtual functions or non-static data members of classes
*/
tempdecl->semanticRun = PASSsemanticdone;
}
void visit(TemplateInstance *ti)
{
templateInstanceSemantic(ti, sc, NULL);
}
void visit(TemplateMixin *tm)
{
if (tm->semanticRun != PASSinit)
{
// When a class/struct contains mixin members, and is done over
// because of forward references, never reach here so semanticRun
// has been reset to PASSinit.
return;
}
tm->semanticRun = PASSsemantic;
Scope *scx = NULL;
if (tm->_scope)
{
sc = tm->_scope;
scx = tm->_scope; // save so we don't make redundant copies
tm->_scope = NULL;
}
/* Run semantic on each argument, place results in tiargs[],
* then find best match template with tiargs
*/
if (!tm->findTempDecl(sc) ||
!tm->semanticTiargs(sc) ||
!tm->findBestMatch(sc, NULL))
{
if (tm->semanticRun == PASSinit) // forward reference had occured
{
//printf("forward reference - deferring\n");
tm->_scope = scx ? scx : sc->copy();
tm->_scope->setNoFree();
Module::addDeferredSemantic(tm);
return;
}
tm->inst = tm;
tm->errors = true;
return; // error recovery
}
TemplateDeclaration *tempdecl = tm->tempdecl->isTemplateDeclaration();
assert(tempdecl);
if (!tm->ident)
{
/* Assign scope local unique identifier, as same as lambdas.
*/
const char *s = "__mixin";
if (FuncDeclaration *func = sc->parent->isFuncDeclaration())
{
tm->symtab = func->localsymtab;
if (tm->symtab)
{
// Inside template constraint, symtab is not set yet.
goto L1;
}
}
else
{
tm->symtab = sc->parent->isScopeDsymbol()->symtab;
L1:
assert(tm->symtab);
int num = (int)dmd_aaLen(tm->symtab->tab) + 1;
tm->ident = Identifier::generateId(s, num);
tm->symtab->insert(tm);
}
}
tm->inst = tm;
tm->parent = sc->parent;
/* Detect recursive mixin instantiations.
*/
for (Dsymbol *s = tm->parent; s; s = s->parent)
{
//printf("\ts = '%s'\n", s->toChars());
TemplateMixin *tmix = s->isTemplateMixin();
if (!tmix || tempdecl != tmix->tempdecl)
continue;
/* Different argument list lengths happen with variadic args
*/
if (tm->tiargs->length != tmix->tiargs->length)
continue;
for (size_t i = 0; i < tm->tiargs->length; i++)
{
RootObject *o = (*tm->tiargs)[i];
Type *ta = isType(o);
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
RootObject *tmo = (*tmix->tiargs)[i];
if (ta)
{
Type *tmta = isType(tmo);
if (!tmta)
goto Lcontinue;
if (!ta->equals(tmta))
goto Lcontinue;
}
else if (ea)
{
Expression *tme = isExpression(tmo);
if (!tme || !ea->equals(tme))
goto Lcontinue;
}
else if (sa)
{
Dsymbol *tmsa = isDsymbol(tmo);
if (sa != tmsa)
goto Lcontinue;
}
else
assert(0);
}
tm->error("recursive mixin instantiation");
return;
Lcontinue:
continue;
}
// Copy the syntax trees from the TemplateDeclaration
tm->members = Dsymbol::arraySyntaxCopy(tempdecl->members);
if (!tm->members)
return;
tm->symtab = new DsymbolTable();
for (Scope *sce = sc; 1; sce = sce->enclosing)
{
ScopeDsymbol *sds = (ScopeDsymbol *)sce->scopesym;
if (sds)
{
sds->importScope(tm, Prot(Prot::public_));
break;
}
}
Scope *scy = sc->push(tm);
scy->parent = tm;
tm->argsym = new ScopeDsymbol();
tm->argsym->parent = scy->parent;
Scope *argscope = scy->push(tm->argsym);
unsigned errorsave = global.errors;
// Declare each template parameter as an alias for the argument type
tm->declareParameters(argscope);
// Add members to enclosing scope, as well as this scope
for (size_t i = 0; i < tm->members->length; i++)
{
Dsymbol *s = (*tm->members)[i];
s->addMember(argscope, tm);
//printf("sc->parent = %p, sc->scopesym = %p\n", sc->parent, sc->scopesym);
//printf("s->parent = %s\n", s->parent->toChars());
}
// Do semantic() analysis on template instance members
Scope *sc2 = argscope->push(tm);
//size_t deferred_dim = Module::deferred.length;
static int nest;
//printf("%d\n", nest);
if (++nest > global.recursionLimit)
{
global.gag = 0; // ensure error message gets printed
tm->error("recursive expansion");
fatal();
}
for (size_t i = 0; i < tm->members->length; i++)
{
Dsymbol *s = (*tm->members)[i];
s->setScope(sc2);
}
for (size_t i = 0; i < tm->members->length; i++)
{
Dsymbol *s = (*tm->members)[i];
s->importAll(sc2);
}
for (size_t i = 0; i < tm->members->length; i++)
{
Dsymbol *s = (*tm->members)[i];
dsymbolSemantic(s, sc2);
}
nest--;
/* In DeclDefs scope, TemplateMixin does not have to handle deferred symbols.
* Because the members would already call Module::addDeferredSemantic() for themselves.
* See Struct, Class, Interface, and EnumDeclaration::semantic().
*/
//if (!sc->func && Module::deferred.length > deferred_dim) {}
AggregateDeclaration *ad = tm->toParent()->isAggregateDeclaration();
if (sc->func && !ad)
{
semantic2(tm, sc2);
semantic3(tm, sc2);
}
// Give additional context info if error occurred during instantiation
if (global.errors != errorsave)
{
tm->error("error instantiating");
tm->errors = true;
}
sc2->pop();
argscope->pop();
scy->pop();
}
void visit(Nspace *ns)
{
if (ns->semanticRun != PASSinit)
return;
if (ns->_scope)
{
sc = ns->_scope;
ns->_scope = NULL;
}
if (!sc)
return;
ns->semanticRun = PASSsemantic;
ns->parent = sc->parent;
if (ns->members)
{
assert(sc);
sc = sc->push(ns);
sc->linkage = LINKcpp; // note that namespaces imply C++ linkage
sc->parent = ns;
for (size_t i = 0; i < ns->members->length; i++)
{
Dsymbol *s = (*ns->members)[i];
s->importAll(sc);
}
for (size_t i = 0; i < ns->members->length; i++)
{
Dsymbol *s = (*ns->members)[i];
dsymbolSemantic(s, sc);
}
sc->pop();
}
ns->semanticRun = PASSsemanticdone;
}
private:
static bool isPointerToChar(Parameter *p)
{
if (TypePointer *tptr = p->type->isTypePointer())
{
return tptr->next->ty == Tchar;
}
return false;
}
static bool isVa_list(Parameter *p, FuncDeclaration *funcdecl, Scope *sc)
{
return p->type->equals(target.va_listType(funcdecl->loc, sc));
}
public:
void funcDeclarationSemantic(FuncDeclaration *funcdecl)
{
TypeFunction *f;
AggregateDeclaration *ad;
InterfaceDeclaration *id;
if (funcdecl->semanticRun != PASSinit && funcdecl->isFuncLiteralDeclaration())
{
/* Member functions that have return types that are
* forward references can have semantic() run more than
* once on them.
* See test\interface2.d, test20
*/
return;
}
if (funcdecl->semanticRun >= PASSsemanticdone)
return;
assert(funcdecl->semanticRun <= PASSsemantic);
funcdecl->semanticRun = PASSsemantic;
if (funcdecl->_scope)
{
sc = funcdecl->_scope;
funcdecl->_scope = NULL;
}
if (!sc || funcdecl->errors)
return;
funcdecl->parent = sc->parent;
Dsymbol *parent = funcdecl->toParent();
funcdecl->foverrides.setDim(0); // reset in case semantic() is being retried for this function
funcdecl->storage_class |= sc->stc & ~STCref;
ad = funcdecl->isThis();
// Don't nest structs b/c of generated methods which should not access the outer scopes.
// https://issues.dlang.org/show_bug.cgi?id=16627
if (ad && !funcdecl->generated)
{
funcdecl->storage_class |= ad->storage_class & (STC_TYPECTOR | STCsynchronized);
ad->makeNested();
}
if (sc->func)
funcdecl->storage_class |= sc->func->storage_class & STCdisable;
// Remove prefix storage classes silently.
if ((funcdecl->storage_class & STC_TYPECTOR) && !(ad || funcdecl->isNested()))
funcdecl->storage_class &= ~STC_TYPECTOR;
//printf("function storage_class = x%llx, sc->stc = x%llx, %x\n", funcdecl->storage_class, sc->stc, Declaration::isFinal());
FuncLiteralDeclaration *fld = funcdecl->isFuncLiteralDeclaration();
if (fld && fld->treq)
{
Type *treq = fld->treq;
assert(treq->nextOf()->ty == Tfunction);
if (treq->ty == Tdelegate)
fld->tok = TOKdelegate;
else if (treq->ty == Tpointer && treq->nextOf()->ty == Tfunction)
fld->tok = TOKfunction;
else
assert(0);
funcdecl->linkage = treq->nextOf()->toTypeFunction()->linkage;
}
else
funcdecl->linkage = sc->linkage;
funcdecl->inlining = sc->inlining;
funcdecl->protection = sc->protection;
funcdecl->userAttribDecl = sc->userAttribDecl;
if (!funcdecl->originalType)
funcdecl->originalType = funcdecl->type->syntaxCopy();
if (funcdecl->type->ty != Tfunction)
{
if (funcdecl->type->ty != Terror)
{
funcdecl->error("%s must be a function instead of %s", funcdecl->toChars(), funcdecl->type->toChars());
funcdecl->type = Type::terror;
}
funcdecl->errors = true;
return;
}
if (!funcdecl->type->deco)
{
sc = sc->push();
sc->stc |= funcdecl->storage_class & (STCdisable | STCdeprecated); // forward to function type
TypeFunction *tf = funcdecl->type->toTypeFunction();
if (sc->func)
{
/* If the nesting parent is pure without inference,
* then this function defaults to pure too.
*
* auto foo() pure {
* auto bar() {} // become a weak purity funciton
* class C { // nested class
* auto baz() {} // become a weak purity funciton
* }
*
* static auto boo() {} // typed as impure
* // Even though, boo cannot call any impure functions.
* // See also Expression::checkPurity().
* }
*/
if (tf->purity == PUREimpure && (funcdecl->isNested() || funcdecl->isThis()))
{
FuncDeclaration *fd = NULL;
for (Dsymbol *p = funcdecl->toParent2(); p; p = p->toParent2())
{
if (AggregateDeclaration *adx = p->isAggregateDeclaration())
{
if (adx->isNested())
continue;
break;
}
if ((fd = p->isFuncDeclaration()) != NULL)
break;
}
/* If the parent's purity is inferred, then this function's purity needs
* to be inferred first.
*/
if (fd && fd->isPureBypassingInference() >= PUREweak &&
!funcdecl->isInstantiated())
{
tf->purity = PUREfwdref; // default to pure
}
}
}
if (tf->isref) sc->stc |= STCref;
if (tf->isscope) sc->stc |= STCscope;
if (tf->isnothrow) sc->stc |= STCnothrow;
if (tf->isnogc) sc->stc |= STCnogc;
if (tf->isproperty) sc->stc |= STCproperty;
if (tf->purity == PUREfwdref) sc->stc |= STCpure;
if (tf->trust != TRUSTdefault)
sc->stc &= ~(STCsafe | STCsystem | STCtrusted);
if (tf->trust == TRUSTsafe) sc->stc |= STCsafe;
if (tf->trust == TRUSTsystem) sc->stc |= STCsystem;
if (tf->trust == TRUSTtrusted) sc->stc |= STCtrusted;
if (funcdecl->isCtorDeclaration())
{
sc->flags |= SCOPEctor;
Type *tret = ad->handleType();
assert(tret);
tret = tret->addStorageClass(funcdecl->storage_class | sc->stc);
tret = tret->addMod(funcdecl->type->mod);
tf->next = tret;
if (ad->isStructDeclaration())
sc->stc |= STCref;
}
// 'return' on a non-static class member function implies 'scope' as well
if (ad && ad->isClassDeclaration() && (tf->isreturn || sc->stc & STCreturn) && !(sc->stc & STCstatic))
sc->stc |= STCscope;
// If 'this' has no pointers, remove 'scope' as it has no meaning
if (sc->stc & STCscope && ad && ad->isStructDeclaration() && !ad->type->hasPointers())
{
sc->stc &= ~STCscope;
tf->isscope = false;
}
sc->linkage = funcdecl->linkage;
if (!tf->isNaked() && !(funcdecl->isThis() || funcdecl->isNested()))
{
OutBuffer buf;
MODtoBuffer(&buf, tf->mod);
funcdecl->error("without `this` cannot be %s", buf.peekChars());
tf->mod = 0; // remove qualifiers
}
/* Apply const, immutable, wild and shared storage class
* to the function type. Do this before type semantic.
*/
StorageClass stc = funcdecl->storage_class;
if (funcdecl->type->isImmutable())
stc |= STCimmutable;
if (funcdecl->type->isConst())
stc |= STCconst;
if (funcdecl->type->isShared() || funcdecl->storage_class & STCsynchronized)
stc |= STCshared;
if (funcdecl->type->isWild())
stc |= STCwild;
switch (stc & STC_TYPECTOR)
{
case STCimmutable:
case STCimmutable | STCconst:
case STCimmutable | STCwild:
case STCimmutable | STCwild | STCconst:
case STCimmutable | STCshared:
case STCimmutable | STCshared | STCconst:
case STCimmutable | STCshared | STCwild:
case STCimmutable | STCshared | STCwild | STCconst:
// Don't use immutableOf(), as that will do a merge()
funcdecl->type = funcdecl->type->makeImmutable();
break;
case STCconst:
funcdecl->type = funcdecl->type->makeConst();
break;
case STCwild:
funcdecl->type = funcdecl->type->makeWild();
break;
case STCwild | STCconst:
funcdecl->type = funcdecl->type->makeWildConst();
break;
case STCshared:
funcdecl->type = funcdecl->type->makeShared();
break;
case STCshared | STCconst:
funcdecl->type = funcdecl->type->makeSharedConst();
break;
case STCshared | STCwild:
funcdecl->type = funcdecl->type->makeSharedWild();
break;
case STCshared | STCwild | STCconst:
funcdecl->type = funcdecl->type->makeSharedWildConst();
break;
case 0:
break;
default:
assert(0);
}
funcdecl->type = typeSemantic(funcdecl->type, funcdecl->loc, sc);
sc = sc->pop();
}
if (funcdecl->type->ty != Tfunction)
{
if (funcdecl->type->ty != Terror)
{
funcdecl->error("%s must be a function instead of %s", funcdecl->toChars(), funcdecl->type->toChars());
funcdecl->type = Type::terror;
}
funcdecl->errors = true;
return;
}
else
{
// Merge back function attributes into 'originalType'.
// It's used for mangling, ddoc, and json output.
TypeFunction *tfo = funcdecl->originalType->toTypeFunction();
TypeFunction *tfx = funcdecl->type->toTypeFunction();
tfo->mod = tfx->mod;
tfo->isscope = tfx->isscope;
tfo->isscopeinferred = tfx->isscopeinferred;
tfo->isref = tfx->isref;
tfo->isnothrow = tfx->isnothrow;
tfo->isnogc = tfx->isnogc;
tfo->isproperty = tfx->isproperty;
tfo->purity = tfx->purity;
tfo->trust = tfx->trust;
funcdecl->storage_class &= ~(STC_TYPECTOR | STC_FUNCATTR);
}
f = (TypeFunction *)funcdecl->type;
if ((funcdecl->storage_class & STCauto) && !f->isref && !funcdecl->inferRetType)
funcdecl->error("storage class `auto` has no effect if return type is not inferred");
/* Functions can only be 'scope' if they have a 'this'
*/
if (f->isscope && !funcdecl->isNested() && !ad)
{
funcdecl->error("functions cannot be scope");
}
if (f->isreturn && !funcdecl->needThis() && !funcdecl->isNested())
{
/* Non-static nested functions have a hidden 'this' pointer to which
* the 'return' applies
*/
funcdecl->error("static member has no `this` to which `return` can apply");
}
if (funcdecl->isAbstract() && !funcdecl->isVirtual())
{
const char *sfunc;
if (funcdecl->isStatic())
sfunc = "static";
else if (funcdecl->protection.kind == Prot::private_ || funcdecl->protection.kind == Prot::package_)
sfunc = protectionToChars(funcdecl->protection.kind);
else
sfunc = "non-virtual";
funcdecl->error("%s functions cannot be abstract", sfunc);
}
if (funcdecl->isOverride() && !funcdecl->isVirtual())
{
Prot::Kind kind = funcdecl->prot().kind;
if ((kind == Prot::private_ || kind == Prot::package_) && funcdecl->isMember())
funcdecl->error("%s method is not virtual and cannot override", protectionToChars(kind));
else
funcdecl->error("cannot override a non-virtual function");
}
if (funcdecl->isAbstract() && funcdecl->isFinalFunc())
funcdecl->error("cannot be both final and abstract");
if (const unsigned pors = sc->flags & (SCOPEprintf | SCOPEscanf))
{
/* printf/scanf-like functions must be of the form:
* extern (C/C++) T printf([parameters...], const(char)* format, ...);
* or:
* extern (C/C++) T vprintf([parameters...], const(char)* format, va_list);
*/
const size_t nparams = f->parameterList.length();
if ((f->linkage == LINKc || f->linkage == LINKcpp) &&
((f->parameterList.varargs == VARARGvariadic &&
nparams >= 1 &&
isPointerToChar(f->parameterList[nparams - 1])) ||
(f->parameterList.varargs == VARARGnone &&
nparams >= 2 &&
isPointerToChar(f->parameterList[nparams - 2]) &&
isVa_list(f->parameterList[nparams - 1], funcdecl, sc))
)
)
{
funcdecl->flags |= (pors == SCOPEprintf) ? FUNCFLAGprintf : FUNCFLAGscanf;
}
else
{
const char *p = (pors == SCOPEprintf ? Id::printf : Id::scanf)->toChars();
if (f->parameterList.varargs == VARARGvariadic)
{
funcdecl->error("`pragma(%s)` functions must be `extern(C) %s %s([parameters...], const(char)*, ...)`"
" not `%s`",
p, f->next->toChars(), funcdecl->toChars(), funcdecl->type->toChars());
}
else
{
funcdecl->error("`pragma(%s)` functions must be `extern(C) %s %s([parameters...], const(char)*, va_list)`",
p, f->next->toChars(), funcdecl->toChars());
}
}
}
id = parent->isInterfaceDeclaration();
if (id)
{
funcdecl->storage_class |= STCabstract;
if (funcdecl->isCtorDeclaration() ||
funcdecl->isPostBlitDeclaration() ||
funcdecl->isDtorDeclaration() ||
funcdecl->isInvariantDeclaration() ||
funcdecl->isNewDeclaration() || funcdecl->isDelete())
funcdecl->error("constructors, destructors, postblits, invariants, new and delete functions are not allowed in interface %s", id->toChars());
if (funcdecl->fbody && funcdecl->isVirtual())
funcdecl->error("function body only allowed in final functions in interface %s", id->toChars());
}
if (UnionDeclaration *ud = parent->isUnionDeclaration())
{
if (funcdecl->isPostBlitDeclaration() ||
funcdecl->isDtorDeclaration() ||
funcdecl->isInvariantDeclaration())
funcdecl->error("destructors, postblits and invariants are not allowed in union %s", ud->toChars());
}
if (parent->isStructDeclaration())
{
if (funcdecl->isCtorDeclaration())
{
goto Ldone;
}
}
if (ClassDeclaration *cd = parent->isClassDeclaration())
{
if (funcdecl->isCtorDeclaration())
{
goto Ldone;
}
if (funcdecl->storage_class & STCabstract)
cd->isabstract = ABSyes;
// if static function, do not put in vtbl[]
if (!funcdecl->isVirtual())
{
//printf("\tnot virtual\n");
goto Ldone;
}
// Suppress further errors if the return type is an error
if (funcdecl->type->nextOf() == Type::terror)
goto Ldone;
bool may_override = false;
for (size_t i = 0; i < cd->baseclasses->length; i++)
{
BaseClass *b = (*cd->baseclasses)[i];
ClassDeclaration *cbd = b->type->toBasetype()->isClassHandle();
if (!cbd)
continue;
for (size_t j = 0; j < cbd->vtbl.length; j++)
{
FuncDeclaration *f2 = cbd->vtbl[j]->isFuncDeclaration();
if (!f2 || f2->ident != funcdecl->ident)
continue;
if (cbd->parent && cbd->parent->isTemplateInstance())
{
if (!f2->functionSemantic())
goto Ldone;
}
may_override = true;
}
}
if (may_override && funcdecl->type->nextOf() == NULL)
{
/* If same name function exists in base class but 'this' is auto return,
* cannot find index of base class's vtbl[] to override.
*/
funcdecl->error("return type inference is not supported if may override base class function");
}
/* Find index of existing function in base class's vtbl[] to override
* (the index will be the same as in cd's current vtbl[])
*/
int vi = cd->baseClass ? funcdecl->findVtblIndex((Dsymbols*)&cd->baseClass->vtbl, (int)cd->baseClass->vtbl.length)
: -1;
bool doesoverride = false;
switch (vi)
{
case -1:
Lintro:
/* Didn't find one, so
* This is an 'introducing' function which gets a new
* slot in the vtbl[].
*/
// Verify this doesn't override previous final function
if (cd->baseClass)
{
Dsymbol *s = cd->baseClass->search(funcdecl->loc, funcdecl->ident);
if (s)
{
FuncDeclaration *f2 = s->isFuncDeclaration();
if (f2)
{
f2 = f2->overloadExactMatch(funcdecl->type);
if (f2 && f2->isFinalFunc() && f2->prot().kind != Prot::private_)
funcdecl->error("cannot override final function %s", f2->toPrettyChars());
}
}
}
/* These quirky conditions mimic what VC++ appears to do
*/
if (global.params.mscoff && cd->isCPPclass() &&
cd->baseClass && cd->baseClass->vtbl.length)
{
/* if overriding an interface function, then this is not
* introducing and don't put it in the class vtbl[]
*/
funcdecl->interfaceVirtual = funcdecl->overrideInterface();
if (funcdecl->interfaceVirtual)
{
//printf("\tinterface function %s\n", funcdecl->toChars());
cd->vtblFinal.push(funcdecl);
goto Linterfaces;
}
}
if (funcdecl->isFinalFunc())
{
// Don't check here, as it may override an interface function
//if (funcdecl->isOverride())
//funcdecl->error("is marked as override, but does not override any function");
cd->vtblFinal.push(funcdecl);
}
else
{
//printf("\tintroducing function %s\n", funcdecl->toChars());
funcdecl->introducing = 1;
if (cd->isCPPclass() && target.cpp.reverseOverloads)
{
// with dmc, overloaded functions are grouped and in reverse order
funcdecl->vtblIndex = (int)cd->vtbl.length;
for (int i = 0; i < (int)cd->vtbl.length; i++)
{
if (cd->vtbl[i]->ident == funcdecl->ident && cd->vtbl[i]->parent == parent)
{
funcdecl->vtblIndex = (int)i;
break;
}
}
// shift all existing functions back
for (int i = (int)cd->vtbl.length; i > funcdecl->vtblIndex; i--)
{
FuncDeclaration *fd = cd->vtbl[i-1]->isFuncDeclaration();
assert(fd);
fd->vtblIndex++;
}
cd->vtbl.insert(funcdecl->vtblIndex, funcdecl);
}
else
{
// Append to end of vtbl[]
vi = (int)cd->vtbl.length;
cd->vtbl.push(funcdecl);
funcdecl->vtblIndex = vi;
}
}
break;
case -2:
// can't determine because of forward references
funcdecl->errors = true;
return;
default:
{
FuncDeclaration *fdv = cd->baseClass->vtbl[vi]->isFuncDeclaration();
FuncDeclaration *fdc = cd->vtbl[vi]->isFuncDeclaration();
// This function is covariant with fdv
if (fdc == funcdecl)
{
doesoverride = true;
break;
}
if (fdc->toParent() == parent)
{
//printf("vi = %d,\tthis = %p %s %s @ [%s]\n\tfdc = %p %s %s @ [%s]\n\tfdv = %p %s %s @ [%s]\n",
// vi, funcdecl, funcdecl->toChars(), funcdecl->type->toChars(), funcdecl->loc.toChars(),
// fdc, fdc ->toChars(), fdc ->type->toChars(), fdc ->loc.toChars(),
// fdv, fdv ->toChars(), fdv ->type->toChars(), fdv ->loc.toChars());
// fdc overrides fdv exactly, then this introduces new function.
if (fdc->type->mod == fdv->type->mod && funcdecl->type->mod != fdv->type->mod)
goto Lintro;
}
// This function overrides fdv
if (fdv->isFinalFunc())
funcdecl->error("cannot override final function %s", fdv->toPrettyChars());
if (!funcdecl->isOverride())
{
if (fdv->isFuture())
{
::deprecation(funcdecl->loc, "@__future base class method %s is being overridden by %s; rename the latter",
fdv->toPrettyChars(), funcdecl->toPrettyChars());
// Treat 'this' as an introducing function, giving it a separate hierarchy in the vtbl[]
goto Lintro;
}
else
{
int vi2 = funcdecl->findVtblIndex(&cd->baseClass->vtbl, (int)cd->baseClass->vtbl.length, false);
if (vi2 < 0)
// https://issues.dlang.org/show_bug.cgi?id=17349
::deprecation(funcdecl->loc, "cannot implicitly override base class method `%s` with `%s`; add `override` attribute",
fdv->toPrettyChars(), funcdecl->toPrettyChars());
else
error(funcdecl->loc, "implicitly overriding base class method %s with %s deprecated; add `override` attribute",
fdv->toPrettyChars(), funcdecl->toPrettyChars());
}
}
doesoverride = true;
if (fdc->toParent() == parent)
{
// If both are mixins, or both are not, then error.
// If either is not, the one that is not overrides the other.
bool thismixin = funcdecl->parent->isClassDeclaration() != NULL;
bool fdcmixin = fdc->parent->isClassDeclaration() != NULL;
if (thismixin == fdcmixin)
{
funcdecl->error("multiple overrides of same function");
}
else if (!thismixin) // fdc overrides fdv
{
// this doesn't override any function
break;
}
}
cd->vtbl[vi] = funcdecl;
funcdecl->vtblIndex = vi;
/* Remember which functions this overrides
*/
funcdecl->foverrides.push(fdv);
/* This works by whenever this function is called,
* it actually returns tintro, which gets dynamically
* cast to type. But we know that tintro is a base
* of type, so we could optimize it by not doing a
* dynamic cast, but just subtracting the isBaseOf()
* offset if the value is != null.
*/
if (fdv->tintro)
funcdecl->tintro = fdv->tintro;
else if (!funcdecl->type->equals(fdv->type))
{
/* Only need to have a tintro if the vptr
* offsets differ
*/
int offset;
if (fdv->type->nextOf()->isBaseOf(funcdecl->type->nextOf(), &offset))
{
funcdecl->tintro = fdv->type;
}
}
break;
}
}
/* Go through all the interface bases.
* If this function is covariant with any members of those interface
* functions, set the tintro.
*/
Linterfaces:
for (size_t i = 0; i < cd->interfaces.length; i++)
{
BaseClass *b = cd->interfaces.ptr[i];
vi = funcdecl->findVtblIndex((Dsymbols *)&b->sym->vtbl, (int)b->sym->vtbl.length);
switch (vi)
{
case -1:
break;
case -2:
// can't determine because of forward references
funcdecl->errors = true;
return;
default:
{
FuncDeclaration *fdv = (FuncDeclaration *)b->sym->vtbl[vi];
Type *ti = NULL;
/* Remember which functions this overrides
*/
funcdecl->foverrides.push(fdv);
/* Should we really require 'override' when implementing
* an interface function?
*/
//if (!funcdecl->isOverride())
//warning(funcdecl->loc, "overrides base class function %s, but is not marked with `override`", fdv->toPrettyChars());
if (fdv->tintro)
ti = fdv->tintro;
else if (!funcdecl->type->equals(fdv->type))
{
/* Only need to have a tintro if the vptr
* offsets differ
*/
int offset;
if (fdv->type->nextOf()->isBaseOf(funcdecl->type->nextOf(), &offset))
{
ti = fdv->type;
}
}
if (ti)
{
if (funcdecl->tintro)
{
if (!funcdecl->tintro->nextOf()->equals(ti->nextOf()) &&
!funcdecl->tintro->nextOf()->isBaseOf(ti->nextOf(), NULL) &&
!ti->nextOf()->isBaseOf(funcdecl->tintro->nextOf(), NULL))
{
funcdecl->error("incompatible covariant types %s and %s", funcdecl->tintro->toChars(), ti->toChars());
}
}
funcdecl->tintro = ti;
}
goto L2;
}
}
}
if (!doesoverride && funcdecl->isOverride() && (funcdecl->type->nextOf() || !may_override))
{
BaseClass *bc = NULL;
Dsymbol *s = NULL;
for (size_t i = 0; i < cd->baseclasses->length; i++)
{
bc = (*cd->baseclasses)[i];
s = bc->sym->search_correct(funcdecl->ident);
if (s) break;
}
if (s)
funcdecl->error("does not override any function, did you mean to override `%s%s`?",
bc->sym->isCPPclass() ? "extern (C++) " : "", s->toPrettyChars());
else
funcdecl->error("does not override any function");
}
L2: ;
/* Go through all the interface bases.
* Disallow overriding any final functions in the interface(s).
*/
for (size_t i = 0; i < cd->interfaces.length; i++)
{
BaseClass *b = cd->interfaces.ptr[i];
if (b->sym)
{
Dsymbol *s = search_function(b->sym, funcdecl->ident);
if (s)
{
FuncDeclaration *f2 = s->isFuncDeclaration();
if (f2)
{
f2 = f2->overloadExactMatch(funcdecl->type);
if (f2 && f2->isFinalFunc() && f2->prot().kind != Prot::private_)
funcdecl->error("cannot override final function %s.%s", b->sym->toChars(), f2->toPrettyChars());
}
}
}
}
if (funcdecl->isOverride())
{
if (funcdecl->storage_class & STCdisable)
funcdecl->deprecation("overridden functions cannot be annotated @disable");
if (funcdecl->isDeprecated())
funcdecl->deprecation("deprecated functions cannot be annotated @disable");
}
}
else if (funcdecl->isOverride() && !parent->isTemplateInstance())
funcdecl->error("override only applies to class member functions");
// Reflect this->type to f because it could be changed by findVtblIndex
f = funcdecl->type->toTypeFunction();
Ldone:
/* Contracts can only appear without a body when they are virtual interface functions
*/
if (!funcdecl->fbody && !allowsContractWithoutBody(funcdecl))
funcdecl->error("in and out contracts can only appear without a body when they are virtual interface functions or abstract");
/* Do not allow template instances to add virtual functions
* to a class.
*/
if (funcdecl->isVirtual())
{
TemplateInstance *ti = parent->isTemplateInstance();
if (ti)
{
// Take care of nested templates
while (1)
{
TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance();
if (!ti2)
break;
ti = ti2;
}
// If it's a member template
ClassDeclaration *cd = ti->tempdecl->isClassMember();
if (cd)
{
funcdecl->error("cannot use template to add virtual function to class `%s`", cd->toChars());
}
}
}
if (funcdecl->isMain())
funcdecl->checkDmain(); // Check main() parameters and return type
/* Purity and safety can be inferred for some functions by examining
* the function body.
*/
if (canInferAttributes(funcdecl, sc))
initInferAttributes(funcdecl);
Module::dprogress++;
funcdecl->semanticRun = PASSsemanticdone;
/* Save scope for possible later use (if we need the
* function internals)
*/
funcdecl->_scope = sc->copy();
funcdecl->_scope->setNoFree();
static bool printedMain = false; // semantic might run more than once
if (global.params.verbose && !printedMain)
{
const char *type = funcdecl->isMain() ? "main" : funcdecl->isWinMain() ? "winmain" : funcdecl->isDllMain() ? "dllmain" : (const char *)NULL;
Module *mod = sc->_module;
if (type && mod)
{
printedMain = true;
const char *name = mod->srcfile->toChars();
const char *path = FileName::searchPath(global.path, name, true);
message("entry %-10s\t%s", type, path ? path : name);
}
}
if (funcdecl->fbody && funcdecl->isMain() && sc->_module->isRoot())
Compiler::genCmain(sc);
assert(funcdecl->type->ty != Terror || funcdecl->errors);
// semantic for parameters' UDAs
const size_t nparams = f->parameterList.length();
for (size_t i = 0; i < nparams; i++)
{
Parameter *param = f->parameterList[i];
if (param && param->userAttribDecl)
dsymbolSemantic(param->userAttribDecl, sc);
}
}
// Do the semantic analysis on the external interface to the function.
void visit(FuncDeclaration *funcdecl)
{
funcDeclarationSemantic(funcdecl);
}
void visit(CtorDeclaration *ctd)
{
//printf("CtorDeclaration::semantic() %s\n", ctd->toChars());
if (ctd->semanticRun >= PASSsemanticdone)
return;
if (ctd->_scope)
{
sc = ctd->_scope;
ctd->_scope = NULL;
}
ctd->parent = sc->parent;
Dsymbol *p = ctd->toParent2();
AggregateDeclaration *ad = p->isAggregateDeclaration();
if (!ad)
{
error(ctd->loc, "constructor can only be a member of aggregate, not %s %s",
p->kind(), p->toChars());
ctd->type = Type::terror;
ctd->errors = true;
return;
}
sc = sc->push();
sc->stc &= ~STCstatic; // not a static constructor
sc->flags |= SCOPEctor;
funcDeclarationSemantic(ctd);
sc->pop();
if (ctd->errors)
return;
TypeFunction *tf = ctd->type->toTypeFunction();
/* See if it's the default constructor
* But, template constructor should not become a default constructor.
*/
if (ad && (!ctd->parent->isTemplateInstance() || ctd->parent->isTemplateMixin()))
{
const size_t dim = tf->parameterList.length();
if (StructDeclaration *sd = ad->isStructDeclaration())
{
if (dim == 0 && tf->parameterList.varargs == VARARGnone) // empty default ctor w/o any varargs
{
if (ctd->fbody || !(ctd->storage_class & STCdisable) || dim)
{
ctd->error("default constructor for structs only allowed "
"with @disable, no body, and no parameters");
ctd->storage_class |= STCdisable;
ctd->fbody = NULL;
}
sd->noDefaultCtor = true;
}
else if (dim == 0 && tf->parameterList.varargs) // allow varargs only ctor
{
}
else if (dim && tf->parameterList[0]->defaultArg)
{
// if the first parameter has a default argument, then the rest does as well
if (ctd->storage_class & STCdisable)
{
ctd->deprecation("@disable'd constructor cannot have default "
"arguments for all parameters.");
deprecationSupplemental(ctd->loc, "Use @disable this(); if you want to disable default initialization.");
}
else
ctd->deprecation("all parameters have default arguments, "
"but structs cannot have default constructors.");
}
}
else if (dim == 0 && tf->parameterList.varargs == VARARGnone)
{
ad->defaultCtor = ctd;
}
}
}
void visit(PostBlitDeclaration *pbd)
{
//printf("PostBlitDeclaration::semantic() %s\n", pbd->toChars());
//printf("ident: %s, %s, %p, %p\n", pbd->ident->toChars(), Id::dtor->toChars(), pbd->ident, Id::dtor);
//printf("stc = x%llx\n", sc->stc);
if (pbd->semanticRun >= PASSsemanticdone)
return;
if (pbd->_scope)
{
sc = pbd->_scope;
pbd->_scope = NULL;
}
pbd->parent = sc->parent;
Dsymbol *p = pbd->toParent2();
StructDeclaration *ad = p->isStructDeclaration();
if (!ad)
{
error(pbd->loc, "postblit can only be a member of struct/union, not %s %s",
p->kind(), p->toChars());
pbd->type = Type::terror;
pbd->errors = true;
return;
}
if (pbd->ident == Id::postblit && pbd->semanticRun < PASSsemantic)
ad->postblits.push(pbd);
if (!pbd->type)
pbd->type = new TypeFunction(ParameterList(), Type::tvoid, LINKd, pbd->storage_class);
sc = sc->push();
sc->stc &= ~STCstatic; // not static
sc->linkage = LINKd;
funcDeclarationSemantic(pbd);
sc->pop();
}
void visit(DtorDeclaration *dd)
{
//printf("DtorDeclaration::semantic() %s\n", dd->toChars());
//printf("ident: %s, %s, %p, %p\n", dd->ident->toChars(), Id::dtor->toChars(), dd->ident, Id::dtor);
if (dd->semanticRun >= PASSsemanticdone)
return;
if (dd->_scope)
{
sc = dd->_scope;
dd->_scope = NULL;
}
dd->parent = sc->parent;
Dsymbol *p = dd->toParent2();
AggregateDeclaration *ad = p->isAggregateDeclaration();
if (!ad)
{
error(dd->loc, "destructor can only be a member of aggregate, not %s %s",
p->kind(), p->toChars());
dd->type = Type::terror;
dd->errors = true;
return;
}
if (dd->ident == Id::dtor && dd->semanticRun < PASSsemantic)
ad->dtors.push(dd);
if (!dd->type)
dd->type = new TypeFunction(ParameterList(), Type::tvoid, LINKd, dd->storage_class);
sc = sc->push();
sc->stc &= ~STCstatic; // not a static destructor
if (sc->linkage != LINKcpp)
sc->linkage = LINKd;
funcDeclarationSemantic(dd);
sc->pop();
}
void visit(StaticCtorDeclaration *scd)
{
//printf("StaticCtorDeclaration::semantic()\n");
if (scd->semanticRun >= PASSsemanticdone)
return;
if (scd->_scope)
{
sc = scd->_scope;
scd->_scope = NULL;
}
scd->parent = sc->parent;
Dsymbol *p = scd->parent->pastMixin();
if (!p->isScopeDsymbol())
{
const char *s = (scd->isSharedStaticCtorDeclaration() ? "shared " : "");
error(scd->loc, "%sstatic constructor can only be member of module/aggregate/template, not %s %s",
s, p->kind(), p->toChars());
scd->type = Type::terror;
scd->errors = true;
return;
}
if (!scd->type)
scd->type = new TypeFunction(ParameterList(), Type::tvoid, LINKd, scd->storage_class);
/* If the static ctor appears within a template instantiation,
* it could get called multiple times by the module constructors
* for different modules. Thus, protect it with a gate.
*/
if (scd->isInstantiated() && scd->semanticRun < PASSsemantic)
{
/* Add this prefix to the function:
* static int gate;
* if (++gate != 1) return;
* Note that this is not thread safe; should not have threads
* during static construction.
*/
VarDeclaration *v = new VarDeclaration(Loc(), Type::tint32, Id::gate, NULL);
v->storage_class = STCtemp | (scd->isSharedStaticCtorDeclaration() ? STCstatic : STCtls);
Statements *sa = new Statements();
Statement *s = new ExpStatement(Loc(), v);
sa->push(s);
Expression *e = new IdentifierExp(Loc(), v->ident);
e = new AddAssignExp(Loc(), e, new IntegerExp(1));
e = new EqualExp(TOKnotequal, Loc(), e, new IntegerExp(1));
s = new IfStatement(Loc(), NULL, e, new ReturnStatement(Loc(), NULL), NULL, Loc());
sa->push(s);
if (scd->fbody)
sa->push(scd->fbody);
scd->fbody = new CompoundStatement(Loc(), sa);
}
funcDeclarationSemantic(scd);
// We're going to need ModuleInfo
Module *m = scd->getModule();
if (!m)
m = sc->_module;
if (m)
{
m->needmoduleinfo = 1;
//printf("module1 %s needs moduleinfo\n", m->toChars());
}
}
void visit(StaticDtorDeclaration *sdd)
{
if (sdd->semanticRun >= PASSsemanticdone)
return;
if (sdd->_scope)
{
sc = sdd->_scope;
sdd->_scope = NULL;
}
sdd->parent = sc->parent;
Dsymbol *p = sdd->parent->pastMixin();
if (!p->isScopeDsymbol())
{
const char *s = (sdd->isSharedStaticDtorDeclaration() ? "shared " : "");
error(sdd->loc, "%sstatic destructor can only be member of module/aggregate/template, not %s %s",
s, p->kind(), p->toChars());
sdd->type = Type::terror;
sdd->errors = true;
return;
}
if (!sdd->type)
sdd->type = new TypeFunction(ParameterList(), Type::tvoid, LINKd, sdd->storage_class);
/* If the static ctor appears within a template instantiation,
* it could get called multiple times by the module constructors
* for different modules. Thus, protect it with a gate.
*/
if (sdd->isInstantiated() && sdd->semanticRun < PASSsemantic)
{
/* Add this prefix to the function:
* static int gate;
* if (--gate != 0) return;
* Increment gate during constructor execution.
* Note that this is not thread safe; should not have threads
* during static destruction.
*/
VarDeclaration *v = new VarDeclaration(Loc(), Type::tint32, Id::gate, NULL);
v->storage_class = STCtemp | (sdd->isSharedStaticDtorDeclaration() ? STCstatic : STCtls);
Statements *sa = new Statements();
Statement *s = new ExpStatement(Loc(), v);
sa->push(s);
Expression *e = new IdentifierExp(Loc(), v->ident);
e = new AddAssignExp(Loc(), e, new IntegerExp(-1));
e = new EqualExp(TOKnotequal, Loc(), e, new IntegerExp(0));
s = new IfStatement(Loc(), NULL, e, new ReturnStatement(Loc(), NULL), NULL, Loc());
sa->push(s);
if (sdd->fbody)
sa->push(sdd->fbody);
sdd->fbody = new CompoundStatement(Loc(), sa);
sdd->vgate = v;
}
funcDeclarationSemantic(sdd);
// We're going to need ModuleInfo
Module *m = sdd->getModule();
if (!m)
m = sc->_module;
if (m)
{
m->needmoduleinfo = 1;
//printf("module2 %s needs moduleinfo\n", m->toChars());
}
}
void visit(InvariantDeclaration *invd)
{
if (invd->semanticRun >= PASSsemanticdone)
return;
if (invd->_scope)
{
sc = invd->_scope;
invd->_scope = NULL;
}
invd->parent = sc->parent;
Dsymbol *p = invd->parent->pastMixin();
AggregateDeclaration *ad = p->isAggregateDeclaration();
if (!ad)
{
error(invd->loc, "invariant can only be a member of aggregate, not %s %s",
p->kind(), p->toChars());
invd->type = Type::terror;
invd->errors = true;
return;
}
if (invd->ident != Id::classInvariant &&
invd->semanticRun < PASSsemantic &&
!ad->isUnionDeclaration() // users are on their own with union fields
)
ad->invs.push(invd);
if (!invd->type)
invd->type = new TypeFunction(ParameterList(), Type::tvoid, LINKd, invd->storage_class);
sc = sc->push();
sc->stc &= ~STCstatic; // not a static invariant
sc->stc |= STCconst; // invariant() is always const
sc->flags = (sc->flags & ~SCOPEcontract) | SCOPEinvariant;
sc->linkage = LINKd;
funcDeclarationSemantic(invd);
sc->pop();
}
void visit(UnitTestDeclaration *utd)
{
if (utd->semanticRun >= PASSsemanticdone)
return;
if (utd->_scope)
{
sc = utd->_scope;
utd->_scope = NULL;
}
utd->protection = sc->protection;
utd->parent = sc->parent;
Dsymbol *p = utd->parent->pastMixin();
if (!p->isScopeDsymbol())
{
error(utd->loc, "unittest can only be a member of module/aggregate/template, not %s %s",
p->kind(), p->toChars());
utd->type = Type::terror;
utd->errors = true;
return;
}
if (global.params.useUnitTests)
{
if (!utd->type)
utd->type = new TypeFunction(ParameterList(), Type::tvoid, LINKd, utd->storage_class);
Scope *sc2 = sc->push();
sc2->linkage = LINKd;
funcDeclarationSemantic(utd);
sc2->pop();
}
}
void visit(NewDeclaration *nd)
{
//printf("NewDeclaration::semantic()\n");
if (nd->semanticRun >= PASSsemanticdone)
return;
if (nd->_scope)
{
sc = nd->_scope;
nd->_scope = NULL;
}
nd->parent = sc->parent;
Dsymbol *p = nd->parent->pastMixin();
if (!p->isAggregateDeclaration())
{
error(nd->loc, "allocator can only be a member of aggregate, not %s %s",
p->kind(), p->toChars());
nd->type = Type::terror;
nd->errors = true;
return;
}
Type *tret = Type::tvoid->pointerTo();
if (!nd->type)
nd->type = new TypeFunction(ParameterList(nd->parameters, nd->varargs), tret, LINKd, nd->storage_class);
nd->type = typeSemantic(nd->type, nd->loc, sc);
// Check that there is at least one argument of type size_t
TypeFunction *tf = nd->type->toTypeFunction();
if (tf->parameterList.length() < 1)
{
nd->error("at least one argument of type size_t expected");
}
else
{
Parameter *fparam = tf->parameterList[0];
if (!fparam->type->equals(Type::tsize_t))
nd->error("first argument must be type size_t, not %s", fparam->type->toChars());
}
funcDeclarationSemantic(nd);
}
void visit(DeleteDeclaration *deld)
{
//printf("DeleteDeclaration::semantic()\n");
if (deld->semanticRun >= PASSsemanticdone)
return;
if (deld->_scope)
{
sc = deld->_scope;
deld->_scope = NULL;
}
deld->parent = sc->parent;
Dsymbol *p = deld->parent->pastMixin();
if (!p->isAggregateDeclaration())
{
error(deld->loc, "deallocator can only be a member of aggregate, not %s %s",
p->kind(), p->toChars());
deld->type = Type::terror;
deld->errors = true;
return;
}
if (!deld->type)
deld->type = new TypeFunction(ParameterList(deld->parameters), Type::tvoid, LINKd, deld->storage_class);
deld->type = typeSemantic(deld->type, deld->loc, sc);
// Check that there is only one argument of type void*
TypeFunction *tf = deld->type->toTypeFunction();
if (tf->parameterList.length() != 1)
{
deld->error("one argument of type void* expected");
}
else
{
Parameter *fparam = tf->parameterList[0];
if (!fparam->type->equals(Type::tvoid->pointerTo()))
deld->error("one argument of type void* expected, not %s", fparam->type->toChars());
}
funcDeclarationSemantic(deld);
}
void visit(StructDeclaration *sd)
{
//printf("StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", sd, sd->parent->toChars(), sd->toChars(), sizeok);
//static int count; if (++count == 20) halt();
if (sd->semanticRun >= PASSsemanticdone)
return;
unsigned errors = global.errors;
//printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", sd, sd->parent->toChars(), sd->toChars(), sizeok);
Scope *scx = NULL;
if (sd->_scope)
{
sc = sd->_scope;
scx = sd->_scope; // save so we don't make redundant copies
sd->_scope = NULL;
}
if (!sd->parent)
{
assert(sc->parent && sc->func);
sd->parent = sc->parent;
}
assert(sd->parent && !sd->isAnonymous());
if (sd->errors)
sd->type = Type::terror;
if (sd->semanticRun == PASSinit)
sd->type = sd->type->addSTC(sc->stc | sd->storage_class);
sd->type = typeSemantic(sd->type, sd->loc, sc);
if (sd->type->ty == Tstruct && ((TypeStruct *)sd->type)->sym != sd)
{
TemplateInstance *ti = ((TypeStruct *)sd->type)->sym->isInstantiated();
if (ti && isError(ti))
((TypeStruct *)sd->type)->sym = sd;
}
// Ungag errors when not speculative
Ungag ungag = sd->ungagSpeculative();
if (sd->semanticRun == PASSinit)
{
sd->protection = sc->protection;
sd->alignment = sc->alignment();
sd->storage_class |= sc->stc;
if (sd->storage_class & STCdeprecated)
sd->isdeprecated = true;
if (sd->storage_class & STCabstract)
sd->error("structs, unions cannot be abstract");
sd->userAttribDecl = sc->userAttribDecl;
if (sc->linkage == LINKcpp)
sd->classKind = ClassKind::cpp;
}
else if (sd->symtab && !scx)
{
return;
}
sd->semanticRun = PASSsemantic;
if (!sd->members) // if opaque declaration
{
sd->semanticRun = PASSsemanticdone;
return;
}
if (!sd->symtab)
{
sd->symtab = new DsymbolTable();
for (size_t i = 0; i < sd->members->length; i++)
{
Dsymbol *s = (*sd->members)[i];
//printf("adding member '%s' to '%s'\n", s->toChars(), sd->toChars());
s->addMember(sc, sd);
}
}
Scope *sc2 = sd->newScope(sc);
/* Set scope so if there are forward references, we still might be able to
* resolve individual members like enums.
*/
for (size_t i = 0; i < sd->members->length; i++)
{
Dsymbol *s = (*sd->members)[i];
//printf("struct: setScope %s %s\n", s->kind(), s->toChars());
s->setScope(sc2);
}
for (size_t i = 0; i < sd->members->length; i++)
{
Dsymbol *s = (*sd->members)[i];
s->importAll(sc2);
}
for (size_t i = 0; i < sd->members->length; i++)
{
Dsymbol *s = (*sd->members)[i];
dsymbolSemantic(s, sc2);
}
if (!sd->determineFields())
{
assert(sd->type->ty == Terror);
sc2->pop();
sd->semanticRun = PASSsemanticdone;
return;
}
/* Following special member functions creation needs semantic analysis
* completion of sub-structs in each field types. For example, buildDtor
* needs to check existence of elaborate dtor in type of each fields.
* See the case in compilable/test14838.d
*/
for (size_t i = 0; i < sd->fields.length; i++)
{
VarDeclaration *v = sd->fields[i];
Type *tb = v->type->baseElemOf();
if (tb->ty != Tstruct)
continue;
StructDeclaration *sdec = ((TypeStruct *)tb)->sym;
if (sdec->semanticRun >= PASSsemanticdone)
continue;
sc2->pop();
sd->_scope = scx ? scx : sc->copy();
sd->_scope->setNoFree();
Module::addDeferredSemantic(sd);
//printf("\tdeferring %s\n", sd->toChars());
return;
}
/* Look for special member functions.
*/
sd->aggNew = (NewDeclaration *)sd->search(Loc(), Id::classNew);
sd->aggDelete = (DeleteDeclaration *)sd->search(Loc(), Id::classDelete);
// Look for the constructor
sd->ctor = sd->searchCtor();
sd->dtor = buildDtor(sd, sc2);
sd->postblit = buildPostBlit(sd, sc2);
buildOpAssign(sd, sc2);
buildOpEquals(sd, sc2);
if (global.params.useTypeInfo && Type::dtypeinfo) // these functions are used for TypeInfo
{
sd->xeq = buildXopEquals(sd, sc2);
sd->xcmp = buildXopCmp(sd, sc2);
sd->xhash = buildXtoHash(sd, sc2);
}
sd->inv = buildInv(sd, sc2);
Module::dprogress++;
sd->semanticRun = PASSsemanticdone;
//printf("-StructDeclaration::semantic(this=%p, '%s')\n", sd, sd->toChars());
sc2->pop();
if (sd->ctor)
{
Dsymbol *scall = sd->search(Loc(), Id::call);
if (scall)
{
unsigned xerrors = global.startGagging();
sc = sc->push();
sc->tinst = NULL;
sc->minst = NULL;
FuncDeclaration *fcall = resolveFuncCall(sd->loc, sc, scall, NULL, NULL, NULL, 1);
sc = sc->pop();
global.endGagging(xerrors);
if (fcall && fcall->isStatic())
{
sd->error(fcall->loc, "`static opCall` is hidden by constructors and can never be called");
errorSupplemental(fcall->loc, "Please use a factory method instead, or replace all constructors with `static opCall`.");
}
}
}
if (sd->type->ty == Tstruct && ((TypeStruct *)sd->type)->sym != sd)
{
// https://issues.dlang.org/show_bug.cgi?id=19024
StructDeclaration *sym = ((TypeStruct *)sd->type)->sym;
sd->error("already exists at %s. Perhaps in another function with the same name?", sym->loc.toChars());
}
if (global.errors != errors)
{
// The type is no good.
sd->type = Type::terror;
sd->errors = true;
if (sd->deferred)
sd->deferred->errors = true;
}
if (sd->deferred && !global.gag)
{
semantic2(sd->deferred, sc);
semantic3(sd->deferred, sc);
}
}
void interfaceSemantic(ClassDeclaration *cd)
{
cd->vtblInterfaces = new BaseClasses();
cd->vtblInterfaces->reserve(cd->interfaces.length);
for (size_t i = 0; i < cd->interfaces.length; i++)
{
BaseClass *b = cd->interfaces.ptr[i];
cd->vtblInterfaces->push(b);
b->copyBaseInterfaces(cd->vtblInterfaces);
}
}
void visit(ClassDeclaration *cldec)
{
//printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", cldec->toChars(), cldec->type, sizeok, cldec);
//printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
//printf("sc->stc = %x\n", sc->stc);
//{ static int n; if (++n == 20) *(char*)0=0; }
if (cldec->semanticRun >= PASSsemanticdone)
return;
unsigned errors = global.errors;
//printf("+ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", cldec->toChars(), cldec->type, sizeok, cldec);
Scope *scx = NULL;
if (cldec->_scope)
{
sc = cldec->_scope;
scx = cldec->_scope; // save so we don't make redundant copies
cldec->_scope = NULL;
}
if (!cldec->parent)
{
assert(sc->parent);
cldec->parent = sc->parent;
}
if (cldec->errors)
cldec->type = Type::terror;
cldec->type = typeSemantic(cldec->type, cldec->loc, sc);
if (cldec->type->ty == Tclass && ((TypeClass *)cldec->type)->sym != cldec)
{
TemplateInstance *ti = ((TypeClass *)cldec->type)->sym->isInstantiated();
if (ti && isError(ti))
((TypeClass *)cldec->type)->sym = cldec;
}
// Ungag errors when not speculative
Ungag ungag = cldec->ungagSpeculative();
if (cldec->semanticRun == PASSinit)
{
cldec->protection = sc->protection;
cldec->storage_class |= sc->stc;
if (cldec->storage_class & STCdeprecated)
cldec->isdeprecated = true;
if (cldec->storage_class & STCauto)
cldec->error("storage class `auto` is invalid when declaring a class, did you mean to use `scope`?");
if (cldec->storage_class & STCscope)
cldec->isscope = true;
if (cldec->storage_class & STCabstract)
cldec->isabstract = ABSyes;
cldec->userAttribDecl = sc->userAttribDecl;
if (sc->linkage == LINKcpp)
cldec->classKind = ClassKind::cpp;
if (sc->linkage == LINKobjc)
objc()->setObjc(cldec);
}
else if (cldec->symtab && !scx)
{
return;
}
cldec->semanticRun = PASSsemantic;
if (cldec->baseok < BASEOKdone)
{
cldec->baseok = BASEOKin;
// Expand any tuples in baseclasses[]
for (size_t i = 0; i < cldec->baseclasses->length; )
{
BaseClass *b = (*cldec->baseclasses)[i];
b->type = resolveBase(cldec, sc, scx, b->type);
Type *tb = b->type->toBasetype();
if (tb->ty == Ttuple)
{
TypeTuple *tup = (TypeTuple *)tb;
cldec->baseclasses->remove(i);
size_t dim = Parameter::dim(tup->arguments);
for (size_t j = 0; j < dim; j++)
{
Parameter *arg = Parameter::getNth(tup->arguments, j);
b = new BaseClass(arg->type);
cldec->baseclasses->insert(i + j, b);
}
}
else
i++;
}
if (cldec->baseok >= BASEOKdone)
{
//printf("%s already semantic analyzed, semanticRun = %d\n", cldec->toChars(), cldec->semanticRun);
if (cldec->semanticRun >= PASSsemanticdone)
return;
goto Lancestorsdone;
}
// See if there's a base class as first in baseclasses[]
if (cldec->baseclasses->length)
{
BaseClass *b = (*cldec->baseclasses)[0];
Type *tb = b->type->toBasetype();
TypeClass *tc = (tb->ty == Tclass) ? (TypeClass *)tb : NULL;
if (!tc)
{
if (b->type != Type::terror)
cldec->error("base type must be class or interface, not %s", b->type->toChars());
cldec->baseclasses->remove(0);
goto L7;
}
if (tc->sym->isDeprecated())
{
if (!cldec->isDeprecated())
{
// Deriving from deprecated class makes this one deprecated too
cldec->isdeprecated = true;
tc->checkDeprecated(cldec->loc, sc);
}
}
if (tc->sym->isInterfaceDeclaration())
goto L7;
for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
{
if (cdb == cldec)
{
cldec->error("circular inheritance");
cldec->baseclasses->remove(0);
goto L7;
}
}
/* Bugzilla 11034: Essentially, class inheritance hierarchy
* and instance size of each classes are orthogonal information.
* Therefore, even if tc->sym->sizeof == SIZEOKnone,
* we need to set baseClass field for class covariance check.
*/
cldec->baseClass = tc->sym;
b->sym = cldec->baseClass;
if (tc->sym->baseok < BASEOKdone)
resolveBase(cldec, sc, scx, tc->sym); // Try to resolve forward reference
if (tc->sym->baseok < BASEOKdone)
{
//printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
if (tc->sym->_scope)
Module::addDeferredSemantic(tc->sym);
cldec->baseok = BASEOKnone;
}
L7: ;
}
// Treat the remaining entries in baseclasses as interfaces
// Check for errors, handle forward references
for (size_t i = (cldec->baseClass ? 1 : 0); i < cldec->baseclasses->length; )
{
BaseClass *b = (*cldec->baseclasses)[i];
Type *tb = b->type->toBasetype();
TypeClass *tc = (tb->ty == Tclass) ? (TypeClass *)tb : NULL;
if (!tc || !tc->sym->isInterfaceDeclaration())
{
if (b->type != Type::terror)
cldec->error("base type must be interface, not %s", b->type->toChars());
cldec->baseclasses->remove(i);
continue;
}
// Check for duplicate interfaces
for (size_t j = (cldec->baseClass ? 1 : 0); j < i; j++)
{
BaseClass *b2 = (*cldec->baseclasses)[j];
if (b2->sym == tc->sym)
{
cldec->error("inherits from duplicate interface %s", b2->sym->toChars());
cldec->baseclasses->remove(i);
continue;
}
}
if (tc->sym->isDeprecated())
{
if (!cldec->isDeprecated())
{
// Deriving from deprecated class makes this one deprecated too
cldec->isdeprecated = true;
tc->checkDeprecated(cldec->loc, sc);
}
}
b->sym = tc->sym;
if (tc->sym->baseok < BASEOKdone)
resolveBase(cldec, sc, scx, tc->sym); // Try to resolve forward reference
if (tc->sym->baseok < BASEOKdone)
{
//printf("\ttry later, forward reference of base %s\n", tc->sym->toChars());
if (tc->sym->_scope)
Module::addDeferredSemantic(tc->sym);
cldec->baseok = BASEOKnone;
}
i++;
}
if (cldec->baseok == BASEOKnone)
{
// Forward referencee of one or more bases, try again later
cldec->_scope = scx ? scx : sc->copy();
cldec->_scope->setNoFree();
Module::addDeferredSemantic(cldec);
//printf("\tL%d semantic('%s') failed due to forward references\n", __LINE__, cldec->toChars());
return;
}
cldec->baseok = BASEOKdone;
// If no base class, and this is not an Object, use Object as base class
if (!cldec->baseClass && cldec->ident != Id::Object && !cldec->isCPPclass())
{
if (!ClassDeclaration::object || ClassDeclaration::object->errors)
badObjectDotD(cldec);
Type *t = ClassDeclaration::object->type;
t = typeSemantic(t, cldec->loc, sc)->toBasetype();
if (t->ty == Terror)
badObjectDotD(cldec);
assert(t->ty == Tclass);
TypeClass *tc = (TypeClass *)t;
BaseClass *b = new BaseClass(tc);
cldec->baseclasses->shift(b);
cldec->baseClass = tc->sym;
assert(!cldec->baseClass->isInterfaceDeclaration());
b->sym = cldec->baseClass;
}
if (cldec->baseClass)
{
if (cldec->baseClass->storage_class & STCfinal)
cldec->error("cannot inherit from final class %s", cldec->baseClass->toChars());
// Inherit properties from base class
if (cldec->baseClass->isCOMclass())
cldec->com = true;
if (cldec->baseClass->isCPPclass())
cldec->classKind = ClassKind::cpp;
if (cldec->baseClass->isscope)
cldec->isscope = true;
cldec->enclosing = cldec->baseClass->enclosing;
cldec->storage_class |= cldec->baseClass->storage_class & STC_TYPECTOR;
}
cldec->interfaces.length = cldec->baseclasses->length - (cldec->baseClass ? 1 : 0);
cldec->interfaces.ptr = cldec->baseclasses->tdata() + (cldec->baseClass ? 1 : 0);
for (size_t i = 0; i < cldec->interfaces.length; i++)
{
BaseClass *b = cldec->interfaces.ptr[i];
// If this is an interface, and it derives from a COM interface,
// then this is a COM interface too.
if (b->sym->isCOMinterface())
cldec->com = true;
if (cldec->isCPPclass() && !b->sym->isCPPinterface())
{
error(cldec->loc, "C++ class `%s` cannot implement D interface `%s`",
cldec->toPrettyChars(), b->sym->toPrettyChars());
}
}
interfaceSemantic(cldec);
}
Lancestorsdone:
//printf("\tClassDeclaration::semantic(%s) baseok = %d\n", cldec->toChars(), cldec->baseok);
if (!cldec->members) // if opaque declaration
{
cldec->semanticRun = PASSsemanticdone;
return;
}
if (!cldec->symtab)
{
cldec->symtab = new DsymbolTable();
/* Bugzilla 12152: The semantic analysis of base classes should be finished
* before the members semantic analysis of this class, in order to determine
* vtbl in this class. However if a base class refers the member of this class,
* it can be resolved as a normal forward reference.
* Call addMember() and setScope() to make this class members visible from the base classes.
*/
for (size_t i = 0; i < cldec->members->length; i++)
{
Dsymbol *s = (*cldec->members)[i];
s->addMember(sc, cldec);
}
Scope *sc2 = cldec->newScope(sc);
/* Set scope so if there are forward references, we still might be able to
* resolve individual members like enums.
*/
for (size_t i = 0; i < cldec->members->length; i++)
{
Dsymbol *s = (*cldec->members)[i];
//printf("[%d] setScope %s %s, sc2 = %p\n", i, s->kind(), s->toChars(), sc2);
s->setScope(sc2);
}
sc2->pop();
}
for (size_t i = 0; i < cldec->baseclasses->length; i++)
{
BaseClass *b = (*cldec->baseclasses)[i];
Type *tb = b->type->toBasetype();
assert(tb->ty == Tclass);
TypeClass *tc = (TypeClass *)tb;
if (tc->sym->semanticRun < PASSsemanticdone)
{
// Forward referencee of one or more bases, try again later
cldec->_scope = scx ? scx : sc->copy();
cldec->_scope->setNoFree();
if (tc->sym->_scope)
Module::addDeferredSemantic(tc->sym);
Module::addDeferredSemantic(cldec);
//printf("\tL%d semantic('%s') failed due to forward references\n", __LINE__, cldec->toChars());
return;
}
}
if (cldec->baseok == BASEOKdone)
{
cldec->baseok = BASEOKsemanticdone;
// initialize vtbl
if (cldec->baseClass)
{
if (cldec->isCPPclass() && cldec->baseClass->vtbl.length == 0)
{
cldec->error("C++ base class %s needs at least one virtual function", cldec->baseClass->toChars());
}
// Copy vtbl[] from base class
cldec->vtbl.setDim(cldec->baseClass->vtbl.length);
memcpy(cldec->vtbl.tdata(), cldec->baseClass->vtbl.tdata(), sizeof(void *) * cldec->vtbl.length);
cldec->vthis = cldec->baseClass->vthis;
}
else
{
// No base class, so this is the root of the class hierarchy
cldec->vtbl.setDim(0);
if (cldec->vtblOffset())
cldec->vtbl.push(cldec); // leave room for classinfo as first member
}
/* If this is a nested class, add the hidden 'this'
* member which is a pointer to the enclosing scope.
*/
if (cldec->vthis) // if inheriting from nested class
{
// Use the base class's 'this' member
if (cldec->storage_class & STCstatic)
cldec->error("static class cannot inherit from nested class %s", cldec->baseClass->toChars());
if (cldec->toParent2() != cldec->baseClass->toParent2() &&
(!cldec->toParent2() ||
!cldec->baseClass->toParent2()->getType() ||
!cldec->baseClass->toParent2()->getType()->isBaseOf(cldec->toParent2()->getType(), NULL)))
{
if (cldec->toParent2())
{
cldec->error("is nested within %s, but super class %s is nested within %s",
cldec->toParent2()->toChars(),
cldec->baseClass->toChars(),
cldec->baseClass->toParent2()->toChars());
}
else
{
cldec->error("is not nested, but super class %s is nested within %s",
cldec->baseClass->toChars(),
cldec->baseClass->toParent2()->toChars());
}
cldec->enclosing = NULL;
}
}
else
cldec->makeNested();
}
Scope *sc2 = cldec->newScope(sc);
for (size_t i = 0; i < cldec->members->length; i++)
{
Dsymbol *s = (*cldec->members)[i];
s->importAll(sc2);
}
// Note that members.length can grow due to tuple expansion during semantic()
for (size_t i = 0; i < cldec->members->length; i++)
{
Dsymbol *s = (*cldec->members)[i];
dsymbolSemantic(s, sc2);
}
if (!cldec->determineFields())
{
assert(cldec->type == Type::terror);
sc2->pop();
return;
}
/* Following special member functions creation needs semantic analysis
* completion of sub-structs in each field types.
*/
for (size_t i = 0; i < cldec->fields.length; i++)
{
VarDeclaration *v = cldec->fields[i];
Type *tb = v->type->baseElemOf();
if (tb->ty != Tstruct)
continue;
StructDeclaration *sd = ((TypeStruct *)tb)->sym;
if (sd->semanticRun >= PASSsemanticdone)
continue;
sc2->pop();
cldec->_scope = scx ? scx : sc->copy();
cldec->_scope->setNoFree();
Module::addDeferredSemantic(cldec);
//printf("\tdeferring %s\n", cldec->toChars());
return;
}
/* Look for special member functions.
* They must be in this class, not in a base class.
*/
// Can be in base class
cldec->aggNew = (NewDeclaration *)cldec->search(Loc(), Id::classNew);
cldec->aggDelete = (DeleteDeclaration *)cldec->search(Loc(), Id::classDelete);
// Look for the constructor
cldec->ctor = cldec->searchCtor();
if (!cldec->ctor && cldec->noDefaultCtor)
{
// A class object is always created by constructor, so this check is legitimate.
for (size_t i = 0; i < cldec->fields.length; i++)
{
VarDeclaration *v = cldec->fields[i];
if (v->storage_class & STCnodefaultctor)
error(v->loc, "field %s must be initialized in constructor", v->toChars());
}
}
// If this class has no constructor, but base class has a default
// ctor, create a constructor:
// this() { }
if (!cldec->ctor && cldec->baseClass && cldec->baseClass->ctor)
{
FuncDeclaration *fd = resolveFuncCall(cldec->loc, sc2, cldec->baseClass->ctor, NULL, cldec->type, NULL, 1);
if (!fd) // try shared base ctor instead
fd = resolveFuncCall(cldec->loc, sc2, cldec->baseClass->ctor, NULL, cldec->type->sharedOf(), NULL, 1);
if (fd && !fd->errors)
{
//printf("Creating default this(){} for class %s\n", cldec->toChars());
TypeFunction *btf = fd->type->toTypeFunction();
TypeFunction *tf = new TypeFunction(ParameterList(), NULL, LINKd, fd->storage_class);
tf->mod = btf->mod;
tf->purity = btf->purity;
tf->isnothrow = btf->isnothrow;
tf->isnogc = btf->isnogc;
tf->trust = btf->trust;
CtorDeclaration *ctor = new CtorDeclaration(cldec->loc, Loc(), 0, tf);
ctor->fbody = new CompoundStatement(Loc(), new Statements());
cldec->members->push(ctor);
ctor->addMember(sc, cldec);
dsymbolSemantic(ctor, sc2);
cldec->ctor = ctor;
cldec->defaultCtor = ctor;
}
else
{
cldec->error("cannot implicitly generate a default ctor when base class %s is missing a default ctor",
cldec->baseClass->toPrettyChars());
}
}
cldec->dtor = buildDtor(cldec, sc2);
if (FuncDeclaration *f = hasIdentityOpAssign(cldec, sc2))
{
if (!(f->storage_class & STCdisable))
cldec->error(f->loc, "identity assignment operator overload is illegal");
}
cldec->inv = buildInv(cldec, sc2);
Module::dprogress++;
cldec->semanticRun = PASSsemanticdone;
//printf("-ClassDeclaration.semantic(%s), type = %p\n", cldec->toChars(), cldec->type);
//members.print();
sc2->pop();
if (cldec->type->ty == Tclass && ((TypeClass *)cldec->type)->sym != cldec)
{
// https://issues.dlang.org/show_bug.cgi?id=17492
ClassDeclaration *cd = ((TypeClass *)cldec->type)->sym;
cldec->error("already exists at %s. Perhaps in another function with the same name?", cd->loc.toChars());
}
if (global.errors != errors)
{
// The type is no good.
cldec->type = Type::terror;
cldec->errors = true;
if (cldec->deferred)
cldec->deferred->errors = true;
}
// Verify fields of a synchronized class are not public
if (cldec->storage_class & STCsynchronized)
{
for (size_t i = 0; i < cldec->fields.length; i++)
{
VarDeclaration *vd = cldec->fields[i];
if (!vd->isThisDeclaration() &&
!vd->prot().isMoreRestrictiveThan(Prot(Prot::public_)))
{
vd->error("Field members of a synchronized class cannot be %s",
protectionToChars(vd->prot().kind));
}
}
}
if (cldec->deferred && !global.gag)
{
semantic2(cldec->deferred, sc);
semantic3(cldec->deferred, sc);
}
//printf("-ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", cldec->toChars(), cldec->type, sizeok, cldec);
}
void visit(InterfaceDeclaration *idec)
{
//printf("InterfaceDeclaration::semantic(%s), type = %p\n", idec->toChars(), idec->type);
if (idec->semanticRun >= PASSsemanticdone)
return;
unsigned errors = global.errors;
//printf("+InterfaceDeclaration.semantic(%s), type = %p\n", idec->toChars(), idec->type);
Scope *scx = NULL;
if (idec->_scope)
{
sc = idec->_scope;
scx = idec->_scope; // save so we don't make redundant copies
idec->_scope = NULL;
}
if (!idec->parent)
{
assert(sc->parent && sc->func);
idec->parent = sc->parent;
}
assert(idec->parent && !idec->isAnonymous());
if (idec->errors)
idec->type = Type::terror;
idec->type = typeSemantic(idec->type, idec->loc, sc);
if (idec->type->ty == Tclass && ((TypeClass *)idec->type)->sym != idec)
{
TemplateInstance *ti = ((TypeClass *)idec->type)->sym->isInstantiated();
if (ti && isError(ti))
((TypeClass *)idec->type)->sym = idec;
}
// Ungag errors when not speculative
Ungag ungag = idec->ungagSpeculative();
if (idec->semanticRun == PASSinit)
{
idec->protection = sc->protection;
idec->storage_class |= sc->stc;
if (idec->storage_class & STCdeprecated)
idec->isdeprecated = true;
idec->userAttribDecl = sc->userAttribDecl;
}
else if (idec->symtab)
{
if (idec->sizeok == SIZEOKdone || !scx)
{
idec->semanticRun = PASSsemanticdone;
return;
}
}
idec->semanticRun = PASSsemantic;
if (idec->baseok < BASEOKdone)
{
idec->baseok = BASEOKin;
// Expand any tuples in baseclasses[]
for (size_t i = 0; i < idec->baseclasses->length; )
{
BaseClass *b = (*idec->baseclasses)[i];
b->type = resolveBase(idec, sc, scx, b->type);
Type *tb = b->type->toBasetype();
if (tb->ty == Ttuple)
{
TypeTuple *tup = (TypeTuple *)tb;
idec->baseclasses->remove(i);
size_t dim = Parameter::dim(tup->arguments);
for (size_t j = 0; j < dim; j++)
{
Parameter *arg = Parameter::getNth(tup->arguments, j);
b = new BaseClass(arg->type);
idec->baseclasses->insert(i + j, b);
}
}
else
i++;
}
if (idec->baseok >= BASEOKdone)
{
//printf("%s already semantic analyzed, semanticRun = %d\n", idec->toChars(), idec->semanticRun);
if (idec->semanticRun >= PASSsemanticdone)
return;
goto Lancestorsdone;
}
if (!idec->baseclasses->length && sc->linkage == LINKcpp)
idec->classKind = ClassKind::cpp;
if (sc->linkage == LINKobjc)
objc()->setObjc(idec);
// Check for errors, handle forward references
for (size_t i = 0; i < idec->baseclasses->length; )
{
BaseClass *b = (*idec->baseclasses)[i];
Type *tb = b->type->toBasetype();
TypeClass *tc = (tb->ty == Tclass) ? (TypeClass *)tb : NULL;
if (!tc || !tc->sym->isInterfaceDeclaration())
{
if (b->type != Type::terror)
idec->error("base type must be interface, not %s", b->type->toChars());
idec->baseclasses->remove(i);
continue;
}
// Check for duplicate interfaces
for (size_t j = 0; j < i; j++)
{
BaseClass *b2 = (*idec->baseclasses)[j];
if (b2->sym == tc->sym)
{
idec->error("inherits from duplicate interface %s", b2->sym->toChars());
idec->baseclasses->remove(i);
continue;
}
}
if (tc->sym == idec || idec->isBaseOf2(tc->sym))
{
idec->error("circular inheritance of interface");
idec->baseclasses->remove(i);
continue;
}
if (tc->sym->isDeprecated())
{
if (!idec->isDeprecated())
{
// Deriving from deprecated class makes this one deprecated too
idec->isdeprecated = true;
tc->checkDeprecated(idec->loc, sc);
}
}
b->sym = tc->sym;
if (tc->sym->baseok < BASEOKdone)
resolveBase(idec, sc, scx, tc->sym); // Try to resolve forward reference
if (tc->sym->baseok < BASEOKdone)
{
//printf("\ttry later, forward reference of base %s\n", tc->sym->toChars());
if (tc->sym->_scope)
Module::addDeferredSemantic(tc->sym);
idec->baseok = BASEOKnone;
}
i++;
}
if (idec->baseok == BASEOKnone)
{
// Forward referencee of one or more bases, try again later
idec->_scope = scx ? scx : sc->copy();
idec->_scope->setNoFree();
Module::addDeferredSemantic(idec);
return;
}
idec->baseok = BASEOKdone;
idec->interfaces.length = idec->baseclasses->length;
idec->interfaces.ptr = idec->baseclasses->tdata();
for (size_t i = 0; i < idec->interfaces.length; i++)
{
BaseClass *b = idec->interfaces.ptr[i];
// If this is an interface, and it derives from a COM interface,
// then this is a COM interface too.
if (b->sym->isCOMinterface())
idec->com = true;
if (b->sym->isCPPinterface())
idec->classKind = ClassKind::cpp;
}
interfaceSemantic(idec);
}
Lancestorsdone:
if (!idec->members) // if opaque declaration
{
idec->semanticRun = PASSsemanticdone;
return;
}
if (!idec->symtab)
idec->symtab = new DsymbolTable();
for (size_t i = 0; i < idec->baseclasses->length; i++)
{
BaseClass *b = (*idec->baseclasses)[i];
Type *tb = b->type->toBasetype();
assert(tb->ty == Tclass);
TypeClass *tc = (TypeClass *)tb;
if (tc->sym->semanticRun < PASSsemanticdone)
{
// Forward referencee of one or more bases, try again later
idec->_scope = scx ? scx : sc->copy();
idec->_scope->setNoFree();
if (tc->sym->_scope)
Module::addDeferredSemantic(tc->sym);
Module::addDeferredSemantic(idec);
return;
}
}
if (idec->baseok == BASEOKdone)
{
idec->baseok = BASEOKsemanticdone;
// initialize vtbl
if (idec->vtblOffset())
idec->vtbl.push(idec); // leave room at vtbl[0] for classinfo
// Cat together the vtbl[]'s from base cldec->interfaces
for (size_t i = 0; i < idec->interfaces.length; i++)
{
BaseClass *b = idec->interfaces.ptr[i];
// Skip if b has already appeared
for (size_t k = 0; k < i; k++)
{
if (b == idec->interfaces.ptr[k])
goto Lcontinue;
}
// Copy vtbl[] from base class
if (b->sym->vtblOffset())
{
size_t d = b->sym->vtbl.length;
if (d > 1)
{
idec->vtbl.reserve(d - 1);
for (size_t j = 1; j < d; j++)
idec->vtbl.push(b->sym->vtbl[j]);
}
}
else
{
idec->vtbl.append(&b->sym->vtbl);
}
Lcontinue:
;
}
}
for (size_t i = 0; i < idec->members->length; i++)
{
Dsymbol *s = (*idec->members)[i];
s->addMember(sc, idec);
}
Scope *sc2 = idec->newScope(sc);
/* Set scope so if there are forward references, we still might be able to
* resolve individual members like enums.
*/
for (size_t i = 0; i < idec->members->length; i++)
{
Dsymbol *s = (*idec->members)[i];
//printf("setScope %s %s\n", s->kind(), s->toChars());
s->setScope(sc2);
}
for (size_t i = 0; i < idec->members->length; i++)
{
Dsymbol *s = (*idec->members)[i];
s->importAll(sc2);
}
for (size_t i = 0; i < idec->members->length; i++)
{
Dsymbol *s = (*idec->members)[i];
dsymbolSemantic(s, sc2);
}
Module::dprogress++;
idec->semanticRun = PASSsemanticdone;
//printf("-InterfaceDeclaration.semantic(%s), type = %p\n", idec->toChars(), idec->type);
//members->print();
sc2->pop();
if (global.errors != errors)
{
// The type is no good.
idec->type = Type::terror;
}
assert(idec->type->ty != Tclass || ((TypeClass *)idec->type)->sym == idec);
}
};
/******************************************************
* Do template instance semantic for isAliasSeq templates.
* This is a greatly simplified version of TemplateInstance::semantic().
*/
static void aliasSeqInstanceSemantic(TemplateInstance *tempinst, Scope *sc, TemplateDeclaration *tempdecl)
{
//printf("[%s] aliasSeqInstanceSemantic('%s')\n", tempinst->loc.toChars(), tempinst->toChars());
Scope *paramscope = sc->push();
paramscope->stc = 0;
paramscope->protection = Prot(Prot::public_);
TemplateTupleParameter *ttp = (*tempdecl->parameters)[0]->isTemplateTupleParameter();
Tuple *va = isTuple(tempinst->tdtypes[0]);
Declaration *d = new TupleDeclaration(tempinst->loc, ttp->ident, &va->objects);
d->storage_class |= STCtemplateparameter;
dsymbolSemantic(d, sc);
paramscope->pop();
tempinst->aliasdecl = d;
tempinst->semanticRun = PASSsemanticdone;
}
/******************************************************
* Do template instance semantic for isAlias templates.
* This is a greatly simplified version of TemplateInstance::semantic().
*/
static void aliasInstanceSemantic(TemplateInstance *tempinst, Scope *sc, TemplateDeclaration *tempdecl)
{
//printf("[%s] aliasInstanceSemantic('%s')\n", tempinst->loc.toChars(), tempinst->toChars());
Scope *paramscope = sc->push();
paramscope->stc = 0;
paramscope->protection = Prot(Prot::public_);
TemplateTypeParameter *ttp = (*tempdecl->parameters)[0]->isTemplateTypeParameter();
Type *ta = isType(tempinst->tdtypes[0]);
AliasDeclaration *ad = tempdecl->onemember->isAliasDeclaration();
// Note: qualifiers can be in both 'ad.type.mod' and 'ad.storage_class'
Declaration *d = new AliasDeclaration(tempinst->loc, ttp->ident, ta->addMod(ad->type->mod));
d->storage_class |= STCtemplateparameter | ad->storage_class;
dsymbolSemantic(d, sc);
paramscope->pop();
tempinst->aliasdecl = d;
tempinst->semanticRun = PASSsemanticdone;
}
void templateInstanceSemantic(TemplateInstance *tempinst, Scope *sc, Expressions *fargs)
{
//printf("[%s] TemplateInstance::semantic('%s', this=%p, gag = %d, sc = %p)\n", tempinst->loc.toChars(), tempinst->toChars(), tempinst, global.gag, sc);
if (tempinst->inst) // if semantic() was already run
{
return;
}
if (tempinst->semanticRun != PASSinit)
{
Ungag ungag(global.gag);
if (!tempinst->gagged)
global.gag = 0;
tempinst->error(tempinst->loc, "recursive template expansion");
if (tempinst->gagged)
tempinst->semanticRun = PASSinit;
else
tempinst->inst = tempinst;
tempinst->errors = true;
return;
}
// Get the enclosing template instance from the scope tinst
tempinst->tinst = sc->tinst;
// Get the instantiating module from the scope minst
tempinst->minst = sc->minst;
// Bugzilla 10920: If the enclosing function is non-root symbol,
// this instance should be speculative.
if (!tempinst->tinst && sc->func && sc->func->inNonRoot())
{
tempinst->minst = NULL;
}
tempinst->gagged = (global.gag > 0);
tempinst->semanticRun = PASSsemantic;
/* Find template declaration first,
* then run semantic on each argument (place results in tiargs[]),
* last find most specialized template from overload list/set.
*/
if (!tempinst->findTempDecl(sc, NULL) ||
!tempinst->semanticTiargs(sc) ||
!tempinst->findBestMatch(sc, fargs))
{
Lerror:
if (tempinst->gagged)
{
// Bugzilla 13220: Rollback status for later semantic re-running.
tempinst->semanticRun = PASSinit;
}
else
tempinst->inst = tempinst;
tempinst->errors = true;
return;
}
TemplateDeclaration *tempdecl = tempinst->tempdecl->isTemplateDeclaration();
assert(tempdecl);
// If tempdecl is a mixin, disallow it
if (tempdecl->ismixin)
{
tempinst->error("mixin templates are not regular templates");
goto Lerror;
}
tempinst->hasNestedArgs(tempinst->tiargs, tempdecl->isstatic);
if (tempinst->errors)
goto Lerror;
/* Greatly simplified semantic processing for AliasSeq templates
*/
if (tempdecl->isTrivialAliasSeq)
{
tempinst->inst = tempinst;
return aliasSeqInstanceSemantic(tempinst, sc, tempdecl);
}
/* Greatly simplified semantic processing for Alias templates
*/
else if (tempdecl->isTrivialAlias)
{
tempinst->inst = tempinst;
return aliasInstanceSemantic(tempinst, sc, tempdecl);
}
/* See if there is an existing TemplateInstantiation that already
* implements the typeargs. If so, just refer to that one instead.
*/
tempinst->inst = tempdecl->findExistingInstance(tempinst, fargs);
TemplateInstance *errinst = NULL;
if (!tempinst->inst)
{
// So, we need to implement 'this' instance.
}
else if (tempinst->inst->gagged && !tempinst->gagged && tempinst->inst->errors)
{
// If the first instantiation had failed, re-run semantic,
// so that error messages are shown.
errinst = tempinst->inst;
}
else
{
// It's a match
tempinst->parent = tempinst->inst->parent;
tempinst->errors = tempinst->inst->errors;
// If both this and the previous instantiation were gagged,
// use the number of errors that happened last time.
global.errors += tempinst->errors;
global.gaggedErrors += tempinst->errors;
// If the first instantiation was gagged, but this is not:
if (tempinst->inst->gagged)
{
// It had succeeded, mark it is a non-gagged instantiation,
// and reuse it.
tempinst->inst->gagged = tempinst->gagged;
}
tempinst->tnext = tempinst->inst->tnext;
tempinst->inst->tnext = tempinst;
/* A module can have explicit template instance and its alias
* in module scope (e,g, `alias Base64 = Base64Impl!('+', '/');`).
* If the first instantiation 'inst' had happened in non-root module,
* compiler can assume that its instantiated code would be included
* in the separately compiled obj/lib file (e.g. phobos.lib).
*
* However, if 'this' second instantiation happened in root module,
* compiler might need to invoke its codegen (Bugzilla 2500 & 2644).
* But whole import graph is not determined until all semantic pass finished,
* so 'inst' should conservatively finish the semantic3 pass for the codegen.
*/
if (tempinst->minst && tempinst->minst->isRoot() && !(tempinst->inst->minst && tempinst->inst->minst->isRoot()))
{
/* Swap the position of 'inst' and 'this' in the instantiation graph.
* Then, the primary instance `inst` will be changed to a root instance,
* along with all members of `inst` having their scopes updated.
*
* Before:
* non-root -> A!() -> B!()[inst] -> C!() { members[non-root] }
* |
* root -> D!() -> B!()[this]
*
* After:
* non-root -> A!() -> B!()[this]
* |
* root -> D!() -> B!()[inst] -> C!() { members[root] }
*/
Module *mi = tempinst->minst;
TemplateInstance *ti = tempinst->tinst;
tempinst->minst = tempinst->inst->minst;
tempinst->tinst = tempinst->inst->tinst;
tempinst->inst->minst = mi;
tempinst->inst->tinst = ti;
/* https://issues.dlang.org/show_bug.cgi?id=21299
`minst` has been updated on the primary instance `inst` so it is
now coming from a root module, however all Dsymbol `inst.members`
of the instance still have their `_scope.minst` pointing at the
original non-root module. We must now propagate `minst` to all
members so that forward referenced dependencies that get
instantiated will also be appended to the root module, otherwise
there will be undefined references at link-time. */
class InstMemberWalker : public Visitor
{
public:
TemplateInstance *inst;
InstMemberWalker(TemplateInstance *inst)
: inst(inst) { }
void visit(Dsymbol *d)
{
if (d->_scope)
d->_scope->minst = inst->minst;
}
void visit(ScopeDsymbol *sds)
{
if (!sds->members)
return;
for (size_t i = 0; i < sds->members->length; i++)
{
Dsymbol *s = (*sds->members)[i];
s->accept(this);
}
visit((Dsymbol *)sds);
}
void visit(AttribDeclaration *ad)
{
Dsymbols *d = ad->include(NULL);
if (!d)
return;
for (size_t i = 0; i < d->length; i++)
{
Dsymbol *s = (*d)[i];
s->accept(this);
}
visit((Dsymbol *)ad);
}
void visit(ConditionalDeclaration *cd)
{
if (cd->condition->inc)
visit((AttribDeclaration *)cd);
else
visit((Dsymbol *)cd);
}
};
InstMemberWalker v(tempinst->inst);
tempinst->inst->accept(&v);
if (tempinst->minst) // if inst was not speculative
{
/* Add 'inst' once again to the root module members[], then the
* instance members will get codegen chances.
*/
tempinst->inst->appendToModuleMember();
}
}
return;
}
unsigned errorsave = global.errors;
tempinst->inst = tempinst;
tempinst->parent = tempinst->enclosing ? tempinst->enclosing : tempdecl->parent;
//printf("parent = '%s'\n", tempinst->parent->kind());
TemplateInstance *tempdecl_instance_idx = tempdecl->addInstance(tempinst);
//getIdent();
// Store the place we added it to in target_symbol_list(_idx) so we can
// remove it later if we encounter an error.
Dsymbols *target_symbol_list = tempinst->appendToModuleMember();
size_t target_symbol_list_idx = target_symbol_list ? target_symbol_list->length - 1 : 0;
// Copy the syntax trees from the TemplateDeclaration
tempinst->members = Dsymbol::arraySyntaxCopy(tempdecl->members);
// resolve TemplateThisParameter
for (size_t i = 0; i < tempdecl->parameters->length; i++)
{
if ((*tempdecl->parameters)[i]->isTemplateThisParameter() == NULL)
continue;
Type *t = isType((*tempinst->tiargs)[i]);
assert(t);
if (StorageClass stc = ModToStc(t->mod))
{
//printf("t = %s, stc = x%llx\n", t->toChars(), stc);
Dsymbols *s = new Dsymbols();
s->push(new StorageClassDeclaration(stc, tempinst->members));
tempinst->members = s;
}
break;
}
// Create our own scope for the template parameters
Scope *scope = tempdecl->_scope;
if (tempdecl->semanticRun == PASSinit)
{
tempinst->error("template instantiation %s forward references template declaration %s", tempinst->toChars(), tempdecl->toChars());
return;
}
tempinst->argsym = new ScopeDsymbol();
tempinst->argsym->parent = scope->parent;
scope = scope->push(tempinst->argsym);
scope->tinst = tempinst;
scope->minst = tempinst->minst;
//scope->stc = 0;
// Declare each template parameter as an alias for the argument type
Scope *paramscope = scope->push();
paramscope->stc = 0;
paramscope->protection = Prot(Prot::public_); // Bugzilla 14169: template parameters should be public
tempinst->declareParameters(paramscope);
paramscope->pop();
// Add members of template instance to template instance symbol table
// tempinst->parent = scope->scopesym;
tempinst->symtab = new DsymbolTable();
for (size_t i = 0; i < tempinst->members->length; i++)
{
Dsymbol *s = (*tempinst->members)[i];
s->addMember(scope, tempinst);
}
/* See if there is only one member of template instance, and that
* member has the same name as the template instance.
* If so, this template instance becomes an alias for that member.
*/
//printf("members->length = %d\n", tempinst->members->length);
if (tempinst->members->length)
{
Dsymbol *s;
if (Dsymbol::oneMembers(tempinst->members, &s, tempdecl->ident) && s)
{
//printf("tempdecl->ident = %s, s = '%s'\n", tempdecl->ident->toChars(), s->kind(), s->toPrettyChars());
//printf("setting aliasdecl\n");
tempinst->aliasdecl = s;
}
}
/* If function template declaration
*/
if (fargs && tempinst->aliasdecl)
{
FuncDeclaration *fd = tempinst->aliasdecl->isFuncDeclaration();
if (fd)
{
/* Transmit fargs to type so that TypeFunction::semantic() can
* resolve any "auto ref" storage classes.
*/
TypeFunction *tf = (TypeFunction *)fd->type;
if (tf && tf->ty == Tfunction)
tf->fargs = fargs;
}
}
// Do semantic() analysis on template instance members
Scope *sc2;
sc2 = scope->push(tempinst);
//printf("enclosing = %d, sc->parent = %s\n", tempinst->enclosing, sc->parent->toChars());
sc2->parent = tempinst;
sc2->tinst = tempinst;
sc2->minst = tempinst->minst;
tempinst->tryExpandMembers(sc2);
tempinst->semanticRun = PASSsemanticdone;
/* ConditionalDeclaration may introduce eponymous declaration,
* so we should find it once again after semantic.
*/
if (tempinst->members->length)
{
Dsymbol *s;
if (Dsymbol::oneMembers(tempinst->members, &s, tempdecl->ident) && s)
{
if (!tempinst->aliasdecl || tempinst->aliasdecl != s)
{
//printf("tempdecl->ident = %s, s = '%s'\n", tempdecl->ident->toChars(), s->kind(), s->toPrettyChars());
//printf("setting aliasdecl 2\n");
tempinst->aliasdecl = s;
}
}
}
if (global.errors != errorsave)
goto Laftersemantic;
/* If any of the instantiation members didn't get semantic() run
* on them due to forward references, we cannot run semantic2()
* or semantic3() yet.
*/
{
bool found_deferred_ad = false;
for (size_t i = 0; i < Module::deferred.length; i++)
{
Dsymbol *sd = Module::deferred[i];
AggregateDeclaration *ad = sd->isAggregateDeclaration();
if (ad && ad->parent && ad->parent->isTemplateInstance())
{
//printf("deferred template aggregate: %s %s\n",
// sd->parent->toChars(), sd->toChars());
found_deferred_ad = true;
if (ad->parent == tempinst)
{
ad->deferred = tempinst;
break;
}
}
}
if (found_deferred_ad || Module::deferred.length)
goto Laftersemantic;
}
/* The problem is when to parse the initializer for a variable.
* Perhaps VarDeclaration::semantic() should do it like it does
* for initializers inside a function.
*/
//if (sc->parent->isFuncDeclaration())
{
/* BUG 782: this has problems if the classes this depends on
* are forward referenced. Find a way to defer semantic()
* on this template.
*/
semantic2(tempinst, sc2);
}
if (global.errors != errorsave)
goto Laftersemantic;
if ((sc->func || (sc->flags & SCOPEfullinst)) && !tempinst->tinst)
{
/* If a template is instantiated inside function, the whole instantiation
* should be done at that position. But, immediate running semantic3 of
* dependent templates may cause unresolved forward reference (Bugzilla 9050).
* To avoid the issue, don't run semantic3 until semantic and semantic2 done.
*/
TemplateInstances deferred;
tempinst->deferred = &deferred;
//printf("Run semantic3 on %s\n", tempinst->toChars());
tempinst->trySemantic3(sc2);
for (size_t i = 0; i < deferred.length; i++)
{
//printf("+ run deferred semantic3 on %s\n", deferred[i]->toChars());
semantic3(deferred[i], NULL);
}
tempinst->deferred = NULL;
}
else if (tempinst->tinst)
{
bool doSemantic3 = false;
if (sc->func && tempinst->aliasdecl && tempinst->aliasdecl->toAlias()->isFuncDeclaration())
{
/* Template function instantiation should run semantic3 immediately
* for attribute inference.
*/
tempinst->trySemantic3(sc2);
}
else if (sc->func)
{
/* A lambda function in template arguments might capture the
* instantiated scope context. For the correct context inference,
* all instantiated functions should run the semantic3 immediately.
* See also compilable/test14973.d
*/
for (size_t i = 0; i < tempinst->tdtypes.length; i++)
{
RootObject *oarg = tempinst->tdtypes[i];
Dsymbol *s = getDsymbol(oarg);
if (!s)
continue;
if (TemplateDeclaration *td = s->isTemplateDeclaration())
{
if (!td->literal)
continue;
assert(td->members && td->members->length == 1);
s = (*td->members)[0];
}
if (FuncLiteralDeclaration *fld = s->isFuncLiteralDeclaration())
{
if (fld->tok == TOKreserved)
{
doSemantic3 = true;
break;
}
}
}
//printf("[%s] %s doSemantic3 = %d\n", tempinst->loc.toChars(), tempinst->toChars(), doSemantic3);
}
if (doSemantic3)
tempinst->trySemantic3(sc2);
TemplateInstance *ti = tempinst->tinst;
int nest = 0;
while (ti && !ti->deferred && ti->tinst)
{
ti = ti->tinst;
if (++nest > global.recursionLimit)
{
global.gag = 0; // ensure error message gets printed
tempinst->error("recursive expansion");
fatal();
}
}
if (ti && ti->deferred)
{
//printf("deferred semantic3 of %p %s, ti = %s, ti->deferred = %p\n", tempinst, tempinst->toChars(), ti->toChars());
for (size_t i = 0; ; i++)
{
if (i == ti->deferred->length)
{
ti->deferred->push(tempinst);
break;
}
if ((*ti->deferred)[i] == tempinst)
break;
}
}
}
if (tempinst->aliasdecl)
{
/* Bugzilla 13816: AliasDeclaration tries to resolve forward reference
* twice (See inuse check in AliasDeclaration::toAlias()). It's
* necessary to resolve mutual references of instantiated symbols, but
* it will left a true recursive alias in tuple declaration - an
* AliasDeclaration A refers TupleDeclaration B, and B contains A
* in its elements. To correctly make it an error, we strictly need to
* resolve the alias of eponymous member.
*/
tempinst->aliasdecl = tempinst->aliasdecl->toAlias2();
}
Laftersemantic:
sc2->pop();
scope->pop();
// Give additional context info if error occurred during instantiation
if (global.errors != errorsave)
{
if (!tempinst->errors)
{
if (!tempdecl->literal)
tempinst->error(tempinst->loc, "error instantiating");
if (tempinst->tinst)
tempinst->tinst->printInstantiationTrace();
}
tempinst->errors = true;
if (tempinst->gagged)
{
// Errors are gagged, so remove the template instance from the
// instance/symbol lists we added it to and reset our state to
// finish clean and so we can try to instantiate it again later
// (see bugzilla 4302 and 6602).
tempdecl->removeInstance(tempdecl_instance_idx);
if (target_symbol_list)
{
// Because we added 'this' in the last position above, we
// should be able to remove it without messing other indices up.
assert((*target_symbol_list)[target_symbol_list_idx] == tempinst);
target_symbol_list->remove(target_symbol_list_idx);
tempinst->memberOf = NULL; // no longer a member
}
tempinst->semanticRun = PASSinit;
tempinst->inst = NULL;
tempinst->symtab = NULL;
}
}
else if (errinst)
{
/* Bugzilla 14541: If the previous gagged instance had failed by
* circular references, currrent "error reproduction instantiation"
* might succeed, because of the difference of instantiated context.
* On such case, the cached error instance needs to be overridden by the
* succeeded instance.
*/
//printf("replaceInstance()\n");
TemplateInstances *tinstances = (TemplateInstances *)dmd_aaGetRvalue((AA *)tempdecl->instances, (void *)tempinst->hash);
assert(tinstances);
for (size_t i = 0; i < tinstances->length; i++)
{
TemplateInstance *ti = (*tinstances)[i];
if (ti == errinst)
{
(*tinstances)[i] = tempinst; // override
break;
}
}
}
}
// function used to perform semantic on AliasDeclaration
void aliasSemantic(AliasDeclaration *ds, Scope *sc)
{
//printf("AliasDeclaration::semantic() %s\n", ds->toChars());
// as AliasDeclaration::semantic, in case we're called first.
// see https://issues.dlang.org/show_bug.cgi?id=21001
ds->storage_class |= sc->stc & STCdeprecated;
ds->protection = sc->protection;
ds->userAttribDecl = sc->userAttribDecl;
// TypeTraits needs to know if it's located in an AliasDeclaration
const unsigned oldflags = sc->flags;
sc->flags |= SCOPEalias;
if (ds->aliassym)
{
FuncDeclaration *fd = ds->aliassym->isFuncLiteralDeclaration();
TemplateDeclaration *td = ds->aliassym->isTemplateDeclaration();
if (fd || (td && td->literal))
{
if (fd && fd->semanticRun >= PASSsemanticdone)
{
sc->flags = oldflags;
return;
}
Expression *e = new FuncExp(ds->loc, ds->aliassym);
e = expressionSemantic(e, sc);
if (e->op == TOKfunction)
{
FuncExp *fe = (FuncExp *)e;
ds->aliassym = fe->td ? (Dsymbol *)fe->td : fe->fd;
}
else
{
ds->aliassym = NULL;
ds->type = Type::terror;
}
sc->flags = oldflags;
return;
}
if (ds->aliassym->isTemplateInstance())
dsymbolSemantic(ds->aliassym, sc);
sc->flags = oldflags;
return;
}
ds->inuse = 1;
// Given:
// alias foo.bar.abc def;
// it is not knowable from the syntax whether this is an alias
// for a type or an alias for a symbol. It is up to the semantic()
// pass to distinguish.
// If it is a type, then type is set and getType() will return that
// type. If it is a symbol, then aliassym is set and type is NULL -
// toAlias() will return aliasssym.
unsigned int errors = global.errors;
Type *oldtype = ds->type;
// Ungag errors when not instantiated DeclDefs scope alias
Ungag ungag(global.gag);
//printf("%s parent = %s, gag = %d, instantiated = %d\n", ds->toChars(), ds->parent, global.gag, ds->isInstantiated());
if (ds->parent && global.gag && !ds->isInstantiated() && !ds->toParent2()->isFuncDeclaration())
{
//printf("%s type = %s\n", ds->toPrettyChars(), ds->type->toChars());
global.gag = 0;
}
/* This section is needed because Type::resolve() will:
* const x = 3;
* alias y = x;
* try to convert identifier x to 3.
*/
Dsymbol *s = ds->type->toDsymbol(sc);
if (errors != global.errors)
{
s = NULL;
ds->type = Type::terror;
}
if (s && s == ds)
{
ds->error("cannot resolve");
s = NULL;
ds->type = Type::terror;
}
if (!s || !s->isEnumMember())
{
Type *t;
Expression *e;
Scope *sc2 = sc;
if (ds->storage_class & (STCref | STCnothrow | STCnogc | STCpure | STCdisable))
{
// For 'ref' to be attached to function types, and picked
// up by Type::resolve(), it has to go into sc.
sc2 = sc->push();
sc2->stc |= ds->storage_class & (STCref | STCnothrow | STCnogc | STCpure | STCshared | STCdisable);
}
ds->type = ds->type->addSTC(ds->storage_class);
ds->type->resolve(ds->loc, sc2, &e, &t, &s);
if (sc2 != sc)
sc2->pop();
if (e) // Try to convert Expression to Dsymbol
{
s = getDsymbol(e);
if (!s)
{
if (e->op != TOKerror)
ds->error("cannot alias an expression %s", e->toChars());
t = Type::terror;
}
}
ds->type = t;
}
if (s == ds)
{
assert(global.errors);
ds->type = Type::terror;
s = NULL;
}
if (!s) // it's a type alias
{
//printf("alias %s resolved to type %s\n", ds->toChars(), ds->type->toChars());
ds->type = typeSemantic(ds->type, ds->loc, sc);
ds->aliassym = NULL;
}
else // it's a symbolic alias
{
//printf("alias %s resolved to %s %s\n", ds->toChars(), s->kind(), s->toChars());
ds->type = NULL;
ds->aliassym = s;
}
if (global.gag && errors != global.errors)
{
ds->type = oldtype;
ds->aliassym = NULL;
}
ds->inuse = 0;
ds->semanticRun = PASSsemanticdone;
if (Dsymbol *sx = ds->overnext)
{
ds->overnext = NULL;
if (!ds->overloadInsert(sx))
ScopeDsymbol::multiplyDefined(Loc(), sx, ds);
}
sc->flags = oldflags;
}
/*************************************
* Does semantic analysis on the public face of declarations.
*/
void dsymbolSemantic(Dsymbol *dsym, Scope *sc)
{
DsymbolSemanticVisitor v(sc);
dsym->accept(&v);
}