| /* Save and restore call-clobbered registers which are live across a call. |
| Copyright (C) 1989, 1992, 1994, 1995, 1997 Free Software Foundation, Inc. |
| |
| This file is part of GNU CC. |
| |
| GNU CC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GNU CC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU CC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| #include "config.h" |
| #include "rtl.h" |
| #include "insn-config.h" |
| #include "flags.h" |
| #include "regs.h" |
| #include "hard-reg-set.h" |
| #include "recog.h" |
| #include "basic-block.h" |
| #include "reload.h" |
| #include "expr.h" |
| |
| #ifndef MAX_MOVE_MAX |
| #define MAX_MOVE_MAX MOVE_MAX |
| #endif |
| |
| #ifndef MIN_UNITS_PER_WORD |
| #define MIN_UNITS_PER_WORD UNITS_PER_WORD |
| #endif |
| |
| /* Modes for each hard register that we can save. The smallest mode is wide |
| enough to save the entire contents of the register. When saving the |
| register because it is live we first try to save in multi-register modes. |
| If that is not possible the save is done one register at a time. */ |
| |
| static enum machine_mode |
| regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; |
| |
| /* For each hard register, a place on the stack where it can be saved, |
| if needed. */ |
| |
| static rtx |
| regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; |
| |
| /* We will only make a register eligible for caller-save if it can be |
| saved in its widest mode with a simple SET insn as long as the memory |
| address is valid. We record the INSN_CODE is those insns here since |
| when we emit them, the addresses might not be valid, so they might not |
| be recognized. */ |
| |
| static enum insn_code |
| reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; |
| static enum insn_code |
| reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; |
| |
| /* Set of hard regs currently live (during scan of all insns). */ |
| |
| static HARD_REG_SET hard_regs_live; |
| |
| /* Set of hard regs currently residing in save area (during insn scan). */ |
| |
| static HARD_REG_SET hard_regs_saved; |
| |
| /* Set of hard regs which need to be restored before referenced. */ |
| |
| static HARD_REG_SET hard_regs_need_restore; |
| |
| /* Number of registers currently in hard_regs_saved. */ |
| |
| int n_regs_saved; |
| |
| static void set_reg_live PROTO((rtx, rtx)); |
| static void clear_reg_live PROTO((rtx)); |
| static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode)); |
| static int insert_save_restore PROTO((rtx, int, int, |
| enum machine_mode, int)); |
| |
| /* Initialize for caller-save. |
| |
| Look at all the hard registers that are used by a call and for which |
| regclass.c has not already excluded from being used across a call. |
| |
| Ensure that we can find a mode to save the register and that there is a |
| simple insn to save and restore the register. This latter check avoids |
| problems that would occur if we tried to save the MQ register of some |
| machines directly into memory. */ |
| |
| void |
| init_caller_save () |
| { |
| char *first_obj = (char *) oballoc (0); |
| rtx addr_reg; |
| int offset; |
| rtx address; |
| int i, j; |
| |
| /* First find all the registers that we need to deal with and all |
| the modes that they can have. If we can't find a mode to use, |
| we can't have the register live over calls. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| { |
| if (call_used_regs[i] && ! call_fixed_regs[i]) |
| { |
| for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) |
| { |
| regno_save_mode[i][j] = choose_hard_reg_mode (i, j); |
| if (regno_save_mode[i][j] == VOIDmode && j == 1) |
| { |
| call_fixed_regs[i] = 1; |
| SET_HARD_REG_BIT (call_fixed_reg_set, i); |
| } |
| } |
| } |
| else |
| regno_save_mode[i][1] = VOIDmode; |
| } |
| |
| /* The following code tries to approximate the conditions under which |
| we can easily save and restore a register without scratch registers or |
| other complexities. It will usually work, except under conditions where |
| the validity of an insn operand is dependent on the address offset. |
| No such cases are currently known. |
| |
| We first find a typical offset from some BASE_REG_CLASS register. |
| This address is chosen by finding the first register in the class |
| and by finding the smallest power of two that is a valid offset from |
| that register in every mode we will use to save registers. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i)) |
| break; |
| |
| if (i == FIRST_PSEUDO_REGISTER) |
| abort (); |
| |
| addr_reg = gen_rtx (REG, Pmode, i); |
| |
| for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1) |
| { |
| address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset)); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regno_save_mode[i][1] != VOIDmode |
| && ! strict_memory_address_p (regno_save_mode[i][1], address)) |
| break; |
| |
| if (i == FIRST_PSEUDO_REGISTER) |
| break; |
| } |
| |
| /* If we didn't find a valid address, we must use register indirect. */ |
| if (offset == 0) |
| address = addr_reg; |
| |
| /* Next we try to form an insn to save and restore the register. We |
| see if such an insn is recognized and meets its constraints. */ |
| |
| start_sequence (); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) |
| if (regno_save_mode[i][j] != VOIDmode) |
| { |
| rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address); |
| rtx reg = gen_rtx (REG, regno_save_mode[i][j], i); |
| rtx savepat = gen_rtx (SET, VOIDmode, mem, reg); |
| rtx restpat = gen_rtx (SET, VOIDmode, reg, mem); |
| rtx saveinsn = emit_insn (savepat); |
| rtx restinsn = emit_insn (restpat); |
| int ok; |
| |
| reg_save_code[i][j] = recog_memoized (saveinsn); |
| reg_restore_code[i][j] = recog_memoized (restinsn); |
| |
| /* Now extract both insns and see if we can meet their |
| constraints. */ |
| ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1); |
| if (ok) |
| { |
| insn_extract (saveinsn); |
| ok = constrain_operands (reg_save_code[i][j], 1); |
| insn_extract (restinsn); |
| ok &= constrain_operands (reg_restore_code[i][j], 1); |
| } |
| |
| if (! ok) |
| { |
| regno_save_mode[i][j] = VOIDmode; |
| if (j == 1) |
| { |
| call_fixed_regs[i] = 1; |
| SET_HARD_REG_BIT (call_fixed_reg_set, i); |
| } |
| } |
| } |
| |
| end_sequence (); |
| |
| obfree (first_obj); |
| } |
| |
| /* Initialize save areas by showing that we haven't allocated any yet. */ |
| |
| void |
| init_save_areas () |
| { |
| int i, j; |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) |
| regno_save_mem[i][j] = 0; |
| } |
| |
| /* Allocate save areas for any hard registers that might need saving. |
| We take a conservative approach here and look for call-clobbered hard |
| registers that are assigned to pseudos that cross calls. This may |
| overestimate slightly (especially if some of these registers are later |
| used as spill registers), but it should not be significant. |
| |
| Then perform register elimination in the addresses of the save area |
| locations; return 1 if all eliminated addresses are strictly valid. |
| We assume that our caller has set up the elimination table to the |
| worst (largest) possible offsets. |
| |
| Set *PCHANGED to 1 if we had to allocate some memory for the save area. |
| |
| Future work: |
| |
| In the fallback case we should iterate backwards across all possible |
| modes for the save, choosing the largest available one instead of |
| falling back to the smallest mode immediately. (eg TF -> DF -> SF). |
| |
| We do not try to use "move multiple" instructions that exist |
| on some machines (such as the 68k moveml). It could be a win to try |
| and use them when possible. The hard part is doing it in a way that is |
| machine independent since they might be saving non-consecutive |
| registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */ |
| |
| int |
| setup_save_areas (pchanged) |
| int *pchanged; |
| { |
| int i, j, k; |
| HARD_REG_SET hard_regs_used; |
| int ok = 1; |
| |
| |
| /* Allocate space in the save area for the largest multi-register |
| pseudos first, then work backwards to single register |
| pseudos. */ |
| |
| /* Find and record all call-used hard-registers in this function. */ |
| CLEAR_HARD_REG_SET (hard_regs_used); |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0) |
| { |
| int regno = reg_renumber[i]; |
| int endregno |
| = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i])); |
| int nregs = endregno - regno; |
| |
| for (j = 0; j < nregs; j++) |
| { |
| if (call_used_regs[regno+j]) |
| SET_HARD_REG_BIT (hard_regs_used, regno+j); |
| } |
| } |
| |
| /* Now run through all the call-used hard-registers and allocate |
| space for them in the caller-save area. Try to allocate space |
| in a manner which allows multi-register saves/restores to be done. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--) |
| { |
| int ok = 1; |
| int do_save; |
| |
| /* If no mode exists for this size, try another. Also break out |
| if we have already saved this hard register. */ |
| if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0) |
| continue; |
| |
| /* See if any register in this group has been saved. */ |
| do_save = 1; |
| for (k = 0; k < j; k++) |
| if (regno_save_mem[i + k][1]) |
| { |
| do_save = 0; |
| break; |
| } |
| if (! do_save) |
| continue; |
| |
| for (k = 0; k < j; k++) |
| { |
| int regno = i + k; |
| ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0); |
| } |
| |
| /* We have found an acceptable mode to store in. */ |
| if (ok) |
| { |
| |
| regno_save_mem[i][j] |
| = assign_stack_local (regno_save_mode[i][j], |
| GET_MODE_SIZE (regno_save_mode[i][j]), 0); |
| |
| /* Setup single word save area just in case... */ |
| for (k = 0; k < j; k++) |
| { |
| /* This should not depend on WORDS_BIG_ENDIAN. |
| The order of words in regs is the same as in memory. */ |
| rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1], |
| XEXP (regno_save_mem[i][j], 0)); |
| |
| regno_save_mem[i+k][1] |
| = adj_offsettable_operand (temp, k * UNITS_PER_WORD); |
| } |
| *pchanged = 1; |
| } |
| } |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) |
| if (regno_save_mem[i][j] != 0) |
| ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]), |
| XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX, 1), 0)); |
| |
| return ok; |
| } |
| |
| /* Find the places where hard regs are live across calls and save them. |
| |
| INSN_MODE is the mode to assign to any insns that we add. This is used |
| by reload to determine whether or not reloads or register eliminations |
| need be done on these insns. */ |
| |
| void |
| save_call_clobbered_regs (insn_mode) |
| enum machine_mode insn_mode; |
| { |
| rtx insn; |
| int b; |
| |
| for (b = 0; b < n_basic_blocks; b++) |
| { |
| regset regs_live = basic_block_live_at_start[b]; |
| rtx prev_block_last = PREV_INSN (basic_block_head[b]); |
| int i, j; |
| int regno; |
| |
| /* Compute hard regs live at start of block -- this is the |
| real hard regs marked live, plus live pseudo regs that |
| have been renumbered to hard regs. No registers have yet been |
| saved because we restore all of them before the end of the basic |
| block. */ |
| |
| REG_SET_TO_HARD_REG_SET (hard_regs_live, regs_live); |
| CLEAR_HARD_REG_SET (hard_regs_saved); |
| CLEAR_HARD_REG_SET (hard_regs_need_restore); |
| n_regs_saved = 0; |
| |
| EXECUTE_IF_SET_IN_REG_SET (regs_live, 0, i, |
| { |
| if ((regno = reg_renumber[i]) >= 0) |
| for (j = regno; |
| j < regno + HARD_REGNO_NREGS (regno, |
| PSEUDO_REGNO_MODE (i)); |
| j++) |
| SET_HARD_REG_BIT (hard_regs_live, j); |
| }); |
| |
| /* Now scan the insns in the block, keeping track of what hard |
| regs are live as we go. When we see a call, save the live |
| call-clobbered hard regs. */ |
| |
| for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn)) |
| { |
| RTX_CODE code = GET_CODE (insn); |
| |
| if (GET_RTX_CLASS (code) == 'i') |
| { |
| rtx link; |
| |
| /* If some registers have been saved, see if INSN references |
| any of them. We must restore them before the insn if so. */ |
| |
| if (n_regs_saved) |
| restore_referenced_regs (PATTERN (insn), insn, insn_mode); |
| |
| /* NB: the normal procedure is to first enliven any |
| registers set by insn, then deaden any registers that |
| had their last use at insn. This is incorrect now, |
| since multiple pseudos may have been mapped to the |
| same hard reg, and the death notes are ambiguous. So |
| it must be done in the other, safe, order. */ |
| |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_DEAD) |
| clear_reg_live (XEXP (link, 0)); |
| |
| /* When we reach a call, we need to save all registers that are |
| live, call-used, not fixed, and not already saved. We must |
| test at this point because registers that die in a CALL_INSN |
| are not live across the call and likewise for registers that |
| are born in the CALL_INSN. |
| |
| If registers are filled with parameters for this function, |
| and some of these are also being set by this function, then |
| they will not appear to die (no REG_DEAD note for them), |
| to check if in fact they do, collect the set registers in |
| hard_regs_live first. */ |
| |
| if (code == CALL_INSN) |
| { |
| HARD_REG_SET this_call_sets; |
| { |
| HARD_REG_SET old_hard_regs_live; |
| |
| /* Save the hard_regs_live information. */ |
| COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live); |
| |
| /* Now calculate hard_regs_live for this CALL_INSN |
| only. */ |
| CLEAR_HARD_REG_SET (hard_regs_live); |
| note_stores (PATTERN (insn), set_reg_live); |
| COPY_HARD_REG_SET (this_call_sets, hard_regs_live); |
| |
| /* Restore the hard_regs_live information. */ |
| COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live); |
| } |
| |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (call_used_regs[regno] && ! call_fixed_regs[regno] |
| && TEST_HARD_REG_BIT (hard_regs_live, regno) |
| /* It must not be set by this instruction. */ |
| && ! TEST_HARD_REG_BIT (this_call_sets, regno) |
| && ! TEST_HARD_REG_BIT (hard_regs_saved, regno)) |
| regno += insert_save_restore (insn, 1, regno, |
| insn_mode, 0); |
| |
| /* Put the information for this CALL_INSN on top of what |
| we already had. */ |
| IOR_HARD_REG_SET (hard_regs_live, this_call_sets); |
| COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved); |
| |
| /* Must recompute n_regs_saved. */ |
| n_regs_saved = 0; |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) |
| n_regs_saved++; |
| } |
| else |
| { |
| note_stores (PATTERN (insn), set_reg_live); |
| #ifdef AUTO_INC_DEC |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_INC) |
| set_reg_live (XEXP (link, 0), NULL_RTX); |
| #endif |
| } |
| |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_UNUSED) |
| clear_reg_live (XEXP (link, 0)); |
| } |
| |
| if (insn == basic_block_end[b]) |
| break; |
| } |
| |
| /* At the end of the basic block, we must restore any registers that |
| remain saved. If the last insn in the block is a JUMP_INSN, put |
| the restore before the insn, otherwise, put it after the insn. */ |
| |
| if (n_regs_saved) |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno)) |
| regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN |
| ? insn : NEXT_INSN (insn)), 0, |
| regno, insn_mode, MOVE_MAX / UNITS_PER_WORD); |
| |
| /* If we added any insns at the start of the block, update the start |
| of the block to point at those insns. */ |
| basic_block_head[b] = NEXT_INSN (prev_block_last); |
| } |
| } |
| |
| /* Here from note_stores when an insn stores a value in a register. |
| Set the proper bit or bits in hard_regs_live. All pseudos that have |
| been assigned hard regs have had their register number changed already, |
| so we can ignore pseudos. */ |
| |
| static void |
| set_reg_live (reg, setter) |
| rtx reg, setter; |
| { |
| register int regno, endregno, i; |
| enum machine_mode mode = GET_MODE (reg); |
| int word = 0; |
| |
| if (GET_CODE (reg) == SUBREG) |
| { |
| word = SUBREG_WORD (reg); |
| reg = SUBREG_REG (reg); |
| } |
| |
| if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) |
| return; |
| |
| regno = REGNO (reg) + word; |
| endregno = regno + HARD_REGNO_NREGS (regno, mode); |
| |
| for (i = regno; i < endregno; i++) |
| { |
| SET_HARD_REG_BIT (hard_regs_live, i); |
| CLEAR_HARD_REG_BIT (hard_regs_saved, i); |
| CLEAR_HARD_REG_BIT (hard_regs_need_restore, i); |
| } |
| } |
| |
| /* Here when a REG_DEAD note records the last use of a reg. Clear |
| the appropriate bit or bits in hard_regs_live. Again we can ignore |
| pseudos. */ |
| |
| static void |
| clear_reg_live (reg) |
| rtx reg; |
| { |
| register int regno, endregno, i; |
| |
| if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) |
| return; |
| |
| regno = REGNO (reg); |
| endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); |
| |
| for (i = regno; i < endregno; i++) |
| { |
| CLEAR_HARD_REG_BIT (hard_regs_live, i); |
| CLEAR_HARD_REG_BIT (hard_regs_need_restore, i); |
| CLEAR_HARD_REG_BIT (hard_regs_saved, i); |
| } |
| } |
| |
| /* If any register currently residing in the save area is referenced in X, |
| which is part of INSN, emit code to restore the register in front of INSN. |
| INSN_MODE is the mode to assign to any insns that we add. */ |
| |
| static void |
| restore_referenced_regs (x, insn, insn_mode) |
| rtx x; |
| rtx insn; |
| enum machine_mode insn_mode; |
| { |
| enum rtx_code code = GET_CODE (x); |
| char *fmt; |
| int i, j; |
| |
| if (code == CLOBBER) |
| return; |
| |
| if (code == REG) |
| { |
| int regno = REGNO (x); |
| |
| /* If this is a pseudo, scan its memory location, since it might |
| involve the use of another register, which might be saved. */ |
| |
| if (regno >= FIRST_PSEUDO_REGISTER |
| && reg_equiv_mem[regno] != 0) |
| restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0), |
| insn, insn_mode); |
| else if (regno >= FIRST_PSEUDO_REGISTER |
| && reg_equiv_address[regno] != 0) |
| restore_referenced_regs (reg_equiv_address[regno], |
| insn, insn_mode); |
| |
| /* Otherwise if this is a hard register, restore any piece of it that |
| is currently saved. */ |
| |
| else if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x)); |
| /* Save at most SAVEREGS at a time. This can not be larger than |
| MOVE_MAX, because that causes insert_save_restore to fail. */ |
| int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD); |
| int endregno = regno + numregs; |
| |
| for (i = regno; i < endregno; i++) |
| if (TEST_HARD_REG_BIT (hard_regs_need_restore, i)) |
| i += insert_save_restore (insn, 0, i, insn_mode, saveregs); |
| } |
| |
| return; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| restore_referenced_regs (XEXP (x, i), insn, insn_mode); |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode); |
| } |
| } |
| |
| /* Insert a sequence of insns to save or restore, SAVE_P says which, |
| REGNO. Place these insns in front of INSN. INSN_MODE is the mode |
| to assign to these insns. MAXRESTORE is the maximum number of registers |
| which should be restored during this call (when SAVE_P == 0). It should |
| never be less than 1 since we only work with entire registers. |
| |
| Note that we have verified in init_caller_save that we can do this |
| with a simple SET, so use it. Set INSN_CODE to what we save there |
| since the address might not be valid so the insn might not be recognized. |
| These insns will be reloaded and have register elimination done by |
| find_reload, so we need not worry about that here. |
| |
| Return the extra number of registers saved. */ |
| |
| static int |
| insert_save_restore (insn, save_p, regno, insn_mode, maxrestore) |
| rtx insn; |
| int save_p; |
| int regno; |
| enum machine_mode insn_mode; |
| int maxrestore; |
| { |
| rtx pat; |
| enum insn_code code; |
| int i, numregs; |
| |
| /* A common failure mode if register status is not correct in the RTL |
| is for this routine to be called with a REGNO we didn't expect to |
| save. That will cause us to write an insn with a (nil) SET_DEST |
| or SET_SRC. Instead of doing so and causing a crash later, check |
| for this common case and abort here instead. This will remove one |
| step in debugging such problems. */ |
| |
| if (regno_save_mem[regno][1] == 0) |
| abort (); |
| |
| #ifdef HAVE_cc0 |
| /* If INSN references CC0, put our insns in front of the insn that sets |
| CC0. This is always safe, since the only way we could be passed an |
| insn that references CC0 is for a restore, and doing a restore earlier |
| isn't a problem. We do, however, assume here that CALL_INSNs don't |
| reference CC0. Guard against non-INSN's like CODE_LABEL. */ |
| |
| if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) |
| && reg_referenced_p (cc0_rtx, PATTERN (insn))) |
| insn = prev_nonnote_insn (insn); |
| #endif |
| |
| /* Get the pattern to emit and update our status. */ |
| if (save_p) |
| { |
| int i, j, k; |
| int ok; |
| |
| /* See if we can save several registers with a single instruction. |
| Work backwards to the single register case. */ |
| for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--) |
| { |
| ok = 1; |
| if (regno_save_mem[regno][i] != 0) |
| for (j = 0; j < i; j++) |
| { |
| if (! call_used_regs[regno + j] || call_fixed_regs[regno + j] |
| || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j) |
| || TEST_HARD_REG_BIT (hard_regs_saved, regno + j)) |
| ok = 0; |
| } |
| else |
| continue; |
| |
| /* Must do this one save at a time */ |
| if (! ok) |
| continue; |
| |
| pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i], |
| gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno)); |
| code = reg_save_code[regno][i]; |
| |
| /* Set hard_regs_saved for all the registers we saved. */ |
| for (k = 0; k < i; k++) |
| { |
| SET_HARD_REG_BIT (hard_regs_saved, regno + k); |
| SET_HARD_REG_BIT (hard_regs_need_restore, regno + k); |
| n_regs_saved++; |
| } |
| |
| numregs = i; |
| break; |
| } |
| } |
| else |
| { |
| int i, j, k; |
| int ok; |
| |
| /* See if we can restore `maxrestore' registers at once. Work |
| backwards to the single register case. */ |
| for (i = maxrestore; i > 0; i--) |
| { |
| ok = 1; |
| if (regno_save_mem[regno][i]) |
| for (j = 0; j < i; j++) |
| { |
| if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j)) |
| ok = 0; |
| } |
| else |
| continue; |
| |
| /* Must do this one restore at a time */ |
| if (! ok) |
| continue; |
| |
| pat = gen_rtx (SET, VOIDmode, |
| gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), |
| regno), |
| regno_save_mem[regno][i]); |
| code = reg_restore_code[regno][i]; |
| |
| |
| /* Clear status for all registers we restored. */ |
| for (k = 0; k < i; k++) |
| { |
| CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k); |
| n_regs_saved--; |
| } |
| |
| numregs = i; |
| break; |
| } |
| } |
| /* Emit the insn and set the code and mode. */ |
| |
| insn = emit_insn_before (pat, insn); |
| PUT_MODE (insn, insn_mode); |
| INSN_CODE (insn) = code; |
| |
| /* Tell our callers how many extra registers we saved/restored */ |
| return numregs - 1; |
| } |