;;- Machine description for GNU compiler ;;- MIL-STD-1750A version. ;; Copyright (C) 1994, 1995, 1996, 1997 Free Software Foundation, Inc. ;; Contributed by O.M.Kellogg, DASA (oliver.kellogg@space.otn.dasa.de).
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 1, or (at your option) ;; any later version.
;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA.
;;- instruction definitions
;;- See file “rtl.def” for documentation on define_insn, match_*, et. al.
;;- When naming insn's (operand 0 of define_insn) be careful about using ;;- names from other targets machine descriptions.
;; MIL-STD-1750 specific remarks: ;; ;; 1) BITS_PER_UNIT = 16 ;; ;; 2) GCC to MIL-STD-1750 data type mappings: ;; QImode => single integer (16 bits or 1 reg). ;; HImode => double integer (32 bits or 2 regs). ;; HFmode => single precision float (32 bits or 2 regs). ;; TQFmode => extended precision float (48 bits or 3 regs). ;; ;; 3) Immediate integer operands Constraints: ;; ‘I’ 1 .. 16 ;; ‘J’ -1 ..-16 ;; ‘K’ 0 .. 15 ;; ‘L’ 0 .. 255 ;; ‘M’ -32768 .. 32767 ;; ‘O’ => 0 (for optimizations and GCC quirks) ;; ;; Further notes: ;;- Assembly output ending in “.M” are macros in file M1750.INC
;; stackpush (define_insn "" [(set (match_operand:QI 0 “push_operand” “=<”) (match_operand:QI 1 “general_operand” “r”))] "" “pshm r%1,r%1”)
(define_insn "" [(set (match_operand:HI 0 “push_operand” “=<”) (match_operand:HI 1 “general_operand” “r”))] "" “pshm r%1,r%d1”)
(define_insn "" [(set (match_operand:HF 0 “push_operand” “=<”) (match_operand:HF 1 “general_operand” “r”))] "" “pshm r%1,r%d1”)
(define_insn "" [(set (match_operand:TQF 0 “push_operand” “=<”) (match_operand:TQF 1 “general_operand” “r”))] "" “pshm r%1,r%t1”)
;; stackpop (define_insn "" [(set (match_operand:QI 0 “general_operand” “=r”) (match_operand:QI 1 “push_operand” “>”))] "" “popm r%1,r%1”)
(define_insn "" [(set (match_operand:HI 0 “general_operand” “=r”) (match_operand:HI 1 “push_operand” “>”))] "" “popm r%1,r%d1”)
(define_insn "" [(set (match_operand:HF 0 “general_operand” “=r”) (match_operand:HF 1 “push_operand” “>”))] "" “popm r%1,r%d1”)
(define_insn "" [(set (match_operand:TQF 0 “general_operand” “=r”) (match_operand:TQF 1 “push_operand” “>”))] "" “popm r%1,r%t1”)
;; Test operations.
(define_insn “tstqi” [(set (cc0) (match_operand:QI 0 “register_operand” “r”))] "" “lr r%0,r%0 ; from tstqi”)
(define_insn “tsthi” [(set (cc0) (match_operand:HI 0 “register_operand” “r”))] "" “dlr r%0,r%0 ; from tsthi”)
; With 1750A floats, testing the most significant word suffices.
(define_insn “tsthf” [(set (cc0) (match_operand:HF 0 “register_operand” “r”))] "" “lr r%0,r%0 ; tsthf”)
(define_insn “tsttqf” [(set (cc0) (match_operand:TQF 0 “register_operand” “r”))] "" “lr r%0,r%0 ; tsttqf”)
;; block move.
(define_insn “movstrqi” [(set (match_operand:BLK 0 “mov_memory_operand” “m”) (match_operand:BLK 1 “mov_memory_operand” “m”)) (use (match_operand:QI 2 “general_operand” “r”)) (match_operand 3 "" "") (clobber (match_dup 0)) (clobber (match_dup 1)) (clobber (match_dup 2))] "" "* { rtx regops[3];
regops[0] = XEXP (operands[0], 0); regops[1] = XEXP (operands[1], 0); regops[2] = operands[2]; return movcnt_regno_adjust (regops);
} ")
;; compare instructions.
(define_insn “cmpqi” [(set (cc0) (compare (match_operand:QI 0 “register_operand” “r,r,r,r,r”) (match_operand:QI 1 “general_operand” “I,J,i,r,m”)))] "" "* { if (next_cc_user_is_unsigned (insn)) switch (which_alternative) { case 0: case 1: case 2: return "ucim.m %0,%1"; case 3: return "ucr.m %0,%1"; case 4: return "uc.m %0,%1"; } else switch (which_alternative) { case 0: return "cisp r%0,%1"; case 1: return "cisn r%0,%J1"; case 2: return "cim r%0,%1"; case 3: return "cr r%0,r%1"; case 4: return "c r%0,%1"; } } ")
(define_insn “cmphi” [(set (cc0) (compare (match_operand:HI 0 “general_operand” “r,r”) (match_operand:HI 1 “general_operand” “r,m”)))] "" "* { if (next_cc_user_is_unsigned (insn)) { if (which_alternative == 0) return "ducr.m %0,%1"; return "duc.m %0,%1"; } else { if (which_alternative == 0) return "dcr r%0,r%1"; return "dc r%0,%1"; } } ")
(define_insn “cmphf” [(set (cc0) (compare (match_operand:HF 0 “general_operand” “r,r”) (match_operand:HF 1 “general_operand” “r,m”)))] "" "@ fcr r%0,r%1 fc r%0,%1 ")
(define_insn “cmptqf” [(set (cc0) (compare (match_operand:TQF 0 “general_operand” “r,r”) (match_operand:TQF 1 “general_operand” “r,m”)))] "" "@ efcr r%0,r%1 efc r%0,%1 ")
;; truncation instructions ;;- 1750: any needed?
(define_insn “trunchiqi2” [(set (match_operand:QI 0 “register_operand” “=r”) (truncate:QI (match_operand:HI 1 “register_operand” “r”)))] "" “lr r%0,r%d1”)
;; zero extension instructions: not defined, GCC can synthesize
;; sign extension instructions
(define_insn “extendqihi2” [(set (match_operand:HI 0 “register_operand” “=r,r”) (sign_extend:HI (match_operand:QI 1 “general_operand” “r,m”)) )] "" "* if (which_alternative == 0) { if (REGNO (operands [0]) != REGNO (operands [1])) output_asm_insn ("lr r%0,r%1", operands); } else output_asm_insn ("l r%0,%1", operands); return "dsra r%0,16 ;extendqihi2"; ")
;; Conversions between float and double.
; 1750 HF-to-TQF extend: just append 16 bits (least signif.) with all bits zero (define_insn “extendhftqf2” [(set (match_operand:TQF 0 “register_operand” “=r,r”) (float_extend:TQF (match_operand:HF 1 “general_operand” “r,m”)))] "" "* output_asm_insn("xorr r%t0,r%t0 ;extendhftqf2", operands); if (which_alternative == 0) { if (REGNO (operands[1]) != REGNO (operands[0])) return "dlr r%0,r%1"; else return ";"; } else return "dl r%0,%1"; ")
; 1750 TQF-to-HF truncate is a no-op: just leave away the least signif. 16 bits (define_insn “trunctqfhf2” [(set (match_operand:HF 0 “register_operand” “=r,r”) (float_truncate:HF (match_operand:TQF 1 “general_operand” “r,m”)))] "" "@ dlr r%0,r%1 ;trunctqfhf2 dl r%0,%1 ;trunctqfhf2 ")
;; Conversion between fixed point and floating point.
(define_insn “floatqihf2” [(set (match_operand:HF 0 “register_operand” “=r”) (float:HF (match_operand:QI 1 “register_operand” “r”)))] "" “flt r%0,r%1”)
(define_insn “floathitqf2” [(set (match_operand:TQF 0 “register_operand” “=r”) (float:TQF (match_operand:HI 1 “register_operand” “r”)))] "" “eflt r%0,r%1”)
;; Convert floats to ints
(define_insn “fix_trunchfqi2” [(set (match_operand:QI 0 “register_operand” “=r”) (fix:QI (fix:HF (match_operand:HF 1 “register_operand” “r”))))] "" “fix r%0,r%1”)
(define_insn “fix_trunctqfhi2” [(set (match_operand:HI 0 “register_operand” “=r”) (fix:HI (fix:TQF (match_operand:TQF 1 “register_operand” “r”))))] "" “efix r%0,r%1”)
;; Move instructions
;; We can't deal with normal byte-size characters, only with WIDE characters! ;; This may appear as a serious restriction, but it also opens the doors ;; for ISO 10646 :-)
;; 16-bit moves
; memory indirect to reg (define_insn "" [(set (match_operand:QI 0 “register_operand” “=r”) (mem:QI (match_operand 1 “memory_operand” “m”)))] "" “li r%0,%1”)
; reg/const to memory indirect (define_insn "" [(set (mem:QI (match_operand 0 “memory_operand” “=m,m”)) (match_operand:QI 1 “nonmemory_operand” “r,K”))] "" “@ sti r%1,%0 stci %1,%0”)
; general case (define_insn “movqi” [(set (match_operand:QI 0 “general_operand” “=r,r,r,r,r,r,m,m”) (match_operand:QI 1 “general_operand” “O,I,J,i,r,m,r,K”))] "" "@ xorr r%0,r%0 lisp r%0,%1 lisn r%0,%J1 lim r%0,%1 lr r%0,r%1 l r%0,%1 st r%1,%0 stc %1,%0 ")
;; 32-bit moves
; memory indirect to reg (define_insn "" [(set (match_operand:HI 0 “register_operand” “=r”) (mem:HI (match_operand 1 “memory_operand” “m”)))] "" “dli r%0,%1”)
; reg to memory indirect (define_insn "" [(set (mem:HI (match_operand 0 “memory_operand” “=m”)) (match_operand:HI 1 “register_operand” “r”))] "" “dsti r%1,%0”)
; general case (define_insn "" [(set (match_operand:HI 0 “general_operand” “=r,r,r,r,r,m,m”) (match_operand:HI 1 “general_operand” “O,I,J,r,m,r,K”))] "" "@ xorr r%0,r%0;xorr r%d0,r%d0 xorr r%0,r%0;lisp r%d0,%1 lisn r%0,1 ;lisn r%d0,%J1 dlr r%0,r%1 dl r%0,%1 dst r%1,%0 stc 0,%0 ;stc %1,%A0 ")
(define_expand “movhi” [(set (match_operand:HI 0 “general_operand” “=g”) (match_operand:HI 1 “general_operand” “g”))] "" " { rtx op1 = operands[1]; if (GET_CODE (operands[0]) == MEM) { if (GET_CODE (op1) == MEM || (GET_CODE (op1) == CONST_INT && (INTVAL (op1) < 0 || INTVAL (op1) > 15))) operands[1] = force_reg (HImode, operands[1]); } else if (GET_CODE (op1) == CONST_INT && (INTVAL (op1) < -16 || INTVAL (op1) > 16)) operands[1] = force_const_mem (HImode, operands[1]); }")
;; Single-Float moves
(define_insn "" [(set (match_operand:HF 0 “general_operand” “=r,r,m,m”) (match_operand:HF 1 “general_operand” “r,m,r,G”))] "" "@ dlr r%0,r%1 dl r%0,%1 dst r%1,%0 stc 0,%0 ;stc 0,%A0 ")
(define_expand “movhf” [(set (match_operand:HF 0 “general_operand” "") (match_operand:HF 1 “general_operand” "“))] "" " { enum rtx_code op1code = GET_CODE (operands[1]); if (GET_CODE (operands[0]) == MEM) { if (op1code == MEM || (op1code == CONST_DOUBLE && !rtx_equal_p (operands[1], CONST0_RTX (HFmode)))) operands[1] = force_reg (HFmode, operands[1]); } else if (op1code == CONST_DOUBLE) operands[1] = force_const_mem (HFmode, operands[1]); }”)
;; Longfloat moves
(define_insn "" [(set (match_operand:TQF 0 “general_operand” “=r,r,m”) (match_operand:TQF 1 “general_operand” “r,m,r”))] "" "@ eflr.m %0,%1 efl r%0,%1 efst r%1,%0 ")
(define_expand “movtqf” [(set (match_operand:TQF 0 “general_operand” "") (match_operand:TQF 1 “general_operand” "“))] "" " { enum rtx_code op1code = GET_CODE (operands[1]); if (GET_CODE (operands[0]) == MEM) { if (op1code == MEM || op1code == CONST_DOUBLE) operands[1] = force_reg (TQFmode, operands[1]); } else if (op1code == CONST_DOUBLE) operands[1] = force_const_mem (TQFmode, operands[1]); }”)
;; add instructions
;; single integer
(define_insn “addqi3” [(set (match_operand:QI 0 “general_operand” “=r,r,r,r,r,m,m”) (plus:QI (match_operand:QI 1 “general_operand” “%0,0,0,0,0,0,0”) (match_operand:QI 2 “general_operand” “I,J,i,r,m,I,J”)))] "" "* switch (which_alternative) { case 0: return "aisp r%0,%2"; case 1: return "sisp r%0,%J2"; case 2: if (INTVAL(operands[2]) < 0) return "sim r%0,%J2"; else return "aim r%0,%2"; case 3: return "ar r%0,r%2"; case 4: return "a r%0,%2"; case 5: return "incm %2,%0"; case 6: return "decm %J2,%0"; } ")
;; double integer (define_insn “addhi3” [(set (match_operand:HI 0 “register_operand” “=r,r”) (plus:HI (match_operand:HI 1 “register_operand” “%0,0”) (match_operand:HI 2 “general_operand” “r,m”)))] "" "@ dar r%0,r%2 da r%0,%2 ")
(define_insn “addhf3” [(set (match_operand:HF 0 “register_operand” “=r,r”) (plus:HF (match_operand:HF 1 “register_operand” “%0,0”) (match_operand:HF 2 “general_operand” “r,m”)))] "" "@ far r%0,r%2 fa r%0,%2 ")
(define_insn “addtqf3” [(set (match_operand:TQF 0 “register_operand” “=r,r”) (plus:TQF (match_operand:TQF 1 “register_operand” “%0,0”) (match_operand:TQF 2 “general_operand” “r,m”)))] "" "@ efar r%0,r%2 efa r%0,%2 ")
;; subtract instructions
;; single integer (define_insn “subqi3” [(set (match_operand:QI 0 “general_operand” “=r,r,r,r,m”) (minus:QI (match_operand:QI 1 “general_operand” “0,0,0,0,0”) (match_operand:QI 2 “general_operand” “I,i,r,m,I”)))] "" "@ sisp r%0,%2 sim r%0,%2 sr r%0,r%2 s r%0,%2 decm %2,%0 ")
;; double integer (define_insn “subhi3” [(set (match_operand:HI 0 “register_operand” “=r,r”) (minus:HI (match_operand:HI 1 “register_operand” “0,0”) (match_operand:HI 2 “general_operand” “r,m”)))] "" "@ dsr r%0,r%2 ds r%0,%2 ")
(define_insn “subhf3” [(set (match_operand:HF 0 “register_operand” “=r,r”) (minus:HF (match_operand:HF 1 “register_operand” “0,0”) (match_operand:HF 2 “general_operand” “r,m”)))] "" "@ fsr r%0,r%2 fs r%0,%2 ")
(define_insn “subtqf3” [(set (match_operand:TQF 0 “register_operand” “=r,r”) (minus:TQF (match_operand:TQF 1 “register_operand” “0,0”) (match_operand:TQF 2 “general_operand” “r,m”)))] "" "@ efsr r%0,r%2 efs r%0,%2 ")
;; multiply instructions
(define_insn “mulqi3” [(set (match_operand:QI 0 “register_operand” “=r,r,r,r,r”) (mult:QI (match_operand:QI 1 “register_operand” “%0,0,0,0,0”) (match_operand:QI 2 “general_operand” “I,J,M,r,m”)))] "" "@ misp r%0,%2 misn r%0,%J2 msim r%0,%2 msr r%0,r%2 ms r%0,%2 ")
; 32-bit product (define_insn “mulqihi3” [(set (match_operand:HI 0 “register_operand” “=r,r,r”) (mult:HI (sign_extend:HI (match_operand:QI 1 “register_operand” “%r,r,r”)) (sign_extend:HI (match_operand:QI 2 “general_operand” “r,m,i”))))] "" "* if (REGNO (operands[1]) != REGNO (operands[0])) output_asm_insn ("lr r%0,r%1", operands);
switch (which_alternative) { case 0: return \"mr r%0,r%2\"; case 1: return \"m r%0,%2\"; case 2: return \"mim r%0,%2\"; }
")
(define_insn “mulhi3” [(set (match_operand:HI 0 “register_operand” “=r,r”) (mult:HI (match_operand:HI 1 “register_operand” “%0,0”) (match_operand:HI 2 “general_operand” “r,m”)))] "" "@ dmr r%0,r%2 dm r%0,%2 ")
; not available on 1750: “umulhi3”,“umulhisi3”,“umulsi3” (unsigned multiply's)
(define_insn “mulhf3” [(set (match_operand:HF 0 “register_operand” “=r,r”) (mult:HF (match_operand:HF 1 “register_operand” “%0,0”) (match_operand:HF 2 “general_operand” “r,m”)))] "" "@ fmr r%0,r%2 fm r%0,%2 ")
(define_insn “multqf3” [(set (match_operand:TQF 0 “register_operand” “=r,r”) (mult:TQF (match_operand:TQF 1 “register_operand” “%0,0”) (match_operand:TQF 2 “general_operand” “r,m”)))] "" "@ efmr r%0,r%2 efm r%0,%2 ")
;; divide instructions ;; The 1750 16bit integer division instructions deliver a 16-bit ;; quotient and a 16-bit remainder, where the remainder is in the next higher ;; register number above the quotient. For now, we haven‘t found a way ;; to give the reload pass knowledge of this property. So we make do with ;; whatever registers the allocator wants, and willy-nilly output a pair of ;; register-copy ops when needed. (See mod_regno_adjust() in file aux-output.c) ;; A comment in the description of `divmodM4’ suggests that one leave the divM3 ;; undefined when there is a divmodM4 available.
(define_insn “divmodqi4” [(set (match_operand:QI 0 “register_operand” “=r,r,r,r,r”) (div:QI (match_operand:QI 1 “register_operand” “0,0,0,0,0”) (match_operand:QI 2 “general_operand” “I,J,M,r,m”))) (set (match_operand:QI 3 “register_operand” “=r,r,r,r,r”) (mod:QI (match_dup 1) (match_dup 2)))] "" “* { char *istr; switch(which_alternative) { case 0: istr = "disp"; break; case 1: { rtx new_opnds[4]; new_opnds[0] = operands[0]; new_opnds[1] = operands[1]; new_opnds[2] = gen_rtx (CONST_INT, VOIDmode, -INTVAL(operands[2])); new_opnds[3] = operands[3]; istr = "disn"; return mod_regno_adjust (istr, new_opnds); } break; case 2: istr = "dvim"; break; case 3: istr = "dvr "; break; case 4: istr = "dv "; break; } return mod_regno_adjust (istr, operands); }”)
;; Division for other types is straightforward.
(define_insn “divhi3” [(set (match_operand:HI 0 “register_operand” “=r,r”) (div:HI (match_operand:HI 1 “register_operand” “0,0”) (match_operand:HI 2 “general_operand” “r,m”)))] "" "@ ddr r%0,r%2 dd r%0,%2 ")
(define_insn “divhf3” [(set (match_operand:HF 0 “register_operand” “=r,r”) (div:HF (match_operand:HF 1 “register_operand” “0,0”) (match_operand:HF 2 “general_operand” “r,m”)))] "" "@ fdr r%0,r%2 fd r%0,%2 ")
(define_insn “divtqf3” [(set (match_operand:TQF 0 “register_operand” “=r,r”) (div:TQF (match_operand:TQF 1 “register_operand” “0,0”) (match_operand:TQF 2 “general_operand” “r,m”)))] "" "@ efdr r%0,r%2 efd r%0,%2 ")
;; Other arithmetic instructions:
;; Absolute value
(define_insn “absqi2” [(set (match_operand:QI 0 “register_operand” “=r”) (abs:QI (match_operand:QI 1 “register_operand” “r”)))] "" “abs r%0,r%1”)
(define_insn “abshi2” [(set (match_operand:HI 0 “register_operand” “=r”) (abs:HI (match_operand:HI 1 “register_operand” “r”)))] "" “dabs r%0,r%1”)
(define_insn “abshf2” [(set (match_operand:HF 0 “register_operand” “=r”) (abs:HF (match_operand:HF 1 “register_operand” “r”)))] "" “fabs r%0,r%1”)
;; Negation
(define_insn “negqi2” [(set (match_operand:QI 0 “register_operand” “=r”) (neg:QI (match_operand:QI 1 “register_operand” “r”)))] "" “neg r%0,r%1”)
(define_insn “neghi2” [(set (match_operand:HI 0 “register_operand” “=r”) (neg:HI (match_operand:HI 1 “register_operand” “r”)))] "" “dneg r%0,r%1”)
(define_insn “neghf2” [(set (match_operand:HF 0 “register_operand” “=r”) (neg:HF (match_operand:HF 1 “register_operand” “r”)))] "" “fneg r%0,r%1”)
; The 1750A does not have an extended float negate instruction, so simulate. (define_expand “negtqf2” [(set (match_operand:TQF 0 “register_operand” “=&r”) (neg:TQF (match_operand:TQF 1 “register_operand” “r”)))] "" " emit_insn(gen_rtx(SET,VOIDmode,operands[0],CONST0_RTX(TQFmode))); emit_insn(gen_rtx(SET,VOIDmode,operands[0], gen_rtx(MINUS,TQFmode,operands[0],operands[1]))); DONE; ")
;; bit-logical instructions
;; Set Bit (define_insn "" [(set (match_operand:QI 0 “general_operand” “=r,m”) (ior:QI (match_operand:QI 1 “general_operand” “0,0”) (match_operand:QI 2 “const_int_operand” “i,i”)))] “one_bit_set_p (INTVAL (operands [2]))” “@ sbr %b2,r%0 sb %b2,%0”)
;; Reset Bit (define_insn "" [(set (match_operand:QI 0 “general_operand” “=r,m”) (and:QI (match_operand:QI 1 “general_operand” “0,0”) (match_operand:QI 2 “const_int_operand” “i,i”)))] “one_bit_set_p ((~INTVAL (operands [2])) & 0xffff)” “@ rbr %B2,r%0 rb %B2,%0”)
;; Set Variable Bit (define_insn "" [(set (match_operand:QI 0 “register_operand” “=r”) (ior:QI (match_operand:QI 1 “register_operand” “0”) (lshiftrt:QI (const_int 0x8000) (match_operand:QI 2 “register_operand” “r”))))] "" “svbr r%2,%r0”)
;; Reset Variable Bit (define_insn "" [(set (match_operand:QI 0 “general_operand” “=r”) (and:QI (match_operand:QI 1 “general_operand” “0”) (not:QI (lshiftrt:QI (const_int 0x8000) (match_operand:QI 2 “register_operand” “r”)))))] "" “rvbr r%2,%r0”)
;; AND
(define_insn “andqi3” [(set (match_operand:QI 0 “general_operand” “=r,r,r”) (and:QI (match_operand:QI 1 “general_operand” “%0,0,0”) (match_operand:QI 2 “general_operand” “M,r,m”)))] "" "@ andm r%0,%2 andr r%0,r%2 and r%0,%2 ")
; This sets incorrect condition codes. See notice_update_cc() (define_insn “andhi3” [(set (match_operand:HI 0 “register_operand” “=r”) (and:HI (match_operand:HI 1 “register_operand” “%0”) (match_operand:HI 2 “register_operand” “r”)))] "" “danr.m %0,%2”)
;; OR
(define_insn “iorqi3” [(set (match_operand:QI 0 “general_operand” “=r,r,r”) (ior:QI (match_operand:QI 1 “general_operand” “%0,0,0”) (match_operand:QI 2 “general_operand” “M,r,m”)))] "" "@ orim r%0,%2 orr r%0,r%2 or r%0,%2 ")
; This sets incorrect condition codes. See notice_update_cc() (define_insn “iorhi3” [(set (match_operand:HI 0 “register_operand” “=r”) (ior:HI (match_operand:HI 1 “register_operand” “%0”) (match_operand:HI 2 “register_operand” “r”)))] "" “dorr.m %0,%2”)
;; XOR
(define_insn “xorqi3” [(set (match_operand:QI 0 “register_operand” “=r,r,r”) (xor:QI (match_operand:QI 1 “register_operand” “%0,0,0”) (match_operand:QI 2 “general_operand” “M,r,m”)))] "" "@ xorm r%0,%2 xorr r%0,r%2 xor r%0,%2 ")
; This sets incorrect condition codes. See notice_update_cc() (define_insn “xorhi3” [(set (match_operand:HI 0 “register_operand” “=r”) (xor:HI (match_operand:HI 1 “register_operand” “%0”) (match_operand:HI 2 “register_operand” “r”)))] "" “dxrr.m %0,%2”)
;; NAND
(define_insn "" [(set (match_operand:QI 0 “register_operand” “=r,r,r”) (ior:QI (not:QI (match_operand:QI 1 “register_operand” “%0,0,0”)) (not:QI (match_operand:QI 2 “general_operand” “M,r,m”))))] "" "@ nim r%0,%2 nr r%0,r%2 n r%0,%2 ")
; This sets incorrect condition codes. See notice_update_cc() (define_insn "" [(set (match_operand:HI 0 “register_operand” “=r”) (ior:HI (not:HI (match_operand:HI 1 “register_operand” “%0”)) (not:HI (match_operand:HI 2 “register_operand” “r”))))] "" “dnr.m %0,%2”)
;; NOT
(define_insn “one_cmplqi2” [(set (match_operand:QI 0 “register_operand” “=r”) (not:QI (match_operand:QI 1 “register_operand” “0”)))] "" “nr r%0,r%0”)
; This sets incorrect condition codes. See notice_update_cc() (define_insn “one_cmplhi2” [(set (match_operand:HI 0 “register_operand” “=r”) (not:HI (match_operand:HI 1 “register_operand” “0”)))] "" “dnr.m %0,%0”)
;; Shift instructions
; (What to the 1750 is logical-shift-left, GCC likes to call “arithmetic”) (define_insn “ashlqi3” [(set (match_operand:QI 0 “register_operand” “=r,r”) (ashift:QI (match_operand:QI 1 “register_operand” “0,0”) (match_operand:QI 2 “nonmemory_operand” “I,r”)))] "" "@ sll r%0,%2 slr r%0,r%2 ")
(define_insn “ashlhi3” [(set (match_operand:HI 0 “register_operand” “=r,r”) (ashift:HI (match_operand:HI 1 “register_operand” “0,0”) (match_operand:QI 2 “nonmemory_operand” “L,r”)))] "" ; the ‘L’ constraint is a slight imprecise... "* if (which_alternative == 1) return "dslr r%0,r%2"; else if (INTVAL(operands[2]) <= 16) return "dsll r%0,%2"; else { output_asm_insn ("dsll r%0,16 ; ashlhi3 shiftcnt > 16", operands); return "sll r%0,%w2"; } ")
;; Right shift by a variable shiftcount works by negating the shift count, ;; then emitting a right shift with the shift count negated. This means ;; that all actual shift counts in the RTL will be positive. This ;; prevents converting shifts to ZERO_EXTRACTs with negative positions, ;; which isn't valid. (define_expand “lshrqi3” [(set (match_operand:QI 0 “register_operand” “=r”) (lshiftrt:QI (match_operand:QI 1 “register_operand” “0”) (match_operand:QI 2 “nonmemory_operand” “g”)))] "" " { if (GET_CODE (operands[2]) != CONST_INT) operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2])); }")
(define_insn "" [(set (match_operand:QI 0 “register_operand” “=r”) (lshiftrt:QI (match_operand:QI 1 “register_operand” “0”) (match_operand:QI 2 “immediate_operand” “I”)))] "" “srl r%0,%2”)
(define_insn "" [(set (match_operand:QI 0 “register_operand” “=r”) (lshiftrt:QI (match_operand:QI 1 “register_operand” “0”) (neg:QI (match_operand:QI 2 “register_operand” “r”))))] "" "slr r%0,r%2 ")
;; Same thing for HImode.
(define_expand “lshrhi3” [(set (match_operand:HI 0 “register_operand” “=r”) (lshiftrt:HI (match_operand:HI 1 “register_operand” “0”) (match_operand:QI 2 “nonmemory_operand” “g”)))] "" " { if (GET_CODE (operands[2]) != CONST_INT) operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2])); }")
(define_insn "" [(set (match_operand:HI 0 “register_operand” “=r”) (lshiftrt:HI (match_operand:HI 1 “register_operand” “0”) (match_operand:QI 2 “immediate_operand” “L”)))] "" "* if (INTVAL (operands[2]) <= 16) return "dsrl r%0,%2"; output_asm_insn ("dsrl r%0,16 ; lshrhi3 shiftcount > 16", operands); return "srl r%d0,%w2"; ")
(define_insn "" [(set (match_operand:HI 0 “register_operand” “=r”) (lshiftrt:HI (match_operand:HI 1 “register_operand” “0”) (neg:QI (match_operand:QI 2 “register_operand” “r”))))] "" "dslr r%0,r%2 ")
;; Same applies for arithmetic shift right. (define_expand “ashrqi3” [(set (match_operand:QI 0 “register_operand” “=r”) (ashiftrt:QI (match_operand:QI 1 “register_operand” “0”) (match_operand:QI 2 “nonmemory_operand” “g”)))] "" " { if (GET_CODE (operands[2]) != CONST_INT) operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2])); }")
(define_insn "" [(set (match_operand:QI 0 “register_operand” “=r”) (ashiftrt:QI (match_operand:QI 1 “register_operand” “0”) (match_operand:QI 2 “immediate_operand” “I”)))] "" “sra r%0,%2”)
(define_insn "" [(set (match_operand:QI 0 “register_operand” “=r”) (ashiftrt:QI (match_operand:QI 1 “register_operand” “0”) (neg:QI (match_operand:QI 2 “register_operand” “r”))))] "" "sar r%0,r%2 ")
;; HImode arithmetic shift right. (define_expand “ashrhi3” [(set (match_operand:HI 0 “register_operand” “=r”) (ashiftrt:HI (match_operand:HI 1 “register_operand” “0”) (match_operand:QI 2 “nonmemory_operand” “g”)))] "" " { if (GET_CODE (operands[2]) != CONST_INT) operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2])); }")
(define_insn "" [(set (match_operand:HI 0 “register_operand” “=r”) (ashiftrt:HI (match_operand:HI 1 “register_operand” “0”) (match_operand:QI 2 “immediate_operand” “L”)))] "" "* if (INTVAL (operands[2]) <= 16) return "dsra r%0,%2"; output_asm_insn ("dsra r%0,16 ; ashrhi3 shiftcount > 16", operands); return "sra r%d0,%w2"; ")
(define_insn "" [(set (match_operand:HI 0 “register_operand” “=r”) (ashiftrt:HI (match_operand:HI 1 “register_operand” “0”) (neg:QI (match_operand:QI 2 “register_operand” “r”))))] "" "dsar r%0,r%2 ")
;; rotate instructions
(define_insn “rotlqi3” [(set (match_operand:QI 0 “register_operand” “=r,r”) (rotate:QI (match_operand:QI 1 “register_operand” “0,0”) (match_operand:QI 2 “nonmemory_operand” “I,r”)))] "" "@ slc r%0,%2 scr r%0,r%2 ")
(define_insn “rotlhi3” [(set (match_operand:HI 0 “register_operand” “=r,r”) (rotate:HI (match_operand:HI 1 “register_operand” “0,0”) (match_operand:QI 2 “nonmemory_operand” “I,r”)))] "" "@ dslc r%0,%2 dscr r%0,r%2 ")
(define_insn “rotrqi3” [(set (match_operand:QI 0 “register_operand” “=r”) (rotatert:QI (match_operand:QI 1 “register_operand” “0”) (match_operand:QI 2 “register_operand” “r”)))] "" "neg r%2,r%2;scr r%0,r%2 ")
(define_insn “rotrhi3” [(set (match_operand:HI 0 “register_operand” “=r”) (rotatert:HI (match_operand:HI 1 “register_operand” “0”) (match_operand:QI 2 “nonmemory_operand” “r”)))] "" "neg r%2,r%2;dscr r%0,r%2 ")
;; Special cases of bit-field insns which we should ;; recognize in preference to the general case. ;; These handle aligned 8-bit and 16-bit fields, ;; which can usually be done with move instructions. ; 1750: t.b.d. ;********************
;; Bit field instructions, general cases. ;; “o,d” constraint causes a nonoffsetable memref to match the “o” ;; so that its address is reloaded.
;; (define_insn “extv” ...
;; (define_insn “extzv” ...
;; (define_insn “insv” ...
;; Now recognize bit field insns that operate on registers ;; (or at least were intended to do so). ;[unnamed only]
;; Special patterns for optimizing bit-field instructions. ;**************************************
; cc status test ops n.a. on 1750 ......... e.g. “sleu” on 68k: ; [(set (match_operand:QI 0 “general_operand” “=d”) ; (leu (cc0) (const_int 0)))] ; "" ; "* cc_status = cc_prev_status; ; return "sls %0"; ")
;; Basic conditional jump instructions.
(define_insn “beq” [(set (pc) (if_then_else (eq (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return branch_or_jump ("ez", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn “bne” [(set (pc) (if_then_else (ne (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return branch_or_jump ("nz", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn “bgt” [(set (pc) (if_then_else (gt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return branch_or_jump ("gt", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn “blt” [(set (pc) (if_then_else (lt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return branch_or_jump ("lt", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn “bge” [(set (pc) (if_then_else (ge (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return branch_or_jump ("ge", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn “ble” [(set (pc) (if_then_else (le (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return branch_or_jump ("le", CODE_LABEL_NUMBER (operands[0])); ")
; no unsigned branches available on 1750. But GCC still needs them, so faking:
(define_insn “bgtu” [(set (pc) (if_then_else (gtu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" “jc gt,%l0 ; Warning: this should be an unsigned test!”)
(define_insn “bltu” [(set (pc) (if_then_else (ltu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" “jc lt,%l0 ; Warning: this should be an unsigned test!”)
(define_insn “bgeu” [(set (pc) (if_then_else (geu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" “jc ge,%l0 ; Warning: this should be an unsigned test!”)
(define_insn “bleu” [(set (pc) (if_then_else (leu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" “jc le,%l0 ; Warning: this should be an unsigned test!”)
;; Negated conditional jump instructions.
(define_insn "" [(set (pc) (if_then_else (eq (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return branch_or_jump ("nz", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn "" [(set (pc) (if_then_else (ne (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return branch_or_jump ("ez", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn "" [(set (pc) (if_then_else (gt (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return branch_or_jump ("le", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn "" [(set (pc) (if_then_else (lt (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return branch_or_jump ("ge", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn "" [(set (pc) (if_then_else (ge (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return branch_or_jump ("lt", CODE_LABEL_NUMBER (operands[0])); ")
(define_insn "" [(set (pc) (if_then_else (le (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return branch_or_jump ("gt", CODE_LABEL_NUMBER (operands[0])); ")
;; Negated unsigned conditional jump instructions (faked for 1750).
(define_insn "" [(set (pc) (if_then_else (gtu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" “jc le,%l0 ;inv.cond. ;Warning: this should be an unsigned test!”)
(define_insn "" [(set (pc) (if_then_else (ltu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" “jc ge,%l0 ;inv.cond. ;Warning: this should be an unsigned test!”)
(define_insn "" [(set (pc) (if_then_else (geu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" “jc lt,%l0 ;inv.cond. ;Warning: this should be an unsigned test!”)
(define_insn "" [(set (pc) (if_then_else (leu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" “jc gt,%l0 ;inv.cond. ;Warning: this should be an unsigned test!”)
;; Tablejump ;; 1750 note: CASE_VECTOR_PC_RELATIVE is not defined (define_insn “tablejump” [(set (pc) (match_operand:QI 0 “register_operand” “b”)) (use (label_ref (match_operand 1 "" "")))] "" “jc 15,0,r%0 ; tablejump label_ref=%1”)
;; Unconditional jump (define_insn “jump” [(set (pc) (label_ref (match_operand 0 "" "")))] "" “jc 15,%0”)
;; Call subroutine, returning value in operand 0 ;; (which must be a hard register). (define_insn “call_value” [(set (match_operand 0 “register_operand” “r”) (call (match_operand:QI 1 “memory_operand” “m”) (match_operand:QI 2 “general_operand” “g”)))] ;; Operand 2 not really used for 1750. "" “sjs r15,%1 ; return value in R0”)
;; Call subroutine with no return value.
;; Operand 1 not really used in MIL-STD-1750. (define_insn "" [(call (match_operand:QI 0 “memory_operand” “mp”) (match_operand:QI 1 “general_operand” ""))] "" “sjs r15,%0 ; no return value”)
;;;;;;;;;;;; 1750: NOT READY YET. (define_insn “call” [(call (match_operand:QI 0 "" "") (match_operand:QI 1 "" ""))] "" “ANYCALL %0”)
; (define_insn “return” ; [(return)] ; "" ; "* ; { ; rtx oprnd = gen_rtx(CONST_INT,VOIDmode,get_frame_size()); ; output_asm_insn("ret.m %0",&oprnd); ; return ";"; ; } ")
(define_insn “indirect_jump” [(set (pc) (match_operand:QI 0 “address_operand” “p”))] "" “jci 15,%0”)
(define_insn “nop” [(const_int 0)] "" “nop”)
;; Subtract One and Jump (if non-zero) (define_peephole [(set (match_operand:QI 0 “register_operand” “=r”) (plus:QI (match_operand:QI 1 “register_operand” “%0”) (match_operand:QI 2 “immediate_operand” “J”))) (set (cc0) (match_dup 0)) (set (pc) (if_then_else (ne (cc0) (const_int 0)) (label_ref (match_operand 3 "" "")) (pc))) ] “INTVAL(operands[2]) == -1” “soj r%0,%3”)
;; Combine a Load Register with subsequent increment/decrement into a LIM (define_peephole [(set (match_operand:QI 0 “register_operand” “=r”) (match_operand:QI 1 “register_operand” “b”)) (set (match_dup 0) (plus:QI (match_dup 0) (match_operand:QI 2 “immediate_operand” “i”)))] “REGNO(operands[1]) > 0” “lim r%0,%2,r%1 ; LR,inc/dec peephole”)
;; Eliminate the redundant load in a store/load sequence (define_peephole [(set (mem:QI (plus:QI (match_operand:QI 0 “register_operand” “r”) (match_operand:QI 1 “immediate_operand” “i”))) (match_operand:QI 2 “register_operand” “r”)) (set (match_operand:QI 3 “register_operand” “=r”) (mem:QI (plus:QI (match_dup 0) (match_dup 1)))) ] “REGNO(operands[2]) == REGNO(operands[3])” “st r%2,%1,r%0 ; eliminated previous redundant load”)
;;;End.