| /* Front-end tree definitions for GNU compiler. |
| Copyright (C) 1989, 1991, 1994, 1996 Free Software Foundation, Inc. |
| |
| This file is part of GNU CC. |
| |
| GNU CC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GNU CC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU CC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| #ifndef REAL_H_INCLUDED |
| #define REAL_H_INCLUDED |
| |
| /* Define codes for all the float formats that we know of. */ |
| #define UNKNOWN_FLOAT_FORMAT 0 |
| #define IEEE_FLOAT_FORMAT 1 |
| #define VAX_FLOAT_FORMAT 2 |
| #define IBM_FLOAT_FORMAT 3 |
| |
| /* Default to IEEE float if not specified. Nearly all machines use it. */ |
| |
| #ifndef TARGET_FLOAT_FORMAT |
| #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT |
| #endif |
| |
| #ifndef HOST_FLOAT_FORMAT |
| #define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT |
| #endif |
| |
| #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
| #define REAL_INFINITY |
| #endif |
| |
| /* If FLOAT_WORDS_BIG_ENDIAN and HOST_FLOAT_WORDS_BIG_ENDIAN are not defined |
| in the header files, then this implies the word-endianness is the same as |
| for integers. */ |
| |
| /* This is defined 0 or 1, like WORDS_BIG_ENDIAN. */ |
| #ifndef FLOAT_WORDS_BIG_ENDIAN |
| #define FLOAT_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN |
| #endif |
| |
| /* This is defined 0 or 1, unlike HOST_WORDS_BIG_ENDIAN. */ |
| #ifndef HOST_FLOAT_WORDS_BIG_ENDIAN |
| #ifdef HOST_WORDS_BIG_ENDIAN |
| #define HOST_FLOAT_WORDS_BIG_ENDIAN 1 |
| #else |
| #define HOST_FLOAT_WORDS_BIG_ENDIAN 0 |
| #endif |
| #endif |
| |
| /* Defining REAL_ARITHMETIC invokes a floating point emulator |
| that can produce a target machine format differing by more |
| than just endian-ness from the host's format. The emulator |
| is also used to support extended real XFmode. */ |
| #ifndef LONG_DOUBLE_TYPE_SIZE |
| #define LONG_DOUBLE_TYPE_SIZE 64 |
| #endif |
| #if (LONG_DOUBLE_TYPE_SIZE == 96) || (LONG_DOUBLE_TYPE_SIZE == 128) |
| #ifndef REAL_ARITHMETIC |
| #define REAL_ARITHMETIC |
| #endif |
| #endif |
| #ifdef REAL_ARITHMETIC |
| /* **** Start of software floating point emulator interface macros **** */ |
| |
| /* Support 80-bit extended real XFmode if LONG_DOUBLE_TYPE_SIZE |
| has been defined to be 96 in the tm.h machine file. */ |
| #if (LONG_DOUBLE_TYPE_SIZE == 96) |
| #define REAL_IS_NOT_DOUBLE |
| #define REAL_ARITHMETIC |
| typedef struct { |
| HOST_WIDE_INT r[(11 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))]; |
| } realvaluetype; |
| #define REAL_VALUE_TYPE realvaluetype |
| |
| #else /* no XFmode support */ |
| |
| #if (LONG_DOUBLE_TYPE_SIZE == 128) |
| |
| #define REAL_IS_NOT_DOUBLE |
| #define REAL_ARITHMETIC |
| typedef struct { |
| HOST_WIDE_INT r[(19 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))]; |
| } realvaluetype; |
| #define REAL_VALUE_TYPE realvaluetype |
| |
| #else /* not TFmode */ |
| |
| #if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT |
| /* If no XFmode support, then a REAL_VALUE_TYPE is 64 bits wide |
| but it is not necessarily a host machine double. */ |
| #define REAL_IS_NOT_DOUBLE |
| typedef struct { |
| HOST_WIDE_INT r[(7 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))]; |
| } realvaluetype; |
| #define REAL_VALUE_TYPE realvaluetype |
| #else |
| /* If host and target formats are compatible, then a REAL_VALUE_TYPE |
| is actually a host machine double. */ |
| #define REAL_VALUE_TYPE double |
| #endif |
| |
| #endif /* no TFmode support */ |
| #endif /* no XFmode support */ |
| |
| extern int significand_size PROTO((enum machine_mode)); |
| |
| /* If emulation has been enabled by defining REAL_ARITHMETIC or by |
| setting LONG_DOUBLE_TYPE_SIZE to 96 or 128, then define macros so that |
| they invoke emulator functions. This will succeed only if the machine |
| files have been updated to use these macros in place of any |
| references to host machine `double' or `float' types. */ |
| #ifdef REAL_ARITHMETIC |
| #undef REAL_ARITHMETIC |
| #define REAL_ARITHMETIC(value, code, d1, d2) \ |
| earith (&(value), (code), &(d1), &(d2)) |
| |
| /* Declare functions in real.c. */ |
| extern void earith PROTO((REAL_VALUE_TYPE *, int, |
| REAL_VALUE_TYPE *, REAL_VALUE_TYPE *)); |
| extern REAL_VALUE_TYPE etrunci PROTO((REAL_VALUE_TYPE)); |
| extern REAL_VALUE_TYPE etruncui PROTO((REAL_VALUE_TYPE)); |
| extern REAL_VALUE_TYPE ereal_atof PROTO((char *, enum machine_mode)); |
| extern REAL_VALUE_TYPE ereal_negate PROTO((REAL_VALUE_TYPE)); |
| extern HOST_WIDE_INT efixi PROTO((REAL_VALUE_TYPE)); |
| extern unsigned HOST_WIDE_INT efixui PROTO((REAL_VALUE_TYPE)); |
| extern void ereal_from_int PROTO((REAL_VALUE_TYPE *, |
| HOST_WIDE_INT, HOST_WIDE_INT, |
| enum machine_mode)); |
| extern void ereal_from_uint PROTO((REAL_VALUE_TYPE *, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, |
| enum machine_mode)); |
| extern void ereal_to_int PROTO((HOST_WIDE_INT *, HOST_WIDE_INT *, |
| REAL_VALUE_TYPE)); |
| extern REAL_VALUE_TYPE ereal_ldexp PROTO((REAL_VALUE_TYPE, int)); |
| |
| extern void etartdouble PROTO((REAL_VALUE_TYPE, long *)); |
| extern void etarldouble PROTO((REAL_VALUE_TYPE, long *)); |
| extern void etardouble PROTO((REAL_VALUE_TYPE, long *)); |
| extern long etarsingle PROTO((REAL_VALUE_TYPE)); |
| extern void ereal_to_decimal PROTO((REAL_VALUE_TYPE, char *)); |
| extern int ereal_cmp PROTO((REAL_VALUE_TYPE, REAL_VALUE_TYPE)); |
| extern int ereal_isneg PROTO((REAL_VALUE_TYPE)); |
| extern REAL_VALUE_TYPE ereal_from_float PROTO((HOST_WIDE_INT)); |
| extern REAL_VALUE_TYPE ereal_from_double PROTO((HOST_WIDE_INT *)); |
| |
| #define REAL_VALUES_EQUAL(x, y) (ereal_cmp ((x), (y)) == 0) |
| /* true if x < y : */ |
| #define REAL_VALUES_LESS(x, y) (ereal_cmp ((x), (y)) == -1) |
| #define REAL_VALUE_LDEXP(x, n) ereal_ldexp (x, n) |
| |
| /* These return REAL_VALUE_TYPE: */ |
| #define REAL_VALUE_RNDZINT(x) (etrunci (x)) |
| #define REAL_VALUE_UNSIGNED_RNDZINT(x) (etruncui (x)) |
| extern REAL_VALUE_TYPE real_value_truncate (); |
| #define REAL_VALUE_TRUNCATE(mode, x) real_value_truncate (mode, x) |
| |
| /* These return HOST_WIDE_INT: */ |
| /* Convert a floating-point value to integer, rounding toward zero. */ |
| #define REAL_VALUE_FIX(x) (efixi (x)) |
| /* Convert a floating-point value to unsigned integer, rounding |
| toward zero. */ |
| #define REAL_VALUE_UNSIGNED_FIX(x) (efixui (x)) |
| |
| #define REAL_VALUE_ATOF ereal_atof |
| #define REAL_VALUE_NEGATE ereal_negate |
| |
| #define REAL_VALUE_MINUS_ZERO(x) \ |
| ((ereal_cmp (x, dconst0) == 0) && (ereal_isneg (x) != 0 )) |
| |
| #define REAL_VALUE_TO_INT ereal_to_int |
| |
| /* Here the cast to HOST_WIDE_INT sign-extends arguments such as ~0. */ |
| #define REAL_VALUE_FROM_INT(d, lo, hi, mode) \ |
| ereal_from_int (&d, (HOST_WIDE_INT) (lo), (HOST_WIDE_INT) (hi), mode) |
| |
| #define REAL_VALUE_FROM_UNSIGNED_INT(d, lo, hi, mode) \ |
| ereal_from_uint (&d, lo, hi, mode) |
| |
| /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ |
| #if LONG_DOUBLE_TYPE_SIZE == 96 |
| #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etarldouble ((IN), (OUT))) |
| #else |
| #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etartdouble ((IN), (OUT))) |
| #endif |
| #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) (etardouble ((IN), (OUT))) |
| |
| /* IN is a REAL_VALUE_TYPE. OUT is a long. */ |
| #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) ((OUT) = etarsingle ((IN))) |
| |
| /* d is an array of HOST_WIDE_INT that holds a double precision |
| value in the target computer's floating point format. */ |
| #define REAL_VALUE_FROM_TARGET_DOUBLE(d) (ereal_from_double (d)) |
| |
| /* f is a HOST_WIDE_INT containing a single precision target float value. */ |
| #define REAL_VALUE_FROM_TARGET_SINGLE(f) (ereal_from_float (f)) |
| |
| /* Conversions to decimal ASCII string. */ |
| #define REAL_VALUE_TO_DECIMAL(r, fmt, s) (ereal_to_decimal (r, s)) |
| |
| #endif /* REAL_ARITHMETIC defined */ |
| |
| /* **** End of software floating point emulator interface macros **** */ |
| #else /* No XFmode or TFmode and REAL_ARITHMETIC not defined */ |
| |
| /* old interface */ |
| #ifdef REAL_ARITHMETIC |
| /* Defining REAL_IS_NOT_DOUBLE breaks certain initializations |
| when REAL_ARITHMETIC etc. are not defined. */ |
| |
| /* Now see if the host and target machines use the same format. |
| If not, define REAL_IS_NOT_DOUBLE (even if we end up representing |
| reals as doubles because we have no better way in this cross compiler.) |
| This turns off various optimizations that can happen when we know the |
| compiler's float format matches the target's float format. |
| */ |
| #if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT |
| #define REAL_IS_NOT_DOUBLE |
| #ifndef REAL_VALUE_TYPE |
| typedef struct { |
| HOST_WIDE_INT r[sizeof (double)/sizeof (HOST_WIDE_INT)]; |
| } realvaluetype; |
| #define REAL_VALUE_TYPE realvaluetype |
| #endif /* no REAL_VALUE_TYPE */ |
| #endif /* formats differ */ |
| #endif /* 0 */ |
| |
| #endif /* emulator not used */ |
| |
| /* If we are not cross-compiling, use a `double' to represent the |
| floating-point value. Otherwise, use some other type |
| (probably a struct containing an array of longs). */ |
| #ifndef REAL_VALUE_TYPE |
| #define REAL_VALUE_TYPE double |
| #else |
| #define REAL_IS_NOT_DOUBLE |
| #endif |
| |
| #if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT |
| |
| /* Convert a type `double' value in host format first to a type `float' |
| value in host format and then to a single type `long' value which |
| is the bitwise equivalent of the `float' value. */ |
| #ifndef REAL_VALUE_TO_TARGET_SINGLE |
| #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ |
| do { float f = (float) (IN); \ |
| (OUT) = *(long *) &f; \ |
| } while (0) |
| #endif |
| |
| /* Convert a type `double' value in host format to a pair of type `long' |
| values which is its bitwise equivalent, but put the two words into |
| proper word order for the target. */ |
| #ifndef REAL_VALUE_TO_TARGET_DOUBLE |
| #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ |
| do { REAL_VALUE_TYPE in = (IN); /* Make sure it's not in a register. */\ |
| if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \ |
| { \ |
| (OUT)[0] = ((long *) &in)[0]; \ |
| (OUT)[1] = ((long *) &in)[1]; \ |
| } \ |
| else \ |
| { \ |
| (OUT)[1] = ((long *) &in)[0]; \ |
| (OUT)[0] = ((long *) &in)[1]; \ |
| } \ |
| } while (0) |
| #endif |
| #endif /* HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT */ |
| |
| /* In this configuration, double and long double are the same. */ |
| #ifndef REAL_VALUE_TO_TARGET_LONG_DOUBLE |
| #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(a, b) REAL_VALUE_TO_TARGET_DOUBLE (a, b) |
| #endif |
| |
| /* Compare two floating-point values for equality. */ |
| #ifndef REAL_VALUES_EQUAL |
| #define REAL_VALUES_EQUAL(x, y) ((x) == (y)) |
| #endif |
| |
| /* Compare two floating-point values for less than. */ |
| #ifndef REAL_VALUES_LESS |
| #define REAL_VALUES_LESS(x, y) ((x) < (y)) |
| #endif |
| |
| /* Truncate toward zero to an integer floating-point value. */ |
| #ifndef REAL_VALUE_RNDZINT |
| #define REAL_VALUE_RNDZINT(x) ((double) ((int) (x))) |
| #endif |
| |
| /* Truncate toward zero to an unsigned integer floating-point value. */ |
| #ifndef REAL_VALUE_UNSIGNED_RNDZINT |
| #define REAL_VALUE_UNSIGNED_RNDZINT(x) ((double) ((unsigned int) (x))) |
| #endif |
| |
| /* Convert a floating-point value to integer, rounding toward zero. */ |
| #ifndef REAL_VALUE_FIX |
| #define REAL_VALUE_FIX(x) ((int) (x)) |
| #endif |
| |
| /* Convert a floating-point value to unsigned integer, rounding |
| toward zero. */ |
| #ifndef REAL_VALUE_UNSIGNED_FIX |
| #define REAL_VALUE_UNSIGNED_FIX(x) ((unsigned int) (x)) |
| #endif |
| |
| /* Scale X by Y powers of 2. */ |
| #ifndef REAL_VALUE_LDEXP |
| #define REAL_VALUE_LDEXP(x, y) ldexp (x, y) |
| extern double ldexp (); |
| #endif |
| |
| /* Convert the string X to a floating-point value. */ |
| #ifndef REAL_VALUE_ATOF |
| #if 1 |
| /* Use real.c to convert decimal numbers to binary, ... */ |
| REAL_VALUE_TYPE ereal_atof (); |
| #define REAL_VALUE_ATOF(x, s) ereal_atof (x, s) |
| #else |
| /* ... or, if you like the host computer's atof, go ahead and use it: */ |
| #define REAL_VALUE_ATOF(x, s) atof (x) |
| #if defined (MIPSEL) || defined (MIPSEB) |
| /* MIPS compiler can't handle parens around the function name. |
| This problem *does not* appear to be connected with any |
| macro definition for atof. It does not seem there is one. */ |
| extern double atof (); |
| #else |
| extern double (atof) (); |
| #endif |
| #endif |
| #endif |
| |
| /* Negate the floating-point value X. */ |
| #ifndef REAL_VALUE_NEGATE |
| #define REAL_VALUE_NEGATE(x) (- (x)) |
| #endif |
| |
| /* Truncate the floating-point value X to mode MODE. This is correct only |
| for the most common case where the host and target have objects of the same |
| size and where `float' is SFmode. */ |
| |
| /* Don't use REAL_VALUE_TRUNCATE directly--always call real_value_truncate. */ |
| extern REAL_VALUE_TYPE real_value_truncate (); |
| |
| #ifndef REAL_VALUE_TRUNCATE |
| #define REAL_VALUE_TRUNCATE(mode, x) \ |
| (GET_MODE_BITSIZE (mode) == sizeof (float) * HOST_BITS_PER_CHAR \ |
| ? (float) (x) : (x)) |
| #endif |
| |
| /* Determine whether a floating-point value X is infinite. */ |
| #ifndef REAL_VALUE_ISINF |
| #define REAL_VALUE_ISINF(x) (target_isinf (x)) |
| #endif |
| |
| /* Determine whether a floating-point value X is a NaN. */ |
| #ifndef REAL_VALUE_ISNAN |
| #define REAL_VALUE_ISNAN(x) (target_isnan (x)) |
| #endif |
| |
| /* Determine whether a floating-point value X is negative. */ |
| #ifndef REAL_VALUE_NEGATIVE |
| #define REAL_VALUE_NEGATIVE(x) (target_negative (x)) |
| #endif |
| |
| /* Determine whether a floating-point value X is minus 0. */ |
| #ifndef REAL_VALUE_MINUS_ZERO |
| #define REAL_VALUE_MINUS_ZERO(x) ((x) == 0 && REAL_VALUE_NEGATIVE (x)) |
| #endif |
| |
| /* Constant real values 0, 1, 2, and -1. */ |
| |
| extern REAL_VALUE_TYPE dconst0; |
| extern REAL_VALUE_TYPE dconst1; |
| extern REAL_VALUE_TYPE dconst2; |
| extern REAL_VALUE_TYPE dconstm1; |
| |
| /* Union type used for extracting real values from CONST_DOUBLEs |
| or putting them in. */ |
| |
| union real_extract |
| { |
| REAL_VALUE_TYPE d; |
| HOST_WIDE_INT i[sizeof (REAL_VALUE_TYPE) / sizeof (HOST_WIDE_INT)]; |
| }; |
| |
| /* For a CONST_DOUBLE: |
| The usual two ints that hold the value. |
| For a DImode, that is all there are; |
| and CONST_DOUBLE_LOW is the low-order word and ..._HIGH the high-order. |
| For a float, the number of ints varies, |
| and CONST_DOUBLE_LOW is the one that should come first *in memory*. |
| So use &CONST_DOUBLE_LOW(r) as the address of an array of ints. */ |
| #define CONST_DOUBLE_LOW(r) XWINT (r, 2) |
| #define CONST_DOUBLE_HIGH(r) XWINT (r, 3) |
| |
| /* Link for chain of all CONST_DOUBLEs in use in current function. */ |
| #define CONST_DOUBLE_CHAIN(r) XEXP (r, 1) |
| /* The MEM which represents this CONST_DOUBLE's value in memory, |
| or const0_rtx if no MEM has been made for it yet, |
| or cc0_rtx if it is not on the chain. */ |
| #define CONST_DOUBLE_MEM(r) XEXP (r, 0) |
| |
| /* Function to return a real value (not a tree node) |
| from a given integer constant. */ |
| REAL_VALUE_TYPE real_value_from_int_cst (); |
| |
| /* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */ |
| |
| #define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \ |
| do { union real_extract u; \ |
| bcopy ((char *) &CONST_DOUBLE_LOW ((from)), (char *) &u, sizeof u); \ |
| to = u.d; } while (0) |
| |
| /* Return a CONST_DOUBLE with value R and mode M. */ |
| |
| #define CONST_DOUBLE_FROM_REAL_VALUE(r, m) immed_real_const_1 (r, m) |
| extern struct rtx_def *immed_real_const_1 PROTO((REAL_VALUE_TYPE, |
| enum machine_mode)); |
| |
| |
| /* Convert a floating point value `r', that can be interpreted |
| as a host machine float or double, to a decimal ASCII string `s' |
| using printf format string `fmt'. */ |
| #ifndef REAL_VALUE_TO_DECIMAL |
| #define REAL_VALUE_TO_DECIMAL(r, fmt, s) (sprintf (s, fmt, r)) |
| #endif |
| |
| /* Replace R by 1/R in the given machine mode, if the result is exact. */ |
| extern int exact_real_inverse PROTO((enum machine_mode, REAL_VALUE_TYPE *)); |
| |
| #endif /* Not REAL_H_INCLUDED */ |