| /* Code for GIMPLE range related routines. |
| Copyright (C) 2019-2021 Free Software Foundation, Inc. |
| Contributed by Andrew MacLeod <amacleod@redhat.com> |
| and Aldy Hernandez <aldyh@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "insn-codes.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "ssa.h" |
| #include "gimple-pretty-print.h" |
| #include "gimple-iterator.h" |
| #include "optabs-tree.h" |
| #include "gimple-fold.h" |
| #include "tree-cfg.h" |
| #include "fold-const.h" |
| #include "tree-cfg.h" |
| #include "wide-int.h" |
| #include "fold-const.h" |
| #include "case-cfn-macros.h" |
| #include "omp-general.h" |
| #include "cfgloop.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-scalar-evolution.h" |
| #include "dbgcnt.h" |
| #include "alloc-pool.h" |
| #include "vr-values.h" |
| #include "gimple-range.h" |
| |
| |
| // Adjust the range for a pointer difference where the operands came |
| // from a memchr. |
| // |
| // This notices the following sequence: |
| // |
| // def = __builtin_memchr (arg, 0, sz) |
| // n = def - arg |
| // |
| // The range for N can be narrowed to [0, PTRDIFF_MAX - 1]. |
| |
| static void |
| adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt) |
| { |
| tree op0 = gimple_assign_rhs1 (diff_stmt); |
| tree op1 = gimple_assign_rhs2 (diff_stmt); |
| tree op0_ptype = TREE_TYPE (TREE_TYPE (op0)); |
| tree op1_ptype = TREE_TYPE (TREE_TYPE (op1)); |
| gimple *call; |
| |
| if (TREE_CODE (op0) == SSA_NAME |
| && TREE_CODE (op1) == SSA_NAME |
| && (call = SSA_NAME_DEF_STMT (op0)) |
| && is_gimple_call (call) |
| && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
| && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node) |
| && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node) |
| && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node) |
| && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node) |
| && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
| && vrp_operand_equal_p (op1, gimple_call_arg (call, 0)) |
| && integer_zerop (gimple_call_arg (call, 1))) |
| { |
| tree max = vrp_val_max (ptrdiff_type_node); |
| wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); |
| tree expr_type = gimple_expr_type (diff_stmt); |
| tree range_min = build_zero_cst (expr_type); |
| tree range_max = wide_int_to_tree (expr_type, wmax - 1); |
| int_range<2> r (range_min, range_max); |
| res.intersect (r); |
| } |
| } |
| |
| // This function looks for situations when walking the use/def chains |
| // may provide additonal contextual range information not exposed on |
| // this statement. Like knowing the IMAGPART return value from a |
| // builtin function is a boolean result. |
| |
| // We should rework how we're called, as we have an op_unknown entry |
| // for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this |
| // function gets called. |
| |
| static void |
| gimple_range_adjustment (irange &res, const gimple *stmt) |
| { |
| switch (gimple_expr_code (stmt)) |
| { |
| case POINTER_DIFF_EXPR: |
| adjust_pointer_diff_expr (res, stmt); |
| return; |
| |
| case IMAGPART_EXPR: |
| { |
| tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
| if (TREE_CODE (name) == SSA_NAME) |
| { |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| if (def_stmt && is_gimple_call (def_stmt) |
| && gimple_call_internal_p (def_stmt)) |
| { |
| switch (gimple_call_internal_fn (def_stmt)) |
| { |
| case IFN_ADD_OVERFLOW: |
| case IFN_SUB_OVERFLOW: |
| case IFN_MUL_OVERFLOW: |
| case IFN_ATOMIC_COMPARE_EXCHANGE: |
| { |
| int_range<2> r; |
| r.set_varying (boolean_type_node); |
| tree type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| range_cast (r, type); |
| res.intersect (r); |
| } |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| // Return a range in R for the tree EXPR. Return true if a range is |
| // representable, and UNDEFINED/false if not. |
| |
| bool |
| get_tree_range (irange &r, tree expr) |
| { |
| tree type; |
| if (TYPE_P (expr)) |
| type = expr; |
| else |
| type = TREE_TYPE (expr); |
| |
| // Return false if the type isn't suported. |
| if (!irange::supports_type_p (type)) |
| { |
| r.set_undefined (); |
| return false; |
| } |
| |
| switch (TREE_CODE (expr)) |
| { |
| case INTEGER_CST: |
| if (TREE_OVERFLOW_P (expr)) |
| expr = drop_tree_overflow (expr); |
| r.set (expr, expr); |
| return true; |
| |
| case SSA_NAME: |
| r = gimple_range_global (expr); |
| return true; |
| |
| case ADDR_EXPR: |
| { |
| // Handle &var which can show up in phi arguments. |
| bool ov; |
| if (tree_single_nonzero_warnv_p (expr, &ov)) |
| { |
| r = range_nonzero (type); |
| return true; |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| r.set_varying (type); |
| return true; |
| } |
| |
| // Fold this unary statement using R1 as operand1's range, returning |
| // the result in RES. Return false if the operation fails. |
| |
| bool |
| gimple_range_fold (irange &res, const gimple *stmt, const irange &r1) |
| { |
| gcc_checking_assert (gimple_range_handler (stmt)); |
| |
| tree type = gimple_expr_type (stmt); |
| // Unary SSA operations require the LHS type as the second range. |
| int_range<2> r2 (type); |
| |
| return gimple_range_fold (res, stmt, r1, r2); |
| } |
| |
| // Fold this binary statement using R1 and R2 as the operands ranges, |
| // returning the result in RES. Return false if the operation fails. |
| |
| bool |
| gimple_range_fold (irange &res, const gimple *stmt, |
| const irange &r1, const irange &r2) |
| { |
| gcc_checking_assert (gimple_range_handler (stmt)); |
| |
| gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt), |
| r1, r2); |
| |
| // If there are any gimple lookups, do those now. |
| gimple_range_adjustment (res, stmt); |
| return true; |
| } |
| |
| // Return the base of the RHS of an assignment. |
| |
| tree |
| gimple_range_base_of_assignment (const gimple *stmt) |
| { |
| gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
| tree op1 = gimple_assign_rhs1 (stmt); |
| if (gimple_assign_rhs_code (stmt) == ADDR_EXPR) |
| return get_base_address (TREE_OPERAND (op1, 0)); |
| return op1; |
| } |
| |
| // Return the first operand of this statement if it is a valid operand |
| // supported by ranges, otherwise return NULL_TREE. Special case is |
| // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr. |
| |
| tree |
| gimple_range_operand1 (const gimple *stmt) |
| { |
| gcc_checking_assert (gimple_range_handler (stmt)); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_COND: |
| return gimple_cond_lhs (stmt); |
| case GIMPLE_ASSIGN: |
| { |
| tree base = gimple_range_base_of_assignment (stmt); |
| if (base && TREE_CODE (base) == MEM_REF) |
| { |
| // If the base address is an SSA_NAME, we return it |
| // here. This allows processing of the range of that |
| // name, while the rest of the expression is simply |
| // ignored. The code in range_ops will see the |
| // ADDR_EXPR and do the right thing. |
| tree ssa = TREE_OPERAND (base, 0); |
| if (TREE_CODE (ssa) == SSA_NAME) |
| return ssa; |
| } |
| return base; |
| } |
| default: |
| break; |
| } |
| return NULL; |
| } |
| |
| // Return the second operand of statement STMT, otherwise return NULL_TREE. |
| |
| tree |
| gimple_range_operand2 (const gimple *stmt) |
| { |
| gcc_checking_assert (gimple_range_handler (stmt)); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_COND: |
| return gimple_cond_rhs (stmt); |
| case GIMPLE_ASSIGN: |
| if (gimple_num_ops (stmt) >= 3) |
| return gimple_assign_rhs2 (stmt); |
| default: |
| break; |
| } |
| return NULL_TREE; |
| } |
| |
| // Calculate what we can determine of the range of this unary |
| // statement's operand if the lhs of the expression has the range |
| // LHS_RANGE. Return false if nothing can be determined. |
| |
| bool |
| gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range) |
| { |
| gcc_checking_assert (gimple_num_ops (stmt) < 3); |
| |
| // An empty range is viral. |
| tree type = TREE_TYPE (gimple_range_operand1 (stmt)); |
| if (lhs_range.undefined_p ()) |
| { |
| r.set_undefined (); |
| return true; |
| } |
| // Unary operations require the type of the first operand in the |
| // second range position. |
| int_range<2> type_range (type); |
| return gimple_range_handler (stmt)->op1_range (r, type, lhs_range, |
| type_range); |
| } |
| |
| // Calculate what we can determine of the range of this statement's |
| // first operand if the lhs of the expression has the range LHS_RANGE |
| // and the second operand has the range OP2_RANGE. Return false if |
| // nothing can be determined. |
| |
| bool |
| gimple_range_calc_op1 (irange &r, const gimple *stmt, |
| const irange &lhs_range, const irange &op2_range) |
| { |
| // Unary operation are allowed to pass a range in for second operand |
| // as there are often additional restrictions beyond the type which |
| // can be imposed. See operator_cast::op1_range(). |
| tree type = TREE_TYPE (gimple_range_operand1 (stmt)); |
| // An empty range is viral. |
| if (op2_range.undefined_p () || lhs_range.undefined_p ()) |
| { |
| r.set_undefined (); |
| return true; |
| } |
| return gimple_range_handler (stmt)->op1_range (r, type, lhs_range, |
| op2_range); |
| } |
| |
| // Calculate what we can determine of the range of this statement's |
| // second operand if the lhs of the expression has the range LHS_RANGE |
| // and the first operand has the range OP1_RANGE. Return false if |
| // nothing can be determined. |
| |
| bool |
| gimple_range_calc_op2 (irange &r, const gimple *stmt, |
| const irange &lhs_range, const irange &op1_range) |
| { |
| tree type = TREE_TYPE (gimple_range_operand2 (stmt)); |
| // An empty range is viral. |
| if (op1_range.undefined_p () || lhs_range.undefined_p ()) |
| { |
| r.set_undefined (); |
| return true; |
| } |
| return gimple_range_handler (stmt)->op2_range (r, type, lhs_range, |
| op1_range); |
| } |
| |
| // Calculate a range for statement S and return it in R. If NAME is provided it |
| // represents the SSA_NAME on the LHS of the statement. It is only required |
| // if there is more than one lhs/output. If a range cannot |
| // be calculated, return false. |
| |
| bool |
| gimple_ranger::calc_stmt (irange &r, gimple *s, tree name) |
| { |
| bool res = false; |
| // If name is specified, make sure it is an LHS of S. |
| gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true); |
| |
| if (gimple_range_handler (s)) |
| res = range_of_range_op (r, s); |
| else if (is_a<gphi *>(s)) |
| res = range_of_phi (r, as_a<gphi *> (s)); |
| else if (is_a<gcall *>(s)) |
| res = range_of_call (r, as_a<gcall *> (s)); |
| else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR) |
| res = range_of_cond_expr (r, as_a<gassign *> (s)); |
| |
| if (!res) |
| { |
| // If no name is specified, try the expression kind. |
| if (!name) |
| { |
| tree t = gimple_expr_type (s); |
| if (!irange::supports_type_p (t)) |
| return false; |
| r.set_varying (t); |
| return true; |
| } |
| if (!gimple_range_ssa_p (name)) |
| return false; |
| // We don't understand the stmt, so return the global range. |
| r = gimple_range_global (name); |
| return true; |
| } |
| |
| if (r.undefined_p ()) |
| return true; |
| |
| // We sometimes get compatible types copied from operands, make sure |
| // the correct type is being returned. |
| if (name && TREE_TYPE (name) != r.type ()) |
| { |
| gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name))); |
| range_cast (r, TREE_TYPE (name)); |
| } |
| return true; |
| } |
| |
| // Calculate a range for range_op statement S and return it in R. If any |
| // If a range cannot be calculated, return false. |
| |
| bool |
| gimple_ranger::range_of_range_op (irange &r, gimple *s) |
| { |
| int_range_max range1, range2; |
| tree lhs = gimple_get_lhs (s); |
| tree type = gimple_expr_type (s); |
| gcc_checking_assert (irange::supports_type_p (type)); |
| |
| tree op1 = gimple_range_operand1 (s); |
| tree op2 = gimple_range_operand2 (s); |
| |
| if (lhs) |
| { |
| // Register potential dependencies for stale value tracking. |
| m_cache.register_dependency (lhs, op1); |
| m_cache.register_dependency (lhs, op2); |
| } |
| |
| if (gimple_code (s) == GIMPLE_ASSIGN |
| && gimple_assign_rhs_code (s) == ADDR_EXPR) |
| return range_of_address (r, s); |
| |
| if (range_of_expr (range1, op1, s)) |
| { |
| if (!op2) |
| return gimple_range_fold (r, s, range1); |
| |
| if (range_of_expr (range2, op2, s)) |
| return gimple_range_fold (r, s, range1, range2); |
| } |
| r.set_varying (type); |
| return true; |
| } |
| |
| // Calculate the range of an assignment containing an ADDR_EXPR. |
| // Return the range in R. |
| // If a range cannot be calculated, set it to VARYING and return true. |
| |
| bool |
| gimple_ranger::range_of_address (irange &r, gimple *stmt) |
| { |
| gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
| gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR); |
| |
| bool strict_overflow_p; |
| tree expr = gimple_assign_rhs1 (stmt); |
| poly_int64 bitsize, bitpos; |
| tree offset; |
| machine_mode mode; |
| int unsignedp, reversep, volatilep; |
| tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, |
| &bitpos, &offset, &mode, &unsignedp, |
| &reversep, &volatilep); |
| |
| |
| if (base != NULL_TREE |
| && TREE_CODE (base) == MEM_REF |
| && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) |
| { |
| tree ssa = TREE_OPERAND (base, 0); |
| gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa))); |
| range_of_expr (r, ssa, stmt); |
| range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| |
| poly_offset_int off = 0; |
| bool off_cst = false; |
| if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST) |
| { |
| off = mem_ref_offset (base); |
| if (offset) |
| off += poly_offset_int::from (wi::to_poly_wide (offset), |
| SIGNED); |
| off <<= LOG2_BITS_PER_UNIT; |
| off += bitpos; |
| off_cst = true; |
| } |
| /* If &X->a is equal to X, the range of X is the result. */ |
| if (off_cst && known_eq (off, 0)) |
| return true; |
| else if (flag_delete_null_pointer_checks |
| && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))) |
| { |
| /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't |
| allow going from non-NULL pointer to NULL. */ |
| if(!range_includes_zero_p (&r)) |
| return true; |
| } |
| /* If MEM_REF has a "positive" offset, consider it non-NULL |
| always, for -fdelete-null-pointer-checks also "negative" |
| ones. Punt for unknown offsets (e.g. variable ones). */ |
| if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)) |
| && off_cst |
| && known_ne (off, 0) |
| && (flag_delete_null_pointer_checks || known_gt (off, 0))) |
| { |
| r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| |
| // Handle "= &a". |
| if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p)) |
| { |
| r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| |
| // Otherwise return varying. |
| r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| |
| // Calculate a range for phi statement S and return it in R. |
| // If a range cannot be calculated, return false. |
| |
| bool |
| gimple_ranger::range_of_phi (irange &r, gphi *phi) |
| { |
| tree phi_def = gimple_phi_result (phi); |
| tree type = TREE_TYPE (phi_def); |
| int_range_max arg_range; |
| unsigned x; |
| |
| if (!irange::supports_type_p (type)) |
| return false; |
| |
| // Start with an empty range, unioning in each argument's range. |
| r.set_undefined (); |
| for (x = 0; x < gimple_phi_num_args (phi); x++) |
| { |
| tree arg = gimple_phi_arg_def (phi, x); |
| edge e = gimple_phi_arg_edge (phi, x); |
| |
| // Register potential dependencies for stale value tracking. |
| m_cache.register_dependency (phi_def, arg); |
| |
| range_on_edge (arg_range, e, arg); |
| r.union_ (arg_range); |
| // Once the value reaches varying, stop looking. |
| if (r.varying_p ()) |
| break; |
| } |
| |
| // If SCEV is available, query if this PHI has any knonwn values. |
| if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def))) |
| { |
| value_range loop_range; |
| class loop *l = loop_containing_stmt (phi); |
| if (l && loop_outer (l)) |
| { |
| range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi); |
| if (!loop_range.varying_p ()) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Loops range found for "); |
| print_generic_expr (dump_file, phi_def, TDF_SLIM); |
| fprintf (dump_file, ": "); |
| loop_range.dump (dump_file); |
| fprintf (dump_file, " and calculated range :"); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| r.intersect (loop_range); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Calculate a range for call statement S and return it in R. |
| // If a range cannot be calculated, return false. |
| |
| bool |
| gimple_ranger::range_of_call (irange &r, gcall *call) |
| { |
| tree type = gimple_call_return_type (call); |
| tree lhs = gimple_call_lhs (call); |
| bool strict_overflow_p; |
| |
| if (!irange::supports_type_p (type)) |
| return false; |
| |
| if (range_of_builtin_call (r, call)) |
| ; |
| else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p)) |
| r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type)); |
| else if (gimple_call_nonnull_result_p (call) |
| || gimple_call_nonnull_arg (call)) |
| r = range_nonzero (type); |
| else |
| r.set_varying (type); |
| |
| // If there is an LHS, intersect that with what is known. |
| if (lhs) |
| { |
| value_range def; |
| def = gimple_range_global (lhs); |
| r.intersect (def); |
| } |
| return true; |
| } |
| |
| // Return the range of a __builtin_ubsan* in CALL and set it in R. |
| // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or |
| // MULT_EXPR). |
| |
| static void |
| range_of_builtin_ubsan_call (range_query &query, irange &r, gcall *call, |
| tree_code code) |
| { |
| gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR |
| || code == MULT_EXPR); |
| tree type = gimple_call_return_type (call); |
| range_operator *op = range_op_handler (code, type); |
| gcc_checking_assert (op); |
| int_range_max ir0, ir1; |
| tree arg0 = gimple_call_arg (call, 0); |
| tree arg1 = gimple_call_arg (call, 1); |
| query.range_of_expr (ir0, arg0, call); |
| query.range_of_expr (ir1, arg1, call); |
| |
| bool saved_flag_wrapv = flag_wrapv; |
| // Pretend the arithmetic is wrapping. If there is any overflow, |
| // we'll complain, but will actually do wrapping operation. |
| flag_wrapv = 1; |
| op->fold_range (r, type, ir0, ir1); |
| flag_wrapv = saved_flag_wrapv; |
| |
| // If for both arguments vrp_valueize returned non-NULL, this should |
| // have been already folded and if not, it wasn't folded because of |
| // overflow. Avoid removing the UBSAN_CHECK_* calls in that case. |
| if (r.singleton_p ()) |
| r.set_varying (type); |
| } |
| |
| // For a builtin in CALL, return a range in R if known and return |
| // TRUE. Otherwise return FALSE. |
| |
| bool |
| range_of_builtin_call (range_query &query, irange &r, gcall *call) |
| { |
| combined_fn func = gimple_call_combined_fn (call); |
| if (func == CFN_LAST) |
| return false; |
| |
| tree type = gimple_call_return_type (call); |
| tree arg; |
| int mini, maxi, zerov = 0, prec; |
| scalar_int_mode mode; |
| |
| switch (func) |
| { |
| case CFN_BUILT_IN_CONSTANT_P: |
| if (cfun->after_inlining) |
| { |
| r.set_zero (type); |
| // r.equiv_clear (); |
| return true; |
| } |
| arg = gimple_call_arg (call, 0); |
| if (query.range_of_expr (r, arg, call) && r.singleton_p ()) |
| { |
| r.set (build_one_cst (type), build_one_cst (type)); |
| return true; |
| } |
| break; |
| |
| CASE_CFN_FFS: |
| CASE_CFN_POPCOUNT: |
| // __builtin_ffs* and __builtin_popcount* return [0, prec]. |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| mini = 0; |
| maxi = prec; |
| query.range_of_expr (r, arg, call); |
| // If arg is non-zero, then ffs or popcount are non-zero. |
| if (!range_includes_zero_p (&r)) |
| mini = 1; |
| // If some high bits are known to be zero, decrease the maximum. |
| if (!r.undefined_p ()) |
| { |
| if (TYPE_SIGN (r.type ()) == SIGNED) |
| range_cast (r, unsigned_type_for (r.type ())); |
| wide_int max = r.upper_bound (); |
| maxi = wi::floor_log2 (max) + 1; |
| } |
| r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); |
| return true; |
| |
| CASE_CFN_PARITY: |
| r.set (build_zero_cst (type), build_one_cst (type)); |
| return true; |
| |
| CASE_CFN_CLZ: |
| // __builtin_c[lt]z* return [0, prec-1], except when the |
| // argument is 0, but that is undefined behavior. |
| // |
| // For __builtin_c[lt]z* consider argument of 0 always undefined |
| // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO. |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| mini = 0; |
| maxi = prec - 1; |
| mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); |
| if (gimple_call_internal_p (call)) |
| { |
| if (optab_handler (clz_optab, mode) != CODE_FOR_nothing |
| && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2) |
| { |
| // Only handle the single common value. |
| if (zerov == prec) |
| maxi = prec; |
| else |
| // Magic value to give up, unless we can prove arg is non-zero. |
| mini = -2; |
| } |
| } |
| |
| query.range_of_expr (r, arg, call); |
| // From clz of minimum we can compute result maximum. |
| if (r.constant_p ()) |
| { |
| int newmaxi = prec - 1 - wi::floor_log2 (r.lower_bound ()); |
| // Argument is unsigned, so do nothing if it is [0, ...] range. |
| if (newmaxi != prec) |
| { |
| mini = 0; |
| maxi = newmaxi; |
| } |
| } |
| else if (!range_includes_zero_p (&r)) |
| { |
| maxi = prec - 1; |
| mini = 0; |
| } |
| if (mini == -2) |
| break; |
| // From clz of maximum we can compute result minimum. |
| if (r.constant_p ()) |
| { |
| int newmini = prec - 1 - wi::floor_log2 (r.upper_bound ()); |
| if (newmini == prec) |
| { |
| // Argument range is [0, 0]. If CLZ_DEFINED_VALUE_AT_ZERO |
| // is 2 with VALUE of prec, return [prec, prec], otherwise |
| // ignore the range. |
| if (maxi == prec) |
| mini = prec; |
| } |
| else |
| mini = newmini; |
| } |
| if (mini == -2) |
| break; |
| r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); |
| return true; |
| |
| CASE_CFN_CTZ: |
| // __builtin_ctz* return [0, prec-1], except for when the |
| // argument is 0, but that is undefined behavior. |
| // |
| // For __builtin_ctz* consider argument of 0 always undefined |
| // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO. |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| mini = 0; |
| maxi = prec - 1; |
| mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); |
| if (gimple_call_internal_p (call)) |
| { |
| if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing |
| && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2) |
| { |
| // Handle only the two common values. |
| if (zerov == -1) |
| mini = -1; |
| else if (zerov == prec) |
| maxi = prec; |
| else |
| // Magic value to give up, unless we can prove arg is non-zero. |
| mini = -2; |
| } |
| } |
| query.range_of_expr (r, arg, call); |
| if (!r.undefined_p ()) |
| { |
| if (r.lower_bound () != 0) |
| { |
| mini = 0; |
| maxi = prec - 1; |
| } |
| // If some high bits are known to be zero, we can decrease |
| // the maximum. |
| wide_int max = r.upper_bound (); |
| if (max == 0) |
| { |
| // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO |
| // is 2 with value -1 or prec, return [-1, -1] or [prec, prec]. |
| // Otherwise ignore the range. |
| if (mini == -1) |
| maxi = -1; |
| else if (maxi == prec) |
| mini = prec; |
| } |
| // If value at zero is prec and 0 is in the range, we can't lower |
| // the upper bound. We could create two separate ranges though, |
| // [0,floor_log2(max)][prec,prec] though. |
| else if (maxi != prec) |
| maxi = wi::floor_log2 (max); |
| } |
| if (mini == -2) |
| break; |
| r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); |
| return true; |
| |
| CASE_CFN_CLRSB: |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1)); |
| return true; |
| case CFN_UBSAN_CHECK_ADD: |
| range_of_builtin_ubsan_call (query, r, call, PLUS_EXPR); |
| return true; |
| case CFN_UBSAN_CHECK_SUB: |
| range_of_builtin_ubsan_call (query, r, call, MINUS_EXPR); |
| return true; |
| case CFN_UBSAN_CHECK_MUL: |
| range_of_builtin_ubsan_call (query, r, call, MULT_EXPR); |
| return true; |
| |
| case CFN_GOACC_DIM_SIZE: |
| case CFN_GOACC_DIM_POS: |
| // Optimizing these two internal functions helps the loop |
| // optimizer eliminate outer comparisons. Size is [1,N] |
| // and pos is [0,N-1]. |
| { |
| bool is_pos = func == CFN_GOACC_DIM_POS; |
| int axis = oacc_get_ifn_dim_arg (call); |
| int size = oacc_get_fn_dim_size (current_function_decl, axis); |
| if (!size) |
| // If it's dynamic, the backend might know a hardware limitation. |
| size = targetm.goacc.dim_limit (axis); |
| |
| r.set (build_int_cst (type, is_pos ? 0 : 1), |
| size |
| ? build_int_cst (type, size - is_pos) : vrp_val_max (type)); |
| return true; |
| } |
| |
| case CFN_BUILT_IN_STRLEN: |
| if (tree lhs = gimple_call_lhs (call)) |
| if (ptrdiff_type_node |
| && (TYPE_PRECISION (ptrdiff_type_node) |
| == TYPE_PRECISION (TREE_TYPE (lhs)))) |
| { |
| tree type = TREE_TYPE (lhs); |
| tree max = vrp_val_max (ptrdiff_type_node); |
| wide_int wmax |
| = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); |
| tree range_min = build_zero_cst (type); |
| // To account for the terminating NULL, the maximum length |
| // is one less than the maximum array size, which in turn |
| // is one less than PTRDIFF_MAX (or SIZE_MAX where it's |
| // smaller than the former type). |
| // FIXME: Use max_object_size() - 1 here. |
| tree range_max = wide_int_to_tree (type, wmax - 2); |
| r.set (range_min, range_max); |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| |
| bool |
| gimple_ranger::range_of_builtin_call (irange &r, gcall *call) |
| { |
| return ::range_of_builtin_call (*this, r, call); |
| } |
| |
| // Calculate a range for COND_EXPR statement S and return it in R. |
| // If a range cannot be calculated, return false. |
| |
| bool |
| gimple_ranger::range_of_cond_expr (irange &r, gassign *s) |
| { |
| int_range_max cond_range, range1, range2; |
| tree cond = gimple_assign_rhs1 (s); |
| tree op1 = gimple_assign_rhs2 (s); |
| tree op2 = gimple_assign_rhs3 (s); |
| |
| gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR); |
| gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1), |
| TREE_TYPE (op2))); |
| if (!irange::supports_type_p (TREE_TYPE (op1))) |
| return false; |
| |
| range_of_expr (cond_range, cond, s); |
| range_of_expr (range1, op1, s); |
| range_of_expr (range2, op2, s); |
| |
| // If the condition is known, choose the appropriate expression. |
| if (cond_range.singleton_p ()) |
| { |
| // False, pick second operand. |
| if (cond_range.zero_p ()) |
| r = range2; |
| else |
| r = range1; |
| } |
| else |
| { |
| r = range1; |
| r.union_ (range2); |
| } |
| return true; |
| } |
| |
| bool |
| gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt) |
| { |
| if (!gimple_range_ssa_p (expr)) |
| return get_tree_range (r, expr); |
| |
| // If there is no statement, just get the global value. |
| if (!stmt || is_gimple_debug (stmt)) |
| { |
| if (!m_cache.get_global_range (r, expr)) |
| r = gimple_range_global (expr); |
| return true; |
| } |
| |
| basic_block bb = gimple_bb (stmt); |
| gimple *def_stmt = SSA_NAME_DEF_STMT (expr); |
| |
| // If name is defined in this block, try to get an range from S. |
| if (def_stmt && gimple_bb (def_stmt) == bb) |
| range_of_stmt (r, def_stmt, expr); |
| else |
| // Otherwise OP comes from outside this block, use range on entry. |
| range_on_entry (r, bb, expr); |
| |
| // No range yet, see if there is a dereference in the block. |
| // We don't care if it's between the def and a use within a block |
| // because the entire block must be executed anyway. |
| // FIXME:?? For non-call exceptions we could have a statement throw |
| // which causes an early block exit. |
| // in which case we may need to walk from S back to the def/top of block |
| // to make sure the deref happens between S and there before claiming |
| // there is a deref. Punt for now. |
| if (!cfun->can_throw_non_call_exceptions && r.varying_p () && |
| m_cache.m_non_null.non_null_deref_p (expr, bb)) |
| r = range_nonzero (TREE_TYPE (expr)); |
| |
| return true; |
| } |
| |
| // Return the range of NAME on entry to block BB in R. |
| |
| void |
| gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name) |
| { |
| int_range_max entry_range; |
| gcc_checking_assert (gimple_range_ssa_p (name)); |
| |
| // Start with any known range |
| range_of_stmt (r, SSA_NAME_DEF_STMT (name), name); |
| |
| // Now see if there is any on_entry value which may refine it. |
| if (m_cache.block_range (entry_range, bb, name)) |
| r.intersect (entry_range); |
| } |
| |
| // Calculate the range for NAME at the end of block BB and return it in R. |
| // Return false if no range can be calculated. |
| |
| void |
| gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name) |
| { |
| // on-exit from the exit block? |
| gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)); |
| gcc_checking_assert (gimple_range_ssa_p (name)); |
| |
| gimple *s = last_stmt (bb); |
| // If there is no statement in the block and this isn't the entry |
| // block, go get the range_on_entry for this block. For the entry |
| // block, a NULL stmt will return the global value for NAME. |
| if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| range_on_entry (r, bb, name); |
| else |
| range_of_expr (r, name, s); |
| gcc_checking_assert (r.undefined_p () |
| || range_compatible_p (r.type (), TREE_TYPE (name))); |
| } |
| |
| // Calculate a range for NAME on edge E and return it in R. |
| |
| bool |
| gimple_ranger::range_on_edge (irange &r, edge e, tree name) |
| { |
| int_range_max edge_range; |
| gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name))); |
| |
| // PHI arguments can be constants, catch these here. |
| if (!gimple_range_ssa_p (name)) |
| return range_of_expr (r, name); |
| |
| range_on_exit (r, e->src, name); |
| gcc_checking_assert (r.undefined_p () |
| || range_compatible_p (r.type(), TREE_TYPE (name))); |
| |
| // Check to see if NAME is defined on edge e. |
| if (m_cache.outgoing_edge_range_p (edge_range, e, name)) |
| r.intersect (edge_range); |
| |
| return true; |
| } |
| |
| // Calculate a range for statement S and return it in R. If NAME is |
| // provided it represents the SSA_NAME on the LHS of the statement. |
| // It is only required if there is more than one lhs/output. Check |
| // the global cache for NAME first to see if the evaluation can be |
| // avoided. If a range cannot be calculated, return false and UNDEFINED. |
| |
| bool |
| gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name) |
| { |
| r.set_undefined (); |
| |
| if (!name) |
| name = gimple_get_lhs (s); |
| |
| // If no name, simply call the base routine. |
| if (!name) |
| return calc_stmt (r, s, NULL_TREE); |
| |
| if (!gimple_range_ssa_p (name)) |
| return false; |
| |
| // Check if the stmt has already been processed, and is not stale. |
| if (m_cache.get_non_stale_global_range (r, name)) |
| return true; |
| |
| // Otherwise calculate a new value. |
| int_range_max tmp; |
| calc_stmt (tmp, s, name); |
| |
| // Combine the new value with the old value. This is required because |
| // the way value propagation works, when the IL changes on the fly we |
| // can sometimes get different results. See PR 97741. |
| r.intersect (tmp); |
| m_cache.set_global_range (name, r); |
| |
| // Pointers which resolve to non-zero at the defintion point do not need |
| // tracking in the cache as they will never change. See PR 98866. |
| if (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()) |
| m_cache.set_range_invariant (name); |
| |
| return true; |
| } |
| |
| // This routine will export whatever global ranges are known to GCC |
| // SSA_RANGE_NAME_INFO fields. |
| |
| void |
| gimple_ranger::export_global_ranges () |
| { |
| unsigned x; |
| int_range_max r; |
| if (dump_file) |
| { |
| fprintf (dump_file, "Exported global range table\n"); |
| fprintf (dump_file, "===========================\n"); |
| } |
| |
| for ( x = 1; x < num_ssa_names; x++) |
| { |
| tree name = ssa_name (x); |
| if (name && !SSA_NAME_IN_FREE_LIST (name) |
| && gimple_range_ssa_p (name) |
| && m_cache.get_global_range (r, name) |
| && !r.varying_p()) |
| { |
| // Make sure the new range is a subset of the old range. |
| int_range_max old_range; |
| old_range = gimple_range_global (name); |
| old_range.intersect (r); |
| /* Disable this while we fix tree-ssa/pr61743-2.c. */ |
| //gcc_checking_assert (old_range == r); |
| |
| // WTF? Can't write non-null pointer ranges?? stupid set_range_info! |
| if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ()) |
| { |
| value_range vr = r; |
| set_range_info (name, vr); |
| if (dump_file) |
| { |
| print_generic_expr (dump_file, name , TDF_SLIM); |
| fprintf (dump_file, " --> "); |
| vr.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| fprintf (dump_file, " irange : "); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| } |
| } |
| } |
| |
| // Print the known table values to file F. |
| |
| void |
| gimple_ranger::dump (FILE *f) |
| { |
| basic_block bb; |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| unsigned x; |
| edge_iterator ei; |
| edge e; |
| int_range_max range; |
| fprintf (f, "\n=========== BB %d ============\n", bb->index); |
| m_cache.dump (f, bb); |
| |
| dump_bb (f, bb, 4, TDF_NONE); |
| |
| // Now find any globals defined in this block. |
| for (x = 1; x < num_ssa_names; x++) |
| { |
| tree name = ssa_name (x); |
| if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) && |
| gimple_bb (SSA_NAME_DEF_STMT (name)) == bb && |
| m_cache.get_global_range (range, name)) |
| { |
| if (!range.varying_p ()) |
| { |
| print_generic_expr (f, name, TDF_SLIM); |
| fprintf (f, " : "); |
| range.dump (f); |
| fprintf (f, "\n"); |
| } |
| |
| } |
| } |
| |
| // And now outgoing edges, if they define anything. |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| for (x = 1; x < num_ssa_names; x++) |
| { |
| tree name = gimple_range_ssa_p (ssa_name (x)); |
| if (name && m_cache.outgoing_edge_range_p (range, e, name)) |
| { |
| gimple *s = SSA_NAME_DEF_STMT (name); |
| // Only print the range if this is the def block, or |
| // the on entry cache for either end of the edge is |
| // set. |
| if ((s && bb == gimple_bb (s)) || |
| m_cache.block_range (range, bb, name, false) || |
| m_cache.block_range (range, e->dest, name, false)) |
| { |
| range_on_edge (range, e, name); |
| if (!range.varying_p ()) |
| { |
| fprintf (f, "%d->%d ", e->src->index, |
| e->dest->index); |
| char c = ' '; |
| if (e->flags & EDGE_TRUE_VALUE) |
| fprintf (f, " (T)%c", c); |
| else if (e->flags & EDGE_FALSE_VALUE) |
| fprintf (f, " (F)%c", c); |
| else |
| fprintf (f, " "); |
| print_generic_expr (f, name, TDF_SLIM); |
| fprintf(f, " : \t"); |
| range.dump(f); |
| fprintf (f, "\n"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| m_cache.dump (dump_file, (dump_flags & TDF_DETAILS) != 0); |
| } |
| |
| // If SCEV has any information about phi node NAME, return it as a range in R. |
| |
| void |
| gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name, |
| class loop *l, gphi *phi) |
| { |
| gcc_checking_assert (TREE_CODE (name) == SSA_NAME); |
| tree min, max, type = TREE_TYPE (name); |
| if (bounds_of_var_in_loop (&min, &max, this, l, phi, name)) |
| { |
| // ?? We could do better here. Since MIN/MAX can only be an |
| // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call |
| // the ranger and solve anything not an integer. |
| if (TREE_CODE (min) != INTEGER_CST) |
| min = vrp_val_min (type); |
| if (TREE_CODE (max) != INTEGER_CST) |
| max = vrp_val_max (type); |
| r.set (min, max); |
| } |
| else |
| r.set_varying (type); |
| } |
| |
| // -------------------------------------------------------------------------- |
| // trace_ranger implementation. |
| |
| |
| trace_ranger::trace_ranger () |
| { |
| indent = 0; |
| trace_count = 0; |
| } |
| |
| // If dumping, return true and print the prefix for the next output line. |
| |
| bool |
| trace_ranger::dumping (unsigned counter, bool trailing) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| // Print counter index as well as INDENT spaces. |
| if (!trailing) |
| fprintf (dump_file, " %-7u ", counter); |
| else |
| fprintf (dump_file, " "); |
| unsigned x; |
| for (x = 0; x< indent; x++) |
| fputc (' ', dump_file); |
| return true; |
| } |
| return false; |
| } |
| |
| // After calling a routine, if dumping, print the CALLER, NAME, and RESULT, |
| // returning RESULT. |
| |
| bool |
| trace_ranger::trailer (unsigned counter, const char *caller, bool result, |
| tree name, const irange &r) |
| { |
| if (dumping (counter, true)) |
| { |
| indent -= bump; |
| fputs(result ? "TRUE : " : "FALSE : ", dump_file); |
| fprintf (dump_file, "(%u) ", counter); |
| fputs (caller, dump_file); |
| fputs (" (",dump_file); |
| if (name) |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fputs (") ",dump_file); |
| if (result) |
| { |
| r.dump (dump_file); |
| fputc('\n', dump_file); |
| } |
| else |
| fputc('\n', dump_file); |
| // Marks the end of a request. |
| if (indent == 0) |
| fputc('\n', dump_file); |
| } |
| return result; |
| } |
| |
| // Tracing version of range_on_edge. Call it with printing wrappers. |
| |
| bool |
| trace_ranger::range_on_edge (irange &r, edge e, tree name) |
| { |
| unsigned idx = ++trace_count; |
| if (dumping (idx)) |
| { |
| fprintf (dump_file, "range_on_edge ("); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index); |
| indent += bump; |
| } |
| |
| bool res = gimple_ranger::range_on_edge (r, e, name); |
| trailer (idx, "range_on_edge", true, name, r); |
| return res; |
| } |
| |
| // Tracing version of range_on_entry. Call it with printing wrappers. |
| |
| void |
| trace_ranger::range_on_entry (irange &r, basic_block bb, tree name) |
| { |
| unsigned idx = ++trace_count; |
| if (dumping (idx)) |
| { |
| fprintf (dump_file, "range_on_entry ("); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, ") to BB %d\n", bb->index); |
| indent += bump; |
| } |
| |
| gimple_ranger::range_on_entry (r, bb, name); |
| |
| trailer (idx, "range_on_entry", true, name, r); |
| } |
| |
| // Tracing version of range_on_exit. Call it with printing wrappers. |
| |
| void |
| trace_ranger::range_on_exit (irange &r, basic_block bb, tree name) |
| { |
| unsigned idx = ++trace_count; |
| if (dumping (idx)) |
| { |
| fprintf (dump_file, "range_on_exit ("); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, ") from BB %d\n", bb->index); |
| indent += bump; |
| } |
| |
| gimple_ranger::range_on_exit (r, bb, name); |
| |
| trailer (idx, "range_on_exit", true, name, r); |
| } |
| |
| // Tracing version of range_of_stmt. Call it with printing wrappers. |
| |
| bool |
| trace_ranger::range_of_stmt (irange &r, gimple *s, tree name) |
| { |
| bool res; |
| unsigned idx = ++trace_count; |
| if (dumping (idx)) |
| { |
| fprintf (dump_file, "range_of_stmt ("); |
| if (name) |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fputs (") at stmt ", dump_file); |
| print_gimple_stmt (dump_file, s, 0, TDF_SLIM); |
| indent += bump; |
| } |
| |
| res = gimple_ranger::range_of_stmt (r, s, name); |
| |
| return trailer (idx, "range_of_stmt", res, name, r); |
| } |
| |
| // Tracing version of range_of_expr. Call it with printing wrappers. |
| |
| bool |
| trace_ranger::range_of_expr (irange &r, tree name, gimple *s) |
| { |
| bool res; |
| unsigned idx = ++trace_count; |
| if (dumping (idx)) |
| { |
| fprintf (dump_file, "range_of_expr("); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fputs (")", dump_file); |
| if (s) |
| { |
| fputs (" at stmt ", dump_file); |
| print_gimple_stmt (dump_file, s, 0, TDF_SLIM); |
| } |
| else |
| fputs ("\n", dump_file); |
| indent += bump; |
| } |
| |
| res = gimple_ranger::range_of_expr (r, name, s); |
| |
| return trailer (idx, "range_of_expr", res, name, r); |
| } |