blob: 7eb50d65a20df5dce8a7a8f005acc3a8050b0257 [file] [log] [blame]
/* GIMPLE store merging and byte swapping passes.
Copyright (C) 2009-2021 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The purpose of the store merging pass is to combine multiple memory stores
of constant values, values loaded from memory, bitwise operations on those,
or bit-field values, to consecutive locations, into fewer wider stores.
For example, if we have a sequence peforming four byte stores to
consecutive memory locations:
[p ] := imm1;
[p + 1B] := imm2;
[p + 2B] := imm3;
[p + 3B] := imm4;
we can transform this into a single 4-byte store if the target supports it:
[p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
Or:
[p ] := [q ];
[p + 1B] := [q + 1B];
[p + 2B] := [q + 2B];
[p + 3B] := [q + 3B];
if there is no overlap can be transformed into a single 4-byte
load followed by single 4-byte store.
Or:
[p ] := [q ] ^ imm1;
[p + 1B] := [q + 1B] ^ imm2;
[p + 2B] := [q + 2B] ^ imm3;
[p + 3B] := [q + 3B] ^ imm4;
if there is no overlap can be transformed into a single 4-byte
load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
Or:
[p:1 ] := imm;
[p:31] := val & 0x7FFFFFFF;
we can transform this into a single 4-byte store if the target supports it:
[p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
The algorithm is applied to each basic block in three phases:
1) Scan through the basic block and record assignments to destinations
that can be expressed as a store to memory of a certain size at a certain
bit offset from base expressions we can handle. For bit-fields we also
record the surrounding bit region, i.e. bits that could be stored in
a read-modify-write operation when storing the bit-field. Record store
chains to different bases in a hash_map (m_stores) and make sure to
terminate such chains when appropriate (for example when the stored
values get used subsequently).
These stores can be a result of structure element initializers, array stores
etc. A store_immediate_info object is recorded for every such store.
Record as many such assignments to a single base as possible until a
statement that interferes with the store sequence is encountered.
Each store has up to 2 operands, which can be a either constant, a memory
load or an SSA name, from which the value to be stored can be computed.
At most one of the operands can be a constant. The operands are recorded
in store_operand_info struct.
2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
store_immediate_info objects) and coalesce contiguous stores into
merged_store_group objects. For bit-field stores, we don't need to
require the stores to be contiguous, just their surrounding bit regions
have to be contiguous. If the expression being stored is different
between adjacent stores, such as one store storing a constant and
following storing a value loaded from memory, or if the loaded memory
objects are not adjacent, a new merged_store_group is created as well.
For example, given the stores:
[p ] := 0;
[p + 1B] := 1;
[p + 3B] := 0;
[p + 4B] := 1;
[p + 5B] := 0;
[p + 6B] := 0;
This phase would produce two merged_store_group objects, one recording the
two bytes stored in the memory region [p : p + 1] and another
recording the four bytes stored in the memory region [p + 3 : p + 6].
3) The merged_store_group objects produced in phase 2) are processed
to generate the sequence of wider stores that set the contiguous memory
regions to the sequence of bytes that correspond to it. This may emit
multiple stores per store group to handle contiguous stores that are not
of a size that is a power of 2. For example it can try to emit a 40-bit
store as a 32-bit store followed by an 8-bit store.
We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
or TARGET_SLOW_UNALIGNED_ACCESS settings.
Note on endianness and example:
Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
[p ] := 0x1234;
[p + 2B] := 0x5678;
[p + 4B] := 0xab;
[p + 5B] := 0xcd;
The memory layout for little-endian (LE) and big-endian (BE) must be:
p |LE|BE|
---------
0 |34|12|
1 |12|34|
2 |78|56|
3 |56|78|
4 |ab|ab|
5 |cd|cd|
To merge these into a single 48-bit merged value 'val' in phase 2)
on little-endian we insert stores to higher (consecutive) bitpositions
into the most significant bits of the merged value.
The final merged value would be: 0xcdab56781234
For big-endian we insert stores to higher bitpositions into the least
significant bits of the merged value.
The final merged value would be: 0x12345678abcd
Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
followed by a 16-bit store. Again, we must consider endianness when
breaking down the 48-bit value 'val' computed above.
For little endian we emit:
[p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
[p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
Whereas for big-endian we emit:
[p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
[p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "builtins.h"
#include "fold-const.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "print-tree.h"
#include "tree-hash-traits.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimple-fold.h"
#include "stor-layout.h"
#include "timevar.h"
#include "cfganal.h"
#include "cfgcleanup.h"
#include "tree-cfg.h"
#include "except.h"
#include "tree-eh.h"
#include "target.h"
#include "gimplify-me.h"
#include "rtl.h"
#include "expr.h" /* For get_bit_range. */
#include "optabs-tree.h"
#include "dbgcnt.h"
#include "selftest.h"
/* The maximum size (in bits) of the stores this pass should generate. */
#define MAX_STORE_BITSIZE (BITS_PER_WORD)
#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
/* Limit to bound the number of aliasing checks for loads with the same
vuse as the corresponding store. */
#define MAX_STORE_ALIAS_CHECKS 64
namespace {
struct bswap_stat
{
/* Number of hand-written 16-bit nop / bswaps found. */
int found_16bit;
/* Number of hand-written 32-bit nop / bswaps found. */
int found_32bit;
/* Number of hand-written 64-bit nop / bswaps found. */
int found_64bit;
} nop_stats, bswap_stats;
/* A symbolic number structure is used to detect byte permutation and selection
patterns of a source. To achieve that, its field N contains an artificial
number consisting of BITS_PER_MARKER sized markers tracking where does each
byte come from in the source:
0 - target byte has the value 0
FF - target byte has an unknown value (eg. due to sign extension)
1..size - marker value is the byte index in the source (0 for lsb).
To detect permutations on memory sources (arrays and structures), a symbolic
number is also associated:
- a base address BASE_ADDR and an OFFSET giving the address of the source;
- a range which gives the difference between the highest and lowest accessed
memory location to make such a symbolic number;
- the address SRC of the source element of lowest address as a convenience
to easily get BASE_ADDR + offset + lowest bytepos;
- number of expressions N_OPS bitwise ored together to represent
approximate cost of the computation.
Note 1: the range is different from size as size reflects the size of the
type of the current expression. For instance, for an array char a[],
(short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
(short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
time a range of 1.
Note 2: for non-memory sources, range holds the same value as size.
Note 3: SRC points to the SSA_NAME in case of non-memory source. */
struct symbolic_number {
uint64_t n;
tree type;
tree base_addr;
tree offset;
poly_int64_pod bytepos;
tree src;
tree alias_set;
tree vuse;
unsigned HOST_WIDE_INT range;
int n_ops;
};
#define BITS_PER_MARKER 8
#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
#define MARKER_BYTE_UNKNOWN MARKER_MASK
#define HEAD_MARKER(n, size) \
((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
/* The number which the find_bswap_or_nop_1 result should match in
order to have a nop. The number is masked according to the size of
the symbolic number before using it. */
#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
(uint64_t)0x08070605 << 32 | 0x04030201)
/* The number which the find_bswap_or_nop_1 result should match in
order to have a byte swap. The number is masked according to the
size of the symbolic number before using it. */
#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
(uint64_t)0x01020304 << 32 | 0x05060708)
/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
number N. Return false if the requested operation is not permitted
on a symbolic number. */
inline bool
do_shift_rotate (enum tree_code code,
struct symbolic_number *n,
int count)
{
int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
unsigned head_marker;
if (count < 0
|| count >= TYPE_PRECISION (n->type)
|| count % BITS_PER_UNIT != 0)
return false;
count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
/* Zero out the extra bits of N in order to avoid them being shifted
into the significant bits. */
if (size < 64 / BITS_PER_MARKER)
n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
switch (code)
{
case LSHIFT_EXPR:
n->n <<= count;
break;
case RSHIFT_EXPR:
head_marker = HEAD_MARKER (n->n, size);
n->n >>= count;
/* Arithmetic shift of signed type: result is dependent on the value. */
if (!TYPE_UNSIGNED (n->type) && head_marker)
for (i = 0; i < count / BITS_PER_MARKER; i++)
n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
<< ((size - 1 - i) * BITS_PER_MARKER);
break;
case LROTATE_EXPR:
n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
break;
case RROTATE_EXPR:
n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
break;
default:
return false;
}
/* Zero unused bits for size. */
if (size < 64 / BITS_PER_MARKER)
n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
return true;
}
/* Perform sanity checking for the symbolic number N and the gimple
statement STMT. */
inline bool
verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
{
tree lhs_type;
lhs_type = gimple_expr_type (stmt);
if (TREE_CODE (lhs_type) != INTEGER_TYPE
&& TREE_CODE (lhs_type) != ENUMERAL_TYPE)
return false;
if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
return false;
return true;
}
/* Initialize the symbolic number N for the bswap pass from the base element
SRC manipulated by the bitwise OR expression. */
bool
init_symbolic_number (struct symbolic_number *n, tree src)
{
int size;
if (!INTEGRAL_TYPE_P (TREE_TYPE (src)) && !POINTER_TYPE_P (TREE_TYPE (src)))
return false;
n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
n->src = src;
/* Set up the symbolic number N by setting each byte to a value between 1 and
the byte size of rhs1. The highest order byte is set to n->size and the
lowest order byte to 1. */
n->type = TREE_TYPE (src);
size = TYPE_PRECISION (n->type);
if (size % BITS_PER_UNIT != 0)
return false;
size /= BITS_PER_UNIT;
if (size > 64 / BITS_PER_MARKER)
return false;
n->range = size;
n->n = CMPNOP;
n->n_ops = 1;
if (size < 64 / BITS_PER_MARKER)
n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
return true;
}
/* Check if STMT might be a byte swap or a nop from a memory source and returns
the answer. If so, REF is that memory source and the base of the memory area
accessed and the offset of the access from that base are recorded in N. */
bool
find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
{
/* Leaf node is an array or component ref. Memorize its base and
offset from base to compare to other such leaf node. */
poly_int64 bitsize, bitpos, bytepos;
machine_mode mode;
int unsignedp, reversep, volatilep;
tree offset, base_addr;
/* Not prepared to handle PDP endian. */
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
return false;
if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
return false;
base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (TREE_CODE (base_addr) == TARGET_MEM_REF)
/* Do not rewrite TARGET_MEM_REF. */
return false;
else if (TREE_CODE (base_addr) == MEM_REF)
{
poly_offset_int bit_offset = 0;
tree off = TREE_OPERAND (base_addr, 1);
if (!integer_zerop (off))
{
poly_offset_int boff = mem_ref_offset (base_addr);
boff <<= LOG2_BITS_PER_UNIT;
bit_offset += boff;
}
base_addr = TREE_OPERAND (base_addr, 0);
/* Avoid returning a negative bitpos as this may wreak havoc later. */
if (maybe_lt (bit_offset, 0))
{
tree byte_offset = wide_int_to_tree
(sizetype, bits_to_bytes_round_down (bit_offset));
bit_offset = num_trailing_bits (bit_offset);
if (offset)
offset = size_binop (PLUS_EXPR, offset, byte_offset);
else
offset = byte_offset;
}
bitpos += bit_offset.force_shwi ();
}
else
base_addr = build_fold_addr_expr (base_addr);
if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
return false;
if (!multiple_p (bitsize, BITS_PER_UNIT))
return false;
if (reversep)
return false;
if (!init_symbolic_number (n, ref))
return false;
n->base_addr = base_addr;
n->offset = offset;
n->bytepos = bytepos;
n->alias_set = reference_alias_ptr_type (ref);
n->vuse = gimple_vuse (stmt);
return true;
}
/* Compute the symbolic number N representing the result of a bitwise OR on 2
symbolic number N1 and N2 whose source statements are respectively
SOURCE_STMT1 and SOURCE_STMT2. */
gimple *
perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
gimple *source_stmt2, struct symbolic_number *n2,
struct symbolic_number *n)
{
int i, size;
uint64_t mask;
gimple *source_stmt;
struct symbolic_number *n_start;
tree rhs1 = gimple_assign_rhs1 (source_stmt1);
if (TREE_CODE (rhs1) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
rhs1 = TREE_OPERAND (rhs1, 0);
tree rhs2 = gimple_assign_rhs1 (source_stmt2);
if (TREE_CODE (rhs2) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
rhs2 = TREE_OPERAND (rhs2, 0);
/* Sources are different, cancel bswap if they are not memory location with
the same base (array, structure, ...). */
if (rhs1 != rhs2)
{
uint64_t inc;
HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
struct symbolic_number *toinc_n_ptr, *n_end;
basic_block bb1, bb2;
if (!n1->base_addr || !n2->base_addr
|| !operand_equal_p (n1->base_addr, n2->base_addr, 0))
return NULL;
if (!n1->offset != !n2->offset
|| (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
return NULL;
start1 = 0;
if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
return NULL;
if (start1 < start2)
{
n_start = n1;
start_sub = start2 - start1;
}
else
{
n_start = n2;
start_sub = start1 - start2;
}
bb1 = gimple_bb (source_stmt1);
bb2 = gimple_bb (source_stmt2);
if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
source_stmt = source_stmt1;
else
source_stmt = source_stmt2;
/* Find the highest address at which a load is performed and
compute related info. */
end1 = start1 + (n1->range - 1);
end2 = start2 + (n2->range - 1);
if (end1 < end2)
{
end = end2;
end_sub = end2 - end1;
}
else
{
end = end1;
end_sub = end1 - end2;
}
n_end = (end2 > end1) ? n2 : n1;
/* Find symbolic number whose lsb is the most significant. */
if (BYTES_BIG_ENDIAN)
toinc_n_ptr = (n_end == n1) ? n2 : n1;
else
toinc_n_ptr = (n_start == n1) ? n2 : n1;
n->range = end - MIN (start1, start2) + 1;
/* Check that the range of memory covered can be represented by
a symbolic number. */
if (n->range > 64 / BITS_PER_MARKER)
return NULL;
/* Reinterpret byte marks in symbolic number holding the value of
bigger weight according to target endianness. */
inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
{
unsigned marker
= (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
if (marker && marker != MARKER_BYTE_UNKNOWN)
toinc_n_ptr->n += inc;
}
}
else
{
n->range = n1->range;
n_start = n1;
source_stmt = source_stmt1;
}
if (!n1->alias_set
|| alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
n->alias_set = n1->alias_set;
else
n->alias_set = ptr_type_node;
n->vuse = n_start->vuse;
n->base_addr = n_start->base_addr;
n->offset = n_start->offset;
n->src = n_start->src;
n->bytepos = n_start->bytepos;
n->type = n_start->type;
size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
{
uint64_t masked1, masked2;
masked1 = n1->n & mask;
masked2 = n2->n & mask;
if (masked1 && masked2 && masked1 != masked2)
return NULL;
}
n->n = n1->n | n2->n;
n->n_ops = n1->n_ops + n2->n_ops;
return source_stmt;
}
/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
the operation given by the rhs of STMT on the result. If the operation
could successfully be executed the function returns a gimple stmt whose
rhs's first tree is the expression of the source operand and NULL
otherwise. */
gimple *
find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
{
enum tree_code code;
tree rhs1, rhs2 = NULL;
gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
enum gimple_rhs_class rhs_class;
if (!limit || !is_gimple_assign (stmt))
return NULL;
rhs1 = gimple_assign_rhs1 (stmt);
if (find_bswap_or_nop_load (stmt, rhs1, n))
return stmt;
/* Handle BIT_FIELD_REF. */
if (TREE_CODE (rhs1) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
{
if (!tree_fits_uhwi_p (TREE_OPERAND (rhs1, 1))
|| !tree_fits_uhwi_p (TREE_OPERAND (rhs1, 2)))
return NULL;
unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
if (bitpos % BITS_PER_UNIT == 0
&& bitsize % BITS_PER_UNIT == 0
&& init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
{
/* Handle big-endian bit numbering in BIT_FIELD_REF. */
if (BYTES_BIG_ENDIAN)
bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
/* Shift. */
if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
return NULL;
/* Mask. */
uint64_t mask = 0;
uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
i++, tmp <<= BITS_PER_UNIT)
mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
n->n &= mask;
/* Convert. */
n->type = TREE_TYPE (rhs1);
if (!n->base_addr)
n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
}
return NULL;
}
if (TREE_CODE (rhs1) != SSA_NAME)
return NULL;
code = gimple_assign_rhs_code (stmt);
rhs_class = gimple_assign_rhs_class (stmt);
rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
if (rhs_class == GIMPLE_BINARY_RHS)
rhs2 = gimple_assign_rhs2 (stmt);
/* Handle unary rhs and binary rhs with integer constants as second
operand. */
if (rhs_class == GIMPLE_UNARY_RHS
|| (rhs_class == GIMPLE_BINARY_RHS
&& TREE_CODE (rhs2) == INTEGER_CST))
{
if (code != BIT_AND_EXPR
&& code != LSHIFT_EXPR
&& code != RSHIFT_EXPR
&& code != LROTATE_EXPR
&& code != RROTATE_EXPR
&& !CONVERT_EXPR_CODE_P (code))
return NULL;
source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
/* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
we have to initialize the symbolic number. */
if (!source_stmt1)
{
if (gimple_assign_load_p (stmt)
|| !init_symbolic_number (n, rhs1))
return NULL;
source_stmt1 = stmt;
}
switch (code)
{
case BIT_AND_EXPR:
{
int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
uint64_t val = int_cst_value (rhs2), mask = 0;
uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
/* Only constants masking full bytes are allowed. */
for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
if ((val & tmp) != 0 && (val & tmp) != tmp)
return NULL;
else if (val & tmp)
mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
n->n &= mask;
}
break;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
return NULL;
break;
CASE_CONVERT:
{
int i, type_size, old_type_size;
tree type;
type = gimple_expr_type (stmt);
type_size = TYPE_PRECISION (type);
if (type_size % BITS_PER_UNIT != 0)
return NULL;
type_size /= BITS_PER_UNIT;
if (type_size > 64 / BITS_PER_MARKER)
return NULL;
/* Sign extension: result is dependent on the value. */
old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
&& HEAD_MARKER (n->n, old_type_size))
for (i = 0; i < type_size - old_type_size; i++)
n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
<< ((type_size - 1 - i) * BITS_PER_MARKER);
if (type_size < 64 / BITS_PER_MARKER)
{
/* If STMT casts to a smaller type mask out the bits not
belonging to the target type. */
n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
}
n->type = type;
if (!n->base_addr)
n->range = type_size;
}
break;
default:
return NULL;
};
return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
}
/* Handle binary rhs. */
if (rhs_class == GIMPLE_BINARY_RHS)
{
struct symbolic_number n1, n2;
gimple *source_stmt, *source_stmt2;
if (code != BIT_IOR_EXPR)
return NULL;
if (TREE_CODE (rhs2) != SSA_NAME)
return NULL;
rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
switch (code)
{
case BIT_IOR_EXPR:
source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
if (!source_stmt1)
return NULL;
source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
if (!source_stmt2)
return NULL;
if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
return NULL;
if (n1.vuse != n2.vuse)
return NULL;
source_stmt
= perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
if (!source_stmt)
return NULL;
if (!verify_symbolic_number_p (n, stmt))
return NULL;
break;
default:
return NULL;
}
return source_stmt;
}
return NULL;
}
/* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
*CMPXCHG, *CMPNOP and adjust *N. */
void
find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
uint64_t *cmpnop)
{
unsigned rsize;
uint64_t tmpn, mask;
/* The number which the find_bswap_or_nop_1 result should match in order
to have a full byte swap. The number is shifted to the right
according to the size of the symbolic number before using it. */
*cmpxchg = CMPXCHG;
*cmpnop = CMPNOP;
/* Find real size of result (highest non-zero byte). */
if (n->base_addr)
for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
else
rsize = n->range;
/* Zero out the bits corresponding to untouched bytes in original gimple
expression. */
if (n->range < (int) sizeof (int64_t))
{
mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
*cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
*cmpnop &= mask;
}
/* Zero out the bits corresponding to unused bytes in the result of the
gimple expression. */
if (rsize < n->range)
{
if (BYTES_BIG_ENDIAN)
{
mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
*cmpxchg &= mask;
*cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
}
else
{
mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
*cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
*cmpnop &= mask;
}
n->range = rsize;
}
n->range *= BITS_PER_UNIT;
}
/* Check if STMT completes a bswap implementation or a read in a given
endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
accordingly. It also sets N to represent the kind of operations
performed: size of the resulting expression and whether it works on
a memory source, and if so alias-set and vuse. At last, the
function returns a stmt whose rhs's first tree is the source
expression. */
gimple *
find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
{
tree type_size = TYPE_SIZE_UNIT (gimple_expr_type (stmt));
if (!tree_fits_uhwi_p (type_size))
return NULL;
/* The last parameter determines the depth search limit. It usually
correlates directly to the number n of bytes to be touched. We
increase that number by 2 * (log2(n) + 1) here in order to also
cover signed -> unsigned conversions of the src operand as can be seen
in libgcc, and for initial shift/and operation of the src operand. */
int limit = tree_to_uhwi (type_size);
limit += 2 * (1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit));
gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
if (!ins_stmt)
{
if (gimple_assign_rhs_code (stmt) != CONSTRUCTOR
|| BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
return NULL;
unsigned HOST_WIDE_INT sz = tree_to_uhwi (type_size) * BITS_PER_UNIT;
if (sz != 16 && sz != 32 && sz != 64)
return NULL;
tree rhs = gimple_assign_rhs1 (stmt);
if (CONSTRUCTOR_NELTS (rhs) == 0)
return NULL;
tree eltype = TREE_TYPE (TREE_TYPE (rhs));
unsigned HOST_WIDE_INT eltsz
= int_size_in_bytes (eltype) * BITS_PER_UNIT;
if (TYPE_PRECISION (eltype) != eltsz)
return NULL;
constructor_elt *elt;
unsigned int i;
tree type = build_nonstandard_integer_type (sz, 1);
FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs), i, elt)
{
if (TREE_CODE (elt->value) != SSA_NAME
|| !INTEGRAL_TYPE_P (TREE_TYPE (elt->value)))
return NULL;
struct symbolic_number n1;
gimple *source_stmt
= find_bswap_or_nop_1 (SSA_NAME_DEF_STMT (elt->value), &n1,
limit - 1);
if (!source_stmt)
return NULL;
n1.type = type;
if (!n1.base_addr)
n1.range = sz / BITS_PER_UNIT;
if (i == 0)
{
ins_stmt = source_stmt;
*n = n1;
}
else
{
if (n->vuse != n1.vuse)
return NULL;
struct symbolic_number n0 = *n;
if (!BYTES_BIG_ENDIAN)
{
if (!do_shift_rotate (LSHIFT_EXPR, &n1, i * eltsz))
return NULL;
}
else if (!do_shift_rotate (LSHIFT_EXPR, &n0, eltsz))
return NULL;
ins_stmt
= perform_symbolic_merge (ins_stmt, &n0, source_stmt, &n1, n);
if (!ins_stmt)
return NULL;
}
}
}
uint64_t cmpxchg, cmpnop;
find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
/* A complete byte swap should make the symbolic number to start with
the largest digit in the highest order byte. Unchanged symbolic
number indicates a read with same endianness as target architecture. */
if (n->n == cmpnop)
*bswap = false;
else if (n->n == cmpxchg)
*bswap = true;
else
return NULL;
/* Useless bit manipulation performed by code. */
if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
return NULL;
return ins_stmt;
}
const pass_data pass_data_optimize_bswap =
{
GIMPLE_PASS, /* type */
"bswap", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_optimize_bswap : public gimple_opt_pass
{
public:
pass_optimize_bswap (gcc::context *ctxt)
: gimple_opt_pass (pass_data_optimize_bswap, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *)
{
return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
}
virtual unsigned int execute (function *);
}; // class pass_optimize_bswap
/* Helper function for bswap_replace. Build VIEW_CONVERT_EXPR from
VAL to TYPE. If VAL has different type size, emit a NOP_EXPR cast
first. */
static tree
bswap_view_convert (gimple_stmt_iterator *gsi, tree type, tree val)
{
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (val))
|| POINTER_TYPE_P (TREE_TYPE (val)));
if (TYPE_SIZE (type) != TYPE_SIZE (TREE_TYPE (val)))
{
HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_SIZE (type));
if (POINTER_TYPE_P (TREE_TYPE (val)))
{
gimple *g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, val);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
val = gimple_assign_lhs (g);
}
tree itype = build_nonstandard_integer_type (prec, 1);
gimple *g = gimple_build_assign (make_ssa_name (itype), NOP_EXPR, val);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
val = gimple_assign_lhs (g);
}
return build1 (VIEW_CONVERT_EXPR, type, val);
}
/* Perform the bswap optimization: replace the expression computed in the rhs
of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
bswap, load or load + bswap expression.
Which of these alternatives replace the rhs is given by N->base_addr (non
null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
load to perform are also given in N while the builtin bswap invoke is given
in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
load statements involved to construct the rhs in gsi_stmt (GSI) and
N->range gives the size of the rhs expression for maintaining some
statistics.
Note that if the replacement involve a load and if gsi_stmt (GSI) is
non-NULL, that stmt is moved just after INS_STMT to do the load with the
same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
tree
bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
tree bswap_type, tree load_type, struct symbolic_number *n,
bool bswap)
{
tree src, tmp, tgt = NULL_TREE;
gimple *bswap_stmt;
tree_code conv_code = NOP_EXPR;
gimple *cur_stmt = gsi_stmt (gsi);
src = n->src;
if (cur_stmt)
{
tgt = gimple_assign_lhs (cur_stmt);
if (gimple_assign_rhs_code (cur_stmt) == CONSTRUCTOR
&& tgt
&& VECTOR_TYPE_P (TREE_TYPE (tgt)))
conv_code = VIEW_CONVERT_EXPR;
}
/* Need to load the value from memory first. */
if (n->base_addr)
{
gimple_stmt_iterator gsi_ins = gsi;
if (ins_stmt)
gsi_ins = gsi_for_stmt (ins_stmt);
tree addr_expr, addr_tmp, val_expr, val_tmp;
tree load_offset_ptr, aligned_load_type;
gimple *load_stmt;
unsigned align = get_object_alignment (src);
poly_int64 load_offset = 0;
if (cur_stmt)
{
basic_block ins_bb = gimple_bb (ins_stmt);
basic_block cur_bb = gimple_bb (cur_stmt);
if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
return NULL_TREE;
/* Move cur_stmt just before one of the load of the original
to ensure it has the same VUSE. See PR61517 for what could
go wrong. */
if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
gsi_move_before (&gsi, &gsi_ins);
gsi = gsi_for_stmt (cur_stmt);
}
else
gsi = gsi_ins;
/* Compute address to load from and cast according to the size
of the load. */
addr_expr = build_fold_addr_expr (src);
if (is_gimple_mem_ref_addr (addr_expr))
addr_tmp = unshare_expr (addr_expr);
else
{
addr_tmp = unshare_expr (n->base_addr);
if (!is_gimple_mem_ref_addr (addr_tmp))
addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
is_gimple_mem_ref_addr,
NULL_TREE, true,
GSI_SAME_STMT);
load_offset = n->bytepos;
if (n->offset)
{
tree off
= force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
true, NULL_TREE, true,
GSI_SAME_STMT);
gimple *stmt
= gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
POINTER_PLUS_EXPR, addr_tmp, off);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
addr_tmp = gimple_assign_lhs (stmt);
}
}
/* Perform the load. */
aligned_load_type = load_type;
if (align < TYPE_ALIGN (load_type))
aligned_load_type = build_aligned_type (load_type, align);
load_offset_ptr = build_int_cst (n->alias_set, load_offset);
val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
load_offset_ptr);
if (!bswap)
{
if (n->range == 16)
nop_stats.found_16bit++;
else if (n->range == 32)
nop_stats.found_32bit++;
else
{
gcc_assert (n->range == 64);
nop_stats.found_64bit++;
}
/* Convert the result of load if necessary. */
if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
{
val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
"load_dst");
load_stmt = gimple_build_assign (val_tmp, val_expr);
gimple_set_vuse (load_stmt, n->vuse);
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
if (conv_code == VIEW_CONVERT_EXPR)
val_tmp = bswap_view_convert (&gsi, TREE_TYPE (tgt), val_tmp);
gimple_assign_set_rhs_with_ops (&gsi, conv_code, val_tmp);
update_stmt (cur_stmt);
}
else if (cur_stmt)
{
gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
gimple_set_vuse (cur_stmt, n->vuse);
update_stmt (cur_stmt);
}
else
{
tgt = make_ssa_name (load_type);
cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
gimple_set_vuse (cur_stmt, n->vuse);
gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
}
if (dump_file)
{
fprintf (dump_file,
"%d bit load in target endianness found at: ",
(int) n->range);
print_gimple_stmt (dump_file, cur_stmt, 0);
}
return tgt;
}
else
{
val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
load_stmt = gimple_build_assign (val_tmp, val_expr);
gimple_set_vuse (load_stmt, n->vuse);
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
}
src = val_tmp;
}
else if (!bswap)
{
gimple *g = NULL;
if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
{
if (!is_gimple_val (src))
return NULL_TREE;
if (conv_code == VIEW_CONVERT_EXPR)
src = bswap_view_convert (&gsi, TREE_TYPE (tgt), src);
g = gimple_build_assign (tgt, conv_code, src);
}
else if (cur_stmt)
g = gimple_build_assign (tgt, src);
else
tgt = src;
if (n->range == 16)
nop_stats.found_16bit++;
else if (n->range == 32)
nop_stats.found_32bit++;
else
{
gcc_assert (n->range == 64);
nop_stats.found_64bit++;
}
if (dump_file)
{
fprintf (dump_file,
"%d bit reshuffle in target endianness found at: ",
(int) n->range);
if (cur_stmt)
print_gimple_stmt (dump_file, cur_stmt, 0);
else
{
print_generic_expr (dump_file, tgt, TDF_NONE);
fprintf (dump_file, "\n");
}
}
if (cur_stmt)
gsi_replace (&gsi, g, true);
return tgt;
}
else if (TREE_CODE (src) == BIT_FIELD_REF)
src = TREE_OPERAND (src, 0);
if (n->range == 16)
bswap_stats.found_16bit++;
else if (n->range == 32)
bswap_stats.found_32bit++;
else
{
gcc_assert (n->range == 64);
bswap_stats.found_64bit++;
}
tmp = src;
/* Convert the src expression if necessary. */
if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
{
gimple *convert_stmt;
tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
}
/* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
are considered as rotation of 2N bit values by N bits is generally not
equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
gives 0x03040102 while a bswap for that value is 0x04030201. */
if (bswap && n->range == 16)
{
tree count = build_int_cst (NULL, BITS_PER_UNIT);
src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
bswap_stmt = gimple_build_assign (NULL, src);
}
else
bswap_stmt = gimple_build_call (fndecl, 1, tmp);
if (tgt == NULL_TREE)
tgt = make_ssa_name (bswap_type);
tmp = tgt;
/* Convert the result if necessary. */
if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
{
gimple *convert_stmt;
tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
tree atmp = tmp;
if (conv_code == VIEW_CONVERT_EXPR)
atmp = bswap_view_convert (&gsi, TREE_TYPE (tgt), tmp);
convert_stmt = gimple_build_assign (tgt, conv_code, atmp);
gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
}
gimple_set_lhs (bswap_stmt, tmp);
if (dump_file)
{
fprintf (dump_file, "%d bit bswap implementation found at: ",
(int) n->range);
if (cur_stmt)
print_gimple_stmt (dump_file, cur_stmt, 0);
else
{
print_generic_expr (dump_file, tgt, TDF_NONE);
fprintf (dump_file, "\n");
}
}
if (cur_stmt)
{
gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
gsi_remove (&gsi, true);
}
else
gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
return tgt;
}
/* Try to optimize an assignment CUR_STMT with CONSTRUCTOR on the rhs
using bswap optimizations. CDI_DOMINATORS need to be
computed on entry. Return true if it has been optimized and
TODO_update_ssa is needed. */
static bool
maybe_optimize_vector_constructor (gimple *cur_stmt)
{
tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
struct symbolic_number n;
bool bswap;
gcc_assert (is_gimple_assign (cur_stmt)
&& gimple_assign_rhs_code (cur_stmt) == CONSTRUCTOR);
tree rhs = gimple_assign_rhs1 (cur_stmt);
if (!VECTOR_TYPE_P (TREE_TYPE (rhs))
|| !INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs)))
|| gimple_assign_lhs (cur_stmt) == NULL_TREE)
return false;
HOST_WIDE_INT sz = int_size_in_bytes (TREE_TYPE (rhs)) * BITS_PER_UNIT;
switch (sz)
{
case 16:
load_type = bswap_type = uint16_type_node;
break;
case 32:
if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
{
load_type = uint32_type_node;
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
else
return false;
break;
case 64:
if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
&& (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
|| (word_mode == SImode
&& builtin_decl_explicit_p (BUILT_IN_BSWAP32)
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)))
{
load_type = uint64_type_node;
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
else
return false;
break;
default:
return false;
}
gimple *ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
if (!ins_stmt || n.range != (unsigned HOST_WIDE_INT) sz)
return false;
if (bswap && !fndecl && n.range != 16)
return false;
memset (&nop_stats, 0, sizeof (nop_stats));
memset (&bswap_stats, 0, sizeof (bswap_stats));
return bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
bswap_type, load_type, &n, bswap) != NULL_TREE;
}
/* Find manual byte swap implementations as well as load in a given
endianness. Byte swaps are turned into a bswap builtin invokation
while endian loads are converted to bswap builtin invokation or
simple load according to the target endianness. */
unsigned int
pass_optimize_bswap::execute (function *fun)
{
basic_block bb;
bool bswap32_p, bswap64_p;
bool changed = false;
tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
&& (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
|| (bswap32_p && word_mode == SImode)));
/* Determine the argument type of the builtins. The code later on
assumes that the return and argument type are the same. */
if (bswap32_p)
{
tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
if (bswap64_p)
{
tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
memset (&nop_stats, 0, sizeof (nop_stats));
memset (&bswap_stats, 0, sizeof (bswap_stats));
calculate_dominance_info (CDI_DOMINATORS);
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
/* We do a reverse scan for bswap patterns to make sure we get the
widest match. As bswap pattern matching doesn't handle previously
inserted smaller bswap replacements as sub-patterns, the wider
variant wouldn't be detected. */
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
{
gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
enum tree_code code;
struct symbolic_number n;
bool bswap;
/* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
might be moved to a different basic block by bswap_replace and gsi
must not points to it if that's the case. Moving the gsi_prev
there make sure that gsi points to the statement previous to
cur_stmt while still making sure that all statements are
considered in this basic block. */
gsi_prev (&gsi);
if (!is_gimple_assign (cur_stmt))
continue;
code = gimple_assign_rhs_code (cur_stmt);
switch (code)
{
case LROTATE_EXPR:
case RROTATE_EXPR:
if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
|| tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
% BITS_PER_UNIT)
continue;
/* Fall through. */
case BIT_IOR_EXPR:
break;
case CONSTRUCTOR:
{
tree rhs = gimple_assign_rhs1 (cur_stmt);
if (VECTOR_TYPE_P (TREE_TYPE (rhs))
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs))))
break;
}
continue;
default:
continue;
}
ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
if (!ins_stmt)
continue;
switch (n.range)
{
case 16:
/* Already in canonical form, nothing to do. */
if (code == LROTATE_EXPR || code == RROTATE_EXPR)
continue;
load_type = bswap_type = uint16_type_node;
break;
case 32:
load_type = uint32_type_node;
if (bswap32_p)
{
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
bswap_type = bswap32_type;
}
break;
case 64:
load_type = uint64_type_node;
if (bswap64_p)
{
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
bswap_type = bswap64_type;
}
break;
default:
continue;
}
if (bswap && !fndecl && n.range != 16)
continue;
if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
bswap_type, load_type, &n, bswap))
changed = true;
}
}
statistics_counter_event (fun, "16-bit nop implementations found",
nop_stats.found_16bit);
statistics_counter_event (fun, "32-bit nop implementations found",
nop_stats.found_32bit);
statistics_counter_event (fun, "64-bit nop implementations found",
nop_stats.found_64bit);
statistics_counter_event (fun, "16-bit bswap implementations found",
bswap_stats.found_16bit);
statistics_counter_event (fun, "32-bit bswap implementations found",
bswap_stats.found_32bit);
statistics_counter_event (fun, "64-bit bswap implementations found",
bswap_stats.found_64bit);
return (changed ? TODO_update_ssa : 0);
}
} // anon namespace
gimple_opt_pass *
make_pass_optimize_bswap (gcc::context *ctxt)
{
return new pass_optimize_bswap (ctxt);
}
namespace {
/* Struct recording one operand for the store, which is either a constant,
then VAL represents the constant and all the other fields are zero, or
a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
and the other fields also reflect the memory load, or an SSA name, then
VAL represents the SSA name and all the other fields are zero, */
class store_operand_info
{
public:
tree val;
tree base_addr;
poly_uint64 bitsize;
poly_uint64 bitpos;
poly_uint64 bitregion_start;
poly_uint64 bitregion_end;
gimple *stmt;
bool bit_not_p;
store_operand_info ();
};
store_operand_info::store_operand_info ()
: val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
{
}
/* Struct recording the information about a single store of an immediate
to memory. These are created in the first phase and coalesced into
merged_store_group objects in the second phase. */
class store_immediate_info
{
public:
unsigned HOST_WIDE_INT bitsize;
unsigned HOST_WIDE_INT bitpos;
unsigned HOST_WIDE_INT bitregion_start;
/* This is one past the last bit of the bit region. */
unsigned HOST_WIDE_INT bitregion_end;
gimple *stmt;
unsigned int order;
/* INTEGER_CST for constant store, STRING_CST for string store,
MEM_REF for memory copy, BIT_*_EXPR for logical bitwise operation,
BIT_INSERT_EXPR for bit insertion.
LROTATE_EXPR if it can be only bswap optimized and
ops are not really meaningful.
NOP_EXPR if bswap optimization detected identity, ops
are not meaningful. */
enum tree_code rhs_code;
/* Two fields for bswap optimization purposes. */
struct symbolic_number n;
gimple *ins_stmt;
/* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
bool bit_not_p;
/* True if ops have been swapped and thus ops[1] represents
rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
bool ops_swapped_p;
/* The index number of the landing pad, or 0 if there is none. */
int lp_nr;
/* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
just the first one. */
store_operand_info ops[2];
store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
gimple *, unsigned int, enum tree_code,
struct symbolic_number &, gimple *, bool, int,
const store_operand_info &,
const store_operand_info &);
};
store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
unsigned HOST_WIDE_INT bp,
unsigned HOST_WIDE_INT brs,
unsigned HOST_WIDE_INT bre,
gimple *st,
unsigned int ord,
enum tree_code rhscode,
struct symbolic_number &nr,
gimple *ins_stmtp,
bool bitnotp,
int nr2,
const store_operand_info &op0r,
const store_operand_info &op1r)
: bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
stmt (st), order (ord), rhs_code (rhscode), n (nr),
ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false),
lp_nr (nr2)
#if __cplusplus >= 201103L
, ops { op0r, op1r }
{
}
#else
{
ops[0] = op0r;
ops[1] = op1r;
}
#endif
/* Struct representing a group of stores to contiguous memory locations.
These are produced by the second phase (coalescing) and consumed in the
third phase that outputs the widened stores. */
class merged_store_group
{
public:
unsigned HOST_WIDE_INT start;
unsigned HOST_WIDE_INT width;
unsigned HOST_WIDE_INT bitregion_start;
unsigned HOST_WIDE_INT bitregion_end;
/* The size of the allocated memory for val and mask. */
unsigned HOST_WIDE_INT buf_size;
unsigned HOST_WIDE_INT align_base;
poly_uint64 load_align_base[2];
unsigned int align;
unsigned int load_align[2];
unsigned int first_order;
unsigned int last_order;
bool bit_insertion;
bool string_concatenation;
bool only_constants;
bool consecutive;
unsigned int first_nonmergeable_order;
int lp_nr;
auto_vec<store_immediate_info *> stores;
/* We record the first and last original statements in the sequence because
we'll need their vuse/vdef and replacement position. It's easier to keep
track of them separately as 'stores' is reordered by apply_stores. */
gimple *last_stmt;
gimple *first_stmt;
unsigned char *val;
unsigned char *mask;
merged_store_group (store_immediate_info *);
~merged_store_group ();
bool can_be_merged_into (store_immediate_info *);
void merge_into (store_immediate_info *);
void merge_overlapping (store_immediate_info *);
bool apply_stores ();
private:
void do_merge (store_immediate_info *);
};
/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
static void
dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
{
if (!fd)
return;
for (unsigned int i = 0; i < len; i++)
fprintf (fd, "%02x ", ptr[i]);
fprintf (fd, "\n");
}
/* Clear out LEN bits starting from bit START in the byte array
PTR. This clears the bits to the *right* from START.
START must be within [0, BITS_PER_UNIT) and counts starting from
the least significant bit. */
static void
clear_bit_region_be (unsigned char *ptr, unsigned int start,
unsigned int len)
{
if (len == 0)
return;
/* Clear len bits to the right of start. */
else if (len <= start + 1)
{
unsigned char mask = (~(~0U << len));
mask = mask << (start + 1U - len);
ptr[0] &= ~mask;
}
else if (start != BITS_PER_UNIT - 1)
{
clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
len - (start % BITS_PER_UNIT) - 1);
}
else if (start == BITS_PER_UNIT - 1
&& len > BITS_PER_UNIT)
{
unsigned int nbytes = len / BITS_PER_UNIT;
memset (ptr, 0, nbytes);
if (len % BITS_PER_UNIT != 0)
clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
len % BITS_PER_UNIT);
}
else
gcc_unreachable ();
}
/* In the byte array PTR clear the bit region starting at bit
START and is LEN bits wide.
For regions spanning multiple bytes do this recursively until we reach
zero LEN or a region contained within a single byte. */
static void
clear_bit_region (unsigned char *ptr, unsigned int start,
unsigned int len)
{
/* Degenerate base case. */
if (len == 0)
return;
else if (start >= BITS_PER_UNIT)
clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
/* Second base case. */
else if ((start + len) <= BITS_PER_UNIT)
{
unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
mask >>= BITS_PER_UNIT - (start + len);
ptr[0] &= ~mask;
return;
}
/* Clear most significant bits in a byte and proceed with the next byte. */
else if (start != 0)
{
clear_bit_region (ptr, start, BITS_PER_UNIT - start);
clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
}
/* Whole bytes need to be cleared. */
else if (start == 0 && len > BITS_PER_UNIT)
{
unsigned int nbytes = len / BITS_PER_UNIT;
/* We could recurse on each byte but we clear whole bytes, so a simple
memset will do. */
memset (ptr, '\0', nbytes);
/* Clear the remaining sub-byte region if there is one. */
if (len % BITS_PER_UNIT != 0)
clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
}
else
gcc_unreachable ();
}
/* Write BITLEN bits of EXPR to the byte array PTR at
bit position BITPOS. PTR should contain TOTAL_BYTES elements.
Return true if the operation succeeded. */
static bool
encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
unsigned int total_bytes)
{
unsigned int first_byte = bitpos / BITS_PER_UNIT;
bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
|| (bitpos % BITS_PER_UNIT)
|| !int_mode_for_size (bitlen, 0).exists ());
bool empty_ctor_p
= (TREE_CODE (expr) == CONSTRUCTOR
&& CONSTRUCTOR_NELTS (expr) == 0
&& TYPE_SIZE_UNIT (TREE_TYPE (expr))
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (expr))));
if (!sub_byte_op_p)
{
if (first_byte >= total_bytes)
return false;
total_bytes -= first_byte;
if (empty_ctor_p)
{
unsigned HOST_WIDE_INT rhs_bytes
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
if (rhs_bytes > total_bytes)
return false;
memset (ptr + first_byte, '\0', rhs_bytes);
return true;
}
return native_encode_expr (expr, ptr + first_byte, total_bytes) != 0;
}
/* LITTLE-ENDIAN
We are writing a non byte-sized quantity or at a position that is not
at a byte boundary.
|--------|--------|--------| ptr + first_byte
^ ^
xxx xxxxxxxx xxx< bp>
|______EXPR____|
First native_encode_expr EXPR into a temporary buffer and shift each
byte in the buffer by 'bp' (carrying the bits over as necessary).
|00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
<------bitlen---->< bp>
Then we clear the destination bits:
|---00000|00000000|000-----| ptr + first_byte
<-------bitlen--->< bp>
Finally we ORR the bytes of the shifted EXPR into the cleared region:
|---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
BIG-ENDIAN
We are writing a non byte-sized quantity or at a position that is not
at a byte boundary.
ptr + first_byte |--------|--------|--------|
^ ^
<bp >xxx xxxxxxxx xxx
|_____EXPR_____|
First native_encode_expr EXPR into a temporary buffer and shift each
byte in the buffer to the right by (carrying the bits over as necessary).
We shift by as much as needed to align the most significant bit of EXPR
with bitpos:
|00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
<---bitlen----> <bp ><-----bitlen----->
Then we clear the destination bits:
ptr + first_byte |-----000||00000000||00000---|
<bp ><-------bitlen----->
Finally we ORR the bytes of the shifted EXPR into the cleared region:
ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
The awkwardness comes from the fact that bitpos is counted from the
most significant bit of a byte. */
/* We must be dealing with fixed-size data at this point, since the
total size is also fixed. */
unsigned int byte_size;
if (empty_ctor_p)
{
unsigned HOST_WIDE_INT rhs_bytes
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
if (rhs_bytes > total_bytes)
return false;
byte_size = rhs_bytes;
}
else
{
fixed_size_mode mode
= as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
byte_size
= mode == BLKmode
? tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)))
: GET_MODE_SIZE (mode);
}
/* Allocate an extra byte so that we have space to shift into. */
byte_size++;
unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
memset (tmpbuf, '\0', byte_size);
/* The store detection code should only have allowed constants that are
accepted by native_encode_expr or empty ctors. */
if (!empty_ctor_p
&& native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
gcc_unreachable ();
/* The native_encode_expr machinery uses TYPE_MODE to determine how many
bytes to write. This means it can write more than
ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
write 8 bytes for a bitlen of 40). Skip the bytes that are not within
bitlen and zero out the bits that are not relevant as well (that may
contain a sign bit due to sign-extension). */
unsigned int padding
= byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
/* On big-endian the padding is at the 'front' so just skip the initial
bytes. */
if (BYTES_BIG_ENDIAN)
tmpbuf += padding;
byte_size -= padding;
if (bitlen % BITS_PER_UNIT != 0)
{
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
else
clear_bit_region (tmpbuf, bitlen,
byte_size * BITS_PER_UNIT - bitlen);
}
/* Left shifting relies on the last byte being clear if bitlen is
a multiple of BITS_PER_UNIT, which might not be clear if
there are padding bytes. */
else if (!BYTES_BIG_ENDIAN)
tmpbuf[byte_size - 1] = '\0';
/* Clear the bit region in PTR where the bits from TMPBUF will be
inserted into. */
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (ptr + first_byte,
BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
else
clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
int shift_amnt;
int bitlen_mod = bitlen % BITS_PER_UNIT;
int bitpos_mod = bitpos % BITS_PER_UNIT;
bool skip_byte = false;
if (BYTES_BIG_ENDIAN)
{
/* BITPOS and BITLEN are exactly aligned and no shifting
is necessary. */
if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
|| (bitpos_mod == 0 && bitlen_mod == 0))
shift_amnt = 0;
/* |. . . . . . . .|
<bp > <blen >.
We always shift right for BYTES_BIG_ENDIAN so shift the beginning
of the value until it aligns with 'bp' in the next byte over. */
else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
{
shift_amnt = bitlen_mod + bitpos_mod;
skip_byte = bitlen_mod != 0;
}
/* |. . . . . . . .|
<----bp--->
<---blen---->.
Shift the value right within the same byte so it aligns with 'bp'. */
else
shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
}
else
shift_amnt = bitpos % BITS_PER_UNIT;
/* Create the shifted version of EXPR. */
if (!BYTES_BIG_ENDIAN)
{
shift_bytes_in_array_left (tmpbuf, byte_size, shift_amnt);
if (shift_amnt == 0)
byte_size--;
}
else
{
gcc_assert (BYTES_BIG_ENDIAN);
shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
/* If shifting right forced us to move into the next byte skip the now
empty byte. */
if (skip_byte)
{
tmpbuf++;
byte_size--;
}
}
/* Insert the bits from TMPBUF. */
for (unsigned int i = 0; i < byte_size; i++)
ptr[first_byte + i] |= tmpbuf[i];
return true;
}
/* Sorting function for store_immediate_info objects.
Sorts them by bitposition. */
static int
sort_by_bitpos (const void *x, const void *y)
{
store_immediate_info *const *tmp = (store_immediate_info * const *) x;
store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
if ((*tmp)->bitpos < (*tmp2)->bitpos)
return -1;
else if ((*tmp)->bitpos > (*tmp2)->bitpos)
return 1;
else
/* If they are the same let's use the order which is guaranteed to
be different. */
return (*tmp)->order - (*tmp2)->order;
}
/* Sorting function for store_immediate_info objects.
Sorts them by the order field. */
static int
sort_by_order (const void *x, const void *y)
{
store_immediate_info *const *tmp = (store_immediate_info * const *) x;
store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
if ((*tmp)->order < (*tmp2)->order)
return -1;
else if ((*tmp)->order > (*tmp2)->order)
return 1;
gcc_unreachable ();
}
/* Initialize a merged_store_group object from a store_immediate_info
object. */
merged_store_group::merged_store_group (store_immediate_info *info)
{
start = info->bitpos;
width = info->bitsize;
bitregion_start = info->bitregion_start;
bitregion_end = info->bitregion_end;
/* VAL has memory allocated for it in apply_stores once the group
width has been finalized. */
val = NULL;
mask = NULL;
bit_insertion = info->rhs_code == BIT_INSERT_EXPR;
string_concatenation = info->rhs_code == STRING_CST;
only_constants = info->rhs_code == INTEGER_CST;
consecutive = true;
first_nonmergeable_order = ~0U;
lp_nr = info->lp_nr;
unsigned HOST_WIDE_INT align_bitpos = 0;
get_object_alignment_1 (gimple_assign_lhs (info->stmt),
&align, &align_bitpos);
align_base = start - align_bitpos;
for (int i = 0; i < 2; ++i)
{
store_operand_info &op = info->ops[i];
if (op.base_addr == NULL_TREE)
{
load_align[i] = 0;
load_align_base[i] = 0;
}
else
{
get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
load_align_base[i] = op.bitpos - align_bitpos;
}
}
stores.create (1);
stores.safe_push (info);
last_stmt = info->stmt;
last_order = info->order;
first_stmt = last_stmt;
first_order = last_order;
buf_size = 0;
}
merged_store_group::~merged_store_group ()
{
if (val)
XDELETEVEC (val);
}
/* Return true if the store described by INFO can be merged into the group. */
bool
merged_store_group::can_be_merged_into (store_immediate_info *info)
{
/* Do not merge bswap patterns. */
if (info->rhs_code == LROTATE_EXPR)
return false;
if (info->lp_nr != lp_nr)
return false;
/* The canonical case. */
if (info->rhs_code == stores[0]->rhs_code)
return true;
/* BIT_INSERT_EXPR is compatible with INTEGER_CST if no STRING_CST. */
if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST)
return !string_concatenation;
if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST)
return !string_concatenation;
/* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores, but do it
only for small regions since this can generate a lot of instructions. */
if (info->rhs_code == MEM_REF
&& (stores[0]->rhs_code == INTEGER_CST
|| stores[0]->rhs_code == BIT_INSERT_EXPR)
&& info->bitregion_start == stores[0]->bitregion_start
&& info->bitregion_end == stores[0]->bitregion_end
&& info->bitregion_end - info->bitregion_start <= MAX_FIXED_MODE_SIZE)
return !string_concatenation;
if (stores[0]->rhs_code == MEM_REF
&& (info->rhs_code == INTEGER_CST
|| info->rhs_code == BIT_INSERT_EXPR)
&& info->bitregion_start == stores[0]->bitregion_start
&& info->bitregion_end == stores[0]->bitregion_end
&& info->bitregion_end - info->bitregion_start <= MAX_FIXED_MODE_SIZE)
return !string_concatenation;
/* STRING_CST is compatible with INTEGER_CST if no BIT_INSERT_EXPR. */
if (info->rhs_code == STRING_CST
&& stores[0]->rhs_code == INTEGER_CST
&& stores[0]->bitsize == CHAR_BIT)
return !bit_insertion;
if (stores[0]->rhs_code == STRING_CST
&& info->rhs_code == INTEGER_CST
&& info->bitsize == CHAR_BIT)
return !bit_insertion;
return false;
}
/* Helper method for merge_into and merge_overlapping to do
the common part. */
void
merged_store_group::do_merge (store_immediate_info *info)
{
bitregion_start = MIN (bitregion_start, info->bitregion_start);
bitregion_end = MAX (bitregion_end, info->bitregion_end);
unsigned int this_align;
unsigned HOST_WIDE_INT align_bitpos = 0;
get_object_alignment_1 (gimple_assign_lhs (info->stmt),
&this_align, &align_bitpos);
if (this_align > align)
{
align = this_align;
align_base = info->bitpos - align_bitpos;
}
for (int i = 0; i < 2; ++i)
{
store_operand_info &op = info->ops[i];
if (!op.base_addr)
continue;
get_object_alignment_1 (op.val, &this_align, &align_bitpos);
if (this_align > load_align[i])
{
load_align[i] = this_align;
load_align_base[i] = op.bitpos - align_bitpos;
}
}
gimple *stmt = info->stmt;
stores.safe_push (info);
if (info->order > last_order)
{
last_order = info->order;
last_stmt = stmt;
}
else if (info->order < first_order)
{
first_order = info->order;
first_stmt = stmt;
}
if (info->bitpos != start + width)
consecutive = false;
/* We need to use extraction if there is any bit-field. */
if (info->rhs_code == BIT_INSERT_EXPR)
{
bit_insertion = true;
gcc_assert (!string_concatenation);
}
/* We want to use concatenation if there is any string. */
if (info->rhs_code == STRING_CST)
{
string_concatenation = true;
gcc_assert (!bit_insertion);
}
/* But we cannot use it if we don't have consecutive stores. */
if (!consecutive)
string_concatenation = false;
if (info->rhs_code != INTEGER_CST)
only_constants = false;
}
/* Merge a store recorded by INFO into this merged store.
The store is not overlapping with the existing recorded
stores. */
void
merged_store_group::merge_into (store_immediate_info *info)
{
do_merge (info);
/* Make sure we're inserting in the position we think we're inserting. */
gcc_assert (info->bitpos >= start + width
&& info->bitregion_start <= bitregion_end);
width = info->bitpos + info->bitsize - start;
}
/* Merge a store described by INFO into this merged store.
INFO overlaps in some way with the current store (i.e. it's not contiguous
which is handled by merged_store_group::merge_into). */
void
merged_store_group::merge_overlapping (store_immediate_info *info)
{
do_merge (info);
/* If the store extends the size of the group, extend the width. */
if (info->bitpos + info->bitsize > start + width)
width = info->bitpos + info->bitsize - start;
}
/* Go through all the recorded stores in this group in program order and
apply their values to the VAL byte array to create the final merged
value. Return true if the operation succeeded. */
bool
merged_store_group::apply_stores ()
{
store_immediate_info *info;
unsigned int i;
/* Make sure we have more than one store in the group, otherwise we cannot
merge anything. */
if (bitregion_start % BITS_PER_UNIT != 0
|| bitregion_end % BITS_PER_UNIT != 0
|| stores.length () == 1)
return false;
buf_size = (bitregion_end - bitregion_start) / BITS_PER_UNIT;
/* Really do string concatenation for large strings only. */
if (buf_size <= MOVE_MAX)
string_concatenation = false;
/* Create a power-of-2-sized buffer for native_encode_expr. */
if (!string_concatenation)
buf_size = 1 << ceil_log2 (buf_size);
val = XNEWVEC (unsigned char, 2 * buf_size);
mask = val + buf_size;
memset (val, 0, buf_size);
memset (mask, ~0U, buf_size);
stores.qsort (sort_by_order);
FOR_EACH_VEC_ELT (stores, i, info)
{
unsigned int pos_in_buffer = info->bitpos - bitregion_start;
tree cst;
if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
cst = info->ops[0].val;
else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
cst = info->ops[1].val;
else
cst = NULL_TREE;
bool ret = true;
if (cst && info->rhs_code != BIT_INSERT_EXPR)
ret = encode_tree_to_bitpos (cst, val, info->bitsize, pos_in_buffer,
buf_size);
unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (m, (BITS_PER_UNIT - 1
- (pos_in_buffer % BITS_PER_UNIT)),
info->bitsize);
else
clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
if (cst && dump_file && (dump_flags & TDF_DETAILS))
{
if (ret)
{
fputs ("After writing ", dump_file);
print_generic_expr (dump_file, cst, TDF_NONE);
fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
" at position %d\n", info->bitsize, pos_in_buffer);
fputs (" the merged value contains ", dump_file);
dump_char_array (dump_file, val, buf_size);
fputs (" the merged mask contains ", dump_file);
dump_char_array (dump_file, mask, buf_size);
if (bit_insertion)
fputs (" bit insertion is required\n", dump_file);
if (string_concatenation)
fputs (" string concatenation is required\n", dump_file);
}
else
fprintf (dump_file, "Failed to merge stores\n");
}
if (!ret)
return false;
}
stores.qsort (sort_by_bitpos);
return true;
}
/* Structure describing the store chain. */
class imm_store_chain_info
{
public:
/* Doubly-linked list that imposes an order on chain processing.
PNXP (prev's next pointer) points to the head of a list, or to
the next field in the previous chain in the list.
See pass_store_merging::m_stores_head for more rationale. */
imm_store_chain_info *next, **pnxp;
tree base_addr;
auto_vec<store_immediate_info *> m_store_info;
auto_vec<merged_store_group *> m_merged_store_groups;
imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
: next (inspt), pnxp (&inspt), base_addr (b_a)
{
inspt = this;
if (next)
{
gcc_checking_assert (pnxp == next->pnxp);
next->pnxp = &next;
}
}
~imm_store_chain_info ()
{
*pnxp = next;
if (next)
{
gcc_checking_assert (&next == next->pnxp);
next->pnxp = pnxp;
}
}
bool terminate_and_process_chain ();
bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int,
unsigned int);
bool coalesce_immediate_stores ();
bool output_merged_store (merged_store_group *);
bool output_merged_stores ();
};
const pass_data pass_data_tree_store_merging = {
GIMPLE_PASS, /* type */
"store-merging", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_GIMPLE_STORE_MERGING, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_store_merging : public gimple_opt_pass
{
public:
pass_store_merging (gcc::context *ctxt)
: gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head (),
m_n_chains (0), m_n_stores (0)
{
}
/* Pass not supported for PDP-endian, nor for insane hosts or
target character sizes where native_{encode,interpret}_expr
doesn't work properly. */
virtual bool
gate (function *)
{
return flag_store_merging
&& BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
&& CHAR_BIT == 8
&& BITS_PER_UNIT == 8;
}
virtual unsigned int execute (function *);
private:
hash_map<tree_operand_hash, class imm_store_chain_info *> m_stores;
/* Form a doubly-linked stack of the elements of m_stores, so that
we can iterate over them in a predictable way. Using this order
avoids extraneous differences in the compiler output just because
of tree pointer variations (e.g. different chains end up in
different positions of m_stores, so they are handled in different
orders, so they allocate or release SSA names in different
orders, and when they get reused, subsequent passes end up
getting different SSA names, which may ultimately change
decisions when going out of SSA). */
imm_store_chain_info *m_stores_head;
/* The number of store chains currently tracked. */
unsigned m_n_chains;
/* The number of stores currently tracked. */
unsigned m_n_stores;
bool process_store (gimple *);
bool terminate_and_process_chain (imm_store_chain_info *);
bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
bool terminate_and_process_all_chains ();
}; // class pass_store_merging
/* Terminate and process all recorded chains. Return true if any changes
were made. */
bool
pass_store_merging::terminate_and_process_all_chains ()
{
bool ret = false;
while (m_stores_head)
ret |= terminate_and_process_chain (m_stores_head);
gcc_assert (m_stores.is_empty ());
return ret;
}
/* Terminate all chains that are affected by the statement STMT.
CHAIN_INFO is the chain we should ignore from the checks if
non-NULL. Return true if any changes were made. */
bool
pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
**chain_info,
gimple *stmt)
{
bool ret = false;
/* If the statement doesn't touch memory it can't alias. */
if (!gimple_vuse (stmt))
return false;
tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
ao_ref store_lhs_ref;
ao_ref_init (&store_lhs_ref, store_lhs);
for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
{
next = cur->next;
/* We already checked all the stores in chain_info and terminated the
chain if necessary. Skip it here. */
if (chain_info && *chain_info == cur)
continue;
store_immediate_info *info;
unsigned int i;
FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
{
tree lhs = gimple_assign_lhs (info->stmt);
ao_ref lhs_ref;
ao_ref_init (&lhs_ref, lhs);
if (ref_maybe_used_by_stmt_p (stmt, &lhs_ref)
|| stmt_may_clobber_ref_p_1 (stmt, &lhs_ref)
|| (store_lhs && refs_may_alias_p_1 (&store_lhs_ref,
&lhs_ref, false)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "stmt causes chain termination:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
ret |= terminate_and_process_chain (cur);
break;
}
}
}
return ret;
}
/* Helper function. Terminate the recorded chain storing to base object
BASE. Return true if the merging and output was successful. The m_stores
entry is removed after the processing in any case. */
bool
pass_store_merging::terminate_and_process_chain (imm_store_chain_info *chain_info)
{
m_n_stores -= chain_info->m_store_info.length ();
m_n_chains--;
bool ret = chain_info->terminate_and_process_chain ();
m_stores.remove (chain_info->base_addr);
delete chain_info;
return ret;
}
/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
may clobber REF. FIRST and LAST must have non-NULL vdef. We want to
be able to sink load of REF across stores between FIRST and LAST, up
to right before LAST. */
bool
stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
{
ao_ref r;
ao_ref_init (&r, ref);
unsigned int count = 0;
tree vop = gimple_vdef (last);
gimple *stmt;
/* Return true conservatively if the basic blocks are different. */
if (gimple_bb (first) != gimple_bb (last))
return true;
do
{
stmt = SSA_NAME_DEF_STMT (vop);
if (stmt_may_clobber_ref_p_1 (stmt, &r))
return true;
if (gimple_store_p (stmt)
&& refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
return true;
/* Avoid quadratic compile time by bounding the number of checks
we perform. */
if (++count > MAX_STORE_ALIAS_CHECKS)
return true;
vop = gimple_vuse (stmt);
}
while (stmt != first);
return false;
}
/* Return true if INFO->ops[IDX] is mergeable with the
corresponding loads already in MERGED_STORE group.
BASE_ADDR is the base address of the whole store group. */
bool
compatible_load_p (merged_store_group *merged_store,
store_immediate_info *info,
tree base_addr, int idx)
{
store_immediate_info *infof = merged_store->stores[0];
if (!info->ops[idx].base_addr
|| maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
info->bitpos - infof->bitpos)
|| !operand_equal_p (info->ops[idx].base_addr,
infof->ops[idx].base_addr, 0))
return false;
store_immediate_info *infol = merged_store->stores.last ();
tree load_vuse = gimple_vuse (info->ops[idx].stmt);
/* In this case all vuses should be the same, e.g.
_1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
or
_1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
and we can emit the coalesced load next to any of those loads. */
if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
&& gimple_vuse (infol->ops[idx].stmt) == load_vuse)
return true;
/* Otherwise, at least for now require that the load has the same
vuse as the store. See following examples. */
if (gimple_vuse (info->stmt) != load_vuse)
return false;
if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
|| (infof != infol
&& gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
return false;
/* If the load is from the same location as the store, already
the construction of the immediate chain info guarantees no intervening
stores, so no further checks are needed. Example:
_1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
if (known_eq (info->ops[idx].bitpos, info->bitpos)
&& operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
return true;
/* Otherwise, we need to punt if any of the loads can be clobbered by any
of the stores in the group, or any other stores in between those.
Previous calls to compatible_load_p ensured that for all the
merged_store->stores IDX loads, no stmts starting with
merged_store->first_stmt and ending right before merged_store->last_stmt
clobbers those loads. */
gimple *first = merged_store->first_stmt;
gimple *last = merged_store->last_stmt;
unsigned int i;
store_immediate_info *infoc;
/* The stores are sorted by increasing store bitpos, so if info->stmt store
comes before the so far first load, we'll be changing
merged_store->first_stmt. In that case we need to give up if
any of the earlier processed loads clobber with the stmts in the new
range. */
if (info->order < merged_store->first_order)
{
FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
return false;
first = info->stmt;
}
/* Similarly, we could change merged_store->last_stmt, so ensure
in that case no stmts in the new range clobber any of the earlier
processed loads. */
else if (info->order > merged_store->last_order)
{
FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
return false;
last = info->stmt;
}
/* And finally, we'd be adding a new load to the set, ensure it isn't
clobbered in the new range. */
if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
return false;
/* Otherwise, we are looking for:
_1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
or
_1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
return true;
}
/* Add all refs loaded to compute VAL to REFS vector. */
void
gather_bswap_load_refs (vec<tree> *refs, tree val)
{
if (TREE_CODE (val) != SSA_NAME)
return;
gimple *stmt = SSA_NAME_DEF_STMT (val);
if (!is_gimple_assign (stmt))
return;
if (gimple_assign_load_p (stmt))
{
refs->safe_push (gimple_assign_rhs1 (stmt));
return;
}
switch (gimple_assign_rhs_class (stmt))
{
case GIMPLE_BINARY_RHS:
gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
/* FALLTHRU */
case GIMPLE_UNARY_RHS:
gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
break;
default:
gcc_unreachable ();
}
}
/* Check if there are any stores in M_STORE_INFO after index I
(where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
a potential group ending with END that have their order
smaller than LAST_ORDER. ALL_INTEGER_CST_P is true if
all the stores already merged and the one under consideration
have rhs_code of INTEGER_CST. Return true if there are no such stores.
Consider:
MEM[(long long int *)p_28] = 0;
MEM[(long long int *)p_28 + 8B] = 0;
MEM[(long long int *)p_28 + 16B] = 0;
MEM[(long long int *)p_28 + 24B] = 0;
_129 = (int) _130;
MEM[(int *)p_28 + 8B] = _129;
MEM[(int *)p_28].a = -1;
We already have
MEM[(long long int *)p_28] = 0;
MEM[(int *)p_28].a = -1;
stmts in the current group and need to consider if it is safe to
add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
into the group and merging of those 3 stores is successful, merged
stmts will be emitted at the latest store from that group, i.e.
LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
The MEM[(int *)p_28 + 8B] = _129; store that originally follows
the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
into the group. That way it will be its own store group and will
not be touched. If ALL_INTEGER_CST_P and there are overlapping
INTEGER_CST stores, those are mergeable using merge_overlapping,
so don't return false for those.
Similarly, check stores from FIRST_EARLIER (inclusive) to END_EARLIER
(exclusive), whether they don't overlap the bitrange START to END
and have order in between FIRST_ORDER and LAST_ORDER. This is to
prevent merging in cases like:
MEM <char[12]> [&b + 8B] = {};
MEM[(short *) &b] = 5;
_5 = *x_4(D);
MEM <long long unsigned int> [&b + 2B] = _5;
MEM[(char *)&b + 16B] = 88;
MEM[(int *)&b + 20B] = 1;
The = {} store comes in sort_by_bitpos before the = 88 store, and can't
be merged with it, because the = _5 store overlaps these and is in between
them in sort_by_order ordering. If it was merged, the merged store would
go after the = _5 store and thus change behavior. */
static bool
check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
bool all_integer_cst_p, unsigned int first_order,
unsigned int last_order, unsigned HOST_WIDE_INT start,
unsigned HOST_WIDE_INT end, unsigned int first_earlier,
unsigned end_earlier)
{
unsigned int len = m_store_info.length ();
for (unsigned int j = first_earlier; j < end_earlier; j++)
{
store_immediate_info *info = m_store_info[j];
if (info->order > first_order
&& info->order < last_order
&& info->bitpos + info->bitsize > start)
return false;
}
for (++i; i < len; ++i)
{
store_immediate_info *info = m_store_info[i];
if (info->bitpos >= end)
break;
if (info->order < last_order
&& (!all_integer_cst_p || info->rhs_code != INTEGER_CST))
return false;
}
return true;
}
/* Return true if m_store_info[first] and at least one following store
form a group which store try_size bitsize value which is byte swapped
from a memory load or some value, or identity from some value.
This uses the bswap pass APIs. */
bool
imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
unsigned int first,
unsigned int try_size,
unsigned int first_earlier)
{
unsigned int len = m_store_info.length (), last = first;
unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
if (width >= try_size)
return false;
for (unsigned int i = first + 1; i < len; ++i)
{
if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
|| m_store_info[i]->lp_nr != merged_store->lp_nr
|| m_store_info[i]->ins_stmt == NULL)
return false;
width += m_store_info[i]->bitsize;
if (width >= try_size)
{
last = i;
break;
}
}
if (width != try_size)
return false;
bool allow_unaligned
= !STRICT_ALIGNMENT && param_store_merging_allow_unaligned;
/* Punt if the combined store would not be aligned and we need alignment. */
if (!allow_unaligned)
{
unsigned int align = merged_store->align;
unsigned HOST_WIDE_INT align_base = merged_store->align_base;
for (unsigned int i = first + 1; i <= last; ++i)
{
unsigned int this_align;
unsigned HOST_WIDE_INT align_bitpos = 0;
get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
&this_align, &align_bitpos);
if (this_align > align)
{
align = this_align;
align_base = m_store_info[i]->bitpos - align_bitpos;
}
}
unsigned HOST_WIDE_INT align_bitpos
= (m_store_info[first]->bitpos - align_base) & (align - 1);
if (align_bitpos)
align = least_bit_hwi (align_bitpos);
if (align < try_size)
return false;
}
tree type;
switch (try_size)
{
case 16: type = uint16_type_node; break;
case 32: type = uint32_type_node; break;
case 64: type = uint64_type_node; break;
default: gcc_unreachable ();
}
struct symbolic_number n;
gimple *ins_stmt = NULL;
int vuse_store = -1;
unsigned int first_order = merged_store->first_order;
unsigned int last_order = merged_store->last_order;
gimple *first_stmt = merged_store->first_stmt;
gimple *last_stmt = merged_store->last_stmt;
unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
store_immediate_info *infof = m_store_info[first];
for (unsigned int i = first; i <= last; ++i)
{
store_immediate_info *info = m_store_info[i];
struct symbolic_number this_n = info->n;
this_n.type = type;
if (!this_n.base_addr)
this_n.range = try_size / BITS_PER_UNIT;
else
/* Update vuse in case it has changed by output_merged_stores. */
this_n.vuse = gimple_vuse (info->ins_stmt);
unsigned int bitpos = info->bitpos - infof->bitpos;
if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
BYTES_BIG_ENDIAN
? try_size - info->bitsize - bitpos
: bitpos))
return false;
if (this_n.base_addr && vuse_store)
{
unsigned int j;
for (j = first; j <= last; ++j)
if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
break;
if (j > last)
{
if (vuse_store == 1)
return false;
vuse_store = 0;
}
}
if (i == first)
{
n = this_n;
ins_stmt = info->ins_stmt;
}
else
{
if (n.base_addr && n.vuse != this_n.vuse)
{
if (vuse_store == 0)
return false;
vuse_store = 1;
}
if (info->order > last_order)
{
last_order = info->order;
last_stmt = info->stmt;
}
else if (info->order < first_order)
{
first_order = info->order;
first_stmt = info->stmt;
}
end = MAX (end, info->bitpos + info->bitsize);
ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
&this_n, &n);
if (ins_stmt == NULL)
return false;
}
}
uint64_t cmpxchg, cmpnop;
find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
/* A complete byte swap should make the symbolic number to start with
the largest digit in the highest order byte. Unchanged symbolic
number indicates a read with same endianness as target architecture. */
if (n.n != cmpnop && n.n != cmpxchg)
return false;
if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
return false;
if (!check_no_overlap (m_store_info, last, false, first_order, last_order,
merged_store->start, end, first_earlier, first))
return false;
/* Don't handle memory copy this way if normal non-bswap processing
would handle it too. */
if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
{
unsigned int i;
for (i = first; i <= last; ++i)
if (m_store_info[i]->rhs_code != MEM_REF)
break;
if (i == last + 1)
return false;
}
if (n.n == cmpxchg)
switch (try_size)
{
case 16:
/* Will emit LROTATE_EXPR. */
break;
case 32:
if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
break;
return false;
case 64:
if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
&& optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
break;
return false;
default:
gcc_unreachable ();
}
if (!allow_unaligned && n.base_addr)
{
unsigned int align = get_object_alignment (n.src);
if (align < try_size)
return false;
}
/* If each load has vuse of the corresponding store, need to verify
the loads can be sunk right before the last store. */
if (vuse_store == 1)
{
auto_vec<tree, 64> refs;
for (unsigned int i = first; i <= last; ++i)
gather_bswap_load_refs (&refs,
gimple_assign_rhs1 (m_store_info[i]->stmt));
unsigned int i;
tree ref;
FOR_EACH_VEC_ELT (refs, i, ref)
if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
return false;
n.vuse = NULL_TREE;
}
infof->n = n;
infof->ins_stmt = ins_stmt;
for (unsigned int i = first; i <= last; ++i)
{
m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
m_store_info[i]->ops[0].base_addr = NULL_TREE;
m_store_info[i]->ops[1].base_addr = NULL_TREE;
if (i != first)
merged_store->merge_into (m_store_info[i]);
}
return true;
}
/* Go through the candidate stores recorded in m_store_info and merge them
into merged_store_group objects recorded into m_merged_store_groups
representing the widened stores. Return true if coalescing was successful
and the number of widened stores is fewer than the original number
of stores. */
bool
imm_store_chain_info::coalesce_immediate_stores ()
{
/* Anything less can't be processed. */
if (m_store_info.length () < 2)
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Attempting to coalesce %u stores in chain\n",
m_store_info.length ());
store_immediate_info *info;
unsigned int i, ignore = 0;
unsigned int first_earlier = 0;
unsigned int end_earlier = 0;
/* Order the stores by the bitposition they write to. */
m_store_info.qsort (sort_by_bitpos);
info = m_store_info[0];
merged_store_group *merged_store = new merged_store_group (info);
if (dump_file && (dump_flags & TDF_DETAILS))
fputs ("New store group\n", dump_file);
FOR_EACH_VEC_ELT (m_store_info, i, info)
{
unsigned HOST_WIDE_INT new_bitregion_start, new_bitregion_end;
if (i <= ignore)
goto done;
while (first_earlier < end_earlier
&& (m_store_info[first_earlier]->bitpos
+ m_store_info[first_earlier]->bitsize
<= merged_store->start))
first_earlier++;
/* First try to handle group of stores like:
p[0] = data >> 24;
p[1] = data >> 16;
p[2] = data >> 8;
p[3] = data;
using the bswap framework. */
if (info->bitpos == merged_store->start + merged_store->width
&& merged_store->stores.length () == 1
&& merged_store->stores[0]->ins_stmt != NULL
&& info->lp_nr == merged_store->lp_nr
&& info->ins_stmt != NULL)
{
unsigned int try_size;
for (try_size = 64; try_size >= 16; try_size >>= 1)
if (try_coalesce_bswap (merged_store, i - 1, try_size,
first_earlier))
break;
if (try_size >= 16)
{
ignore = i + merged_store->stores.length () - 1;
m_merged_store_groups.safe_push (merged_store);
if (ignore < m_store_info.length ())
{
merged_store = new merged_store_group (m_store_info[ignore]);
end_earlier = ignore;
}
else
merged_store = NULL;
goto done;
}
}
new_bitregion_start
= MIN (merged_store->bitregion_start, info->bitregion_start);
new_bitregion_end
= MAX (merged_store->bitregion_end, info->bitregion_end);
if (info->order >= merged_store->first_nonmergeable_order
|| (((new_bitregion_end - new_bitregion_start + 1) / BITS_PER_UNIT)
> (unsigned) param_store_merging_max_size))
;
/* |---store 1---|
|---store 2---|
Overlapping stores. */
else if (IN_RANGE (info->bitpos, merged_store->start,
merged_store->start + merged_store->width - 1)
/* |---store 1---||---store 2---|
Handle also the consecutive INTEGER_CST stores case here,
as we have here the code to deal with overlaps. */
|| (info->bitregion_start <= merged_store->bitregion_end
&& info->rhs_code == INTEGER_CST
&& merged_store->only_constants
&& merged_store->can_be_merged_into (info)))
{
/* Only allow overlapping stores of constants. */
if (info->rhs_code == INTEGER_CST
&& merged_store->only_constants
&& info->lp_nr == merged_store->lp_nr)
{
unsigned int first_order
= MIN (merged_store->first_order, info->order);
unsigned int last_order
= MAX (merged_store->last_order, info->order);
unsigned HOST_WIDE_INT end
= MAX (merged_store->start + merged_store->width,
info->bitpos + info->bitsize);
if (check_no_overlap (m_store_info, i, true, first_order,
last_order, merged_store->start, end,
first_earlier, end_earlier))
{
/* check_no_overlap call above made sure there are no
overlapping stores with non-INTEGER_CST rhs_code
in between the first and last of the stores we've
just merged. If there are any INTEGER_CST rhs_code
stores in between, we need to merge_overlapping them
even if in the sort_by_bitpos order there are other
overlapping stores in between. Keep those stores as is.
Example:
MEM[(int *)p_28] = 0;
MEM[(char *)p_28 + 3B] = 1;
MEM[(char *)p_28 + 1B] = 2;
MEM[(char *)p_28 + 2B] = MEM[(char *)p_28 + 6B];
We can't merge the zero store with the store of two and
not merge anything else, because the store of one is
in the original order in between those two, but in
store_by_bitpos order it comes after the last store that
we can't merge with them. We can merge the first 3 stores
and keep the last store as is though. */
unsigned int len = m_store_info.length ();
unsigned int try_order = last_order;
unsigned int first_nonmergeable_order;
unsigned int k;
bool last_iter = false;
int attempts = 0;
do
{
unsigned int max_order = 0;
unsigned int min_order = first_order;
unsigned first_nonmergeable_int_order = ~0U;
unsigned HOST_WIDE_INT this_end = end;
k = i;
first_nonmergeable_order = ~0U;
for (unsigned int j = i + 1; j < len; ++j)
{
store_immediate_info *info2 = m_store_info[j];
if (info2->bitpos >= this_end)
break;
if (info2->order < try_order)
{
if (info2->rhs_code != INTEGER_CST
|| info2->lp_nr != merged_store->lp_nr)
{
/* Normally check_no_overlap makes sure this
doesn't happen, but if end grows below,
then we need to process more stores than
check_no_overlap verified. Example:
MEM[(int *)p_5] = 0;
MEM[(short *)p_5 + 3B] = 1;
MEM[(char *)p_5 + 4B] = _9;
MEM[(char *)p_5 + 2B] = 2; */
k = 0;
break;
}
k = j;
min_order = MIN (min_order, info2->order);
this_end = MAX (this_end,
info2->bitpos + info2->bitsize);
}
else if (info2->rhs_code == INTEGER_CST
&& info2->lp_nr == merged_store->lp_nr
&& !last_iter)
{
max_order = MAX (max_order, info2->order + 1);
first_nonmergeable_int_order
= MIN (first_nonmergeable_int_order,
info2->order);
}
else
first_nonmergeable_order
= MIN (first_nonmergeable_order, info2->order);
}
if (k > i
&& !check_no_overlap (m_store_info, len - 1, true,