blob: 61df63be92ff897a1830b448a13b1f640f31fc59 [file] [log] [blame]
/* -*- C++ -*- Parser.
Copyright (C) 2000-2019 Free Software Foundation, Inc.
Written by Mark Mitchell <mark@codesourcery.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#define INCLUDE_UNIQUE_PTR
#include "system.h"
#include "coretypes.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
#include "timevar.h"
#include "stringpool.h"
#include "cgraph.h"
#include "print-tree.h"
#include "attribs.h"
#include "trans-mem.h"
#include "intl.h"
#include "decl.h"
#include "c-family/c-objc.h"
#include "plugin.h"
#include "tree-pretty-print.h"
#include "parser.h"
#include "gomp-constants.h"
#include "omp-general.h"
#include "omp-offload.h"
#include "c-family/c-indentation.h"
#include "context.h"
#include "gcc-rich-location.h"
#include "tree-iterator.h"
#include "cp-name-hint.h"
#include "memmodel.h"
/* The lexer. */
/* The cp_lexer_* routines mediate between the lexer proper (in libcpp
and c-lex.c) and the C++ parser. */
static cp_token eof_token =
{
CPP_EOF, RID_MAX, 0, false, false, false, 0, { NULL }
};
/* The various kinds of non integral constant we encounter. */
enum non_integral_constant {
NIC_NONE,
/* floating-point literal */
NIC_FLOAT,
/* %<this%> */
NIC_THIS,
/* %<__FUNCTION__%> */
NIC_FUNC_NAME,
/* %<__PRETTY_FUNCTION__%> */
NIC_PRETTY_FUNC,
/* %<__func__%> */
NIC_C99_FUNC,
/* "%<va_arg%> */
NIC_VA_ARG,
/* a cast */
NIC_CAST,
/* %<typeid%> operator */
NIC_TYPEID,
/* non-constant compound literals */
NIC_NCC,
/* a function call */
NIC_FUNC_CALL,
/* an increment */
NIC_INC,
/* an decrement */
NIC_DEC,
/* an array reference */
NIC_ARRAY_REF,
/* %<->%> */
NIC_ARROW,
/* %<.%> */
NIC_POINT,
/* the address of a label */
NIC_ADDR_LABEL,
/* %<*%> */
NIC_STAR,
/* %<&%> */
NIC_ADDR,
/* %<++%> */
NIC_PREINCREMENT,
/* %<--%> */
NIC_PREDECREMENT,
/* %<new%> */
NIC_NEW,
/* %<delete%> */
NIC_DEL,
/* calls to overloaded operators */
NIC_OVERLOADED,
/* an assignment */
NIC_ASSIGNMENT,
/* a comma operator */
NIC_COMMA,
/* a call to a constructor */
NIC_CONSTRUCTOR,
/* a transaction expression */
NIC_TRANSACTION
};
/* The various kinds of errors about name-lookup failing. */
enum name_lookup_error {
/* NULL */
NLE_NULL,
/* is not a type */
NLE_TYPE,
/* is not a class or namespace */
NLE_CXX98,
/* is not a class, namespace, or enumeration */
NLE_NOT_CXX98
};
/* The various kinds of required token */
enum required_token {
RT_NONE,
RT_SEMICOLON, /* ';' */
RT_OPEN_PAREN, /* '(' */
RT_CLOSE_BRACE, /* '}' */
RT_OPEN_BRACE, /* '{' */
RT_CLOSE_SQUARE, /* ']' */
RT_OPEN_SQUARE, /* '[' */
RT_COMMA, /* ',' */
RT_SCOPE, /* '::' */
RT_LESS, /* '<' */
RT_GREATER, /* '>' */
RT_EQ, /* '=' */
RT_ELLIPSIS, /* '...' */
RT_MULT, /* '*' */
RT_COMPL, /* '~' */
RT_COLON, /* ':' */
RT_COLON_SCOPE, /* ':' or '::' */
RT_CLOSE_PAREN, /* ')' */
RT_COMMA_CLOSE_PAREN, /* ',' or ')' */
RT_PRAGMA_EOL, /* end of line */
RT_NAME, /* identifier */
/* The type is CPP_KEYWORD */
RT_NEW, /* new */
RT_DELETE, /* delete */
RT_RETURN, /* return */
RT_WHILE, /* while */
RT_EXTERN, /* extern */
RT_STATIC_ASSERT, /* static_assert */
RT_DECLTYPE, /* decltype */
RT_OPERATOR, /* operator */
RT_CLASS, /* class */
RT_TEMPLATE, /* template */
RT_NAMESPACE, /* namespace */
RT_USING, /* using */
RT_ASM, /* asm */
RT_TRY, /* try */
RT_CATCH, /* catch */
RT_THROW, /* throw */
RT_LABEL, /* __label__ */
RT_AT_TRY, /* @try */
RT_AT_SYNCHRONIZED, /* @synchronized */
RT_AT_THROW, /* @throw */
RT_SELECT, /* selection-statement */
RT_ITERATION, /* iteration-statement */
RT_JUMP, /* jump-statement */
RT_CLASS_KEY, /* class-key */
RT_CLASS_TYPENAME_TEMPLATE, /* class, typename, or template */
RT_TRANSACTION_ATOMIC, /* __transaction_atomic */
RT_TRANSACTION_RELAXED, /* __transaction_relaxed */
RT_TRANSACTION_CANCEL /* __transaction_cancel */
};
/* RAII wrapper for parser->in_type_id_in_expr_p, setting it on creation and
reverting it on destruction. */
class type_id_in_expr_sentinel
{
cp_parser *parser;
bool saved;
public:
type_id_in_expr_sentinel (cp_parser *parser, bool set = true)
: parser (parser),
saved (parser->in_type_id_in_expr_p)
{ parser->in_type_id_in_expr_p = set; }
~type_id_in_expr_sentinel ()
{ parser->in_type_id_in_expr_p = saved; }
};
/* Prototypes. */
static cp_lexer *cp_lexer_new_main
(void);
static cp_lexer *cp_lexer_new_from_tokens
(cp_token_cache *tokens);
static void cp_lexer_destroy
(cp_lexer *);
static int cp_lexer_saving_tokens
(const cp_lexer *);
static cp_token *cp_lexer_token_at
(cp_lexer *, cp_token_position);
static void cp_lexer_get_preprocessor_token
(cp_lexer *, cp_token *);
static inline cp_token *cp_lexer_peek_token
(cp_lexer *);
static cp_token *cp_lexer_peek_nth_token
(cp_lexer *, size_t);
static inline bool cp_lexer_next_token_is
(cp_lexer *, enum cpp_ttype);
static bool cp_lexer_next_token_is_not
(cp_lexer *, enum cpp_ttype);
static bool cp_lexer_next_token_is_keyword
(cp_lexer *, enum rid);
static cp_token *cp_lexer_consume_token
(cp_lexer *);
static void cp_lexer_purge_token
(cp_lexer *);
static void cp_lexer_purge_tokens_after
(cp_lexer *, cp_token_position);
static void cp_lexer_save_tokens
(cp_lexer *);
static void cp_lexer_commit_tokens
(cp_lexer *);
static void cp_lexer_rollback_tokens
(cp_lexer *);
static void cp_lexer_print_token
(FILE *, cp_token *);
static inline bool cp_lexer_debugging_p
(cp_lexer *);
static void cp_lexer_start_debugging
(cp_lexer *) ATTRIBUTE_UNUSED;
static void cp_lexer_stop_debugging
(cp_lexer *) ATTRIBUTE_UNUSED;
static cp_token_cache *cp_token_cache_new
(cp_token *, cp_token *);
static void cp_parser_initial_pragma
(cp_token *);
static bool cp_parser_omp_declare_reduction_exprs
(tree, cp_parser *);
static void cp_finalize_oacc_routine
(cp_parser *, tree, bool);
/* Manifest constants. */
#define CP_LEXER_BUFFER_SIZE ((256 * 1024) / sizeof (cp_token))
#define CP_SAVED_TOKEN_STACK 5
/* Variables. */
/* The stream to which debugging output should be written. */
static FILE *cp_lexer_debug_stream;
/* Nonzero if we are parsing an unevaluated operand: an operand to
sizeof, typeof, or alignof. */
int cp_unevaluated_operand;
/* Dump up to NUM tokens in BUFFER to FILE starting with token
START_TOKEN. If START_TOKEN is NULL, the dump starts with the
first token in BUFFER. If NUM is 0, dump all the tokens. If
CURR_TOKEN is set and it is one of the tokens in BUFFER, it will be
highlighted by surrounding it in [[ ]]. */
static void
cp_lexer_dump_tokens (FILE *file, vec<cp_token, va_gc> *buffer,
cp_token *start_token, unsigned num,
cp_token *curr_token)
{
unsigned i, nprinted;
cp_token *token;
bool do_print;
fprintf (file, "%u tokens\n", vec_safe_length (buffer));
if (buffer == NULL)
return;
if (num == 0)
num = buffer->length ();
if (start_token == NULL)
start_token = buffer->address ();
if (start_token > buffer->address ())
{
cp_lexer_print_token (file, &(*buffer)[0]);
fprintf (file, " ... ");
}
do_print = false;
nprinted = 0;
for (i = 0; buffer->iterate (i, &token) && nprinted < num; i++)
{
if (token == start_token)
do_print = true;
if (!do_print)
continue;
nprinted++;
if (token == curr_token)
fprintf (file, "[[");
cp_lexer_print_token (file, token);
if (token == curr_token)
fprintf (file, "]]");
switch (token->type)
{
case CPP_SEMICOLON:
case CPP_OPEN_BRACE:
case CPP_CLOSE_BRACE:
case CPP_EOF:
fputc ('\n', file);
break;
default:
fputc (' ', file);
}
}
if (i == num && i < buffer->length ())
{
fprintf (file, " ... ");
cp_lexer_print_token (file, &buffer->last ());
}
fprintf (file, "\n");
}
/* Dump all tokens in BUFFER to stderr. */
void
cp_lexer_debug_tokens (vec<cp_token, va_gc> *buffer)
{
cp_lexer_dump_tokens (stderr, buffer, NULL, 0, NULL);
}
DEBUG_FUNCTION void
debug (vec<cp_token, va_gc> &ref)
{
cp_lexer_dump_tokens (stderr, &ref, NULL, 0, NULL);
}
DEBUG_FUNCTION void
debug (vec<cp_token, va_gc> *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Dump the cp_parser tree field T to FILE if T is non-NULL. DESC is the
description for T. */
static void
cp_debug_print_tree_if_set (FILE *file, const char *desc, tree t)
{
if (t)
{
fprintf (file, "%s: ", desc);
print_node_brief (file, "", t, 0);
}
}
/* Dump parser context C to FILE. */
static void
cp_debug_print_context (FILE *file, cp_parser_context *c)
{
const char *status_s[] = { "OK", "ERROR", "COMMITTED" };
fprintf (file, "{ status = %s, scope = ", status_s[c->status]);
print_node_brief (file, "", c->object_type, 0);
fprintf (file, "}\n");
}
/* Print the stack of parsing contexts to FILE starting with FIRST. */
static void
cp_debug_print_context_stack (FILE *file, cp_parser_context *first)
{
unsigned i;
cp_parser_context *c;
fprintf (file, "Parsing context stack:\n");
for (i = 0, c = first; c; c = c->next, i++)
{
fprintf (file, "\t#%u: ", i);
cp_debug_print_context (file, c);
}
}
/* Print the value of FLAG to FILE. DESC is a string describing the flag. */
static void
cp_debug_print_flag (FILE *file, const char *desc, bool flag)
{
if (flag)
fprintf (file, "%s: true\n", desc);
}
/* Print an unparsed function entry UF to FILE. */
static void
cp_debug_print_unparsed_function (FILE *file, cp_unparsed_functions_entry *uf)
{
unsigned i;
cp_default_arg_entry *default_arg_fn;
tree fn;
fprintf (file, "\tFunctions with default args:\n");
for (i = 0;
vec_safe_iterate (uf->funs_with_default_args, i, &default_arg_fn);
i++)
{
fprintf (file, "\t\tClass type: ");
print_node_brief (file, "", default_arg_fn->class_type, 0);
fprintf (file, "\t\tDeclaration: ");
print_node_brief (file, "", default_arg_fn->decl, 0);
fprintf (file, "\n");
}
fprintf (file, "\n\tFunctions with definitions that require "
"post-processing\n\t\t");
for (i = 0; vec_safe_iterate (uf->funs_with_definitions, i, &fn); i++)
{
print_node_brief (file, "", fn, 0);
fprintf (file, " ");
}
fprintf (file, "\n");
fprintf (file, "\n\tNon-static data members with initializers that require "
"post-processing\n\t\t");
for (i = 0; vec_safe_iterate (uf->nsdmis, i, &fn); i++)
{
print_node_brief (file, "", fn, 0);
fprintf (file, " ");
}
fprintf (file, "\n");
}
/* Print the stack of unparsed member functions S to FILE. */
static void
cp_debug_print_unparsed_queues (FILE *file,
vec<cp_unparsed_functions_entry, va_gc> *s)
{
unsigned i;
cp_unparsed_functions_entry *uf;
fprintf (file, "Unparsed functions\n");
for (i = 0; vec_safe_iterate (s, i, &uf); i++)
{
fprintf (file, "#%u:\n", i);
cp_debug_print_unparsed_function (file, uf);
}
}
/* Dump the tokens in a window of size WINDOW_SIZE around the next_token for
the given PARSER. If FILE is NULL, the output is printed on stderr. */
static void
cp_debug_parser_tokens (FILE *file, cp_parser *parser, int window_size)
{
cp_token *next_token, *first_token, *start_token;
if (file == NULL)
file = stderr;
next_token = parser->lexer->next_token;
first_token = parser->lexer->buffer->address ();
start_token = (next_token > first_token + window_size / 2)
? next_token - window_size / 2
: first_token;
cp_lexer_dump_tokens (file, parser->lexer->buffer, start_token, window_size,
next_token);
}
/* Dump debugging information for the given PARSER. If FILE is NULL,
the output is printed on stderr. */
void
cp_debug_parser (FILE *file, cp_parser *parser)
{
const size_t window_size = 20;
cp_token *token;
expanded_location eloc;
if (file == NULL)
file = stderr;
fprintf (file, "Parser state\n\n");
fprintf (file, "Number of tokens: %u\n",
vec_safe_length (parser->lexer->buffer));
cp_debug_print_tree_if_set (file, "Lookup scope", parser->scope);
cp_debug_print_tree_if_set (file, "Object scope",
parser->object_scope);
cp_debug_print_tree_if_set (file, "Qualifying scope",
parser->qualifying_scope);
cp_debug_print_context_stack (file, parser->context);
cp_debug_print_flag (file, "Allow GNU extensions",
parser->allow_gnu_extensions_p);
cp_debug_print_flag (file, "'>' token is greater-than",
parser->greater_than_is_operator_p);
cp_debug_print_flag (file, "Default args allowed in current "
"parameter list", parser->default_arg_ok_p);
cp_debug_print_flag (file, "Parsing integral constant-expression",
parser->integral_constant_expression_p);
cp_debug_print_flag (file, "Allow non-constant expression in current "
"constant-expression",
parser->allow_non_integral_constant_expression_p);
cp_debug_print_flag (file, "Seen non-constant expression",
parser->non_integral_constant_expression_p);
cp_debug_print_flag (file, "Local names forbidden in current context",
(parser->local_variables_forbidden_p
& LOCAL_VARS_FORBIDDEN));
cp_debug_print_flag (file, "'this' forbidden in current context",
(parser->local_variables_forbidden_p
& THIS_FORBIDDEN));
cp_debug_print_flag (file, "In unbraced linkage specification",
parser->in_unbraced_linkage_specification_p);
cp_debug_print_flag (file, "Parsing a declarator",
parser->in_declarator_p);
cp_debug_print_flag (file, "In template argument list",
parser->in_template_argument_list_p);
cp_debug_print_flag (file, "Parsing an iteration statement",
parser->in_statement & IN_ITERATION_STMT);
cp_debug_print_flag (file, "Parsing a switch statement",
parser->in_statement & IN_SWITCH_STMT);
cp_debug_print_flag (file, "Parsing a structured OpenMP block",
parser->in_statement & IN_OMP_BLOCK);
cp_debug_print_flag (file, "Parsing a an OpenMP loop",
parser->in_statement & IN_OMP_FOR);
cp_debug_print_flag (file, "Parsing an if statement",
parser->in_statement & IN_IF_STMT);
cp_debug_print_flag (file, "Parsing a type-id in an expression "
"context", parser->in_type_id_in_expr_p);
cp_debug_print_flag (file, "String expressions should be translated "
"to execution character set",
parser->translate_strings_p);
cp_debug_print_flag (file, "Parsing function body outside of a "
"local class", parser->in_function_body);
cp_debug_print_flag (file, "Auto correct a colon to a scope operator",
parser->colon_corrects_to_scope_p);
cp_debug_print_flag (file, "Colon doesn't start a class definition",
parser->colon_doesnt_start_class_def_p);
if (parser->type_definition_forbidden_message)
fprintf (file, "Error message for forbidden type definitions: %s %s\n",
parser->type_definition_forbidden_message,
parser->type_definition_forbidden_message_arg
? parser->type_definition_forbidden_message_arg : "<none>");
cp_debug_print_unparsed_queues (file, parser->unparsed_queues);
fprintf (file, "Number of class definitions in progress: %u\n",
parser->num_classes_being_defined);
fprintf (file, "Number of template parameter lists for the current "
"declaration: %u\n", parser->num_template_parameter_lists);
cp_debug_parser_tokens (file, parser, window_size);
token = parser->lexer->next_token;
fprintf (file, "Next token to parse:\n");
fprintf (file, "\tToken: ");
cp_lexer_print_token (file, token);
eloc = expand_location (token->location);
fprintf (file, "\n\tFile: %s\n", eloc.file);
fprintf (file, "\tLine: %d\n", eloc.line);
fprintf (file, "\tColumn: %d\n", eloc.column);
}
DEBUG_FUNCTION void
debug (cp_parser &ref)
{
cp_debug_parser (stderr, &ref);
}
DEBUG_FUNCTION void
debug (cp_parser *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Allocate memory for a new lexer object and return it. */
static cp_lexer *
cp_lexer_alloc (void)
{
cp_lexer *lexer;
c_common_no_more_pch ();
/* Allocate the memory. */
lexer = ggc_cleared_alloc<cp_lexer> ();
/* Initially we are not debugging. */
lexer->debugging_p = false;
lexer->saved_tokens.create (CP_SAVED_TOKEN_STACK);
/* Create the buffer. */
vec_alloc (lexer->buffer, CP_LEXER_BUFFER_SIZE);
return lexer;
}
/* Create a new main C++ lexer, the lexer that gets tokens from the
preprocessor. */
static cp_lexer *
cp_lexer_new_main (void)
{
cp_lexer *lexer;
cp_token token;
/* It's possible that parsing the first pragma will load a PCH file,
which is a GC collection point. So we have to do that before
allocating any memory. */
cp_parser_initial_pragma (&token);
lexer = cp_lexer_alloc ();
/* Put the first token in the buffer. */
lexer->buffer->quick_push (token);
/* Get the remaining tokens from the preprocessor. */
while (token.type != CPP_EOF)
{
cp_lexer_get_preprocessor_token (lexer, &token);
vec_safe_push (lexer->buffer, token);
}
lexer->last_token = lexer->buffer->address ()
+ lexer->buffer->length ()
- 1;
lexer->next_token = lexer->buffer->length ()
? lexer->buffer->address ()
: &eof_token;
/* Subsequent preprocessor diagnostics should use compiler
diagnostic functions to get the compiler source location. */
done_lexing = true;
gcc_assert (!lexer->next_token->purged_p);
return lexer;
}
/* Create a new lexer whose token stream is primed with the tokens in
CACHE. When these tokens are exhausted, no new tokens will be read. */
static cp_lexer *
cp_lexer_new_from_tokens (cp_token_cache *cache)
{
cp_token *first = cache->first;
cp_token *last = cache->last;
cp_lexer *lexer = ggc_cleared_alloc<cp_lexer> ();
/* We do not own the buffer. */
lexer->buffer = NULL;
lexer->next_token = first == last ? &eof_token : first;
lexer->last_token = last;
lexer->saved_tokens.create (CP_SAVED_TOKEN_STACK);
/* Initially we are not debugging. */
lexer->debugging_p = false;
gcc_assert (!lexer->next_token->purged_p);
return lexer;
}
/* Frees all resources associated with LEXER. */
static void
cp_lexer_destroy (cp_lexer *lexer)
{
vec_free (lexer->buffer);
lexer->saved_tokens.release ();
ggc_free (lexer);
}
/* This needs to be set to TRUE before the lexer-debugging infrastructure can
be used. The point of this flag is to help the compiler to fold away calls
to cp_lexer_debugging_p within this source file at compile time, when the
lexer is not being debugged. */
#define LEXER_DEBUGGING_ENABLED_P false
/* Returns nonzero if debugging information should be output. */
static inline bool
cp_lexer_debugging_p (cp_lexer *lexer)
{
if (!LEXER_DEBUGGING_ENABLED_P)
return false;
return lexer->debugging_p;
}
static inline cp_token_position
cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
{
gcc_assert (!previous_p || lexer->next_token != &eof_token);
return lexer->next_token - previous_p;
}
static inline cp_token *
cp_lexer_token_at (cp_lexer * /*lexer*/, cp_token_position pos)
{
return pos;
}
static inline void
cp_lexer_set_token_position (cp_lexer *lexer, cp_token_position pos)
{
lexer->next_token = cp_lexer_token_at (lexer, pos);
}
static inline cp_token_position
cp_lexer_previous_token_position (cp_lexer *lexer)
{
if (lexer->next_token == &eof_token)
return lexer->last_token - 1;
else
return cp_lexer_token_position (lexer, true);
}
static inline cp_token *
cp_lexer_previous_token (cp_lexer *lexer)
{
cp_token_position tp = cp_lexer_previous_token_position (lexer);
/* Skip past purged tokens. */
while (tp->purged_p)
{
gcc_assert (tp != vec_safe_address (lexer->buffer));
tp--;
}
return cp_lexer_token_at (lexer, tp);
}
/* nonzero if we are presently saving tokens. */
static inline int
cp_lexer_saving_tokens (const cp_lexer* lexer)
{
return lexer->saved_tokens.length () != 0;
}
/* Store the next token from the preprocessor in *TOKEN. Return true
if we reach EOF. If LEXER is NULL, assume we are handling an
initial #pragma pch_preprocess, and thus want the lexer to return
processed strings. */
static void
cp_lexer_get_preprocessor_token (cp_lexer *lexer, cp_token *token)
{
static int is_extern_c = 0;
/* Get a new token from the preprocessor. */
token->type
= c_lex_with_flags (&token->u.value, &token->location, &token->flags,
lexer == NULL ? 0 : C_LEX_STRING_NO_JOIN);
token->keyword = RID_MAX;
token->purged_p = false;
token->error_reported = false;
/* On some systems, some header files are surrounded by an
implicit extern "C" block. Set a flag in the token if it
comes from such a header. */
is_extern_c += pending_lang_change;
pending_lang_change = 0;
token->implicit_extern_c = is_extern_c > 0;
/* Check to see if this token is a keyword. */
if (token->type == CPP_NAME)
{
if (IDENTIFIER_KEYWORD_P (token->u.value))
{
/* Mark this token as a keyword. */
token->type = CPP_KEYWORD;
/* Record which keyword. */
token->keyword = C_RID_CODE (token->u.value);
}
else
{
if (warn_cxx11_compat
&& C_RID_CODE (token->u.value) >= RID_FIRST_CXX11
&& C_RID_CODE (token->u.value) <= RID_LAST_CXX11)
{
/* Warn about the C++0x keyword (but still treat it as
an identifier). */
warning (OPT_Wc__11_compat,
"identifier %qE is a keyword in C++11",
token->u.value);
/* Clear out the C_RID_CODE so we don't warn about this
particular identifier-turned-keyword again. */
C_SET_RID_CODE (token->u.value, RID_MAX);
}
token->keyword = RID_MAX;
}
}
else if (token->type == CPP_AT_NAME)
{
/* This only happens in Objective-C++; it must be a keyword. */
token->type = CPP_KEYWORD;
switch (C_RID_CODE (token->u.value))
{
/* Replace 'class' with '@class', 'private' with '@private',
etc. This prevents confusion with the C++ keyword
'class', and makes the tokens consistent with other
Objective-C 'AT' keywords. For example '@class' is
reported as RID_AT_CLASS which is consistent with
'@synchronized', which is reported as
RID_AT_SYNCHRONIZED.
*/
case RID_CLASS: token->keyword = RID_AT_CLASS; break;
case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
case RID_THROW: token->keyword = RID_AT_THROW; break;
case RID_TRY: token->keyword = RID_AT_TRY; break;
case RID_CATCH: token->keyword = RID_AT_CATCH; break;
case RID_SYNCHRONIZED: token->keyword = RID_AT_SYNCHRONIZED; break;
default: token->keyword = C_RID_CODE (token->u.value);
}
}
}
/* Update the globals input_location and the input file stack from TOKEN. */
static inline void
cp_lexer_set_source_position_from_token (cp_token *token)
{
if (token->type != CPP_EOF)
{
input_location = token->location;
}
}
/* Update the globals input_location and the input file stack from LEXER. */
static inline void
cp_lexer_set_source_position (cp_lexer *lexer)
{
cp_token *token = cp_lexer_peek_token (lexer);
cp_lexer_set_source_position_from_token (token);
}
/* Return a pointer to the next token in the token stream, but do not
consume it. */
static inline cp_token *
cp_lexer_peek_token (cp_lexer *lexer)
{
if (cp_lexer_debugging_p (lexer))
{
fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
putc ('\n', cp_lexer_debug_stream);
}
return lexer->next_token;
}
/* Return true if the next token has the indicated TYPE. */
static inline bool
cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
{
return cp_lexer_peek_token (lexer)->type == type;
}
/* Return true if the next token does not have the indicated TYPE. */
static inline bool
cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
{
return !cp_lexer_next_token_is (lexer, type);
}
/* Return true if the next token is the indicated KEYWORD. */
static inline bool
cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
{
return cp_lexer_peek_token (lexer)->keyword == keyword;
}
static inline bool
cp_lexer_nth_token_is (cp_lexer* lexer, size_t n, enum cpp_ttype type)
{
return cp_lexer_peek_nth_token (lexer, n)->type == type;
}
static inline bool
cp_lexer_nth_token_is_keyword (cp_lexer* lexer, size_t n, enum rid keyword)
{
return cp_lexer_peek_nth_token (lexer, n)->keyword == keyword;
}
/* Return true if KEYWORD can start a decl-specifier. */
bool
cp_keyword_starts_decl_specifier_p (enum rid keyword)
{
switch (keyword)
{
/* auto specifier: storage-class-specifier in C++,
simple-type-specifier in C++0x. */
case RID_AUTO:
/* Storage classes. */
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
case RID_THREAD:
/* Elaborated type specifiers. */
case RID_ENUM:
case RID_CLASS:
case RID_STRUCT:
case RID_UNION:
case RID_TYPENAME:
/* Simple type specifiers. */
case RID_CHAR:
case RID_CHAR8:
case RID_CHAR16:
case RID_CHAR32:
case RID_WCHAR:
case RID_BOOL:
case RID_SHORT:
case RID_INT:
case RID_LONG:
case RID_SIGNED:
case RID_UNSIGNED:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
/* GNU extensions. */
case RID_ATTRIBUTE:
case RID_TYPEOF:
/* C++0x extensions. */
case RID_DECLTYPE:
case RID_UNDERLYING_TYPE:
case RID_CONSTEXPR:
return true;
default:
if (keyword >= RID_FIRST_INT_N
&& keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS
&& int_n_enabled_p[keyword - RID_FIRST_INT_N])
return true;
return false;
}
}
/* Return true if the next token is a keyword for a decl-specifier. */
static bool
cp_lexer_next_token_is_decl_specifier_keyword (cp_lexer *lexer)
{
cp_token *token;
token = cp_lexer_peek_token (lexer);
return cp_keyword_starts_decl_specifier_p (token->keyword);
}
/* Returns TRUE iff the token T begins a decltype type. */
static bool
token_is_decltype (cp_token *t)
{
return (t->keyword == RID_DECLTYPE
|| t->type == CPP_DECLTYPE);
}
/* Returns TRUE iff the next token begins a decltype type. */
static bool
cp_lexer_next_token_is_decltype (cp_lexer *lexer)
{
cp_token *t = cp_lexer_peek_token (lexer);
return token_is_decltype (t);
}
/* Called when processing a token with tree_check_value; perform or defer the
associated checks and return the value. */
static tree
saved_checks_value (struct tree_check *check_value)
{
/* Perform any access checks that were deferred. */
vec<deferred_access_check, va_gc> *checks;
deferred_access_check *chk;
checks = check_value->checks;
if (checks)
{
int i;
FOR_EACH_VEC_SAFE_ELT (checks, i, chk)
perform_or_defer_access_check (chk->binfo,
chk->decl,
chk->diag_decl, tf_warning_or_error);
}
/* Return the stored value. */
return check_value->value;
}
/* Return a pointer to the Nth token in the token stream. If N is 1,
then this is precisely equivalent to cp_lexer_peek_token (except
that it is not inline). One would like to disallow that case, but
there is one case (cp_parser_nth_token_starts_template_id) where
the caller passes a variable for N and it might be 1. */
static cp_token *
cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
{
cp_token *token;
/* N is 1-based, not zero-based. */
gcc_assert (n > 0);
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream,
"cp_lexer: peeking ahead %ld at token: ", (long)n);
--n;
token = lexer->next_token;
gcc_assert (!n || token != &eof_token);
while (n != 0)
{
++token;
if (token == lexer->last_token)
{
token = &eof_token;
break;
}
if (!token->purged_p)
--n;
}
if (cp_lexer_debugging_p (lexer))
{
cp_lexer_print_token (cp_lexer_debug_stream, token);
putc ('\n', cp_lexer_debug_stream);
}
return token;
}
/* Return the next token, and advance the lexer's next_token pointer
to point to the next non-purged token. */
static cp_token *
cp_lexer_consume_token (cp_lexer* lexer)
{
cp_token *token = lexer->next_token;
gcc_assert (token != &eof_token);
gcc_assert (!lexer->in_pragma || token->type != CPP_PRAGMA_EOL);
do
{
lexer->next_token++;
if (lexer->next_token == lexer->last_token)
{
lexer->next_token = &eof_token;
break;
}
}
while (lexer->next_token->purged_p);
cp_lexer_set_source_position_from_token (token);
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
{
fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
cp_lexer_print_token (cp_lexer_debug_stream, token);
putc ('\n', cp_lexer_debug_stream);
}
return token;
}
/* Permanently remove the next token from the token stream, and
advance the next_token pointer to refer to the next non-purged
token. */
static void
cp_lexer_purge_token (cp_lexer *lexer)
{
cp_token *tok = lexer->next_token;
gcc_assert (tok != &eof_token);
tok->purged_p = true;
tok->location = UNKNOWN_LOCATION;
tok->u.value = NULL_TREE;
tok->keyword = RID_MAX;
do
{
tok++;
if (tok == lexer->last_token)
{
tok = &eof_token;
break;
}
}
while (tok->purged_p);
lexer->next_token = tok;
}
/* Permanently remove all tokens after TOK, up to, but not
including, the token that will be returned next by
cp_lexer_peek_token. */
static void
cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
{
cp_token *peek = lexer->next_token;
if (peek == &eof_token)
peek = lexer->last_token;
gcc_assert (tok < peek);
for ( tok += 1; tok != peek; tok += 1)
{
tok->purged_p = true;
tok->location = UNKNOWN_LOCATION;
tok->u.value = NULL_TREE;
tok->keyword = RID_MAX;
}
}
/* Begin saving tokens. All tokens consumed after this point will be
preserved. */
static void
cp_lexer_save_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
lexer->saved_tokens.safe_push (lexer->next_token);
}
/* Commit to the portion of the token stream most recently saved. */
static void
cp_lexer_commit_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
lexer->saved_tokens.pop ();
}
/* Return all tokens saved since the last call to cp_lexer_save_tokens
to the token stream. Stop saving tokens. */
static void
cp_lexer_rollback_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
lexer->next_token = lexer->saved_tokens.pop ();
}
/* RAII wrapper around the above functions, with sanity checking. Creating
a variable saves tokens, which are committed when the variable is
destroyed unless they are explicitly rolled back by calling the rollback
member function. */
struct saved_token_sentinel
{
cp_lexer *lexer;
unsigned len;
bool commit;
saved_token_sentinel(cp_lexer *lexer): lexer(lexer), commit(true)
{
len = lexer->saved_tokens.length ();
cp_lexer_save_tokens (lexer);
}
void rollback ()
{
cp_lexer_rollback_tokens (lexer);
commit = false;
}
~saved_token_sentinel()
{
if (commit)
cp_lexer_commit_tokens (lexer);
gcc_assert (lexer->saved_tokens.length () == len);
}
};
/* Print a representation of the TOKEN on the STREAM. */
static void
cp_lexer_print_token (FILE * stream, cp_token *token)
{
/* We don't use cpp_type2name here because the parser defines
a few tokens of its own. */
static const char *const token_names[] = {
/* cpplib-defined token types */
#define OP(e, s) #e,
#define TK(e, s) #e,
TTYPE_TABLE
#undef OP
#undef TK
/* C++ parser token types - see "Manifest constants", above. */
"KEYWORD",
"TEMPLATE_ID",
"NESTED_NAME_SPECIFIER",
};
/* For some tokens, print the associated data. */
switch (token->type)
{
case CPP_KEYWORD:
/* Some keywords have a value that is not an IDENTIFIER_NODE.
For example, `struct' is mapped to an INTEGER_CST. */
if (!identifier_p (token->u.value))
break;
/* fall through */
case CPP_NAME:
fputs (IDENTIFIER_POINTER (token->u.value), stream);
break;
case CPP_STRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_WSTRING:
case CPP_UTF8STRING:
fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->u.value));
break;
case CPP_NUMBER:
print_generic_expr (stream, token->u.value);
break;
default:
/* If we have a name for the token, print it out. Otherwise, we
simply give the numeric code. */
if (token->type < ARRAY_SIZE(token_names))
fputs (token_names[token->type], stream);
else
fprintf (stream, "[%d]", token->type);
break;
}
}
DEBUG_FUNCTION void
debug (cp_token &ref)
{
cp_lexer_print_token (stderr, &ref);
fprintf (stderr, "\n");
}
DEBUG_FUNCTION void
debug (cp_token *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Start emitting debugging information. */
static void
cp_lexer_start_debugging (cp_lexer* lexer)
{
if (!LEXER_DEBUGGING_ENABLED_P)
fatal_error (input_location,
"LEXER_DEBUGGING_ENABLED_P is not set to true");
lexer->debugging_p = true;
cp_lexer_debug_stream = stderr;
}
/* Stop emitting debugging information. */
static void
cp_lexer_stop_debugging (cp_lexer* lexer)
{
if (!LEXER_DEBUGGING_ENABLED_P)
fatal_error (input_location,
"LEXER_DEBUGGING_ENABLED_P is not set to true");
lexer->debugging_p = false;
cp_lexer_debug_stream = NULL;
}
/* Create a new cp_token_cache, representing a range of tokens. */
static cp_token_cache *
cp_token_cache_new (cp_token *first, cp_token *last)
{
cp_token_cache *cache = ggc_alloc<cp_token_cache> ();
cache->first = first;
cache->last = last;
return cache;
}
/* Diagnose if #pragma omp declare simd isn't followed immediately
by function declaration or definition. */
static inline void
cp_ensure_no_omp_declare_simd (cp_parser *parser)
{
if (parser->omp_declare_simd && !parser->omp_declare_simd->error_seen)
{
error ("%<#pragma omp declare simd%> not immediately followed by "
"function declaration or definition");
parser->omp_declare_simd = NULL;
}
}
/* Finalize #pragma omp declare simd clauses after FNDECL has been parsed,
and put that into "omp declare simd" attribute. */
static inline void
cp_finalize_omp_declare_simd (cp_parser *parser, tree fndecl)
{
if (__builtin_expect (parser->omp_declare_simd != NULL, 0))
{
if (fndecl == error_mark_node)
{
parser->omp_declare_simd = NULL;
return;
}
if (TREE_CODE (fndecl) != FUNCTION_DECL)
{
cp_ensure_no_omp_declare_simd (parser);
return;
}
}
}
/* Diagnose if #pragma acc routine isn't followed immediately by function
declaration or definition. */
static inline void
cp_ensure_no_oacc_routine (cp_parser *parser)
{
if (parser->oacc_routine && !parser->oacc_routine->error_seen)
{
error_at (parser->oacc_routine->loc,
"%<#pragma acc routine%> not immediately followed by "
"function declaration or definition");
parser->oacc_routine = NULL;
}
}
/* Decl-specifiers. */
/* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
static void
clear_decl_specs (cp_decl_specifier_seq *decl_specs)
{
memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
}
/* Declarators. */
/* Nothing other than the parser should be creating declarators;
declarators are a semi-syntactic representation of C++ entities.
Other parts of the front end that need to create entities (like
VAR_DECLs or FUNCTION_DECLs) should do that directly. */
static cp_declarator *make_call_declarator
(cp_declarator *, tree, cp_cv_quals, cp_virt_specifiers, cp_ref_qualifier, tree, tree, tree, tree);
static cp_declarator *make_array_declarator
(cp_declarator *, tree);
static cp_declarator *make_pointer_declarator
(cp_cv_quals, cp_declarator *, tree);
static cp_declarator *make_reference_declarator
(cp_cv_quals, cp_declarator *, bool, tree);
static cp_declarator *make_ptrmem_declarator
(cp_cv_quals, tree, cp_declarator *, tree);
/* An erroneous declarator. */
static cp_declarator *cp_error_declarator;
/* The obstack on which declarators and related data structures are
allocated. */
static struct obstack declarator_obstack;
/* Alloc BYTES from the declarator memory pool. */
static inline void *
alloc_declarator (size_t bytes)
{
return obstack_alloc (&declarator_obstack, bytes);
}
/* Allocate a declarator of the indicated KIND. Clear fields that are
common to all declarators. */
static cp_declarator *
make_declarator (cp_declarator_kind kind)
{
cp_declarator *declarator;
declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
declarator->kind = kind;
declarator->parenthesized = UNKNOWN_LOCATION;
declarator->attributes = NULL_TREE;
declarator->std_attributes = NULL_TREE;
declarator->declarator = NULL;
declarator->parameter_pack_p = false;
declarator->id_loc = UNKNOWN_LOCATION;
return declarator;
}
/* Make a declarator for a generalized identifier. If
QUALIFYING_SCOPE is non-NULL, the identifier is
QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is just
UNQUALIFIED_NAME. SFK indicates the kind of special function this
is, if any. */
static cp_declarator *
make_id_declarator (tree qualifying_scope, tree unqualified_name,
special_function_kind sfk, location_t id_location)
{
cp_declarator *declarator;
/* It is valid to write:
class C { void f(); };
typedef C D;
void D::f();
The standard is not clear about whether `typedef const C D' is
legal; as of 2002-09-15 the committee is considering that
question. EDG 3.0 allows that syntax. Therefore, we do as
well. */
if (qualifying_scope && TYPE_P (qualifying_scope))
qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
gcc_assert (identifier_p (unqualified_name)
|| TREE_CODE (unqualified_name) == BIT_NOT_EXPR
|| TREE_CODE (unqualified_name) == TEMPLATE_ID_EXPR);
declarator = make_declarator (cdk_id);
declarator->u.id.qualifying_scope = qualifying_scope;
declarator->u.id.unqualified_name = unqualified_name;
declarator->u.id.sfk = sfk;
declarator->id_loc = id_location;
return declarator;
}
/* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
of modifiers such as const or volatile to apply to the pointer
type, represented as identifiers. ATTRIBUTES represent the attributes that
appertain to the pointer or reference. */
cp_declarator *
make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target,
tree attributes)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_pointer);
declarator->declarator = target;
declarator->u.pointer.qualifiers = cv_qualifiers;
declarator->u.pointer.class_type = NULL_TREE;
if (target)
{
declarator->id_loc = target->id_loc;
declarator->parameter_pack_p = target->parameter_pack_p;
target->parameter_pack_p = false;
}
else
declarator->parameter_pack_p = false;
declarator->std_attributes = attributes;
return declarator;
}
/* Like make_pointer_declarator -- but for references. ATTRIBUTES
represent the attributes that appertain to the pointer or
reference. */
cp_declarator *
make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target,
bool rvalue_ref, tree attributes)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_reference);
declarator->declarator = target;
declarator->u.reference.qualifiers = cv_qualifiers;
declarator->u.reference.rvalue_ref = rvalue_ref;
if (target)
{
declarator->id_loc = target->id_loc;
declarator->parameter_pack_p = target->parameter_pack_p;
target->parameter_pack_p = false;
}
else
declarator->parameter_pack_p = false;
declarator->std_attributes = attributes;
return declarator;
}
/* Like make_pointer_declarator -- but for a pointer to a non-static
member of CLASS_TYPE. ATTRIBUTES represent the attributes that
appertain to the pointer or reference. */
cp_declarator *
make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
cp_declarator *pointee,
tree attributes)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_ptrmem);
declarator->declarator = pointee;
declarator->u.pointer.qualifiers = cv_qualifiers;
declarator->u.pointer.class_type = class_type;
if (pointee)
{
declarator->parameter_pack_p = pointee->parameter_pack_p;
pointee->parameter_pack_p = false;
}
else
declarator->parameter_pack_p = false;
declarator->std_attributes = attributes;
return declarator;
}
/* Make a declarator for the function given by TARGET, with the
indicated PARMS. The CV_QUALIFIERS apply to the function, as in
"const"-qualified member function. The EXCEPTION_SPECIFICATION
indicates what exceptions can be thrown. */
cp_declarator *
make_call_declarator (cp_declarator *target,
tree parms,
cp_cv_quals cv_qualifiers,
cp_virt_specifiers virt_specifiers,
cp_ref_qualifier ref_qualifier,
tree tx_qualifier,
tree exception_specification,
tree late_return_type,
tree requires_clause)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_function);
declarator->declarator = target;
declarator->u.function.parameters = parms;
declarator->u.function.qualifiers = cv_qualifiers;
declarator->u.function.virt_specifiers = virt_specifiers;
declarator->u.function.ref_qualifier = ref_qualifier;
declarator->u.function.tx_qualifier = tx_qualifier;
declarator->u.function.exception_specification = exception_specification;
declarator->u.function.late_return_type = late_return_type;
declarator->u.function.requires_clause = requires_clause;
if (target)
{
declarator->id_loc = target->id_loc;
declarator->parameter_pack_p = target->parameter_pack_p;
target->parameter_pack_p = false;
}
else
declarator->parameter_pack_p = false;
return declarator;
}
/* Make a declarator for an array of BOUNDS elements, each of which is
defined by ELEMENT. */
cp_declarator *
make_array_declarator (cp_declarator *element, tree bounds)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_array);
declarator->declarator = element;
declarator->u.array.bounds = bounds;
if (element)
{
declarator->id_loc = element->id_loc;
declarator->parameter_pack_p = element->parameter_pack_p;
element->parameter_pack_p = false;
}
else
declarator->parameter_pack_p = false;
return declarator;
}
/* Determine whether the declarator we've seen so far can be a
parameter pack, when followed by an ellipsis. */
static bool
declarator_can_be_parameter_pack (cp_declarator *declarator)
{
if (declarator && declarator->parameter_pack_p)
/* We already saw an ellipsis. */
return false;
/* Search for a declarator name, or any other declarator that goes
after the point where the ellipsis could appear in a parameter
pack. If we find any of these, then this declarator cannot be
made into a parameter pack. */
bool found = false;
while (declarator && !found)
{
switch ((int)declarator->kind)
{
case cdk_id:
case cdk_array:
case cdk_decomp:
found = true;
break;
case cdk_error:
return true;
default:
declarator = declarator->declarator;
break;
}
}
return !found;
}
cp_parameter_declarator *no_parameters;
/* Create a parameter declarator with the indicated DECL_SPECIFIERS,
DECLARATOR and DEFAULT_ARGUMENT. */
cp_parameter_declarator *
make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
cp_declarator *declarator,
tree default_argument,
location_t loc,
bool template_parameter_pack_p = false)
{
cp_parameter_declarator *parameter;
parameter = ((cp_parameter_declarator *)
alloc_declarator (sizeof (cp_parameter_declarator)));
parameter->next = NULL;
if (decl_specifiers)
parameter->decl_specifiers = *decl_specifiers;
else
clear_decl_specs (&parameter->decl_specifiers);
parameter->declarator = declarator;
parameter->default_argument = default_argument;
parameter->template_parameter_pack_p = template_parameter_pack_p;
parameter->loc = loc;
return parameter;
}
/* Returns true iff DECLARATOR is a declaration for a function. */
static bool
function_declarator_p (const cp_declarator *declarator)
{
while (declarator)
{
if (declarator->kind == cdk_function
&& declarator->declarator->kind == cdk_id)
return true;
if (declarator->kind == cdk_id
|| declarator->kind == cdk_decomp
|| declarator->kind == cdk_error)
return false;
declarator = declarator->declarator;
}
return false;
}
/* The parser. */
/* Overview
--------
A cp_parser parses the token stream as specified by the C++
grammar. Its job is purely parsing, not semantic analysis. For
example, the parser breaks the token stream into declarators,
expressions, statements, and other similar syntactic constructs.
It does not check that the types of the expressions on either side
of an assignment-statement are compatible, or that a function is
not declared with a parameter of type `void'.
The parser invokes routines elsewhere in the compiler to perform
semantic analysis and to build up the abstract syntax tree for the
code processed.
The parser (and the template instantiation code, which is, in a
way, a close relative of parsing) are the only parts of the
compiler that should be calling push_scope and pop_scope, or
related functions. The parser (and template instantiation code)
keeps track of what scope is presently active; everything else
should simply honor that. (The code that generates static
initializers may also need to set the scope, in order to check
access control correctly when emitting the initializers.)
Methodology
-----------
The parser is of the standard recursive-descent variety. Upcoming
tokens in the token stream are examined in order to determine which
production to use when parsing a non-terminal. Some C++ constructs
require arbitrary look ahead to disambiguate. For example, it is
impossible, in the general case, to tell whether a statement is an
expression or declaration without scanning the entire statement.
Therefore, the parser is capable of "parsing tentatively." When the
parser is not sure what construct comes next, it enters this mode.
Then, while we attempt to parse the construct, the parser queues up
error messages, rather than issuing them immediately, and saves the
tokens it consumes. If the construct is parsed successfully, the
parser "commits", i.e., it issues any queued error messages and
the tokens that were being preserved are permanently discarded.
If, however, the construct is not parsed successfully, the parser
rolls back its state completely so that it can resume parsing using
a different alternative.
Future Improvements
-------------------
The performance of the parser could probably be improved substantially.
We could often eliminate the need to parse tentatively by looking ahead
a little bit. In some places, this approach might not entirely eliminate
the need to parse tentatively, but it might still speed up the average
case. */
/* Flags that are passed to some parsing functions. These values can
be bitwise-ored together. */
enum
{
/* No flags. */
CP_PARSER_FLAGS_NONE = 0x0,
/* The construct is optional. If it is not present, then no error
should be issued. */
CP_PARSER_FLAGS_OPTIONAL = 0x1,
/* When parsing a type-specifier, treat user-defined type-names
as non-type identifiers. */
CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2,
/* When parsing a type-specifier, do not try to parse a class-specifier
or enum-specifier. */
CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS = 0x4,
/* When parsing a decl-specifier-seq, only allow type-specifier or
constexpr. */
CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR = 0x8,
/* When parsing a decl-specifier-seq, only allow mutable or constexpr. */
CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR = 0x10,
/* When parsing a decl-specifier-seq, allow missing typename. */
CP_PARSER_FLAGS_TYPENAME_OPTIONAL = 0x20
};
/* This type is used for parameters and variables which hold
combinations of the above flags. */
typedef int cp_parser_flags;
/* The different kinds of declarators we want to parse. */
enum cp_parser_declarator_kind
{
/* We want an abstract declarator. */
CP_PARSER_DECLARATOR_ABSTRACT,
/* We want a named declarator. */
CP_PARSER_DECLARATOR_NAMED,
/* We don't mind, but the name must be an unqualified-id. */
CP_PARSER_DECLARATOR_EITHER
};
/* The precedence values used to parse binary expressions. The minimum value
of PREC must be 1, because zero is reserved to quickly discriminate
binary operators from other tokens. */
enum cp_parser_prec
{
PREC_NOT_OPERATOR,
PREC_LOGICAL_OR_EXPRESSION,
PREC_LOGICAL_AND_EXPRESSION,
PREC_INCLUSIVE_OR_EXPRESSION,
PREC_EXCLUSIVE_OR_EXPRESSION,
PREC_AND_EXPRESSION,
PREC_EQUALITY_EXPRESSION,
PREC_RELATIONAL_EXPRESSION,
PREC_SHIFT_EXPRESSION,
PREC_ADDITIVE_EXPRESSION,
PREC_MULTIPLICATIVE_EXPRESSION,
PREC_PM_EXPRESSION,
NUM_PREC_VALUES = PREC_PM_EXPRESSION
};
/* A mapping from a token type to a corresponding tree node type, with a
precedence value. */
struct cp_parser_binary_operations_map_node
{
/* The token type. */
enum cpp_ttype token_type;
/* The corresponding tree code. */
enum tree_code tree_type;
/* The precedence of this operator. */
enum cp_parser_prec prec;
};
struct cp_parser_expression_stack_entry
{
/* Left hand side of the binary operation we are currently
parsing. */
cp_expr lhs;
/* Original tree code for left hand side, if it was a binary
expression itself (used for -Wparentheses). */
enum tree_code lhs_type;
/* Tree code for the binary operation we are parsing. */
enum tree_code tree_type;
/* Precedence of the binary operation we are parsing. */
enum cp_parser_prec prec;
/* Location of the binary operation we are parsing. */
location_t loc;
};
/* The stack for storing partial expressions. We only need NUM_PREC_VALUES
entries because precedence levels on the stack are monotonically
increasing. */
typedef struct cp_parser_expression_stack_entry
cp_parser_expression_stack[NUM_PREC_VALUES];
/* Prototypes. */
/* Constructors and destructors. */
static cp_parser_context *cp_parser_context_new
(cp_parser_context *);
/* Class variables. */
static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
/* The operator-precedence table used by cp_parser_binary_expression.
Transformed into an associative array (binops_by_token) by
cp_parser_new. */
static const cp_parser_binary_operations_map_node binops[] = {
{ CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
{ CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
{ CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
{ CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
{ CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
{ CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
{ CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
{ CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
{ CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
{ CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
{ CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
{ CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
{ CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
{ CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
{ CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
{ CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
};
/* The same as binops, but initialized by cp_parser_new so that
binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
for speed. */
static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
/* Constructors and destructors. */
/* Construct a new context. The context below this one on the stack
is given by NEXT. */
static cp_parser_context *
cp_parser_context_new (cp_parser_context* next)
{
cp_parser_context *context;
/* Allocate the storage. */
if (cp_parser_context_free_list != NULL)
{
/* Pull the first entry from the free list. */
context = cp_parser_context_free_list;
cp_parser_context_free_list = context->next;
memset (context, 0, sizeof (*context));
}
else
context = ggc_cleared_alloc<cp_parser_context> ();
/* No errors have occurred yet in this context. */
context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
/* If this is not the bottommost context, copy information that we
need from the previous context. */
if (next)
{
/* If, in the NEXT context, we are parsing an `x->' or `x.'
expression, then we are parsing one in this context, too. */
context->object_type = next->object_type;
/* Thread the stack. */
context->next = next;
}
return context;
}
/* Managing the unparsed function queues. */
#define unparsed_funs_with_default_args \
parser->unparsed_queues->last ().funs_with_default_args
#define unparsed_funs_with_definitions \
parser->unparsed_queues->last ().funs_with_definitions
#define unparsed_nsdmis \
parser->unparsed_queues->last ().nsdmis
#define unparsed_classes \
parser->unparsed_queues->last ().classes
static void
push_unparsed_function_queues (cp_parser *parser)
{
cp_unparsed_functions_entry e = {NULL, make_tree_vector (), NULL, NULL};
vec_safe_push (parser->unparsed_queues, e);
}
static void
pop_unparsed_function_queues (cp_parser *parser)
{
release_tree_vector (unparsed_funs_with_definitions);
parser->unparsed_queues->pop ();
}
/* Prototypes. */
/* Constructors and destructors. */
static cp_parser *cp_parser_new
(void);
/* Routines to parse various constructs.
Those that return `tree' will return the error_mark_node (rather
than NULL_TREE) if a parse error occurs, unless otherwise noted.
Sometimes, they will return an ordinary node if error-recovery was
attempted, even though a parse error occurred. So, to check
whether or not a parse error occurred, you should always use
cp_parser_error_occurred. If the construct is optional (indicated
either by an `_opt' in the name of the function that does the
parsing or via a FLAGS parameter), then NULL_TREE is returned if
the construct is not present. */
/* Lexical conventions [gram.lex] */
static cp_expr cp_parser_identifier
(cp_parser *);
static cp_expr cp_parser_string_literal
(cp_parser *, bool, bool, bool);
static cp_expr cp_parser_userdef_char_literal
(cp_parser *);
static tree cp_parser_userdef_string_literal
(tree);
static cp_expr cp_parser_userdef_numeric_literal
(cp_parser *);
/* Basic concepts [gram.basic] */
static void cp_parser_translation_unit (cp_parser *);
/* Expressions [gram.expr] */
static cp_expr cp_parser_primary_expression
(cp_parser *, bool, bool, bool, cp_id_kind *);
static cp_expr cp_parser_id_expression
(cp_parser *, bool, bool, bool *, bool, bool);
static cp_expr cp_parser_unqualified_id
(cp_parser *, bool, bool, bool, bool);
static tree cp_parser_nested_name_specifier_opt
(cp_parser *, bool, bool, bool, bool, bool = false);
static tree cp_parser_nested_name_specifier
(cp_parser *, bool, bool, bool, bool);
static tree cp_parser_qualifying_entity
(cp_parser *, bool, bool, bool, bool, bool);
static cp_expr cp_parser_postfix_expression
(cp_parser *, bool, bool, bool, bool, cp_id_kind *);
static tree cp_parser_postfix_open_square_expression
(cp_parser *, tree, bool, bool);
static tree cp_parser_postfix_dot_deref_expression
(cp_parser *, enum cpp_ttype, cp_expr, bool, cp_id_kind *, location_t);
static vec<tree, va_gc> *cp_parser_parenthesized_expression_list
(cp_parser *, int, bool, bool, bool *, location_t * = NULL,
bool = false);
/* Values for the second parameter of cp_parser_parenthesized_expression_list. */
enum { non_attr = 0, normal_attr = 1, id_attr = 2 };
static void cp_parser_pseudo_destructor_name
(cp_parser *, tree, tree *, tree *);
static cp_expr cp_parser_unary_expression
(cp_parser *, cp_id_kind * = NULL, bool = false, bool = false, bool = false);
static enum tree_code cp_parser_unary_operator
(cp_token *);
static tree cp_parser_has_attribute_expression
(cp_parser *);
static tree cp_parser_new_expression
(cp_parser *);
static vec<tree, va_gc> *cp_parser_new_placement
(cp_parser *);
static tree cp_parser_new_type_id
(cp_parser *, tree *);
static cp_declarator *cp_parser_new_declarator_opt
(cp_parser *);
static cp_declarator *cp_parser_direct_new_declarator
(cp_parser *);
static vec<tree, va_gc> *cp_parser_new_initializer
(cp_parser *);
static tree cp_parser_delete_expression
(cp_parser *);
static cp_expr cp_parser_cast_expression
(cp_parser *, bool, bool, bool, cp_id_kind *);
static cp_expr cp_parser_binary_expression
(cp_parser *, bool, bool, enum cp_parser_prec, cp_id_kind *);
static tree cp_parser_question_colon_clause
(cp_parser *, cp_expr);
static cp_expr cp_parser_assignment_expression
(cp_parser *, cp_id_kind * = NULL, bool = false, bool = false);
static enum tree_code cp_parser_assignment_operator_opt
(cp_parser *);
static cp_expr cp_parser_expression
(cp_parser *, cp_id_kind * = NULL, bool = false, bool = false);
static cp_expr cp_parser_constant_expression
(cp_parser *, bool = false, bool * = NULL, bool = false);
static cp_expr cp_parser_builtin_offsetof
(cp_parser *);
static cp_expr cp_parser_lambda_expression
(cp_parser *);
static void cp_parser_lambda_introducer
(cp_parser *, tree);
static bool cp_parser_lambda_declarator_opt
(cp_parser *, tree);
static void cp_parser_lambda_body
(cp_parser *, tree);
/* Statements [gram.stmt.stmt] */
static void cp_parser_statement
(cp_parser *, tree, bool, bool *, vec<tree> * = NULL, location_t * = NULL);
static void cp_parser_label_for_labeled_statement
(cp_parser *, tree);
static tree cp_parser_expression_statement
(cp_parser *, tree);
static tree cp_parser_compound_statement
(cp_parser *, tree, int, bool);
static void cp_parser_statement_seq_opt
(cp_parser *, tree);
static tree cp_parser_selection_statement
(cp_parser *, bool *, vec<tree> *);
static tree cp_parser_condition
(cp_parser *);
static tree cp_parser_iteration_statement
(cp_parser *, bool *, bool, unsigned short);
static bool cp_parser_init_statement
(cp_parser *, tree *decl);
static tree cp_parser_for
(cp_parser *, bool, unsigned short);
static tree cp_parser_c_for
(cp_parser *, tree, tree, bool, unsigned short);
static tree cp_parser_range_for
(cp_parser *, tree, tree, tree, bool, unsigned short, bool);
static void do_range_for_auto_deduction
(tree, tree);
static tree cp_parser_perform_range_for_lookup
(tree, tree *, tree *);
static tree cp_parser_range_for_member_function
(tree, tree);
static tree cp_parser_jump_statement
(cp_parser *);
static void cp_parser_declaration_statement
(cp_parser *);
static tree cp_parser_implicitly_scoped_statement
(cp_parser *, bool *, const token_indent_info &, vec<tree> * = NULL);
static void cp_parser_already_scoped_statement
(cp_parser *, bool *, const token_indent_info &);
/* Declarations [gram.dcl.dcl] */
static void cp_parser_declaration_seq_opt
(cp_parser *);
static void cp_parser_declaration
(cp_parser *);
static void cp_parser_toplevel_declaration
(cp_parser *);
static void cp_parser_block_declaration
(cp_parser *, bool);
static void cp_parser_simple_declaration
(cp_parser *, bool, tree *);
static void cp_parser_decl_specifier_seq
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
static tree cp_parser_storage_class_specifier_opt
(cp_parser *);
static tree cp_parser_function_specifier_opt
(cp_parser *, cp_decl_specifier_seq *);
static tree cp_parser_type_specifier
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
int *, bool *);
static tree cp_parser_simple_type_specifier
(cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
static tree cp_parser_type_name
(cp_parser *, bool);
static tree cp_parser_nonclass_name
(cp_parser* parser);
static tree cp_parser_elaborated_type_specifier
(cp_parser *, bool, bool);
static tree cp_parser_enum_specifier
(cp_parser *);
static void cp_parser_enumerator_list
(cp_parser *, tree);
static void cp_parser_enumerator_definition
(cp_parser *, tree);
static tree cp_parser_namespace_name
(cp_parser *);
static void cp_parser_namespace_definition
(cp_parser *);
static void cp_parser_namespace_body
(cp_parser *);
static tree cp_parser_qualified_namespace_specifier
(cp_parser *);
static void cp_parser_namespace_alias_definition
(cp_parser *);
static bool cp_parser_using_declaration
(cp_parser *, bool);
static void cp_parser_using_directive
(cp_parser *);
static tree cp_parser_alias_declaration
(cp_parser *);
static void cp_parser_asm_definition
(cp_parser *);
static void cp_parser_linkage_specification
(cp_parser *);
static void cp_parser_static_assert
(cp_parser *, bool);
static tree cp_parser_decltype
(cp_parser *);
static tree cp_parser_decomposition_declaration
(cp_parser *, cp_decl_specifier_seq *, tree *, location_t *);
/* Declarators [gram.dcl.decl] */
static tree cp_parser_init_declarator
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *,
vec<deferred_access_check, va_gc> *, bool, bool, int, bool *, tree *,
location_t *, tree *);
static cp_declarator *cp_parser_declarator
(cp_parser *, cp_parser_declarator_kind, cp_parser_flags, int *, bool *,
bool, bool, bool);
static cp_declarator *cp_parser_direct_declarator
(cp_parser *, cp_parser_declarator_kind, cp_parser_flags, int *, bool, bool,
bool);
static enum tree_code cp_parser_ptr_operator
(cp_parser *, tree *, cp_cv_quals *, tree *);
static cp_cv_quals cp_parser_cv_qualifier_seq_opt
(cp_parser *);
static cp_virt_specifiers cp_parser_virt_specifier_seq_opt
(cp_parser *);
static cp_ref_qualifier cp_parser_ref_qualifier_opt
(cp_parser *);
static tree cp_parser_tx_qualifier_opt
(cp_parser *);
static tree cp_parser_late_return_type_opt
(cp_parser *, cp_declarator *, tree &, cp_cv_quals);
static tree cp_parser_declarator_id
(cp_parser *, bool);
static tree cp_parser_type_id
(cp_parser *, cp_parser_flags = CP_PARSER_FLAGS_NONE, location_t * = NULL);
static tree cp_parser_template_type_arg
(cp_parser *);
static tree cp_parser_trailing_type_id (cp_parser *);
static tree cp_parser_type_id_1
(cp_parser *, cp_parser_flags, bool, bool, location_t *);
static void cp_parser_type_specifier_seq
(cp_parser *, cp_parser_flags, bool, bool, cp_decl_specifier_seq *);
static tree cp_parser_parameter_declaration_clause
(cp_parser *, cp_parser_flags);
static tree cp_parser_parameter_declaration_list
(cp_parser *, cp_parser_flags);
static cp_parameter_declarator *cp_parser_parameter_declaration
(cp_parser *, cp_parser_flags, bool, bool *);
static tree cp_parser_default_argument
(cp_parser *, bool);
static void cp_parser_function_body
(cp_parser *, bool);
static tree cp_parser_initializer
(cp_parser *, bool *, bool *, bool = false);
static cp_expr cp_parser_initializer_clause
(cp_parser *, bool *);
static cp_expr cp_parser_braced_list
(cp_parser*, bool*);
static vec<constructor_elt, va_gc> *cp_parser_initializer_list
(cp_parser *, bool *, bool *);
static void cp_parser_ctor_initializer_opt_and_function_body
(cp_parser *, bool);
static tree cp_parser_late_parsing_omp_declare_simd
(cp_parser *, tree);
static tree cp_parser_late_parsing_oacc_routine
(cp_parser *, tree);
static tree synthesize_implicit_template_parm
(cp_parser *, tree);
static tree finish_fully_implicit_template
(cp_parser *, tree);
static void abort_fully_implicit_template
(cp_parser *);
/* Classes [gram.class] */
static tree cp_parser_class_name
(cp_parser *, bool, bool, enum tag_types, bool, bool, bool, bool = false);
static tree cp_parser_class_specifier
(cp_parser *);
static tree cp_parser_class_head
(cp_parser *, bool *);
static enum tag_types cp_parser_class_key
(cp_parser *);
static void cp_parser_type_parameter_key
(cp_parser* parser);
static void cp_parser_member_specification_opt
(cp_parser *);
static void cp_parser_member_declaration
(cp_parser *);
static tree cp_parser_pure_specifier
(cp_parser *);
static tree cp_parser_constant_initializer
(cp_parser *);
/* Derived classes [gram.class.derived] */
static tree cp_parser_base_clause
(cp_parser *);
static tree cp_parser_base_specifier
(cp_parser *);
/* Special member functions [gram.special] */
static tree cp_parser_conversion_function_id
(cp_parser *);
static tree cp_parser_conversion_type_id
(cp_parser *);
static cp_declarator *cp_parser_conversion_declarator_opt
(cp_parser *);
static void cp_parser_ctor_initializer_opt
(cp_parser *);
static void cp_parser_mem_initializer_list
(cp_parser *);
static tree cp_parser_mem_initializer
(cp_parser *);
static tree cp_parser_mem_initializer_id
(cp_parser *);
/* Overloading [gram.over] */
static cp_expr cp_parser_operator_function_id
(cp_parser *);
static cp_expr cp_parser_operator
(cp_parser *, location_t);
/* Templates [gram.temp] */
static void cp_parser_template_declaration
(cp_parser *, bool);
static tree cp_parser_template_parameter_list
(cp_parser *);
static tree cp_parser_template_parameter
(cp_parser *, bool *, bool *);
static tree cp_parser_type_parameter
(cp_parser *, bool *);
static tree cp_parser_template_id
(cp_parser *, bool, bool, enum tag_types, bool);
static tree cp_parser_template_name
(cp_parser *, bool, bool, bool, enum tag_types, bool *);
static tree cp_parser_template_argument_list
(cp_parser *);
static tree cp_parser_template_argument
(cp_parser *);
static void cp_parser_explicit_instantiation
(cp_parser *);
static void cp_parser_explicit_specialization
(cp_parser *);
/* Exception handling [gram.exception] */
static tree cp_parser_try_block
(cp_parser *);
static void cp_parser_function_try_block
(cp_parser *);
static void cp_parser_handler_seq
(cp_parser *);
static void cp_parser_handler
(cp_parser *);
static tree cp_parser_exception_declaration
(cp_parser *);
static tree cp_parser_throw_expression
(cp_parser *);
static tree cp_parser_exception_specification_opt
(cp_parser *);
static tree cp_parser_type_id_list
(cp_parser *);
/* GNU Extensions */
static tree cp_parser_asm_specification_opt
(cp_parser *);
static tree cp_parser_asm_operand_list
(cp_parser *);
static tree cp_parser_asm_clobber_list
(cp_parser *);
static tree cp_parser_asm_label_list
(cp_parser *);
static bool cp_next_tokens_can_be_attribute_p
(cp_parser *);
static bool cp_next_tokens_can_be_gnu_attribute_p
(cp_parser *);
static bool cp_next_tokens_can_be_std_attribute_p
(cp_parser *);
static bool cp_nth_tokens_can_be_std_attribute_p
(cp_parser *, size_t);
static bool cp_nth_tokens_can_be_gnu_attribute_p
(cp_parser *, size_t);
static bool cp_nth_tokens_can_be_attribute_p
(cp_parser *, size_t);
static tree cp_parser_attributes_opt
(cp_parser *);
static tree cp_parser_gnu_attributes_opt
(cp_parser *);
static tree cp_parser_gnu_attribute_list
(cp_parser *, bool = false);
static tree cp_parser_std_attribute
(cp_parser *, tree);
static tree cp_parser_std_attribute_spec
(cp_parser *);
static tree cp_parser_std_attribute_spec_seq
(cp_parser *);
static size_t cp_parser_skip_attributes_opt
(cp_parser *, size_t);
static bool cp_parser_extension_opt
(cp_parser *, int *);
static void cp_parser_label_declaration
(cp_parser *);
/* Concept Extensions */
static tree cp_parser_requires_clause
(cp_parser *);
static tree cp_parser_requires_clause_opt
(cp_parser *);
static tree cp_parser_requires_expression
(cp_parser *);
static tree cp_parser_requirement_parameter_list
(cp_parser *);
static tree cp_parser_requirement_body
(cp_parser *);
static tree cp_parser_requirement_list
(cp_parser *);
static tree cp_parser_requirement
(cp_parser *);
static tree cp_parser_simple_requirement
(cp_parser *);
static tree cp_parser_compound_requirement
(cp_parser *);
static tree cp_parser_type_requirement
(cp_parser *);
static tree cp_parser_nested_requirement
(cp_parser *);
/* Transactional Memory Extensions */
static tree cp_parser_transaction
(cp_parser *, cp_token *);
static tree cp_parser_transaction_expression
(cp_parser *, enum rid);
static void cp_parser_function_transaction
(cp_parser *, enum rid);
static tree cp_parser_transaction_cancel
(cp_parser *);
enum pragma_context {
pragma_external,
pragma_member,
pragma_objc_icode,
pragma_stmt,
pragma_compound
};
static bool cp_parser_pragma
(cp_parser *, enum pragma_context, bool *);
/* Objective-C++ Productions */
static tree cp_parser_objc_message_receiver
(cp_parser *);
static tree cp_parser_objc_message_args
(cp_parser *);
static tree cp_parser_objc_message_expression
(cp_parser *);
static cp_expr cp_parser_objc_encode_expression
(cp_parser *);
static tree cp_parser_objc_defs_expression
(cp_parser *);
static tree cp_parser_objc_protocol_expression
(cp_parser *);
static tree cp_parser_objc_selector_expression
(cp_parser *);
static cp_expr cp_parser_objc_expression
(cp_parser *);
static bool cp_parser_objc_selector_p
(enum cpp_ttype);
static tree cp_parser_objc_selector
(cp_parser *);
static tree cp_parser_objc_protocol_refs_opt
(cp_parser *);
static void cp_parser_objc_declaration
(cp_parser *, tree);
static tree cp_parser_objc_statement
(cp_parser *);
static bool cp_parser_objc_valid_prefix_attributes
(cp_parser *, tree *);
static void cp_parser_objc_at_property_declaration
(cp_parser *) ;
static void cp_parser_objc_at_synthesize_declaration
(cp_parser *) ;
static void cp_parser_objc_at_dynamic_declaration
(cp_parser *) ;
static tree cp_parser_objc_struct_declaration
(cp_parser *) ;
/* Utility Routines */
static cp_expr cp_parser_lookup_name
(cp_parser *, tree, enum tag_types, bool, bool, bool, tree *, location_t);
static tree cp_parser_lookup_name_simple
(cp_parser *, tree, location_t);
static tree cp_parser_maybe_treat_template_as_class
(tree, bool);
static bool cp_parser_check_declarator_template_parameters
(cp_parser *, cp_declarator *, location_t);
static bool cp_parser_check_template_parameters
(cp_parser *, unsigned, bool, location_t, cp_declarator *);
static cp_expr cp_parser_simple_cast_expression
(cp_parser *);
static tree cp_parser_global_scope_opt
(cp_parser *, bool);
static bool cp_parser_constructor_declarator_p
(cp_parser *, cp_parser_flags, bool);
static tree cp_parser_function_definition_from_specifiers_and_declarator
(cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
static tree cp_parser_function_definition_after_declarator
(cp_parser *, bool);
static bool cp_parser_template_declaration_after_export
(cp_parser *, bool);
static void cp_parser_perform_template_parameter_access_checks
(vec<deferred_access_check, va_gc> *);
static tree cp_parser_single_declaration
(cp_parser *, vec<deferred_access_check, va_gc> *, bool, bool, bool *);
static cp_expr cp_parser_functional_cast
(cp_parser *, tree);
static tree cp_parser_save_member_function_body
(cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
static tree cp_parser_save_nsdmi
(cp_parser *);
static tree cp_parser_enclosed_template_argument_list
(cp_parser *);
static void cp_parser_save_default_args
(cp_parser *, tree);
static void cp_parser_late_parsing_for_member
(cp_parser *, tree);
static tree cp_parser_late_parse_one_default_arg
(cp_parser *, tree, tree, tree);
static void cp_parser_late_parsing_nsdmi
(cp_parser *, tree);
static void cp_parser_late_parsing_default_args
(cp_parser *, tree);
static tree cp_parser_sizeof_operand
(cp_parser *, enum rid);
static cp_expr cp_parser_trait_expr
(cp_parser *, enum rid);
static bool cp_parser_declares_only_class_p
(cp_parser *);
static void cp_parser_set_storage_class
(cp_parser *, cp_decl_specifier_seq *, enum rid, cp_token *);
static void cp_parser_set_decl_spec_type
(cp_decl_specifier_seq *, tree, cp_token *, bool);
static void set_and_check_decl_spec_loc
(cp_decl_specifier_seq *decl_specs,
cp_decl_spec ds, cp_token *);
static bool cp_parser_friend_p
(const cp_decl_specifier_seq *);
static void cp_parser_required_error
(cp_parser *, required_token, bool, location_t);
static cp_token *cp_parser_require
(cp_parser *, enum cpp_ttype, required_token, location_t = UNKNOWN_LOCATION);
static cp_token *cp_parser_require_keyword
(cp_parser *, enum rid, required_token);
static bool cp_parser_token_starts_function_definition_p
(cp_token *);
static bool cp_parser_next_token_starts_class_definition_p
(cp_parser *);
static bool cp_parser_next_token_ends_template_argument_p
(cp_parser *);
static bool cp_parser_nth_token_starts_template_argument_list_p
(cp_parser *, size_t);
static enum tag_types cp_parser_token_is_class_key
(cp_token *);
static enum tag_types cp_parser_token_is_type_parameter_key
(cp_token *);
static void cp_parser_check_class_key
(enum tag_types, tree type);
static void cp_parser_check_access_in_redeclaration
(tree type, location_t location);
static bool cp_parser_optional_template_keyword
(cp_parser *);
static void cp_parser_pre_parsed_nested_name_specifier
(cp_parser *);
static bool cp_parser_cache_group
(cp_parser *, enum cpp_ttype, unsigned);
static tree cp_parser_cache_defarg
(cp_parser *parser, bool nsdmi);
static void cp_parser_parse_tentatively
(cp_parser *);
static void cp_parser_commit_to_tentative_parse
(cp_parser *);
static void cp_parser_commit_to_topmost_tentative_parse
(cp_parser *);
static void cp_parser_abort_tentative_parse
(cp_parser *);
static bool cp_parser_parse_definitely
(cp_parser *);
static inline bool cp_parser_parsing_tentatively
(cp_parser *);
static bool cp_parser_uncommitted_to_tentative_parse_p
(cp_parser *);
static void cp_parser_error
(cp_parser *, const char *);
static void cp_parser_name_lookup_error
(cp_parser *, tree, tree, name_lookup_error, location_t);
static bool cp_parser_simulate_error
(cp_parser *);
static bool cp_parser_check_type_definition
(cp_parser *);
static void cp_parser_check_for_definition_in_return_type
(cp_declarator *, tree, location_t type_location);
static void cp_parser_check_for_invalid_template_id
(cp_parser *, tree, enum tag_types, location_t location);
static bool cp_parser_non_integral_constant_expression
(cp_parser *, non_integral_constant);
static void cp_parser_diagnose_invalid_type_name
(cp_parser *, tree, location_t);
static bool cp_parser_parse_and_diagnose_invalid_type_name
(cp_parser *);
static int cp_parser_skip_to_closing_parenthesis
(cp_parser *, bool, bool, bool);
static void cp_parser_skip_to_end_of_statement
(cp_parser *);
static void cp_parser_consume_semicolon_at_end_of_statement
(cp_parser *);
static void cp_parser_skip_to_end_of_block_or_statement
(cp_parser *);
static bool cp_parser_skip_to_closing_brace
(cp_parser *);
static void cp_parser_skip_to_end_of_template_parameter_list
(cp_parser *);
static void cp_parser_skip_to_pragma_eol
(cp_parser*, cp_token *);
static bool cp_parser_error_occurred
(cp_parser *);
static bool cp_parser_allow_gnu_extensions_p
(cp_parser *);
static bool cp_parser_is_pure_string_literal
(cp_token *);
static bool cp_parser_is_string_literal
(cp_token *);
static bool cp_parser_is_keyword
(cp_token *, enum rid);
static tree cp_parser_make_typename_type
(cp_parser *, tree, location_t location);
static cp_declarator * cp_parser_make_indirect_declarator
(enum tree_code, tree, cp_cv_quals, cp_declarator *, tree);
static bool cp_parser_compound_literal_p
(cp_parser *);
static bool cp_parser_array_designator_p
(cp_parser *);
static bool cp_parser_init_statement_p
(cp_parser *);
static bool cp_parser_skip_to_closing_square_bracket
(cp_parser *);
static size_t cp_parser_skip_balanced_tokens (cp_parser *, size_t);
/* Concept-related syntactic transformations */
static tree cp_parser_maybe_concept_name (cp_parser *, tree);
static tree cp_parser_maybe_partial_concept_id (cp_parser *, tree, tree);
// -------------------------------------------------------------------------- //
// Unevaluated Operand Guard
//
// Implementation of an RAII helper for unevaluated operand parsing.
cp_unevaluated::cp_unevaluated ()
{
++cp_unevaluated_operand;
++c_inhibit_evaluation_warnings;
}
cp_unevaluated::~cp_unevaluated ()
{
--c_inhibit_evaluation_warnings;
--cp_unevaluated_operand;
}
// -------------------------------------------------------------------------- //
// Tentative Parsing
/* Returns nonzero if we are parsing tentatively. */
static inline bool
cp_parser_parsing_tentatively (cp_parser* parser)
{
return parser->context->next != NULL;
}
/* Returns nonzero if TOKEN is a string literal. */
static bool
cp_parser_is_pure_string_literal (cp_token* token)
{
return (token->type == CPP_STRING ||
token->type == CPP_STRING16 ||
token->type == CPP_STRING32 ||
token->type == CPP_WSTRING ||
token->type == CPP_UTF8STRING);
}
/* Returns nonzero if TOKEN is a string literal
of a user-defined string literal. */
static bool
cp_parser_is_string_literal (cp_token* token)
{
return (cp_parser_is_pure_string_literal (token) ||
token->type == CPP_STRING_USERDEF ||
token->type == CPP_STRING16_USERDEF ||
token->type == CPP_STRING32_USERDEF ||
token->type == CPP_WSTRING_USERDEF ||
token->type == CPP_UTF8STRING_USERDEF);
}
/* Returns nonzero if TOKEN is the indicated KEYWORD. */
static bool
cp_parser_is_keyword (cp_token* token, enum rid keyword)
{
return token->keyword == keyword;
}
/* Return TOKEN's pragma_kind if it is CPP_PRAGMA, otherwise
PRAGMA_NONE. */
static enum pragma_kind
cp_parser_pragma_kind (cp_token *token)
{
if (token->type != CPP_PRAGMA)
return PRAGMA_NONE;
/* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */
return (enum pragma_kind) TREE_INT_CST_LOW (token->u.value);
}
/* Helper function for cp_parser_error.
Having peeked a token of kind TOK1_KIND that might signify
a conflict marker, peek successor tokens to determine
if we actually do have a conflict marker.
Specifically, we consider a run of 7 '<', '=' or '>' characters
at the start of a line as a conflict marker.
These come through the lexer as three pairs and a single,
e.g. three CPP_LSHIFT tokens ("<<") and a CPP_LESS token ('<').
If it returns true, *OUT_LOC is written to with the location/range
of the marker. */
static bool
cp_lexer_peek_conflict_marker (cp_lexer *lexer, enum cpp_ttype tok1_kind,
location_t *out_loc)
{
cp_token *token2 = cp_lexer_peek_nth_token (lexer, 2);
if (token2->type != tok1_kind)
return false;
cp_token *token3 = cp_lexer_peek_nth_token (lexer, 3);
if (token3->type != tok1_kind)
return false;
cp_token *token4 = cp_lexer_peek_nth_token (lexer, 4);
if (token4->type != conflict_marker_get_final_tok_kind (tok1_kind))
return false;
/* It must be at the start of the line. */
location_t start_loc = cp_lexer_peek_token (lexer)->location;
if (LOCATION_COLUMN (start_loc) != 1)
return false;
/* We have a conflict marker. Construct a location of the form:
<<<<<<<
^~~~~~~
with start == caret, finishing at the end of the marker. */
location_t finish_loc = get_finish (token4->location);
*out_loc = make_location (start_loc, start_loc, finish_loc);
return true;
}
/* Get a description of the matching symbol to TOKEN_DESC e.g. "(" for
RT_CLOSE_PAREN. */
static const char *
get_matching_symbol (required_token token_desc)
{
switch (token_desc)
{
default:
gcc_unreachable ();
return "";
case RT_CLOSE_BRACE:
return "{";
case RT_CLOSE_PAREN:
return "(";
}
}
/* Attempt to convert TOKEN_DESC from a required_token to an
enum cpp_ttype, returning CPP_EOF if there is no good conversion. */
static enum cpp_ttype
get_required_cpp_ttype (required_token token_desc)
{
switch (token_desc)
{
case RT_SEMICOLON:
return CPP_SEMICOLON;
case RT_OPEN_PAREN:
return CPP_OPEN_PAREN;
case RT_CLOSE_BRACE:
return CPP_CLOSE_BRACE;
case RT_OPEN_BRACE:
return CPP_OPEN_BRACE;
case RT_CLOSE_SQUARE:
return CPP_CLOSE_SQUARE;
case RT_OPEN_SQUARE:
return CPP_OPEN_SQUARE;
case RT_COMMA:
return CPP_COMMA;
case RT_COLON:
return CPP_COLON;
case RT_CLOSE_PAREN:
return CPP_CLOSE_PAREN;
default:
/* Use CPP_EOF as a "no completions possible" code. */
return CPP_EOF;
}
}
/* Subroutine of cp_parser_error and cp_parser_required_error.
Issue a diagnostic of the form
FILE:LINE: MESSAGE before TOKEN
where TOKEN is the next token in the input stream. MESSAGE
(specified by the caller) is usually of the form "expected
OTHER-TOKEN".
This bypasses the check for tentative passing, and potentially
adds material needed by cp_parser_required_error.
If MISSING_TOKEN_DESC is not RT_NONE, then potentially add fix-it hints
suggesting insertion of the missing token.
Additionally, if MATCHING_LOCATION is not UNKNOWN_LOCATION, then we
have an unmatched symbol at MATCHING_LOCATION; highlight this secondary
location. */
static void
cp_parser_error_1 (cp_parser* parser, const char* gmsgid,
required_token missing_token_desc,
location_t matching_location)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* This diagnostic makes more sense if it is tagged to the line
of the token we just peeked at. */
cp_lexer_set_source_position_from_token (token);
if (token->type == CPP_PRAGMA)
{
error_at (token->location,
"%<#pragma%> is not allowed here");
cp_parser_skip_to_pragma_eol (parser, token);
return;
}
/* If this is actually a conflict marker, report it as such. */
if (token->type == CPP_LSHIFT
|| token->type == CPP_RSHIFT
|| token->type == CPP_EQ_EQ)
{
location_t loc;
if (cp_lexer_peek_conflict_marker (parser->lexer, token->type, &loc))
{
error_at (loc, "version control conflict marker in file");
expanded_location token_exploc = expand_location (token->location);
/* Consume tokens until the end of the source line. */
while (1)
{
cp_lexer_consume_token (parser->lexer);
cp_token *next = cp_lexer_peek_token (parser->lexer);
if (next == NULL)
break;
expanded_location next_exploc = expand_location (next->location);
if (next_exploc.file != token_exploc.file)
break;
if (next_exploc.line != token_exploc.line)
break;
}
return;
}
}
gcc_rich_location richloc (input_location);
bool added_matching_location = false;
if (missing_token_desc != RT_NONE)
{
/* Potentially supply a fix-it hint, suggesting to add the
missing token immediately after the *previous* token.
This may move the primary location within richloc. */
enum cpp_ttype ttype = get_required_cpp_ttype (missing_token_desc);
location_t prev_token_loc
= cp_lexer_previous_token (parser->lexer)->location;
maybe_suggest_missing_token_insertion (&richloc, ttype, prev_token_loc);
/* If matching_location != UNKNOWN_LOCATION, highlight it.
Attempt to consolidate diagnostics by printing it as a
secondary range within the main diagnostic. */
if (matching_location != UNKNOWN_LOCATION)
added_matching_location
= richloc.add_location_if_nearby (matching_location);
}
/* Actually emit the error. */
c_parse_error (gmsgid,
/* Because c_parser_error does not understand
CPP_KEYWORD, keywords are treated like
identifiers. */
(token->type == CPP_KEYWORD ? CPP_NAME : token->type),
token->u.value, token->flags, &richloc);
if (missing_token_desc != RT_NONE)
{
/* If we weren't able to consolidate matching_location, then
print it as a secondary diagnostic. */
if (matching_location != UNKNOWN_LOCATION
&& !added_matching_location)
inform (matching_location, "to match this %qs",
get_matching_symbol (missing_token_desc));
}
}
/* If not parsing tentatively, issue a diagnostic of the form
FILE:LINE: MESSAGE before TOKEN
where TOKEN is the next token in the input stream. MESSAGE
(specified by the caller) is usually of the form "expected
OTHER-TOKEN". */
static void
cp_parser_error (cp_parser* parser, const char* gmsgid)
{
if (!cp_parser_simulate_error (parser))
cp_parser_error_1 (parser, gmsgid, RT_NONE, UNKNOWN_LOCATION);
}
/* Issue an error about name-lookup failing. NAME is the
IDENTIFIER_NODE DECL is the result of
the lookup (as returned from cp_parser_lookup_name). DESIRED is
the thing that we hoped to find. */
static void
cp_parser_name_lookup_error (cp_parser* parser,
tree name,
tree decl,
name_lookup_error desired,
location_t location)
{
/* If name lookup completely failed, tell the user that NAME was not
declared. */
if (decl == error_mark_node)
{
if (parser->scope && parser->scope != global_namespace)
error_at (location, "%<%E::%E%> has not been declared",
parser->scope, name);
else if (parser->scope == global_namespace)
error_at (location, "%<::%E%> has not been declared", name);
else if (parser->object_scope
&& !CLASS_TYPE_P (parser->object_scope))
error_at (location, "request for member %qE in non-class type %qT",
name, parser->object_scope);
else if (parser->object_scope)
error_at (location, "%<%T::%E%> has not been declared",
parser->object_scope, name);
else
error_at (location, "%qE has not been declared", name);
}
else if (parser->scope && parser->scope != global_namespace)
{
switch (desired)
{
case NLE_TYPE:
error_at (location, "%<%E::%E%> is not a type",
parser->scope, name);
break;
case NLE_CXX98:
error_at (location, "%<%E::%E%> is not a class or namespace",
parser->scope, name);
break;
case NLE_NOT_CXX98:
error_at (location,
"%<%E::%E%> is not a class, namespace, or enumeration",
parser->scope, name);
break;
default:
gcc_unreachable ();
}
}
else if (parser->scope == global_namespace)
{
switch (desired)
{
case NLE_TYPE:
error_at (location, "%<::%E%> is not a type", name);
break;
case NLE_CXX98:
error_at (location, "%<::%E%> is not a class or namespace", name);
break;
case NLE_NOT_CXX98:
error_at (location,
"%<::%E%> is not a class, namespace, or enumeration",
name);
break;
default:
gcc_unreachable ();
}
}
else
{
switch (desired)
{
case NLE_TYPE:
error_at (location, "%qE is not a type", name);
break;
case NLE_CXX98:
error_at (location, "%qE is not a class or namespace", name);
break;
case NLE_NOT_CXX98:
error_at (location,
"%qE is not a class, namespace, or enumeration", name);
break;
default:
gcc_unreachable ();
}
}
}
/* If we are parsing tentatively, remember that an error has occurred
during this tentative parse. Returns true if the error was
simulated; false if a message should be issued by the caller. */
static bool
cp_parser_simulate_error (cp_parser* parser)
{
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
{
parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
return true;
}
return false;
}
/* This function is called when a type is defined. If type
definitions are forbidden at this point, an error message is
issued. */
static bool
cp_parser_check_type_definition (cp_parser* parser)
{
/* If types are forbidden here, issue a message. */
if (parser->type_definition_forbidden_message)
{
/* Don't use `%s' to print the string, because quotations (`%<', `%>')
or %qs in the message need to be interpreted. */
error (parser->type_definition_forbidden_message,
parser->type_definition_forbidden_message_arg);
return false;
}
return true;
}
/* This function is called when the DECLARATOR is processed. The TYPE
was a type defined in the decl-specifiers. If it is invalid to
define a type in the decl-specifiers for DECLARATOR, an error is
issued. TYPE_LOCATION is the location of TYPE and is used
for error reporting. */
static void
cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
tree type, location_t type_location)
{
/* [dcl.fct] forbids type definitions in return types.
Unfortunately, it's not easy to know whether or not we are
processing a return type until after the fact. */
while (declarator
&& (declarator->kind == cdk_pointer
|| declarator->kind == cdk_reference
|| declarator->kind == cdk_ptrmem))
declarator = declarator->declarator;
if (declarator
&& declarator->kind == cdk_function)
{
error_at (type_location,
"new types may not be defined in a return type");
inform (type_location,
"(perhaps a semicolon is missing after the definition of %qT)",
type);
}
}
/* A type-specifier (TYPE) has been parsed which cannot be followed by
"<" in any valid C++ program. If the next token is indeed "<",
issue a message warning the user about what appears to be an
invalid attempt to form a template-id. LOCATION is the location
of the type-specifier (TYPE) */
static void
cp_parser_check_for_invalid_template_id (cp_parser* parser,
tree type,
enum tag_types tag_type,
location_t location)
{
cp_token_position start = 0;
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
{
if (TREE_CODE (type) == TYPE_DECL)
type = TREE_TYPE (type);
if (TYPE_P (type) && !template_placeholder_p (type))
error_at (location, "%qT is not a template", type);
else if (identifier_p (type))
{
if (tag_type != none_type)
error_at (location, "%qE is not a class template", type);
else
error_at (location, "%qE is not a template", type);
}
else
error_at (location, "invalid template-id");
/* Remember the location of the invalid "<". */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
start = cp_lexer_token_position (parser->lexer, true);
/* Consume the "<". */
cp_lexer_consume_token (parser->lexer);
/* Parse the template arguments. */
cp_parser_enclosed_template_argument_list (parser);
/* Permanently remove the invalid template arguments so that
this error message is not issued again. */
if (start)
cp_lexer_purge_tokens_after (parser->lexer, start);
}
}
/* If parsing an integral constant-expression, issue an error message
about the fact that THING appeared and return true. Otherwise,
return false. In either case, set
PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */
static bool
cp_parser_non_integral_constant_expression (cp_parser *parser,
non_integral_constant thing)
{
parser->non_integral_constant_expression_p = true;
if (parser->integral_constant_expression_p)
{
if (!parser->allow_non_integral_constant_expression_p)
{
const char *msg = NULL;
switch (thing)
{
case NIC_FLOAT:
pedwarn (input_location, OPT_Wpedantic,
"ISO C++ forbids using a floating-point literal "
"in a constant-expression");
return true;
case NIC_CAST:
error ("a cast to a type other than an integral or "
"enumeration type cannot appear in a "
"constant-expression");
return true;
case NIC_TYPEID:
error ("%<typeid%> operator "
"cannot appear in a constant-expression");
return true;
case NIC_NCC:
error ("non-constant compound literals "
"cannot appear in a constant-expression");
return true;
case NIC_FUNC_CALL:
error ("a function call "
"cannot appear in a constant-expression");
return true;
case NIC_INC:
error ("an increment "
"cannot appear in a constant-expression");
return true;
case NIC_DEC:
error ("an decrement "
"cannot appear in a constant-expression");
return true;
case NIC_ARRAY_REF:
error ("an array reference "
"cannot appear in a constant-expression");
return true;
case NIC_ADDR_LABEL:
error ("the address of a label "
"cannot appear in a constant-expression");
return true;
case NIC_OVERLOADED:
error ("calls to overloaded operators "
"cannot appear in a constant-expression");
return true;
case NIC_ASSIGNMENT:
error ("an assignment cannot appear in a constant-expression");
return true;
case NIC_COMMA:
error ("a comma operator "
"cannot appear in a constant-expression");
return true;
case NIC_CONSTRUCTOR:
error ("a call to a constructor "
"cannot appear in a constant-expression");
return true;
case NIC_TRANSACTION:
error ("a transaction expression "
"cannot appear in a constant-expression");
return true;
case NIC_THIS:
msg = "this";
break;
case NIC_FUNC_NAME:
msg = "__FUNCTION__";
break;
case NIC_PRETTY_FUNC:
msg = "__PRETTY_FUNCTION__";
break;
case NIC_C99_FUNC:
msg = "__func__";
break;
case NIC_VA_ARG:
msg = "va_arg";
break;
case NIC_ARROW:
msg = "->";
break;
case NIC_POINT:
msg = ".";
break;
case NIC_STAR:
msg = "*";
break;
case NIC_ADDR:
msg = "&";
break;
case NIC_PREINCREMENT:
msg = "++";
break;
case NIC_PREDECREMENT:
msg = "--";
break;
case NIC_NEW:
msg = "new";
break;
case NIC_DEL:
msg = "delete";
break;
default:
gcc_unreachable ();
}
if (msg)
error ("%qs cannot appear in a constant-expression", msg);
return true;
}
}
return false;
}
/* Emit a diagnostic for an invalid type name. This function commits
to the current active tentative parse, if any. (Otherwise, the
problematic construct might be encountered again later, resulting
in duplicate error messages.) LOCATION is the location of ID. */
static void
cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree id,
location_t location)
{
tree decl, ambiguous_decls;
cp_parser_commit_to_tentative_parse (parser);
/* Try to lookup the identifier. */
decl = cp_parser_lookup_name (parser, id, none_type,
/*is_template=*/false,
/*is_namespace=*/false,
/*check_dependency=*/true,
&ambiguous_decls, location);
if (ambiguous_decls)
/* If the lookup was ambiguous, an error will already have
been issued. */
return;
/* If the lookup found a template-name, it means that the user forgot
to specify an argument list. Emit a useful error message. */
if (DECL_TYPE_TEMPLATE_P (decl))
{
auto_diagnostic_group d;
error_at (location,
"invalid use of template-name %qE without an argument list",
decl);
if (DECL_CLASS_TEMPLATE_P (decl) && cxx_dialect < cxx17)
inform (location, "class template argument deduction is only available "
"with %<-std=c++17%> or %<-std=gnu++17%>");
inform (DECL_SOURCE_LOCATION (decl), "%qD declared here", decl);
}
else if (TREE_CODE (id) == BIT_NOT_EXPR)
error_at (location, "invalid use of destructor %qD as a type", id);
else if (TREE_CODE (decl) == TYPE_DECL)
/* Something like 'unsigned A a;' */
error_at (location, "invalid combination of multiple type-specifiers");
else if (!parser->scope)
{
/* Issue an error message. */
auto_diagnostic_group d;
name_hint hint;
if (TREE_CODE (id) == IDENTIFIER_NODE)
hint = lookup_name_fuzzy (id, FUZZY_LOOKUP_TYPENAME, location);
if (const char *suggestion = hint.suggestion ())
{
gcc_rich_location richloc (location);
richloc.add_fixit_replace (suggestion);
error_at (&richloc,
"%qE does not name a type; did you mean %qs?",
id, suggestion);
}
else
error_at (location, "%qE does not name a type", id);
/* If we're in a template class, it's possible that the user was
referring to a type from a base class. For example:
template <typename T> struct A { typedef T X; };
template <typename T> struct B : public A<T> { X x; };
The user should have said "typename A<T>::X". */
if (cxx_dialect < cxx11 && id == ridpointers[(int)RID_CONSTEXPR])
inform (location, "C++11 %<constexpr%> only available with "
"%<-std=c++11%> or %<-std=gnu++11%>");
else if (cxx_dialect < cxx11 && id == ridpointers[(int)RID_NOEXCEPT])
inform (location, "C++11 %<noexcept%> only available with "
"%<-std=c++11%> or %<-std=gnu++11%>");
else if (cxx_dialect < cxx11
&& TREE_CODE (id) == IDENTIFIER_NODE
&& id_equal (id, "thread_local"))
inform (location, "C++11 %<thread_local%> only available with "
"%<-std=c++11%> or %<-std=gnu++11%>");
else if (!flag_concepts && id == ridpointers[(int)RID_CONCEPT])
inform (location, "%<concept%> only available with %<-fconcepts%>");
else if (processing_template_decl && current_class_type
&& TYPE_BINFO (current_class_type))
{
tree b;
for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
b;
b = TREE_CHAIN (b))
{
tree base_type = BINFO_TYPE (b);
if (CLASS_TYPE_P (base_type)
&& dependent_type_p (base_type))
{
tree field;
/* Go from a particular instantiation of the
template (which will have an empty TYPE_FIELDs),
to the main version. */
base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
for (field = TYPE_FIELDS (base_type);
field;
field = DECL_CHAIN (field))
if (TREE_CODE (field) == TYPE_DECL
&& DECL_NAME (field) == id)
{
inform (location,
"(perhaps %<typename %T::%E%> was intended)",
BINFO_TYPE (b), id);
break;
}
if (field)
break;
}
}
}
}
/* Here we diagnose qualified-ids where the scope is actually correct,
but the identifier does not resolve to a valid type name. */
else if (parser->scope != error_mark_node)
{
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
{
auto_diagnostic_group d;
name_hint hint;
if (decl == error_mark_node)
hint = suggest_alternative_in_explicit_scope (location, id,
parser->scope);
const char *suggestion = hint.suggestion ();
gcc_rich_location richloc (location_of (id));
if (suggestion)
richloc.add_fixit_replace (suggestion);
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
{
if (suggestion)
error_at (&richloc,
"%qE in namespace %qE does not name a template"
" type; did you mean %qs?",
id, parser->scope, suggestion);
else
error_at (&richloc,
"%qE in namespace %qE does not name a template type",
id, parser->scope);
}
else if (TREE_CODE (id) == TEMPLATE_ID_EXPR)
{
if (suggestion)
error_at (&richloc,
"%qE in namespace %qE does not name a template"
" type; did you mean %qs?",
TREE_OPERAND (id, 0), parser->scope, suggestion);
else
error_at (&richloc,
"%qE in namespace %qE does not name a template"
" type",
TREE_OPERAND (id, 0), parser->scope);
}
else
{
if (suggestion)
error_at (&richloc,
"%qE in namespace %qE does not name a type"
"; did you mean %qs?",
id, parser->scope, suggestion);
else
error_at (&richloc,
"%qE in namespace %qE does not name a type",
id, parser->scope);
}
if (DECL_P (decl))
inform (DECL_SOURCE_LOCATION (decl), "%qD declared here", decl);
}
else if (CLASS_TYPE_P (parser->scope)
&& constructor_name_p (id, parser->scope))
{
/* A<T>::A<T>() */
auto_diagnostic_group d;
error_at (location, "%<%T::%E%> names the constructor, not"
" the type", parser->scope, id);
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
error_at (location, "and %qT has no template constructors",
parser->scope);
}
else if (TYPE_P (parser->scope)
&& dependent_scope_p (parser->scope))
{
gcc_rich_location richloc (location);
richloc.add_fixit_insert_before ("typename ");
if (TREE_CODE (parser->scope) == TYPENAME_TYPE)
error_at (&richloc,
"need %<typename%> before %<%T::%D::%E%> because "
"%<%T::%D%> is a dependent scope",
TYPE_CONTEXT (parser->scope),
TYPENAME_TYPE_FULLNAME (parser->scope),
id,
TYPE_CONTEXT (parser->scope),
TYPENAME_TYPE_FULLNAME (parser->scope));
else
error_at (&richloc, "need %<typename%> before %<%T::%E%> because "
"%qT is a dependent scope",
parser->scope, id, parser->scope);
}
else if (TYPE_P (parser->scope))
{
auto_diagnostic_group d;
if (!COMPLETE_TYPE_P (parser->scope))
cxx_incomplete_type_error (location_of (id), NULL_TREE,
parser->scope);
else if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
error_at (location_of (id),
"%qE in %q#T does not name a template type",
id, parser->scope);
else if (TREE_CODE (id) == TEMPLATE_ID_EXPR)
error_at (location_of (id),
"%qE in %q#T does not name a template type",
TREE_OPERAND (id, 0), parser->scope);
else
error_at (location_of (id),
"%qE in %q#T does not name a type",
id, parser->scope);
if (DECL_P (decl))
inform (DECL_SOURCE_LOCATION (decl), "%qD declared here", decl);
}
else
gcc_unreachable ();
}
}
/* Check for a common situation where a type-name should be present,
but is not, and issue a sensible error message. Returns true if an
invalid type-name was detected.
The situation handled by this function are variable declarations of the
form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
Usually, `ID' should name a type, but if we got here it means that it
does not. We try to emit the best possible error message depending on
how exactly the id-expression looks like. */
static bool
cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
{
tree id;
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* Avoid duplicate error about ambiguous lookup. */
if (token->type == CPP_NESTED_NAME_SPECIFIER)
{
cp_token *next = cp_lexer_peek_nth_token (parser->lexer, 2);
if (next->type == CPP_NAME && next->error_reported)
goto out;
}
cp_parser_parse_tentatively (parser);
id = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/false,
/*optional_p=*/false);
/* If the next token is a (, this is a function with no explicit return
type, i.e. constructor, destructor or conversion op. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|| TREE_CODE (id) == TYPE_DECL)
{
cp_parser_abort_tentative_parse (parser);
return false;
}
if (!cp_parser_parse_definitely (parser))
return false;
/* Emit a diagnostic for the invalid type. */
cp_parser_diagnose_invalid_type_name (parser, id, token->location);
out:
/* If we aren't in the middle of a declarator (i.e. in a
parameter-declaration-clause), skip to the end of the declaration;
there's no point in trying to process it. */
if (!parser->in_declarator_p)
cp_parser_skip_to_end_of_block_or_statement (parser);
return true;
}
/* Consume tokens up to, and including, the next non-nested closing `)'.
Returns 1 iff we found a closing `)'. RECOVERING is true, if we
are doing error recovery. Returns -1 if OR_TTYPE is not CPP_EOF and we
found an unnested token of that type. */
static int
cp_parser_skip_to_closing_parenthesis_1 (cp_parser *parser,
bool recovering,
cpp_ttype or_ttype,
bool consume_paren)
{
unsigned paren_depth = 0;
unsigned brace_depth = 0;
unsigned square_depth = 0;
unsigned condop_depth = 0;
if (recovering && or_ttype == CPP_EOF
&& cp_parser_uncommitted_to_tentative_parse_p (parser))
return 0;
while (true)
{
cp_token * token = cp_lexer_peek_token (parser->lexer);
/* Have we found what we're looking for before the closing paren? */
if (token->type == or_ttype && or_ttype != CPP_EOF
&& !brace_depth && !paren_depth && !square_depth && !condop_depth)
return -1;
switch (token->type)
{
case CPP_PRAGMA_EOL:
if (!parser->lexer->in_pragma)
break;
/* FALLTHRU */
case CPP_EOF:
/* If we've run out of tokens, then there is no closing `)'. */
return 0;
/* This is good for lambda expression capture-lists. */
case CPP_OPEN_SQUARE:
++square_depth;
break;
case CPP_CLOSE_SQUARE:
if (!square_depth--)
return 0;
break;
case CPP_SEMICOLON:
/* This matches the processing in skip_to_end_of_statement. */
if (!brace_depth)
return 0;
break;
case CPP_OPEN_BRACE:
++brace_depth;
break;
case CPP_CLOSE_BRACE:
if (!brace_depth--)
return 0;
break;
case CPP_OPEN_PAREN:
if (!brace_depth)
++paren_depth;
break;
case CPP_CLOSE_PAREN:
if (!brace_depth && !paren_depth--)
{
if (consume_paren)
cp_lexer_consume_token (parser->lexer);
return 1;
}
break;
case CPP_QUERY:
if (!brace_depth && !paren_depth && !square_depth)
++condop_depth;
break;
case CPP_COLON:
if (!brace_depth && !paren_depth && !square_depth && condop_depth > 0)
condop_depth--;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Consume tokens up to, and including, the next non-nested closing `)'.
Returns 1 iff we found a closing `)'. RECOVERING is true, if we
are doing error recovery. Returns -1 if OR_COMMA is true and we
found an unnested token of that type. */
static int
cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
bool recovering,
bool or_comma,
bool consume_paren)
{
cpp_ttype ttype = or_comma ? CPP_COMMA : CPP_EOF;
return cp_parser_skip_to_closing_parenthesis_1 (parser, recovering,
ttype, consume_paren);
}
/* Consume tokens until we reach the end of the current statement.
Normally, that will be just before consuming a `;'. However, if a
non-nested `}' comes first, then we stop before consuming that. */
static void
cp_parser_skip_to_end_of_statement (cp_parser* parser)
{
unsigned nesting_depth = 0;
/* Unwind generic function template scope if necessary. */
if (parser->fully_implicit_function_template_p)
abort_fully_implicit_template (parser);
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_PRAGMA_EOL:
if (!parser->lexer->in_pragma)
break;
/* FALLTHRU */
case CPP_EOF:
/* If we've run out of tokens, stop. */
return;
case CPP_SEMICOLON:
/* If the next token is a `;', we have reached the end of the
statement. */
if (!nesting_depth)
return;
break;
case CPP_CLOSE_BRACE:
/* If this is a non-nested '}', stop before consuming it.
That way, when confronted with something like:
{ 3 + }
we stop before consuming the closing '}', even though we
have not yet reached a `;'. */
if (nesting_depth == 0)
return;
/* If it is the closing '}' for a block that we have
scanned, stop -- but only after consuming the token.
That way given:
void f g () { ... }
typedef int I;
we will stop after the body of the erroneously declared
function, but before consuming the following `typedef'
declaration. */
if (--nesting_depth == 0)
{
cp_lexer_consume_token (parser->lexer);
return;
}
break;
case CPP_OPEN_BRACE:
++nesting_depth;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* This function is called at the end of a statement or declaration.
If the next token is a semicolon, it is consumed; otherwise, error
recovery is attempted. */
static void
cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
{
/* Look for the trailing `;'. */
if (!cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON))
{
/* If there is additional (erroneous) input, skip to the end of
the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
}
}
/* Skip tokens until we have consumed an entire block, or until we
have consumed a non-nested `;'. */
static void
cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
{
int nesting_depth = 0;
/* Unwind generic function template scope if necessary. */
if (parser->fully_implicit_function_template_p)
abort_fully_implicit_template (parser);
while (nesting_depth >= 0)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_PRAGMA_EOL:
if (!parser->lexer->in_pragma)
break;
/* FALLTHRU */
case CPP_EOF:
/* If we've run out of tokens, stop. */
return;
case CPP_SEMICOLON:
/* Stop if this is an unnested ';'. */
if (!nesting_depth)
nesting_depth = -1;
break;
case CPP_CLOSE_BRACE:
/* Stop if this is an unnested '}', or closes the outermost
nesting level. */
nesting_depth--;
if (nesting_depth < 0)
return;
if (!nesting_depth)
nesting_depth = -1;
break;
case CPP_OPEN_BRACE:
/* Nest. */
nesting_depth++;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Skip tokens until a non-nested closing curly brace is the next
token, or there are no more tokens. Return true in the first case,
false otherwise. */
static bool
cp_parser_skip_to_closing_brace (cp_parser *parser)
{
unsigned nesting_depth = 0;
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_PRAGMA_EOL:
if (!parser->lexer->in_pragma)
break;
/* FALLTHRU */
case CPP_EOF:
/* If we've run out of tokens, stop. */
return false;
case CPP_CLOSE_BRACE:
/* If the next token is a non-nested `}', then we have reached
the end of the current block. */
if (nesting_depth-- == 0)
return true;
break;
case CPP_OPEN_BRACE:
/* If it the next token is a `{', then we are entering a new
block. Consume the entire block. */
++nesting_depth;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Consume tokens until we reach the end of the pragma. The PRAGMA_TOK
parameter is the PRAGMA token, allowing us to purge the entire pragma
sequence. */
static void
cp_parser_skip_to_pragma_eol (cp_parser* parser, cp_token *pragma_tok)
{
cp_token *token;
parser->lexer->in_pragma = false;
do
token = cp_lexer_consume_token (parser->lexer);
while (token->type != CPP_PRAGMA_EOL && token->type != CPP_EOF);
/* Ensure that the pragma is not parsed again. */
cp_lexer_purge_tokens_after (parser->lexer, pragma_tok);
}
/* Require pragma end of line, resyncing with it as necessary. The
arguments are as for cp_parser_skip_to_pragma_eol. */
static void
cp_parser_require_pragma_eol (cp_parser *parser, cp_token *pragma_tok)
{
parser->lexer->in_pragma = false;
if (!cp_parser_require (parser, CPP_PRAGMA_EOL, RT_PRAGMA_EOL))
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
}
/* This is a simple wrapper around make_typename_type. When the id is
an unresolved identifier node, we can provide a superior diagnostic
using cp_parser_diagnose_invalid_type_name. */
static tree
cp_parser_make_typename_type (cp_parser *parser, tree id,
location_t id_location)
{
tree result;
if (identifier_p (id))
{
result = make_typename_type (parser->scope, id, typename_type,
/*complain=*/tf_none);
if (result == error_mark_node)
cp_parser_diagnose_invalid_type_name (parser, id, id_location);
return result;
}
return make_typename_type (parser->scope, id, typename_type, tf_error);
}
/* This is a wrapper around the
make_{pointer,ptrmem,reference}_declarator functions that decides
which one to call based on the CODE and CLASS_TYPE arguments. The
CODE argument should be one of the values returned by
cp_parser_ptr_operator. ATTRIBUTES represent the attributes that
appertain to the pointer or reference. */
static cp_declarator *
cp_parser_make_indirect_declarator (enum tree_code code, tree class_type,
cp_cv_quals cv_qualifiers,
cp_declarator *target,
tree attributes)
{
if (code == ERROR_MARK || target == cp_error_declarator)
return cp_error_declarator;
if (code == INDIRECT_REF)
if (class_type == NULL_TREE)
return make_pointer_declarator (cv_qualifiers, target, attributes);
else
return make_ptrmem_declarator (cv_qualifiers, class_type,
target, attributes);
else if (code == ADDR_EXPR && class_type == NULL_TREE)
return make_reference_declarator (cv_qualifiers, target,
false, attributes);
else if (code == NON_LVALUE_EXPR && class_type == NULL_TREE)
return make_reference_declarator (cv_qualifiers, target,
true, attributes);
gcc_unreachable ();
}
/* Create a new C++ parser. */
static cp_parser *
cp_parser_new (void)
{
cp_parser *parser;
cp_lexer *lexer;
unsigned i;
/* cp_lexer_new_main is called before doing GC allocation because
cp_lexer_new_main might load a PCH file. */
lexer = cp_lexer_new_main ();
/* Initialize the binops_by_token so that we can get the tree
directly from the token. */
for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
binops_by_token[binops[i].token_type] = binops[i];
parser = ggc_cleared_alloc<cp_parser> ();
parser->lexer = lexer;
parser->context = cp_parser_context_new (NULL);
/* For now, we always accept GNU extensions. */
parser->allow_gnu_extensions_p = 1;
/* The `>' token is a greater-than operator, not the end of a
template-id. */
parser->greater_than_is_operator_p = true;
parser->default_arg_ok_p = true;
/* We are not parsing a constant-expression. */
parser->integral_constant_expression_p = false;
parser->allow_non_integral_constant_expression_p = false;
parser->non_integral_constant_expression_p = false;
/* Local variable names are not forbidden. */
parser->local_variables_forbidden_p = 0;
/* We are not processing an `extern "C"' declaration. */
parser->in_unbraced_linkage_specification_p = false;
/* We are not processing a declarator. */
parser->in_declarator_p = false;
/* We are not processing a template-argument-list. */
parser->in_template_argument_list_p = false;
/* We are not in an iteration statement. */
parser->in_statement = 0;
/* We are not in a switch statement. */
parser->in_switch_statement_p = false;
/* We are not parsing a type-id inside an expression. */
parser->in_type_id_in_expr_p = false;
/* String literals should be translated to the execution character set. */
parser->translate_strings_p = true;
/* We are not parsing a function body. */
parser->in_function_body = false;
/* We can correct until told otherwise. */
parser->colon_corrects_to_scope_p = true;
/* The unparsed function queue is empty. */
push_unparsed_function_queues (parser);
/* There are no classes being defined. */
parser->num_classes_being_defined = 0;
/* No template parameters apply. */
parser->num_template_parameter_lists = 0;
/* Special parsing data structures. */
parser->omp_declare_simd = NULL;
parser->oacc_routine = NULL;
/* Not declaring an implicit function template. */
parser->auto_is_implicit_function_template_parm_p = false;
parser->fully_implicit_function_template_p = false;
parser->implicit_template_parms = 0;
parser->implicit_template_scope = 0;
/* Allow constrained-type-specifiers. */
parser->prevent_constrained_type_specifiers = 0;
/* We haven't yet seen an 'extern "C"'. */
parser->innermost_linkage_specification_location = UNKNOWN_LOCATION;
return parser;
}
/* Create a cp_lexer structure which will emit the tokens in CACHE
and push it onto the parser's lexer stack. This is used for delayed
parsing of in-class method bodies and default arguments, and should
not be confused with tentative parsing. */
static void
cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
{
cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
lexer->next = parser->lexer;
parser->lexer = lexer;
/* Move the current source position to that of the first token in the
new lexer. */
cp_lexer_set_source_position_from_token (lexer->next_token);
}
/* Pop the top lexer off the parser stack. This is never used for the
"main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
static void
cp_parser_pop_lexer (cp_parser *parser)
{
cp_lexer *lexer = parser->lexer;
parser->lexer = lexer->next;
cp_lexer_destroy (lexer);
/* Put the current source position back where it was before this
lexer was pushed. */
cp_lexer_set_source_position_from_token (parser->lexer->next_token);
}
/* Lexical conventions [gram.lex] */
/* Parse an identifier. Returns an IDENTIFIER_NODE representing the
identifier. */
static cp_expr
cp_parser_identifier (cp_parser* parser)
{
cp_token *token;
/* Look for the identifier. */
token = cp_parser_require (parser, CPP_NAME, RT_NAME);
/* Return the value. */
if (token)
return cp_expr (token->u.value, token->location);
else
return error_mark_node;
}
/* Parse a sequence of adjacent string constants. Returns a
TREE_STRING representing the combined, nul-terminated string
constant. If TRANSLATE is true, translate the string to the
execution character set. If WIDE_OK is true, a wide string is
invalid here.
C++98 [lex.string] says that if a narrow string literal token is
adjacent to a wide string literal token, the behavior is undefined.
However, C99 6.4.5p4 says that this results in a wide string literal.
We follow C99 here, for consistency with the C front end.
This code is largely lifted from lex_string() in c-lex.c.
FUTURE: ObjC++ will need to handle @-strings here. */
static cp_expr
cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok,
bool lookup_udlit = true)
{
tree value;
size_t count;
struct obstack str_ob;
struct obstack loc_ob;
cpp_string str, istr, *strs;
cp_token *tok;
enum cpp_ttype type, curr_type;
int have_suffix_p = 0;
tree string_tree;
tree suffix_id = NULL_TREE;
bool curr_tok_is_userdef_p = false;
tok = cp_lexer_peek_token (parser->lexer);
if (!cp_parser_is_string_literal (tok))
{
cp_parser_error (parser, "expected string-literal");
return error_mark_node;
}
location_t loc = tok->location;
if (cpp_userdef_string_p (tok->type))
{
string_tree = USERDEF_LITERAL_VALUE (tok->u.value);
curr_type = cpp_userdef_string_remove_type (tok->type);
curr_tok_is_userdef_p = true;
}
else
{
string_tree = tok->u.value;
curr_type = tok->type;
}
type = curr_type;
/* Try to avoid the overhead of creating and destroying an obstack
for the common case of just one string. */
if (!cp_parser_is_string_literal
(cp_lexer_peek_nth_token (parser->lexer, 2)))
{
cp_lexer_consume_token (parser->lexer);
str.text = (const unsigned char *)TREE_STRING_POINTER (string_tree);
str.len = TREE_STRING_LENGTH (string_tree);
count = 1;
if (curr_tok_is_userdef_p)
{
suffix_id = USERDEF_LITERAL_SUFFIX_ID (tok->u.value);
have_suffix_p = 1;
curr_type = cpp_userdef_string_remove_type (tok->type);
}
else
curr_type = tok->type;
strs = &str;
}
else
{
location_t last_tok_loc = tok->location;
gcc_obstack_init (&str_ob);
gcc_obstack_init (&loc_ob);
count = 0;
do
{
cp_lexer_consume_token (parser->lexer);
count++;
str.text = (const unsigned char *)TREE_STRING_POINTER (string_tree);
str.len = TREE_STRING_LENGTH (string_tree);
if (curr_tok_is_userdef_p)
{
tree curr_suffix_id = USERDEF_LITERAL_SUFFIX_ID (tok->u.value);
if (have_suffix_p == 0)
{
suffix_id = curr_suffix_id;
have_suffix_p = 1;
}
else if (have_suffix_p == 1
&& curr_suffix_id != suffix_id)
{
error ("inconsistent user-defined literal suffixes"
" %qD and %qD in string literal",
suffix_id, curr_suffix_id);
have_suffix_p = -1;
}
curr_type = cpp_userdef_string_remove_type (tok->type);
}
else
curr_type = tok->type;
if (type != curr_type)
{
if (type == CPP_STRING)
type = curr_type;
else if (curr_type != CPP_STRING)
{
rich_location rich_loc (line_table, tok->location);
rich_loc.add_range (last_tok_loc);
error_at (&rich_loc,
"unsupported non-standard concatenation "
"of string literals");
}
}
obstack_grow (&str_ob, &str, sizeof (cpp_string));
obstack_grow (&loc_ob, &tok->location, sizeof (location_t));
last_tok_loc = tok->location;
tok = cp_lexer_peek_token (parser->lexer);
if (cpp_userdef_string_p (tok->type))
{
string_tree = USERDEF_LITERAL_VALUE (tok->u.value);
curr_type = cpp_userdef_string_remove_type (tok->type);
curr_tok_is_userdef_p = true;
}
else
{
string_tree = tok->u.value;
curr_type = tok->type;
curr_tok_is_userdef_p = false;
}
}
while (cp_parser_is_string_literal (tok));
/* A string literal built by concatenation has its caret=start at
the start of the initial string, and its finish at the finish of
the final string literal. */
loc = make_location (loc, loc, get_finish (last_tok_loc));
strs = (cpp_string *) obstack_finish (&str_ob);
}
if (type != CPP_STRING && !wide_ok)
{
cp_parser_error (parser, "a wide string is invalid in this context");
type = CPP_STRING;
}
if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
(parse_in, strs, count, &istr, type))
{
value = build_string (istr.len, (const char *)istr.text);
free (CONST_CAST (unsigned char *, istr.text));
if (count > 1)
{
location_t *locs = (location_t *)obstack_finish (&loc_ob);
gcc_assert (g_string_concat_db);
g_string_concat_db->record_string_concatenation (count, locs);
}
switch (type)
{
default:
case CPP_STRING:
TREE_TYPE (value) = char_array_type_node;
break;
case CPP_UTF8STRING:
if (flag_char8_t)
TREE_TYPE (value) = char8_array_type_node;
else
TREE_TYPE (value) = char_array_type_node;
break;
case CPP_STRING16:
TREE_TYPE (value) = char16_array_type_node;
break;
case CPP_STRING32:
TREE_TYPE (value) = char32_array_type_node;
break;
case CPP_WSTRING:
TREE_TYPE (value) = wchar_array_type_node;
break;
}
value = fix_string_type (value);
if (have_suffix_p)
{
tree literal = build_userdef_literal (suffix_id, value,
OT_NONE, NULL_TREE);
if (lookup_udlit)
value = cp_parser_userdef_string_literal (literal);
else
value = literal;
}
}
else
/* cpp_interpret_string has issued an error. */
value = error_mark_node;
if (count > 1)
{
obstack_free (&str_ob, 0);
obstack_free (&loc_ob, 0);
}
return cp_expr (value, loc);
}
/* Look up a literal operator with the name and the exact arguments. */
static tree
lookup_literal_operator (tree name, vec<tree, va_gc> *args)
{
tree decl = lookup_name (name);
if (!decl || !is_overloaded_fn (decl))
return error_mark_node;
for (lkp_iterator iter (decl); iter; ++iter)
{
tree fn = *iter;
if (tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (fn)))
{
unsigned int ix;
bool found = true;
for (ix = 0;
found && ix < vec_safe_length (args) && parmtypes != NULL_TREE;
++ix, parmtypes = TREE_CHAIN (parmtypes))
{
tree tparm = TREE_VALUE (parmtypes);
tree targ = TREE_TYPE ((*args)[ix]);
bool ptr = TYPE_PTR_P (tparm);
bool arr = TREE_CODE (targ) == ARRAY_TYPE;
if ((ptr || arr || !same_type_p (tparm, targ))
&& (!ptr || !arr
|| !same_type_p (TREE_TYPE (tparm),
TREE_TYPE (targ))))
found = false;
}
if (found
&& ix == vec_safe_length (args)
/* May be this should be sufficient_parms_p instead,
depending on how exactly should user-defined literals
work in presence of default arguments on the literal
operator parameters. */
&& parmtypes == void_list_node)
return decl;
}
}
return error_mark_node;
}
/* Parse a user-defined char constant. Returns a call to a user-defined
literal operator taking the character as an argument. */
static cp_expr
cp_parser_userdef_char_literal (cp_parser *parser)
{
cp_token *token = cp_lexer_consume_token (parser->lexer);
tree literal = token->u.value;
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
tree value = USERDEF_LITERAL_VALUE (literal);
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
tree decl, result;
/* Build up a call to the user-defined operator */
/* Lookup the name we got back from the id-expression. */
vec<tree, va_gc> *args = make_tree_vector ();
vec_safe_push (args, value);
decl = lookup_literal_operator (name, args);
if (!decl || decl == error_mark_node)
{
error ("unable to find character literal operator %qD with %qT argument",
name, TREE_TYPE (value));
release_tree_vector (args);
return error_mark_node;
}
result = finish_call_expr (decl, &args, false, true, tf_warning_or_error);
release_tree_vector (args);
return result;
}
/* A subroutine of cp_parser_userdef_numeric_literal to
create a char... template parameter pack from a string node. */
static tree
make_char_string_pack (tree value)
{
tree charvec;
tree argpack = make_node (NONTYPE_ARGUMENT_PACK);
const char *str = TREE_STRING_POINTER (value);
int i, len = TREE_STRING_LENGTH (value) - 1;
tree argvec = make_tree_vec (1);
/* Fill in CHARVEC with all of the parameters. */
charvec = make_tree_vec (len);
for (i = 0; i < len; ++i)
{
unsigned char s[3] = { '\'', str[i], '\'' };
cpp_string in = { 3, s };
cpp_string out = { 0, 0 };
if (!cpp_interpret_string (parse_in, &in, 1, &out, CPP_STRING))
return NULL_TREE;
gcc_assert (out.len == 2);
TREE_VEC_ELT (charvec, i) = build_int_cst (char_type_node,
out.text[0]);
}
/* Build the argument packs. */
SET_ARGUMENT_PACK_ARGS (argpack, charvec);
TREE_VEC_ELT (argvec, 0) = argpack;
return argvec;
}
/* A subroutine of cp_parser_userdef_numeric_literal to
create a char... template parameter pack from a string node. */
static tree
make_string_pack (tree value)
{
tree charvec;
tree argpack = make_node (NONTYPE_ARGUMENT_PACK);
const unsigned char *str
= (const unsigned char *) TREE_STRING_POINTER (value);
int sz = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (value))));
int len = TREE_STRING_LENGTH (value) / sz - 1;
tree argvec = make_tree_vec (2);
tree str_char_type_node = TREE_TYPE (TREE_TYPE (value));
str_char_type_node = TYPE_MAIN_VARIANT (str_char_type_node);
/* First template parm is character type. */
TREE_VEC_ELT (argvec, 0) = str_char_type_node;
/* Fill in CHARVEC with all of the parameters. */
charvec = make_tree_vec (len);
for (int i = 0; i < len; ++i)
TREE_VEC_ELT (charvec, i)
= double_int_to_tree (str_char_type_node,
double_int::from_buffer (str + i * sz, sz));
/* Build the argument packs. */
SET_ARGUMENT_PACK_ARGS (argpack, charvec);
TREE_VEC_ELT (argvec, 1) = argpack;
return argvec;
}
/* Parse a user-defined numeric constant. returns a call to a user-defined
literal operator. */
static cp_expr
cp_parser_userdef_numeric_literal (cp_parser *parser)
{
cp_token *token = cp_lexer_consume_token (parser->lexer);
tree literal = token->u.value;
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
tree value = USERDEF_LITERAL_VALUE (literal);
int overflow = USERDEF_LITERAL_OVERFLOW (literal);
tree num_string = USERDEF_LITERAL_NUM_STRING (literal);
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
tree decl, result;
vec<tree, va_gc> *args;
/* Look for a literal operator taking the exact type of numeric argument
as the literal value. */
args = make_tree_vector ();
vec_safe_push (args, value);
decl = lookup_literal_operator (name, args);
if (decl && decl != error_mark_node)
{
result = finish_call_expr (decl, &args, false, true,
tf_warning_or_error);
if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE && overflow > 0)
{
warning_at (token->location, OPT_Woverflow,
"integer literal exceeds range of %qT type",
long_long_unsigned_type_node);
}
else
{
if (overflow > 0)
warning_at (token->location, OPT_Woverflow,
"floating literal exceeds range of %qT type",
long_double_type_node);
else if (overflow < 0)
warning_at (token->location, OPT_Woverflow,
"floating literal truncated to zero");
}
release_tree_vector (args);
return result;
}
release_tree_vector (args);
/* If the numeric argument didn't work, look for a raw literal
operator taking a const char* argument consisting of the number
in string format. */
args = make_tree_vector ();
vec_safe_push (args, num_string);
decl = lookup_literal_operator (name, args);
if (decl && decl != error_mark_node)
{
result = finish_call_expr (decl, &args, false, true,
tf_warning_or_error);
release_tree_vector (args);
return result;
}
release_tree_vector (args);
/* If the raw literal didn't work, look for a non-type template
function with parameter pack char.... Call the function with
template parameter characters representing the number. */
args = make_tree_vector ();
decl = lookup_literal_operator (name, args);
if (decl && decl != error_mark_node)
{
tree tmpl_args = make_char_string_pack (num_string);
if (tmpl_args == NULL_TREE)
{
error ("failed to translate literal to execution character set %qT",
num_string);
return error_mark_node;
}
decl = lookup_template_function (decl, tmpl_args);
result = finish_call_expr (decl, &args, false, true,
tf_warning_or_error);
release_tree_vector (args);
return result;
}
release_tree_vector (args);
/* In C++14 the standard library defines complex number suffixes that
conflict with GNU extensions. Prefer them if <complex> is #included. */
bool ext = cpp_get_options (parse_in)->ext_numeric_literals;
bool i14 = (cxx_dialect > cxx11
&& (id_equal (suffix_id, "i")
|| id_equal (suffix_id, "if")
|| id_equal (suffix_id, "il")));
diagnostic_t kind = DK_ERROR;
int opt = 0;
if (i14 && ext)
{
tree cxlit = lookup_qualified_name (std_node,
get_identifier ("complex_literals"),
0, false, false);
if (cxlit == error_mark_node)
{
/* No <complex>, so pedwarn and use GNU semantics. */
kind = DK_PEDWARN;
opt = OPT_Wpedantic;
}
}
bool complained
= emit_diagnostic (kind, input_location, opt,
"unable to find numeric literal operator %qD", name);
if (!complained)
/* Don't inform either. */;
else if (i14)
{
inform (token->location, "add %<using namespace std::complex_literals%> "
"(from <complex>) to enable the C++14 user-defined literal "
"suffixes");
if (ext)
inform (token->location, "or use %<j%> instead of %<i%> for the "
"GNU built-in suffix");
}
else if (!ext)
inform (token->location, "use %<-fext-numeric-literals%> "
"to enable more built-in suffixes");
if (kind == DK_ERROR)
value = error_mark_node;
else
{
/* Use the built-in semantics. */
tree type;
if (id_equal (suffix_id, "i"))
{
if (TREE_CODE (value) == INTEGER_CST)
type = integer_type_node;
else
type = double_type_node;
}
else if (id_equal (suffix_id, "if"))
type = float_type_node;
else /* if (id_equal (suffix_id, "il")) */
type = long_double_type_node;
value = build_complex (build_complex_type (type),
fold_convert (type, integer_zero_node),
fold_convert (type, value));
}
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
/* Avoid repeated diagnostics. */
token->u.value = value;
return value;
}
/* Parse a user-defined string constant. Returns a call to a user-defined
literal operator taking a character pointer and the length of the string
as arguments. */
static tree
cp_parser_userdef_string_literal (tree literal)
{
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
tree value = USERDEF_LITERAL_VALUE (literal);
int len = TREE_STRING_LENGTH (value)
/ TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (value)))) - 1;
tree decl;
/* Build up a call to the user-defined operator. */
/* Lookup the name we got back from the id-expression. */
releasing_vec rargs;
vec<tree, va_gc> *&args = rargs.get_ref();
vec_safe_push (args, value);
vec_safe_push (args, build_int_cst (size_type_node, len));
decl = lookup_literal_operator (name, args);
if (decl && decl != error_mark_node)
return finish_call_expr (decl, &args, false, true,
tf_warning_or_error);
/* Look for a suitable template function, either (C++20) with a single
parameter of class type, or (N3599) with typename parameter CharT and
parameter pack CharT... */
args->truncate (0);
decl = lookup_literal_operator (name, args);
if (decl && decl != error_mark_node)
{
/* Use resolve_nondeduced_context to try to choose one form of template
or the other. */
tree tmpl_args = make_tree_vec (1);
TREE_VEC_ELT (tmpl_args, 0) = value;
decl = lookup_template_function (decl, tmpl_args);
tree res = resolve_nondeduced_context (decl, tf_none);
if (DECL_P (res))
decl = res;
else
{
TREE_OPERAND (decl, 1) = make_string_pack (value);
res = resolve_nondeduced_context (decl, tf_none);
if (DECL_P (res))
decl = res;
}
if (!DECL_P (decl) && cxx_dialect > cxx17)
TREE_OPERAND (decl, 1) = tmpl_args;
return finish_call_expr (decl, &args, false, true,
tf_warning_or_error);
}
error ("unable to find string literal operator %qD with %qT, %qT arguments",
name, TREE_TYPE (value), size_type_node);
return error_mark_node;
}
/* Basic concepts [gram.basic] */
/* Parse a translation-unit.
translation-unit:
declaration-seq [opt] */
static void
cp_parser_translation_unit (cp_parser* parser)
{
gcc_checking_assert (!cp_error_declarator);
/* Create the declarator obstack. */
gcc_obstack_init (&declarator_obstack);
/* Create the error declarator. */
cp_error_declarator = make_declarator (cdk_error);
/* Create the empty parameter list. */
no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE,
UNKNOWN_LOCATION);
/* Remember where the base of the declarator obstack lies. */
void *declarator_obstack_base = obstack_next_free (&declarator_obstack);
bool implicit_extern_c = false;
for (;;)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* If we're entering or exiting a region that's implicitly
extern "C", modify the lang context appropriately. */
if (implicit_extern_c
!= cp_lexer_peek_token (parser->lexer)->implicit_extern_c)
{
implicit_extern_c = !implicit_extern_c;
if (implicit_extern_c)
push_lang_context (lang_name_c);
else
pop_lang_context ();
}
if (token->type == CPP_EOF)
break;
if (token->type == CPP_CLOSE_BRACE)
{
cp_parser_error (parser, "expected declaration");
cp_lexer_consume_token (parser->lexer);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
}
else
cp_parser_toplevel_declaration (parser);
}
/* Get rid of the token array; we don't need it any more. */
cp_lexer_destroy (parser->lexer);
parser->lexer = NULL;
/* The EOF should have reset this. */
gcc_checking_assert (!implicit_extern_c);
/* Make sure the declarator obstack was fully cleaned up. */
gcc_assert (obstack_next_free (&declarator_obstack)
== declarator_obstack_base);
}
/* Return the appropriate tsubst flags for parsing, possibly in N3276
decltype context. */
static inline tsubst_flags_t
complain_flags (bool decltype_p)
{
tsubst_flags_t complain = tf_warning_or_error;
if (decltype_p)
complain |= tf_decltype;
return complain;
}
/* We're about to parse a collection of statements. If we're currently
parsing tentatively, set up a firewall so that any nested
cp_parser_commit_to_tentative_parse won't affect the current context. */
static cp_token_position
cp_parser_start_tentative_firewall (cp_parser *parser)
{
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
return 0;
cp_parser_parse_tentatively (parser);
cp_parser_commit_to_topmost_tentative_parse (parser);
return cp_lexer_token_position (parser->lexer, false);
}
/* We've finished parsing the collection of statements. Wrap up the
firewall and replace the relevant tokens with the parsed form. */
static void
cp_parser_end_tentative_firewall (cp_parser *parser, cp_token_position start,
tree expr)
{
if (!start)
return;
/* Finish the firewall level. */
cp_parser_parse_definitely (parser);
/* And remember the result of the parse for when we try again. */
cp_token *token = cp_lexer_token_at (parser->lexer, start);
token->type = CPP_PREPARSED_EXPR;
token->u.value = expr;
token->keyword = RID_MAX;
cp_lexer_purge_tokens_after (parser->lexer, start);
}
/* Like the above functions, but let the user modify the tokens. Used by
CPP_DECLTYPE and CPP_TEMPLATE_ID, where we are saving the side-effects for
later parses, so it makes sense to localize the effects of
cp_parser_commit_to_tentative_parse. */
struct tentative_firewall
{
cp_parser *parser;
bool set;
tentative_firewall (cp_parser *p): parser(p)
{
/* If we're currently parsing tentatively, start a committed level as a
firewall and then an inner tentative parse. */
if ((set = cp_parser_uncommitted_to_tentative_parse_p (parser)))
{
cp_parser_parse_tentatively (parser);
cp_parser_commit_to_topmost_tentative_parse (parser);
cp_parser_parse_tentatively (parser);
}
}
~tentative_firewall()
{
if (set)
{
/* Finish the inner tentative parse and the firewall, propagating any
uncommitted error state to the outer tentative parse. */
bool err = cp_parser_error_occurred (parser);
cp_parser_parse_definitely (parser);
cp_parser_parse_definitely (parser);
if (err)
cp_parser_simulate_error (parser);
}
}
};
/* Some tokens naturally come in pairs e.g.'(' and ')'.
This class is for tracking such a matching pair of symbols.
In particular, it tracks the location of the first token,
so that if the second token is missing, we can highlight the
location of the first token when notifying the user about the
problem. */
template <typename traits_t>
class token_pair
{
public:
/* token_pair's ctor. */
token_pair () : m_open_loc (UNKNOWN_LOCATION) {}
/* If the next token is the opening symbol for this pair, consume it and
return true.
Otherwise, issue an error and return false.
In either case, record the location of the opening token. */
bool require_open (cp_parser *parser)
{
m_open_loc = cp_lexer_peek_token (parser->lexer)->location;
return cp_parser_require (parser, traits_t::open_token_type,
traits_t::required_token_open);
}
/* Consume the next token from PARSER, recording its location as
that of the opening token within the pair. */
cp_token * consume_open (cp_parser *parser)
{
cp_token *tok = cp_lexer_consume_token (parser->lexer);
gcc_assert (tok->type == traits_t::open_token_type);
m_open_loc = tok->location;
return tok;
}
/* If the next token is the closing symbol for this pair, consume it
and return it.
Otherwise, issue an error, highlighting the location of the
corresponding opening token, and return NULL. */
cp_token *require_close (cp_parser *parser) const
{
return cp_parser_require (parser, traits_t::close_token_type,
traits_t::required_token_close,
m_open_loc);
}
private:
location_t m_open_loc;
};
/* Traits for token_pair<T> for tracking matching pairs of parentheses. */
struct matching_paren_traits
{
static const enum cpp_ttype open_token_type = CPP_OPEN_PAREN;
static const enum required_token required_token_open = RT_OPEN_PAREN;
static const enum cpp_ttype close_token_type = CPP_CLOSE_PAREN;
static const enum required_token required_token_close = RT_CLOSE_PAREN;
};
/* "matching_parens" is a token_pair<T> class for tracking matching
pairs of parentheses. */
typedef token_pair<matching_paren_traits> matching_parens;
/* Traits for token_pair<T> for tracking matching pairs of braces. */
struct matching_brace_traits
{
static const enum cpp_ttype open_token_type = CPP_OPEN_BRACE;
static const enum required_token required_token_open = RT_OPEN_BRACE;
static const enum cpp_ttype close_token_type = CPP_CLOSE_BRACE;
static const enum required_token required_token_close = RT_CLOSE_BRACE;
};
/* "matching_braces" is a token_pair<T> class for tracking matching
pairs of braces. */
typedef token_pair<matching_brace_traits> matching_braces;
/* Parse a GNU statement-expression, i.e. ({ stmts }), except for the
enclosing parentheses. */
static cp_expr
cp_parser_statement_expr (cp_parser *parser)
{
cp_token_position start = cp_parser_start_tentative_firewall (parser);
/* Consume the '('. */
location_t start_loc = cp_lexer_peek_token (parser->lexer)->location;
matching_parens parens;
parens.consume_open (parser);
/* Start the statement-expression. */
tree expr = begin_stmt_expr ();
/* Parse the compound-statement. */
cp_parser_compound_statement (parser, expr, BCS_NORMAL, false);
/* Finish up. */
expr = finish_stmt_expr (expr, false);
/* Consume the ')'. */
location_t finish_loc = cp_lexer_peek_token (parser->lexer)->location;
if (!parens.require_close (parser))
cp_parser_skip_to_end_of_statement (parser);
cp_parser_end_tentative_firewall (parser, start, expr);
location_t combined_loc = make_location (start_loc, start_loc, finish_loc);
return cp_expr (expr, combined_loc);
}
/* Expressions [gram.expr] */
/* Parse a fold-operator.
fold-operator:
- * / % ^ & | = < > << >>
= -= *= /= %= ^= &= |= <<= >>=
== != <= >= && || , .* ->*
This returns the tree code corresponding to the matched operator
as an int. When the current token matches a compound assignment
opertor, the resulting tree code is the negative value of the
non-assignment operator. */
static int
cp_parser_fold_operator (cp_token *token)
{
switch (token->type)
{
case CPP_PLUS: return PLUS_EXPR;
case CPP_MINUS: return MINUS_EXPR;
case CPP_MULT: return MULT_EXPR;
case CPP_DIV: return TRUNC_DIV_EXPR;
case CPP_MOD: return TRUNC_MOD_EXPR;
case CPP_XOR: return BIT_XOR_EXPR;
case CPP_AND: return BIT_AND_EXPR;
case CPP_OR: return BIT_IOR_EXPR;
case CPP_LSHIFT: return LSHIFT_EXPR;
case CPP_RSHIFT: return RSHIFT_EXPR;
case CPP_EQ: return -NOP_EXPR;
case CPP_PLUS_EQ: return -PLUS_EXPR;
case CPP_MINUS_EQ: return -MINUS_EXPR;
case CPP_MULT_EQ: return -MULT_EXPR;
case CPP_DIV_EQ: return -TRUNC_DIV_EXPR;
case CPP_MOD_EQ: return -TRUNC_MOD_EXPR;
case CPP_XOR_EQ: return -BIT_XOR_EXPR;
case CPP_AND_EQ: return -BIT_AND_EXPR;
case CPP_OR_EQ: return -BIT_IOR_EXPR;
case CPP_LSHIFT_EQ: return -LSHIFT_EXPR;
case CPP_RSHIFT_EQ: return -RSHIFT_EXPR;
case CPP_EQ_EQ: return EQ_EXPR;
case CPP_NOT_EQ: return NE_EXPR;
case CPP_LESS: return LT_EXPR;
case CPP_GREATER: return GT_EXPR;
case CPP_LESS_EQ: return LE_EXPR;
case CPP_GREATER_EQ: return GE_EXPR;
case CPP_AND_AND: return TRUTH_ANDIF_EXPR;
case CPP_OR_OR: return TRUTH_ORIF_EXPR;
case CPP_COMMA: return COMPOUND_EXPR;
case CPP_DOT_STAR: return DOTSTAR_EXPR;
case CPP_DEREF_STAR: return MEMBER_REF;
default: return ERROR_MARK;
}
}
/* Returns true if CODE indicates a binary expression, which is not allowed in
the LHS of a fold-expression. More codes will need to be added to use this
function in other contexts. */
static bool
is_binary_op (tree_code code)
{
switch (code)
{
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case TRUNC_MOD_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case MODOP_EXPR:
case EQ_EXPR:
case NE_EXPR:
case LE_EXPR:
case GE_EXPR:
case LT_EXPR:
case GT_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case COMPOUND_EXPR:
case DOTSTAR_EXPR:
case MEMBER_REF:
return true;
default:
return false;
}
}
/* If the next token is a suitable fold operator, consume it and return as
the function above. */
static int
cp_parser_fold_operator (cp_parser *parser)
{
cp_token* token = cp_lexer_peek_token (parser->lexer);
int code = cp_parser_fold_operator (token);
if (code != ERROR_MARK)
cp_lexer_consume_token (parser->lexer);
return code;
}
/* Parse a fold-expression.
fold-expression:
( ... folding-operator cast-expression)
( cast-expression folding-operator ... )
( cast-expression folding operator ... folding-operator cast-expression)
Note that the '(' and ')' are matched in primary expression. */
static cp_expr
cp_parser_fold_expression (cp_parser *parser, tree expr1)
{
cp_id_kind pidk;
// Left fold.
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
cp_lexer_consume_token (parser->lexer);
int op = cp_parser_fold_operator (parser);
if (op == ERROR_MARK)
{
cp_parser_error (parser, "expected binary operator");
return error_mark_node;
}
tree expr = cp_parser_cast_expression (parser, false, false,
false, &pidk);
if (expr == error_mark_node)
return error_mark_node;
return finish_left_unary_fold_expr (expr, op);
}
const cp_token* token = cp_lexer_peek_token (parser->lexer);
int op = cp_parser_fold_operator (parser);
if (op == ERROR_MARK)
{
cp_parser_error (parser, "expected binary operator");
return error_mark_node;
}
if (cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS))
{
cp_parser_error (parser, "expected ...");
return error_mark_node;
}
cp_lexer_consume_token (parser->lexer);
/* The operands of a fold-expression are cast-expressions, so binary or
conditional expressions are not allowed. We check this here to avoid
tentative parsing. */
if (EXPR_P (expr1) && TREE_NO_WARNING (expr1))
/* OK, the expression was parenthesized. */;
else if (is_binary_op (TREE_CODE (expr1)))
error_at (location_of (expr1),
"binary expression in operand of fold-expression");
else if (TREE_CODE (expr1) == COND_EXPR
|| (REFERENCE_REF_P (expr1)
&& TREE_CODE (TREE_OPERAND (expr1, 0)) == COND_EXPR))
error_at (location_of (expr1),
"conditional expression in operand of fold-expression");
// Right fold.
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
return finish_right_unary_fold_expr (expr1, op);
if (cp_lexer_next_token_is_not (parser->lexer, token->type))
{
cp_parser_error (parser, "mismatched operator in fold-expression");
return error_mark_node;
}
cp_lexer_consume_token (parser->lexer);
// Binary left or right fold.
tree expr2 = cp_parser_cast_expression (parser, false, false, false, &pidk);
if (expr2 == error_mark_node)
return error_mark_node;
return finish_binary_fold_expr (expr1, expr2, op);
}
/* Parse a primary-expression.
primary-expression:
literal
this
( expression )
id-expression
lambda-expression (C++11)
GNU Extensions:
primary-expression:
( compound-statement )
__builtin_va_arg ( assignment-expression , type-id )
__builtin_offsetof ( type-id , offsetof-expression )
C++ Extensions:
__has_nothrow_assign ( type-id )
__has_nothrow_constructor ( type-id )
__has_nothrow_copy ( type-id )
__has_trivial_assign ( type-id )
__has_trivial_constructor ( type-id )
__has_trivial_copy ( type-id )
__has_trivial_destructor ( type-id )
__has_virtual_destructor ( type-id )
__is_abstract ( type-id )
__is_base_of ( type-id , type-id )
__is_class ( type-id )
__is_empty ( type-id )
__is_enum ( type-id )
__is_final ( type-id )
__is_literal_type ( type-id )
__is_pod ( type-id )
__is_polymorphic ( type-id )
__is_std_layout ( type-id )
__is_trivial ( type-id )
__is_union ( type-id )
Objective-C++ Extension:
primary-expression:
objc-expression
literal:
__null
ADDRESS_P is true iff this expression was immediately preceded by
"&" and therefore might denote a pointer-to-member. CAST_P is true
iff this expression is the target of a cast. TEMPLATE_ARG_P is
true iff this expression is a template argument.
Returns a representation of the expression. Upon return, *IDK
indicates what kind of id-expression (if any) was present. */
static cp_expr
cp_parser_primary_expression (cp_parser *parser,
bool address_p,
bool cast_p,
bool template_arg_p,
bool decltype_p,
cp_id_kind *idk)
{
cp_token *token = NULL;
/* Assume the primary expression is not an id-expression. */
*idk = CP_ID_KIND_NONE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch ((int) token->type)
{
/* literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal */
case CPP_CHAR:
case CPP_CHAR16:
case CPP_CHAR32:
case CPP_WCHAR:
case CPP_UTF8CHAR:
case CPP_NUMBER:
case CPP_PREPARSED_EXPR:
if (TREE_CODE (token->u.value) == USERDEF_LITERAL)
return cp_parser_userdef_numeric_literal (parser);
token = cp_lexer_consume_token (parser->lexer);
if (TREE_CODE (token->u.value) == FIXED_CST)
{
error_at (token->location,
"fixed-point types not supported in C++");
return error_mark_node;
}
/* Floating-point literals are only allowed in an integral
constant expression if they are cast to an integral or
enumeration type. */
if (TREE_CODE (token->u.value) == REAL_CST
&& parser->integral_constant_expression_p
&& pedantic)
{
/* CAST_P will be set even in invalid code like "int(2.7 +
...)". Therefore, we have to check that the next token
is sure to end the cast. */
if (cast_p)
{
cp_token *next_token;
next_token = cp_lexer_peek_token (parser->lexer);
if (/* The comma at the end of an
enumerator-definition. */
next_token->type != CPP_COMMA
/* The curly brace at the end of an enum-specifier. */
&& next_token->type != CPP_CLOSE_BRACE
/* The end of a statement. */
&& next_token->type != CPP_SEMICOLON
/* The end of the cast-expression. */
&& next_token->type != CPP_CLOSE_PAREN
/* The end of an array bound. */
&& next_token->type != CPP_CLOSE_SQUARE
/* The closing ">" in a template-argument-list. */
&& (next_token->type != CPP_GREATER
|| parser->greater_than_is_operator_p)
/* C++0x only: A ">>" treated like two ">" tokens,
in a template-argument-list. */
&& (next_token->type != CPP_RSHIFT
|| (cxx_dialect == cxx98)
|| parser->greater_than_is_operator_p))
cast_p = false;
}
/* If we are within a cast, then the constraint that the
cast is to an integral or enumeration type will be
checked at that point. If we are not within a cast, then
this code is invalid. */
if (!cast_p)
cp_parser_non_integral_constant_expression (parser, NIC_FLOAT);
}
return (cp_expr (token->u.value, token->location)
.maybe_add_location_wrapper ());
case CPP_CHAR_USERDEF:
case CPP_CHAR16_USERDEF:
case CPP_CHAR32_USERDEF:
case CPP_WCHAR_USERDEF:
case CPP_UTF8CHAR_USERDEF:
return cp_parser_userdef_char_literal (parser);
case CPP_STRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_WSTRING:
case CPP_UTF8STRING:
case CPP_STRING_USERDEF:
case CPP_STRING16_USERDEF:
case CPP_STRING32_USERDEF:
case CPP_WSTRING_USERDEF:
case CPP_UTF8STRING_USERDEF:
/* ??? Should wide strings be allowed when parser->translate_strings_p
is false (i.e. in attributes)? If not, we can kill the third
argument to cp_parser_string_literal. */
return (cp_parser_string_literal (parser,
parser->translate_strings_p,
true)
.maybe_add_location_wrapper ());
case CPP_OPEN_PAREN:
/* If we see `( { ' then we are looking at the beginning of
a GNU statement-expression. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_OPEN_BRACE))
{
/* Statement-expressions are not allowed by the standard. */
pedwarn (token->location, OPT_Wpedantic,
"ISO C++ forbids braced-groups within expressions");
/* And they're not allowed outside of a function-body; you
cannot, for example, write:
int i = ({ int j = 3; j + 1; });
at class or namespace scope. */
if (!parser->in_function_body
|| parser->in_template_argument_list_p)
{
error_at (token->location,
"statement-expressions are not allowed outside "
"functions nor in template-argument lists");
cp_parser_skip_to_end_of_block_or_statement (parser);
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
cp_lexer_consume_token (parser->lexer);
return error_mark_node;
}
else
return cp_parser_statement_expr (parser);
}
/* Otherwise it's a normal parenthesized expression. */
{
cp_expr expr;
bool saved_greater_than_is_operator_p;
location_t open_paren_loc = token->location;
/* Consume the `('. */
matching_parens parens;
parens.consume_open (parser);
/* Within a parenthesized expression, a `>' token is always
the greater-than operator. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
/* Left fold expression. */
expr = NULL_TREE;
else
/* Parse the parenthesized expression. */
expr = cp_parser_expression (parser, idk, cast_p, decltype_p);
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_ELLIPSIS || cp_parser_fold_operator (token))
{
expr = cp_parser_fold_expression (parser, expr);
if (expr != error_mark_node
&& cxx_dialect < cxx17
&& !in_system_header_at (input_location))
pedwarn (input_location, 0, "fold-expressions only available "
"with %<-std=c++17%> or %<-std=gnu++17%>");
}
else
/* Let the front end know that this expression was
enclosed in parentheses. This matters in case, for
example, the expression is of the form `A::B', since
`&A::B' might be a pointer-to-member, but `&(A::B)' is
not. */
expr = finish_parenthesized_expr (expr);
/* DR 705: Wrapping an unqualified name in parentheses
suppresses arg-dependent lookup. We want to pass back
CP_ID_KIND_QUALIFIED for suppressing vtable lookup
(c++/37862), but none of the others. */
if (*idk != CP_ID_KIND_QUALIFIED)
*idk = CP_ID_KIND_NONE;
/* The `>' token might be the end of a template-id or
template-parameter-list now. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Consume the `)'. */
token = cp_lexer_peek_token (parser->lexer);
location_t close_paren_loc = token->location;
expr.set_range (open_paren_loc, close_paren_loc);
if (!parens.require_close (parser)
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
cp_parser_skip_to_end_of_statement (parser);
return expr;
}
case CPP_OPEN_SQUARE:
{
if (c_dialect_objc ())
{
/* We might have an Objective-C++ message. */
cp_parser_parse_tentatively (parser);
tree msg = cp_parser_objc_message_expression (parser);
/* If that works out, we're done ... */
if (cp_parser_parse_definitely (parser))
return msg;
/* ... else, fall though to see if it's a lambda. */
}
cp_expr lam = cp_parser_lambda_expression (parser);
/* Don't warn about a failed tentative parse. */
if (cp_parser_error_occurred (parser))
return error_mark_node;
maybe_warn_cpp0x (CPP0X_LAMBDA_EXPR);
return lam;
}
case CPP_OBJC_STRING:
if (c_dialect_objc ())
/* We have an Objective-C++ string literal. */
return cp_parser_objc_expression (parser);
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
case CPP_KEYWORD:
switch (token->keyword)
{
/* These two are the boolean literals. */
case RID_TRUE:
cp_lexer_consume_token (parser->lexer);
return cp_expr (boolean_true_node, token->location);
case RID_FALSE:
cp_lexer_consume_token (parser->lexer);
return cp_expr (boolean_false_node, token->location);
/* The `__null' literal. */
case RID_NULL:
cp_lexer_consume_token (parser->lexer);
return cp_expr (null_node, token->location);
/* The `nullptr' literal. */
case RID_NULLPTR:
cp_lexer_consume_token (parser->lexer);
return cp_expr (nullptr_node, token->location);
/* Recognize the `this' keyword. */
case RID_THIS:
cp_lexer_consume_token (parser->lexer);
if (parser->local_variables_forbidden_p & THIS_FORBIDDEN)
{
error_at (token->location,
"%<this%> may not be used in this context");
return error_mark_node;
}
/* Pointers cannot appear in constant-expressions. */
if (cp_parser_non_integral_constant_expression (parser, NIC_THIS))
return error_mark_node;
return cp_expr (finish_this_expr (), token->location);
/* The `operator' keyword can be the beginning of an
id-expression. */
case RID_OPERATOR:
goto id_expression;
case RID_FUNCTION_NAME:
case RID_PRETTY_FUNCTION_NAME:
case RID_C99_FUNCTION_NAME:
{
non_integral_constant name;
/* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
__func__ are the names of variables -- but they are
treated specially. Therefore, they are handled here,
rather than relying on the generic id-expression logic
below. Grammatically, these names are id-expressions.
Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
switch (token->keyword)
{
case RID_FUNCTION_NAME:
name = NIC_FUNC_NAME;
break;
case RID_PRETTY_FUNCTION_NAME:
name = NIC_PRETTY_FUNC;
break;
case RID_C99_FUNCTION_NAME:
name = NIC_C99_FUNC;
break;
default:
gcc_unreachable ();
}
if (cp_parser_non_integral_constant_expression (parser, name))
return error_mark_node;
/* Look up the name. */
return finish_fname (token->u.value);
}
case RID_VA_ARG:
{
tree expression;
tree type;
location_t type_location;
location_t start_loc
= cp_lexer_peek_token (parser->lexer)->location;
/* The `__builtin_va_arg' construct is used to handle
`va_arg'. Consume the `__builtin_va_arg' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the opening `('. */
matching_parens parens;
parens.require_open (parser);
/* Now, parse the assignment-expression. */
expression = cp_parser_assignment_expression (parser);
/* Look for the `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
type_location = cp_lexer_peek_token (parser->lexer)->location;
/* Parse the type-id. */
{
type_id_in_expr_sentinel s (parser);
type = cp_parser_type_id (parser);
}
/* Look for the closing `)'. */
location_t finish_loc
= cp_lexer_peek_token (parser->lexer)->location;
parens.require_close (parser);
/* Using `va_arg' in a constant-expression is not
allowed. */
if (cp_parser_non_integral_constant_expression (parser,
NIC_VA_ARG))
return error_mark_node;
/* Construct a location of the form:
__builtin_va_arg (v, int)
~~~~~~~~~~~~~~~~~~~~~^~~~
with the caret at the type, ranging from the start of the
"__builtin_va_arg" token to the close paren. */
location_t combined_loc
= make_location (type_location, start_loc, finish_loc);
return build_x_va_arg (combined_loc, expression, type);
}
case RID_OFFSETOF:
return cp_parser_builtin_offsetof (parser);
case RID_HAS_NOTHROW_ASSIGN:
case RID_HAS_NOTHROW_CONSTRUCTOR:
case RID_HAS_NOTHROW_COPY:
case RID_HAS_TRIVIAL_ASSIGN:
case RID_HAS_TRIVIAL_CONSTRUCTOR:
case RID_HAS_TRIVIAL_COPY:
case RID_HAS_TRIVIAL_DESTRUCTOR:
case RID_HAS_UNIQUE_OBJ_REPRESENTATIONS:
case RID_HAS_VIRTUAL_DESTRUCTOR:
case RID_IS_ABSTRACT:
case RID_IS_AGGREGATE:
case RID_IS_BASE_OF:
case RID_IS_CLASS:
case RID_IS_EMPTY:
case RID_IS_ENUM:
case RID_IS_FINAL:
case RID_IS_LITERAL_TYPE:
case RID_IS_POD:
case RID_IS_POLYMORPHIC:
case RID_IS_SAME_AS:
case RID_IS_STD_LAYOUT:
case RID_IS_TRIVIAL:
case RID_IS_TRIVIALLY_ASSIGNABLE:
case RID_IS_TRIVIALLY_CONSTRUCTIBLE:
case RID_IS_TRIVIALLY_COPYABLE:
case RID_IS_UNION:
case RID_IS_ASSIGNABLE:
case RID_IS_CONSTRUCTIBLE:
return cp_parser_trait_expr (parser, token->keyword);
// C++ concepts
case RID_REQUIRES:
return cp_parser_requires_expression (parser);
/* Objective-C++ expressions. */
case RID_AT_ENCODE:
case RID_AT_PROTOCOL:
case RID_AT_SELECTOR:
return cp_parser_objc_expression (parser);
case RID_TEMPLATE:
if (parser->in_function_body
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_LESS))
{
error_at (token->location,
"a template declaration cannot appear at block scope");
cp_parser_skip_to_end_of_block_or_statement (parser);
return error_mark_node;
}
/* FALLTHRU */
default:
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
}
/* An id-expression can start with either an identifier, a
`::' as the beginning of a qualified-id, or the "operator"
keyword. */
case CPP_NAME:
case CPP_SCOPE:
case CPP_TEMPLATE_ID:
case CPP_NESTED_NAME_SPECIFIER:
{
id_expression:
cp_expr id_expression;
cp_expr decl;
const char *error_msg;
bool template_p;
bool done;
cp_token *id_expr_token;
/* Parse the id-expression. */
id_expression
= cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
&template_p,
/*declarator_p=*/false,
/*optional_p=*/false);
if (id_expression == error_mark_node)
return error_mark_node;
id_expr_token = token;
token = cp_lexer_peek_token (parser->lexer);
done = (token->type != CPP_OPEN_SQUARE
&& token->type != CPP_OPEN_PAREN
&& token->type != CPP_DOT
&& token->type != CPP_DEREF
&& token->type != CPP_PLUS_PLUS
&& token->type != CPP_MINUS_MINUS);
/* If we have a template-id, then no further lookup is
required. If the template-id was for a template-class, we
will sometimes have a TYPE_DECL at this point. */
if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
|| TREE_CODE (id_expression) == TYPE_DECL)
decl = id_expression;
/* Look up the name. */
else
{
tree ambiguous_decls;
/* If we already know that this lookup is ambiguous, then
we've already issued an error message; there's no reason
to check again. */
if (id_expr_token->type == CPP_NAME
&& id_expr_token->error_reported)
{
cp_parser_simulate_error (parser);
return error_mark_node;
}
decl = cp_parser_lookup_name (parser, id_expression,
none_type,
template_p,
/*is_namespace=*/false,
/*check_dependency=*/true,
&ambiguous_decls,
id_expression.get_location ());
/* If the lookup was ambiguous, an error will already have
been issued. */
if (ambiguous_decls)
return error_mark_node;
/* In Objective-C++, we may have an Objective-C 2.0
dot-syntax for classes here. */
if (c_dialect_objc ()
&& cp_lexer_peek_token (parser->lexer)->type == CPP_DOT
&& TREE_CODE (decl) == TYPE_DECL
&& objc_is_class_name (decl))
{
tree component;
cp_lexer_consume_token (parser->lexer);
component = cp_parser_identifier (parser);
if (component == error_mark_node)
return error_mark_node;
tree result = objc_build_class_component_ref (id_expression,
component);
/* Build a location of the form:
expr.component
~~~~~^~~~~~~~~
with caret at the start of the component name (at
input_location), ranging from the start of the id_expression
to the end of the component name. */
location_t combined_loc
= make_location (input_location, id_expression.get_start (),
get_finish (input_location));
protected_set_expr_location (result, combined_loc);
return result;
}
/* In Objective-C++, an instance variable (ivar) may be preferred
to whatever cp_parser_lookup_name() found.
Call objc_lookup_ivar. To avoid exposing cp_expr to the
rest of c-family, we have to do a little extra work to preserve
any location information in cp_expr "decl". Given that
objc_lookup_ivar is implemented in "c-family" and "objc", we
have a trip through the pure "tree" type, rather than cp_expr.
Naively copying it back to "decl" would implicitly give the
new cp_expr value an UNKNOWN_LOCATION for nodes that don't
store an EXPR_LOCATION. Hence we only update "decl" (and
hence its location_t) if we get back a different tree node. */
tree decl_tree = objc_lookup_ivar (decl.get_value (),
id_expression);
if (decl_tree != decl.get_value ())
decl = cp_expr (decl_tree);
/* If name lookup gives us a SCOPE_REF, then the
qualifying scope was dependent. */
if (TREE_CODE (decl) == SCOPE_REF)
{
/* At this point, we do not know if DECL is a valid
integral constant expression. We assume that it is
in fact such an expression, so that code like:
template <int N> struct A {
int a[B<N>::i];
};
is accepted. At template-instantiation time, we
will check that B<N>::i is actually a constant. */
return decl;
}
/* Check to see if DECL is a local variable in a context
where that is forbidden. */
if ((parser->local_variables_forbidden_p & LOCAL_VARS_FORBIDDEN)
&& local_variable_p (decl))
{
error_at (id_expression.get_location (),
"local variable %qD may not appear in this context",
decl.get_value ());
return error_mark_node;
}
}
decl = (finish_id_expression
(id_expression, decl, parser->scope,
idk,
parser->integral_constant_expression_p,
parser->allow_non_integral_constant_expression_p,
&parser->non_integral_constant_expression_p,
template_p, done, address_p,
template_arg_p,
&error_msg,
id_expression.get_location ()));
if (error_msg)
cp_parser_error (parser, error_msg);
/* Build a location for an id-expression of the form:
::ns::id
~~~~~~^~
or:
id
^~
i.e. from the start of the first token to the end of the final
token, with the caret at the start of the unqualified-id. */
location_t caret_loc = get_pure_location (id_expression.get_location ());
location_t start_loc = get_start (id_expr_token->location);
location_t finish_loc = get_finish (id_expression.get_location ());
location_t combined_loc
= make_location (caret_loc, start_loc, finish_loc);
decl.set_location (combined_loc);
return decl;
}
/* Anything else is an error. */
default:
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
}
}
static inline cp_expr
cp_parser_primary_expression (cp_parser *parser,
bool address_p,
bool cast_p,
bool template_arg_p,
cp_id_kind *idk)
{
return cp_parser_primary_expression (parser, address_p, cast_p, template_arg_p,
/*decltype*/false, idk);
}
/* Parse an id-expression.
id-expression:
unqualified-id
qualified-id
qualified-id:
:: [opt] nested-name-specifier template [opt] unqualified-id
:: identifier
:: operator-function-id
:: template-id
Return a representation of the unqualified portion of the
identifier. Sets PARSER->SCOPE to the qualifying scope if there is
a `::' or nested-name-specifier.
Often, if the id-expression was a qualified-id, the caller will
want to make a SCOPE_REF to represent the qualified-id. This
function does not do this in order to avoid wastefully creating
SCOPE_REFs when they are not required.
If TEMPLATE_KEYWORD_P is true, then we have just seen the
`template' keyword.
If CHECK_DEPENDENCY_P is false, then names are looked up inside
uninstantiated templates.
If *TEMPLATE_P is non-NULL, it is set to true iff the
`template' keyword is used to explicitly indicate that the entity
named is a template.
If DECLARATOR_P is true, the id-expression is appearing as part of
a declarator, rather than as part of an expression. */
static cp_expr
cp_parser_id_expression (cp_parser *parser,
bool template_keyword_p,
bool check_dependency_p,
bool *template_p,
bool declarator_p,
bool optional_p)
{
bool global_scope_p;
bool nested_name_specifier_p;
/* Assume the `template' keyword was not used. */
if (template_p)
*template_p = template_keyword_p;
/* Look for the optional `::' operator. */
global_scope_p
= (!template_keyword_p
&& (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE));
/* Look for the optional nested-name-specifier. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
check_dependency_p,
/*type_p=*/false,
declarator_p,
template_keyword_p)
!= NULL_TREE);
/* If there is a nested-name-specifier, then we are looking at
the first qualified-id production. */
if (nested_name_specifier_p)
{
tree saved_scope;
tree saved_object_scope;
tree saved_qualifying_scope;
cp_expr unqualified_id;
bool is_template;
/* See if the next token is the `template' keyword. */
if (!template_p)
template_p = &is_template;
*template_p = cp_parser_optional_template_keyword (parser);
/* Name lookup we do during the processing of the
unqualified-id might obliterate SCOPE. */
saved_scope = parser->scope;
saved_object_scope = parser->object_scope;
saved_qualifying_scope = parser->qualifying_scope;
/* Process the final unqualified-id. */
unqualified_id = cp_parser_unqualified_id (parser, *template_p,
check_dependency_p,
declarator_p,
/*optional_p=*/false);
/* Restore the SAVED_SCOPE for our caller. */
parser->scope = saved_scope;
parser->object_scope = saved_object_scope;
parser->qualifying_scope = saved_qualifying_scope;
return unqualified_id;
}
/* Otherwise, if we are in global scope, then we are looking at one
of the other qualified-id productions. */
else if (global_scope_p)
{
cp_token *token;
tree id;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's an identifier, and the next token is not a "<", then
we can avoid the template-id case. This is an optimization
for this common case. */
if (token->type == CPP_NAME
&& !cp_parser_nth_token_starts_template_argument_list_p
(parser, 2))
return cp_parser_identifier (parser);
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
none_type,
declarator_p);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Peek at the next token. (Changes in the token buffer may
have invalidated the pointer obtained above.) */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_NAME:
return cp_parser_identifier (parser);
case CPP_KEYWORD:
if (token->keyword == RID_OPERATOR)
return cp_parser_operator_function_id (parser);
/* Fall through. */
default:
cp_parser_error (parser, "expected id-expression");
return error_mark_node;
}
}
else
return cp_parser_unqualified_id (parser, template_keyword_p,
/*check_dependency_p=*/true,
declarator_p,
optional_p);
}
/* Parse an unqualified-id.
unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id
If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
keyword, in a construct like `A::template ...'.
Returns a representation of unqualified-id. For the `identifier'
production, an IDENTIFIER_NODE is returned. For the `~ class-name'
production a BIT_NOT_EXPR is returned; the operand of the
BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
other productions, see the documentation accompanying the
corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
names are looked up in uninstantiated templates. If DECLARATOR_P
is true, the unqualified-id is appearing as part of a declarator,
rather than as part of an expression. */
static cp_expr
cp_parser_unqualified_id (cp_parser* parser,
bool template_keyword_p,
bool check_dependency_p,
bool declarator_p,
bool optional_p)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch ((int) token->type)
{
case CPP_NAME:
{
tree id;
/* We don't know yet whether or not this will be a
template-id. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_keyword_p,
check_dependency_p,
none_type,
declarator_p);
/* If it worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Otherwise, it's an ordinary identifier. */
return cp_parser_identifier (parser);
}
case CPP_TEMPLATE_ID:
return cp_parser_template_id (parser, template_keyword_p,
check_dependency_p,
none_type,
declarator_p);
case CPP_COMPL:
{
tree type_decl;
tree qualifying_scope;
tree object_scope;
tree scope;
bool done;
location_t tilde_loc = token->location;
/* Consume the `~' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the class-name. The standard, as written, seems to
say that:
template <typename T> struct S { ~S (); };
template <typename T> S<T>::~S() {}
is invalid, since `~' must be followed by a class-name, but
`S<T>' is dependent, and so not known to be a class.
That's not right; we need to look in uninstantiated
templates. A further complication arises from:
template <typename T> void f(T t) {
t.T::~T();
}
Here, it is not possible to look up `T' in the scope of `T'
itself. We must look in both the current scope, and the
scope of the containing complete expression.
Yet another issue is:
struct S {
int S;
~S();
};
S::~S() {}
The standard does not seem to say that the `S' in `~S'
should refer to the type `S' and not the data member
`S::S'. */
/* DR 244 says that we look up the name after the "~" in the
same scope as we looked up the qualifying name. That idea
isn't fully worked out; it's more complicated than that. */
scope = parser->scope;
object_scope = parser->object_scope;
qualifying_scope = parser->qualifying_scope;
/* Check for invalid scopes. */
if (scope == error_mark_node)
{
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
cp_lexer_consume_token (parser->lexer);
return error_mark_node;
}
if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
{
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
error_at (token->location,
"scope %qT before %<~%> is not a class-name",
scope);
cp_parser_simulate_error (parser);
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
cp_lexer_consume_token (parser->lexer);
return error_mark_node;
}
gcc_assert (!scope || TYPE_P (scope));
token = cp_lexer_peek_token (parser->lexer);
/* Create a location with caret == start at the tilde,
finishing at the end of the peeked token, e.g:
~token
^~~~~~. */
location_t loc
= make_location (tilde_loc, tilde_loc, token->location);
/* If the name is of the form "X::~X" it's OK even if X is a
typedef. */
if (scope
&& token->type == CPP_NAME
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
!= CPP_LESS)
&& (token->u.value == TYPE_IDENTIFIER (scope)
|| (CLASS_TYPE_P (scope)
&& constructor_name_p (token->u.value, scope))))
{
cp_lexer_consume_token (parser->lexer);
return cp_expr (build_nt (BIT_NOT_EXPR, scope), loc);
}
/* ~auto means the destructor of whatever the object is. */
if (cp_parser_is_keyword (token, RID_AUTO))
{
if (cxx_dialect < cxx14)
pedwarn (loc, 0,
"%<~auto%> only available with "
"%<-std=c++14%> or %<-std=gnu++14%>");
cp_lexer_consume_token (parser->lexer);
return cp_expr (build_nt (BIT_NOT_EXPR, make_auto (), loc));
}
/* If there was an explicit qualification (S::~T), first look
in the scope given by the qualification (i.e., S).
Note: in the calls to cp_parser_class_name below we pass
typename_type so that lookup finds the injected-class-name
rather than the constructor. */
done = false;
type_decl = NULL_TREE;
if (scope)
{
cp_parser_parse_tentatively (parser);
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
typename_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (cp_parser_parse_definitely (parser))
done = true;
}
/* In "N::S::~S", look in "N" as well. */
if (!done && scope && qualifying_scope)
{
cp_parser_parse_tentatively (parser);
parser->scope = qualifying_scope;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
typename_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (cp_parser_parse_definitely (parser))
done = true;
}
/* In "p->S::~T", look in the scope given by "*p" as well. */
else if (!done && object_scope)
{
cp_parser_parse_tentatively (parser);
parser->scope = object_scope;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
typename_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (cp_parser_parse_definitely (parser))
done = true;
}
/* Look in the surrounding context. */
if (!done)
{
parser->scope = NULL_TREE;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
if (processing_template_decl)
cp_parser_parse_tentatively (parser);
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
typename_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (processing_template_decl
&& ! cp_parser_parse_definitely (parser))
{
/* We couldn't find a type with this name. If we're parsing
tentatively, fail and try something else. */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
{
cp_parser_simulate_error (parser);
return error_mark_node;
}
/* Otherwise, accept it and check for a match at instantiation
time. */
type_decl = cp_parser_identifier (parser);
if (type_decl != error_mark_node)
type_decl = build_nt (BIT_NOT_EXPR, type_decl);
return cp_expr (type_decl, loc);
}
}
/* If an error occurred, assume that the name of the
destructor is the same as the name of the qualifying
class. That allows us to keep parsing after running
into ill-formed destructor names. */
if (type_decl == error_mark_node && scope)
return build_nt (BIT_NOT_EXPR, scope);
else if (type_decl == error_mark_node)
return error_mark_node;
/* Check that destructor name and scope match. */
if (declarator_p && scope && !check_dtor_name (scope, type_decl))
{
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
error_at (loc,
"declaration of %<~%T%> as member of %qT",
type_decl, scope);
cp_parser_simulate_error (parser);
return error_mark_node;
}
/* [class.dtor]
A typedef-name that names a class shall not be used as the
identifier in the declarator for a destructor declaration. */
if (declarator_p
&& !DECL_IMPLICIT_TYPEDEF_P (type_decl)
&& !DECL_SELF_REFERENCE_P (type_decl)
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
error_at (loc,
"typedef-name %qD used as destructor declarator",
type_decl);
return cp_expr (build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl), loc));
}
case CPP_KEYWORD:
if (token->keyword == RID_OPERATOR)
{
cp_expr id;
/* This could be a template-id, so we try that first. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_keyword_p,
/*check_dependency_p=*/true,
none_type,
declarator_p);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* We still don't know whether we're looking at an
operator-function-id or a conversion-function-id. */
cp_parser_parse_tentatively (parser);
/* Try an operator-function-id. */
id = cp_parser_operator_function_id (parser);
/* If that didn't work, try a conversion-function-id. */
if (!cp_parser_parse_definitely (parser))
id = cp_parser_conversion_function_id (parser);
return id;
}
/* Fall through. */
default:
if (optional_p)
return NULL_TREE;
cp_parser_error (parser, "expected unqualified-id");
return error_mark_node;
}
}
/* Parse an (optional) nested-name-specifier.
nested-name-specifier: [C++98]
class-or-namespace-name :: nested-name-specifier [opt]
class-or-namespace-name :: template nested-name-specifier [opt]
nested-name-specifier: [C++0x]
type-name ::
namespace-name ::
nested-name-specifier identifier ::
nested-name-specifier template [opt] simple-template-id ::
PARSER->SCOPE should be set appropriately before this function is
called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
effect. TYPE_P is TRUE if we non-type bindings should be ignored
in name lookups.
Sets PARSER->SCOPE to the class (TYPE) or namespace
(NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
it unchanged if there is no nested-name-specifier. Returns the new
scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
part of a declaration and/or decl-specifier. */
static tree
cp_parser_nested_name_specifier_opt (cp_parser *parser,
bool typename_keyword_p,
bool check_dependency_p,
bool type_p,
bool is_declaration,
bool template_keyword_p /* = false */)
{
bool success = false;
cp_token_position start = 0;
cp_token *token;
/* Remember where the nested-name-specifier starts. */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
{
start = cp_lexer_token_position (parser->lexer, false);
push_deferring_access_checks (dk_deferred);
}
while (true)
{
tree new_scope;
tree old_scope;
tree saved_qualifying_scope;
/* Spot cases that cannot be the beginning of a
nested-name-specifier. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
the already parsed nested-name-specifier. */
if (token->type == CPP_NESTED_NAME_SPECIFIER)
{
/* Grab the nested-name-specifier and continue the loop. */
cp_parser_pre_parsed_nested_name_specifier (parser);
/* If we originally encountered this nested-name-specifier
with IS_DECLARATION set to false, we will not have
resolved TYPENAME_TYPEs, so we must do so here. */
if (is_declaration
&& TREE_CODE (parser->scope) == TYPENAME_TYPE)
{
new_scope = resolve_typename_type (parser->scope,
/*only_current_p=*/false);
if (TREE_CODE (new_scope) != TYPENAME_TYPE)
parser->scope = new_scope;
}
success = true;
continue;
}
/* Spot cases that cannot be the beginning of a
nested-name-specifier. On the second and subsequent times
through the loop, we look for the `template' keyword. */
if (success && token->keyword == RID_TEMPLATE)
;
/* A template-id can start a nested-name-specifier. */
else if (token->type == CPP_TEMPLATE_ID)
;
/* DR 743: decltype can be used in a nested-name-specifier. */
else if (token_is_decltype (token))
;
else
{
/* If the next token is not an identifier, then it is
definitely not a type-name or namespace-name. */
if (token->type != CPP_NAME)
break;
/* If the following token is neither a `<' (to begin a
template-id), nor a `::', then we are not looking at a
nested-name-specifier. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token->type == CPP_COLON
&& parser->colon_corrects_to_scope_p
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_NAME)
{
gcc_rich_location richloc (token->location);
richloc.add_fixit_replace ("::");
error_at (&richloc,
"found %<:%> in nested-name-specifier, "
"expected %<::%>");
token->type = CPP_SCOPE;
}
if (token->type != CPP_SCOPE
&& !cp_parser_nth_token_starts_template_argument_list_p
(parser, 2))
break;
}
/* The nested-name-specifier is optional, so we parse
tentatively. */
cp_parser_parse_tentatively (parser);
/* Look for the optional `template' keyword, if this isn't the
first time through the loop. */
if (success)
template_keyword_p = cp_parser_optional_template_keyword (parser);
/* Save the old scope since the name lookup we are about to do
might destroy it. */
old_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
/* In a declarator-id like "X<T>::I::Y<T>" we must be able to
look up names in "X<T>::I" in order to determine that "Y" is
a template. So, if we have a typename at this point, we make
an effort to look through it. */
if (is_declaration
&& !typename_keyword_p
&& parser->scope
&& TREE_CODE (parser->scope) == TYPENAME_TYPE)
parser->scope = resolve_typename_type (parser->scope,
/*only_current_p=*/false);
/* Parse the qualifying entity. */
new_scope
= cp_parser_qualifying_entity (parser,
typename_keyword_p,
template_keyword_p,
check_dependency_p,
type_p,
is_declaration);
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, RT_SCOPE);
/* If we found what we wanted, we keep going; otherwise, we're
done. */
if (!cp_parser_parse_definitely (parser))
{
bool error_p = false;
/* Restore the OLD_SCOPE since it was valid before the
failed attempt at finding the last
class-or-namespace-name. */
parser->scope = old_scope;
parser->qualifying_scope = saved_qualifying_scope;
/* If the next token is a decltype, and the one after that is a
`::', then the decltype has failed to resolve to a class or
enumeration type. Give this error even when parsing
tentatively since it can't possibly be valid--and we're going
to replace it with a CPP_NESTED_NAME_SPECIFIER below, so we
won't get another chance.*/
if (cp_lexer_next_token_is (parser->lexer, CPP_DECLTYPE)
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_SCOPE))
{
token = cp_lexer_consume_token (parser->lexer);
error_at (token->location, "decltype evaluates to %qT, "
"which is not a class or enumeration type",
token->u.tree_check_value->value);
parser->scope = error_mark_node;
error_p = true;
/* As below. */
success = true;
cp_lexer_consume_token (parser->lexer);
}
if (cp_lexer_next_token_is (parser->lexer, CPP_TEMPLATE_ID)
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_SCOPE))
{
/* If we have a non-type template-id followed by ::, it can't
possibly be valid. */
token = cp_lexer_peek_token (parser->lexer);
tree tid = token->u.tree_check_value->value;
if (TREE_CODE (tid) == TEMPLATE_ID_EXPR
&& TREE_CODE (TREE_OPERAND (tid, 0)) != IDENTIFIER_NODE)
{
tree tmpl = NULL_TREE;
if (is_overloaded_fn (tid))
{
tree fns = get_fns (tid);
if (OVL_SINGLE_P (fns))
tmpl = OVL_FIRST (fns);
error_at (token->location, "function template-id %qD "
"in nested-name-specifier", tid);
}
else
{
/* Variable template. */
tmpl = TREE_OPERAND (tid, 0);
gcc_assert (variable_template_p (tmpl));
error_at (token->location, "variable template-id %qD "
"in nested-name-specifier", tid);
}
if (tmpl)
inform (DECL_SOURCE_LOCATION (tmpl),
"%qD declared here", tmpl);
parser->scope = error_mark_node;
error_p = true;
/* As below. */
success = true;
cp_lexer_consume_token (parser->lexer);
cp_lexer_consume_token (parser->lexer);
}
}
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
break;
/* If the next token is an identifier, and the one after
that is a `::', then any valid interpretation would have
found a class-or-namespace-name. */
while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_SCOPE)
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
!= CPP_COMPL))
{
token = cp_lexer_consume_token (parser->lexer);
if (!error_p)
{
if (!token->error_reported)
{
tree decl;
tree ambiguous_decls;
decl = cp_parser_lookup_name (parser, token->u.value,
none_type,
/*is_template=*/false,
/*is_namespace=*/false,
/*check_dependency=*/true,
&ambiguous_decls,
token->location);
if (TREE_CODE (decl) == TEMPLATE_DECL)
error_at (token->location,
"%qD used without template arguments",
decl);
else if (ambiguous_decls)
{
// cp_parser_lookup_name has the same diagnostic,
// thus make sure to emit it at most once.
if (cp_parser_uncommitted_to_tentative_parse_p
(parser))
{
error_at (token->location,
"reference to %qD is ambiguous",
token->u.value);
print_candidates (ambiguous_decls);
}
decl = error_mark_node;
}
else
{
if (cxx_dialect != cxx98)
cp_parser_name_lookup_error
(parser, token->u.value, decl, NLE_NOT_CXX98,
token->location);
else
cp_parser_name_lookup_error
(parser, token->u.value, decl, NLE_CXX98,
token->location);
}
}
parser->scope = error_mark_node;
error_p = true;
/* Treat this as a successful nested-name-specifier
due to:
[basic.lookup.qual]
If the name found is not a class-name (clause
_class_) or namespace-name (_namespace.def_), the
program is ill-formed. */
success = true;
}
cp_lexer_consume_token (parser->lexer);
}
break;
}
/* We've found one valid nested-name-specifier. */
success = true;
/* Name lookup always gives us a DECL. */
if (TREE_CODE (new_scope) == TYPE_DECL)
new_scope = TREE_TYPE (new_scope);
/* Uses of "template" must be followed by actual templates. */
if (template_keyword_p
&& !(CLASS_TYPE_P (new_scope)
&& ((CLASSTYPE_USE_TEMPLATE (new_scope)
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (new_scope)))
|| CLASSTYPE_IS_TEMPLATE (new_scope)))
&& !(TREE_CODE (new_scope) == TYPENAME_TYPE
&& (TREE_CODE (TYPENAME_TYPE_FULLNAME (new_scope))
== TEMPLATE_ID_EXPR)))
permerror (input_location, TYPE_P (new_scope)
? G_("%qT is not a template")
: G_("%qD is not a template"),
new_scope);
/* If it is a class scope, try to complete it; we are about to
be looking up names inside the class. */
if (TYPE_P (new_scope)
/* Since checking types for dependency can be expensive,
avoid doing it if the type is already complete. */
&& !COMPLETE_TYPE_P (new_scope)
/* Do not try to complete dependent types. */
&& !dependent_type_p (new_scope))
{
new_scope = complete_type (new_scope);
/* If it is a typedef to current class, use the current
class instead, as the typedef won't have any names inside
it yet. */
if (!COMPLETE_TYPE_P (new_scope)
&& currently_open_class (new_scope))
new_scope = TYPE_MAIN_VARIANT (new_scope);
}
/* Make sure we look in the right scope the next time through
the loop. */
parser->scope = new_scope;
}
/* If parsing tentatively, replace the sequence of tokens that makes
up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
token. That way, should we re-parse the token stream, we will
not have to repeat the effort required to do the parse, nor will
we issue duplicate error messages. */
if (success && start)
{
cp_token *token;
token = cp_lexer_token_at (parser->lexer, start);
/* Reset the contents of the START token. */
token->type = CPP_NESTED_NAME_SPECIFIER;
/* Retrieve any deferred checks. Do not pop this access checks yet
so the memory will not be reclaimed during token replacing below. */
token->u.tree_check_value = ggc_cleared_alloc<struct tree_check> ();
token->u.tree_check_value->value = parser->scope;
token->u.tree_check_value->checks = get_deferred_access_checks ();
token->u.tree_check_value->qualifying_scope =
parser->qualifying_scope;
token->keyword = RID_MAX;
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, start);
}
if (start)
pop_to_parent_deferring_access_checks ();
return success ? parser->scope : NULL_TREE;
}
/* Parse a nested-name-specifier. See
cp_parser_nested_name_specifier_opt for details. This function
behaves identically, except that it will an issue an error if no
nested-name-specifier is present. */
static tree
cp_parser_nested_name_specifier (cp_parser *parser,
bool typename_keyword_p,
bool check_dependency_p,
bool type_p,
bool is_declaration)
{
tree scope;
/* Look for the nested-name-specifier. */
scope = cp_parser_nested_name_specifier_opt (parser,
typename_keyword_p,
check_dependency_p,
type_p,
is_declaration);
/* If it was not present, issue an error message. */
if (!scope)
{
cp_parser_error (parser, "expected nested-name-specifier");
parser->scope = NULL_TREE;
}
return scope;
}
/* Parse the qualifying entity in a nested-name-specifier. For C++98,
this is either a class-name or a namespace-name (which corresponds
to the class-or-namespace-name production in the grammar). For
C++0x, it can also be a type-name that refers to an enumeration
type or a simple-template-id.
TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
TYPE_P is TRUE iff the next name should be taken as a class-name,
even the same name is declared to be another entity in the same
scope.
Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
specified by the class-or-namespace-name. If neither is found the
ERROR_MARK_NODE is returned. */
static tree
cp_parser_qualifying_entity (cp_parser *parser,
bool typename_keyword_p,
bool template_keyword_p,
bool check_dependency_p,
bool type_p,
bool is_declaration)
{
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
tree scope;
bool only_class_p;
bool successful_parse_p;
/* DR 743: decltype can appear in a nested-name-specifier. */
if (cp_lexer_next_token_is_decltype (parser->lexer))
{
scope = cp_parser_decltype (parser);
if (TREE_CODE (scope) != ENUMERAL_TYPE
&& !MAYBE_CLASS_TYPE_P (scope))
{
cp_parser_simulate_error (parser);
return error_mark_node;
}
if (TYPE_NAME (scope))
scope = TYPE_NAME (scope);
return scope;
}
/* Before we try to parse the class-name, we must save away the
current PARSER->SCOPE since cp_parser_class_name will destroy
it. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* Try for a class-name first. If the SAVED_SCOPE is a type, then
there is no need to look for a namespace-name. */
only_class_p = template_keyword_p
|| (saved_scope && TYPE_P (saved_scope) && cxx_dialect == cxx98);
if (!only_class_p)
cp_parser_parse_tentatively (parser);
scope = cp_parser_class_name (parser,
typename_keyword_p,
template_keyword_p,
type_p ? class_type : none_type,
check_dependency_p,
/*class_head_p=*/false,
is_declaration,
/*enum_ok=*/cxx_dialect > cxx98);
successful_parse_p = only_class_p || cp_parser_parse_definitely (parser);
/* If that didn't work, try for a namespace-name. */
if (!only_class_p && !successful_parse_p)
{
/* Restore the saved scope. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* If we are not looking at an identifier followed by the scope
resolution operator, then this is not part of a
nested-name-specifier. (Note that this function is only used
to parse the components of a nested-name-specifier.) */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
return error_mark_node;
scope = cp_parser_namespace_name (parser);
}
return scope;
}
/* Return true if we are looking at a compound-literal, false otherwise. */
static bool
cp_parser_compound_literal_p (cp_parser *parser)
{
cp_lexer_save_tokens (parser->lexer);
/* Skip tokens until the next token is a closing parenthesis.
If we find the closing `)', and the next token is a `{', then
we are looking at a compound-literal. */
bool compound_literal_p
= (cp_parser_skip_to_closing_parenthesis (parser, false, false,
/*consume_paren=*/true)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
/* Roll back the tokens we skipped. */
cp_lexer_rollback_tokens (parser->lexer);
return compound_literal_p;
}
/* Return true if EXPR is the integer constant zero or a complex constant
of zero, without any folding, but ignoring location wrappers. */
bool
literal_integer_zerop (const_tree expr)
{
return (location_wrapper_p (expr)
&& integer_zerop (TREE_OPERAND (expr, 0)));
}
/* Parse a postfix-expression.
postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( expression-list [opt] )
simple-type-specifier ( expression-list [opt] )
typename :: [opt] nested-name-specifier identifier
( expression-list [opt] )
typename :: [opt] nested-name-specifier template [opt] template-id
( expression-list [opt] )
postfix-expression . template [opt] id-expression
postfix-expression -> template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )
GNU Extension:
postfix-expression:
( type-id ) { initializer-list , [opt] }
This extension is a GNU version of the C99 compound-literal
construct. (The C99 grammar uses `type-name' instead of `type-id',
but they are essentially the same concept.)
If ADDRESS_P is true, the postfix expression is the operand of the
`&' operator. CAST_P is true if this expression is the target of a
cast.
If MEMBER_ACCESS_ONLY_P, we only allow postfix expressions that are
class member access expressions [expr.ref].
Returns a representation of the expression. */
static cp_expr
cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p,
bool member_access_only_p, bool decltype_p,
cp_id_kind * pidk_return)
{
cp_token *token;
location_t loc;
enum rid keyword;
cp_id_kind idk = CP_ID_KIND_NONE;
cp_expr postfix_expression = NULL_TREE;
bool is_member_access = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
loc = token->location;
location_t start_loc = get_range_from_loc (line_table, loc).m_start;
/* Some of the productions are determined by keywords. */
keyword = token->keyword;
switch (keyword)
{
case RID_DYNCAST:
case RID_STATCAST:
case RID_REINTCAST:
case RID_CONSTCAST:
{
tree type;
cp_expr expression;
const char *saved_message;
bool saved_in_type_id_in_expr_p;
/* All of these can be handled in the same way from the point
of view of parsing. Begin by consuming the token
identifying the cast. */
cp_lexer_consume_token (parser->lexer);
/* New types cannot be defined in the cast. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in casts");
/* Look for the opening `<'. */
cp_parser_require (parser, CPP_LESS, RT_LESS);
/* Parse the type to which we are casting. */
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
type = cp_parser_type_id (parser, CP_PARSER_FLAGS_TYPENAME_OPTIONAL,
NULL);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
/* Look for the closing `>'. */
cp_parser_require (parser, CPP_GREATER, RT_GREATER);
/* Restore the old message. */
parser->type_definition_forbidden_message = saved_message;
bool saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
/* And the expression which is being cast. */
matching_parens parens;
parens.require_open (parser);
expression = cp_parser_expression (parser, & idk, /*cast_p=*/true);
cp_token *close_paren = cp_parser_require (parser, CPP_CLOSE_PAREN,
RT_CLOSE_PAREN);
location_t end_loc = close_paren ?
close_paren->location : UNKNOWN_LOCATION;
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Only type conversions to integral or enumeration types
can be used in constant-expressions. */
if (!cast_valid_in_integral_constant_expression_p (type)
&& cp_parser_non_integral_constant_expression (parser, NIC_CAST))
{
postfix_expression = error_mark_node;
break;
}
switch (keyword)
{
case RID_DYNCAST:
postfix_expression
= build_dynamic_cast (type, expression, tf_warning_or_error);
break;
case RID_STATCAST:
postfix_expression
= build_static_cast (type, expression, tf_warning_or_error);
break;
case RID_REINTCAST:
postfix_expression
= build_reinterpret_cast (type, expression,
tf_warning_or_error);
break;
case RID_CONSTCAST:
postfix_expression
= build_const_cast (type, expression, tf_warning_or_error);
break;
default:
gcc_unreachable ();
}
/* Construct a location e.g. :
reinterpret_cast <int *> (expr)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ranging from the start of the "*_cast" token to the final closing
paren, with the caret at the start. */
location_t cp_cast_loc = make_location (start_loc, start_loc, end_loc);
postfix_expression.set_location (cp_cast_loc);
}
break;
case RID_TYPEID:
{
tree type;
const char *saved_message;
bool saved_in_type_id_in_expr_p;
/* Consume the `typeid' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `(' token. */
matching_parens parens;
parens.require_open (parser);
/* Types cannot be defined in a `typeid' expression. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in a %<typeid%> expression");
/* We can't be sure yet whether we're looking at a type-id or an
expression. */
cp_parser_parse_tentatively (parser);
/* Try a type-id first. */
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
type = cp_parser_type_id (parser);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
/* Look for the `)' token. Otherwise, we can't be sure that
we're not looking at an expression: consider `typeid (int
(3))', for example. */
cp_token *close_paren = parens.require_close (parser);
/* If all went well, simply lookup the type-id. */
if (cp_parser_parse_definitely (parser))
postfix_expression = get_typeid (type, tf_warning_or_error);
/* Otherwise, fall back to the expression variant. */
else
{
tree expression;
/* Look for an expression. */
expression = cp_parser_expression (parser, & idk);
/* Compute its typeid. */
postfix_expression = build_typeid (expression, tf_warning_or_error);
/* Look for the `)' token. */
close_paren = parens.require_close (parser);
}
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* `typeid' may not appear in an integral constant expression. */
if (cp_parser_non_integral_constant_expression (parser, NIC_TYPEID))
postfix_expression = error_mark_node;
/* Construct a location e.g. :
typeid (expr)
^~~~~~~~~~~~~
ranging from the start of the "typeid" token to the final closing
paren, with the caret at the start. */
if (close_paren)
{
location_t typeid_loc
= make_location (start_loc, start_loc, close_paren->location);
postfix_expression.set_location (typeid_loc);
postfix_expression.maybe_add_location_wrapper ();
}
}
break;
case RID_TYPENAME:
{
tree type;
/* The syntax permitted here is the same permitted for an
elaborated-type-specifier. */
++parser->prevent_constrained_type_specifiers;
type = cp_parser_elaborated_type_specifier (parser,
/*is_friend=*/false,
/*is_declaration=*/false);
--parser->prevent_constrained_type_specifiers;
postfix_expression = cp_parser_functional_cast (parser, type);
}
break;
case RID_ADDRESSOF:
case RID_BUILTIN_SHUFFLE:
case RID_BUILTIN_LAUNDER:
{
vec<tree, va_gc> *vec;
unsigned int i;
tree p;
cp_lexer_consume_token (parser->lexer);
vec = cp_parser_parenthesized_expression_list (parser, non_attr,
/*cast_p=*/false, /*allow_expansion_p=*/true,
/*non_constant_p=*/NULL);
if (vec == NULL)
{
postfix_expression = error_mark_node;
break;
}
FOR_EACH_VEC_ELT (*vec, i, p)
mark_exp_read (p);
switch (keyword)
{
case RID_ADDRESSOF:
if (vec->length () == 1)
postfix_expression
= cp_build_addressof (loc, (*vec)[0], tf_warning_or_error);
else
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_addressof%>");
postfix_expression = error_mark_node;
}
break;
case RID_BUILTIN_LAUNDER:
if (vec->length () == 1)
postfix_expression = finish_builtin_launder (loc, (*vec)[0],
tf_warning_or_error);
else
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_launder%>");
postfix_expression = error_mark_node;
}
break;
case RID_BUILTIN_SHUFFLE:
if (vec->length () == 2)
postfix_expression
= build_x_vec_perm_expr (loc, (*vec)[0], NULL_TREE,
(*vec)[1], tf_warning_or_error);
else if (vec->length () == 3)
postfix_expression
= build_x_vec_perm_expr (loc, (*vec)[0], (*vec)[1],
(*vec)[2], tf_warning_or_error);
else
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_shuffle%>");
postfix_expression = error_mark_node;
}
break;
default:
gcc_unreachable ();
}
break;
}
case RID_BUILTIN_CONVERTVECTOR:
{
tree expression;
tree type;
/* Consume the `__builtin_convertvector' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the opening `('. */
matching_parens parens;
parens.require_open (parser);
/* Now, parse the assignment-expression. */
expression = cp_parser_assignment_expression (parser);
/* Look for the `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
location_t type_location
= cp_lexer_peek_token (parser->lexer)->location;
/* Parse the type-id. */
{
type_id_in_expr_sentinel s (parser);
type = cp_parser_type_id (parser);
}
/* Look for the closing `)'. */
parens.require_close (parser);
postfix_expression
= cp_build_vec_convert (expression, type_location, type,
tf_warning_or_error);
break;
}
default:
{
tree type;
/* If the next thing is a simple-type-specifier, we may be
looking at a functional cast. We could also be looking at
an id-expression. So, we try the functional cast, and if
that doesn't work we fall back to the primary-expression. */
cp_parser_parse_tentatively (parser);
/* Look for the simple-type-specifier. */
++parser->prevent_constrained_type_specifiers;
type = cp_parser_simple_type_specifier (parser,
/*decl_specs=*/NULL,
CP_PARSER_FLAGS_NONE);
--parser->prevent_constrained_type_specifiers;
/* Parse the cast itself. */
if (!cp_parser_error_occurred (parser))
postfix_expression
= cp_parser_functional_cast (parser, type);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
break;
/* If the functional-cast didn't work out, try a
compound-literal. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
cp_expr initializer = NULL_TREE;
cp_parser_parse_tentatively (parser);
matching_parens parens;
parens.consume_open (parser);
/* Avoid calling cp_parser_type_id pointlessly, see comment
in cp_parser_cast_expression about c++/29234. */
if (!cp_parser_compound_literal_p (parser))
cp_parser_simulate_error (parser);
else
{
/* Parse the type. */
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
type = cp_parser_type_id (parser);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
parens.require_close (parser);
}
/* If things aren't going well, there's no need to
keep going. */
if (!cp_parser_error_occurred (parser))
{
bool non_constant_p;
/* Parse the brace-enclosed initializer list. */
initializer = cp_parser_braced_list (parser,
&non_constant_p);
}
/* If that worked, we're definitely looking at a
compound-literal expression. */
if (cp_parser_parse_definitely (parser))
{
/* Warn the user that a compound literal is not
allowed in standard C++. */
pedwarn (input_location, OPT_Wpedantic,
"ISO C++ forbids compound-literals");
/* For simplicity, we disallow compound literals in
constant-expressions. We could
allow compound literals of integer type, whose
initializer was a constant, in constant
expressions. Permitting that usage, as a further
extension, would not change the meaning of any
currently accepted programs. (Of course, as
compound literals are not part of ISO C++, the
standard has nothing to say.) */
if (cp_parser_non_integral_constant_expression (parser,
NIC_NCC))
{
postfix_expression = error_mark_node;
break;
}
/* Form the representation of the compound-literal. */
postfix_expression
= finish_compound_literal (type, initializer,
tf_warning_or_error, fcl_c99);
postfix_expression.set_location (initializer.get_location ());
break;
}
}
/* It must be a primary-expression. */
postfix_expression
= cp_parser_primary_expression (parser, address_p, cast_p,
/*template_arg_p=*/false,
decltype_p,
&idk);
}
break;
}
/* Note that we don't need to worry about calling build_cplus_new on a
class-valued CALL_EXPR in decltype when it isn't the end of the
postfix-expression; unary_complex_lvalue will take care of that for
all these cases. */
/* Keep looping until the postfix-expression is complete. */
while (true)
{
if (idk == CP_ID_KIND_UNQUALIFIED
&& identifier_p (postfix_expression)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
/* It is not a Koenig lookup function call. */
postfix_expression
= unqualified_name_lookup_error (postfix_expression);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_OPEN_SQUARE:
if (cp_next_tokens_can_be_std_attribute_p (parser))
{
cp_parser_error (parser,
"two consecutive %<[%> shall "
"only introduce an attribute");
return error_mark_node;
}
postfix_expression
= cp_parser_postfix_open_square_expression (parser,
postfix_expression,
false,
decltype_p);
postfix_expression.set_range (start_loc,
postfix_expression.get_location ());
idk = CP_ID_KIND_NONE;
is_member_access = false;
break;
case CPP_OPEN_PAREN:
/* postfix-expression ( expression-list [opt] ) */
{
bool koenig_p;
bool is_builtin_constant_p;
bool saved_integral_constant_expression_p = false;
bool saved_non_integral_constant_expression_p = false;
tsubst_flags_t complain = complain_flags (decltype_p);
vec<tree, va_gc> *args;
location_t close_paren_loc = UNKNOWN_LOCATION;
is_member_access = false;
tree stripped_expression
= tree_strip_any_location_wrapper (postfix_expression);
is_builtin_constant_p
= DECL_IS_BUILTIN_CONSTANT_P (stripped_expression);
if (is_builtin_constant_p)
{
/* The whole point of __builtin_constant_p is to allow
non-constant expressions to appear as arguments. */
saved_integral_constant_expression_p
= parser->integral_constant_expression_p;
saved_non_integral_constant_expression_p
= parser->non_integral_constant_expression_p;
parser->integral_constant_expression_p = false;
}
args = (cp_parser_parenthesized_expression_list
(parser, non_attr,
/*cast_p=*/false, /*allow_expansion_p=*/true,
/*non_constant_p=*/NULL,
/*close_paren_loc=*/&close_paren_loc,
/*wrap_locations_p=*/true));
if (is_builtin_constant_p)
{
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
}
if (args == NULL)
{
postfix_expression = error_mark_node;
break;
}
/* Function calls are not permitted in
constant-expressions. */
if (! builtin_valid_in_constant_expr_p (postfix_expression)
&& cp_parser_non_integral_constant_expression (parser,
NIC_FUNC_CALL))
{
postfix_expression = error_mark_node;
release_tree_vector (args);
break;
}
koenig_p = false;
if (idk == CP_ID_KIND_UNQUALIFIED
|| idk == CP_ID_KIND_TEMPLATE_ID)
{
if (identifier_p (postfix_expression)
/* In C++2A, we may need to perform ADL for a template
name. */
|| (TREE_CODE (postfix_expression) == TEMPLATE_ID_EXPR
&& identifier_p (TREE_OPERAND (postfix_expression, 0))))
{
if (!args->is_empty ())
{
koenig_p = true;
if (!any_type_dependent_arguments_p (args))
postfix_expression
= perform_koenig_lookup (postfix_expression, args,
complain);
}
else
postfix_expression
= unqualified_fn_lookup_error (postfix_expression);
}
/* We do not perform argument-dependent lookup if
normal lookup finds a non-function, in accordance
with the expected resolution of DR 218. */
else if (!args->is_empty ()
&& is_overloaded_fn (postfix_expression))
{
/* We only need to look at the first function,
because all the fns share the attribute we're
concerned with (all member fns or all local
fns). */
tree fn = get_first_fn (postfix_expression);
fn = STRIP_TEMPLATE (fn);
/* Do not do argument dependent lookup if regular
lookup finds a member function or a block-scope
function declaration. [basic.lookup.argdep]/3 */
if (!((TREE_CODE (fn) == USING_DECL && DECL_DEPENDENT_P (fn))
|| DECL_FUNCTION_MEMBER_P (fn)
|| DECL_LOCAL_FUNCTION_P (fn)))
{
koenig_p = true;
if (!any_type_dependent_arguments_p (args))
postfix_expression
= perform_koenig_lookup (postfix_expression, args,
complain);
}
}
}
if (TREE_CODE (postfix_expression) == COMPONENT_REF)
{
tree instance = TREE_OPERAND (postfix_expression, 0);
tree fn = TREE_OPERAND (postfix_expression, 1);
if (processing_template_decl
&& (type_dependent_object_expression_p (instance)
|| (!BASELINK_P (fn)
&& TREE_CODE (fn) != FIELD_DECL)
|| type_dependent_expression_p (fn)
|| any_type_dependent_arguments_p (args)))
{
maybe_generic_this_capture (instance, fn);
postfix_expression
= build_min_nt_call_vec (postfix_expression, args);
release_tree_vector (args);
break;
}
if (BASELINK_P (fn))
{
postfix_expression
= (build_new_method_call
(instance, fn, &args, NULL_TREE,
(idk == CP_ID_KIND_QUALIFIED
? LOOKUP_NORMAL|LOOKUP_NONVIRTUAL
: LOOKUP_NORMAL),
/*fn_p=*/NULL,
complain));
}
else
postfix_expression
= finish_call_expr (postfix_expression, &args,
/*disallow_virtual=*/false,
/*koenig_p=*/false,
complain);
}
else if (TREE_CODE (postfix_expression) == OFFSET_REF
|| TREE_CODE (postfix_expression) == MEMBER_REF
|| TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
postfix_expression = (build_offset_ref_call_from_tree
(postfix_expression, &args,
complain));
else if (idk == CP_ID_KIND_QUALIFIED)
/* A call to a static class member, or a namespace-scope
function. */
postfix_expression
= finish_call_expr (postfix_expression, &args,
/*disallow_virtual=*/true,
koenig_p,
complain);
else
/* All other function calls. */
postfix_expression
= finish_call_expr (postfix_expression, &args,
/*disallow_virtual=*/false,
koenig_p,
complain);
if (close_paren_loc != UNKNOWN_LOCATION)
{
location_t combined_loc = make_location (token->location,
start_loc,
close_paren_loc);
postfix_expression.set_location (combined_loc);
}
/* The POSTFIX_EXPRESSION is certainly no longer an id. */
idk = CP_ID_KIND_NONE;
release_tree_vector (args);
}
break;
case CPP_DOT:
case CPP_DEREF:
/* postfix-expression . template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> template [opt] id-expression
postfix-expression -> pseudo-destructor-name */
/* Consume the `.' or `->' operator. */
cp_lexer_consume_token (parser->lexer);
postfix_expression
= cp_parser_postfix_dot_deref_expression (parser, token->type,
postfix_expression,
false, &idk, loc);
is_member_access = true;
break;
case CPP_PLUS_PLUS:
/* postfix-expression ++ */
/* Consume the `++' token. */
cp_lexer_consume_token (parser->lexer);
/* Generate a representation for the complete expression. */
postfix_expression
= finish_increment_expr (postfix_expression,
POSTINCREMENT_EXPR);
/* Increments may not appear in constant-expressions. */
if (cp_parser_non_integral_constant_expression (parser, NIC_INC))
postfix_expression = error_mark_node;
idk = CP_ID_KIND_NONE;
is_member_access = false;
break;
case CPP_MINUS_MINUS:
/* postfix-expression -- */
/* Consume the `--' token. */
cp_lexer_consume_token (parser->lexer);
/* Generate a representation for the complete expression. */
postfix_expression
= finish_increment_expr (postfix_expression,
POSTDECREMENT_EXPR);
/* Decrements may not appear in constant-expressions. */
if (cp_parser_non_integral_constant_expression (parser, NIC_DEC))
postfix_expression = error_mark_node;
idk = CP_ID_KIND_NONE;
is_member_access = false;
break;
default:
if (pidk_return != NULL)
* pidk_return = idk;
if (member_access_only_p)
return is_member_access
? postfix_expression
: cp_expr (error_mark_node);
else
return postfix_expression;
}
}
/* We should never get here. */
gcc_unreachable ();
return error_mark_node;
}
/* A subroutine of cp_parser_postfix_expression that also gets hijacked
by cp_parser_builtin_offsetof. We're looking for
postfix-expression [ expression ]
postfix-expression [ braced-init-list ] (C++11)
FOR_OFFSETOF is set if we're being called in that context, which
changes how we deal with integer constant expressions. */
static tree
cp_parser_postfix_open_square_expression (cp_parser *parser,
tree postfix_expression,
bool for_offsetof,
bool decltype_p)
{
tree index = NULL_TREE;
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
bool saved_greater_than_is_operator_p;
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
saved_greater_than_is_operator_p = parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
/* Parse the index expression. */
/* ??? For offsetof, there is a question of what to allow here. If
offsetof is not being used in an integral constant expression context,
then we *could* get the right answer by computing the value at runtime.
If we are in an integral constant expression context, then we might
could accept any constant expression; hard to say without analysis.
Rather than open the barn door too wide right away, allow only integer
constant expressions here. */
if (for_offsetof)
index = cp_parser_constant_expression (parser);
else
{
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
bool expr_nonconst_p;
cp_lexer_set_source_position (parser->lexer);
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
index = cp_parser_braced_list (parser, &expr_nonconst_p);
}
else
index = cp_parser_expression (parser);
}
parser->greater_than_is_operator_p = saved_greater_than_is_operator_p;
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
/* Build the ARRAY_REF. */
postfix_expression = grok_array_decl (loc, postfix_expression,
index, decltype_p);
/* When not doing offsetof, array references are not permitted in
constant-expressions. */
if (!for_offsetof
&& (cp_parser_non_integral_constant_expression (parser, NIC_ARRAY_REF)))
postfix_expression = error_mark_node;
return postfix_expression;
}
/* A subroutine of cp_parser_postfix_dot_deref_expression. Handle dot
dereference of incomplete type, returns true if error_mark_node should
be returned from caller, otherwise adjusts *SCOPE, *POSTFIX_EXPRESSION
and *DEPENDENT_P. */
bool
cp_parser_dot_deref_incomplete (tree *scope, cp_expr *postfix_expression,
bool *dependent_p)
{
/* In a template, be permissive by treating an object expression
of incomplete type as dependent (after a pedwarn). */
diagnostic_t kind = (processing_template_decl
&& MAYBE_CLASS_TYPE_P (*scope) ? DK_PEDWARN : DK_ERROR);
switch (TREE_CODE (*postfix_expression))
{
case CAST_EXPR:
case REINTERPRET_CAST_EXPR:
case CONST_CAST_EXPR:
case STATIC_CAST_EXPR:
case DYNAMIC_CAST_EXPR:
case IMPLICIT_CONV_EXPR:
case VIEW_CONVERT_EXPR:
case NON_LVALUE_EXPR:
kind = DK_ERROR;
break;
case OVERLOAD:
/* Don't emit any diagnostic for OVERLOADs. */
kind = DK_IGNORED;
break;
default:
/* Avoid clobbering e.g. DECLs. */
if (!EXPR_P (*postfix_expression))
kind = DK_ERROR;
break;
}
if (kind == DK_IGNORED)
return false;
location_t exploc = location_of (*postfix_expression);
cxx_incomplete_type_diagnostic (exploc, *postfix_expression, *scope, kind);
if (!MAYBE_CLASS_TYPE_P (*scope))
return true;
if (kind == DK_ERROR)
*scope = *postfix_expression = error_mark_node;
else if (processing_template_decl)
{
*dependent_p = true;
*scope = TREE_TYPE (*postfix_expression) = NULL_TREE;
}
return false;
}
/* A subroutine of cp_parser_postfix_expression that also gets hijacked
by cp_parser_builtin_offsetof. We're looking for
postfix-expression . template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> template [opt] id-expression
postfix-expression -> pseudo-destructor-name
FOR_OFFSETOF is set if we're being called in that context. That sorta
limits what of the above we'll actually accept, but nevermind.
TOKEN_TYPE is the "." or "->" token, which will already have been
removed from the stream. */
static tree
cp_parser_postfix_dot_deref_expression (cp_parser *parser,
enum cpp_ttype token_type,
cp_expr postfix_expression,
bool for_offsetof, cp_id_kind *idk,
location_t location)
{
tree name;
bool dependent_p;
bool pseudo_destructor_p;
tree scope = NULL_TREE;
location_t start_loc = postfix_expression.get_start ();
/* If this is a `->' operator, dereference the pointer. */
if (token_type == CPP_DEREF)
postfix_expression = build_x_arrow (location, postfix_expression,
tf_warning_or_error);
/* Check to see whether or not the expression is type-dependent and
not the current instantiation. */
dependent_p = type_dependent_object_expression_p (postfix_expression);
/* The identifier following the `->' or `.' is not qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
*idk = CP_ID_KIND_NONE;
/* Enter the scope corresponding to the type of the object
given by the POSTFIX_EXPRESSION. */
if (!dependent_p)
{
scope = TREE_TYPE (postfix_expression);
/* According to the standard, no expression should ever have
reference type. Unfortunately, we do not currently match
the standard in this respect in that our internal representation
of an expression may have reference type even when the standard
says it does not. Therefore, we have to manually obtain the
underlying type here. */
scope = non_reference (scope);
/* The type of the POSTFIX_EXPRESSION must be complete. */
/* Unlike the object expression in other contexts, *this is not
required to be of complete type for purposes of class member
access (5.2.5) outside the member function body. */
if (postfix_expression != current_class_ref
&& scope != error_mark_node
&& !currently_open_class (scope))
{
scope = complete_type (scope);
if (!COMPLETE_TYPE_P (scope)
&& cp_parser_dot_deref_incomplete (&scope, &postfix_expression,
&dependent_p))
return error_mark_node;
}
if (!dependent_p)
{
/* Let the name lookup machinery know that we are processing a
class member access expression. */
parser->context->object_type = scope;
/* If something went wrong, we want to be able to discern that case,
as opposed to the case where there was no SCOPE due to the type
of expression being dependent. */
if (!scope)
scope = error_mark_node;
/* If the SCOPE was erroneous, make the various semantic analysis
functions exit quickly -- and without issuing additional error
messages. */
if (scope == error_mark_node)
postfix_expression = error_mark_node;
}
}
if (dependent_p)
/* Tell cp_parser_lookup_name that there was an object, even though it's
type-dependent. */
parser->context->object_type = unknown_type_node;
/* Assume this expression is not a pseudo-destructor access. */
pseudo_destructor_p = false;
/* If the SCOPE is a scalar type, then, if this is a valid program,
we must be looking at a pseudo-destructor-name. If POSTFIX_EXPRESSION
is type dependent, it can be pseudo-destructor-name or something else.
Try to parse it as pseudo-destructor-name first. */
if ((scope && SCALAR_TYPE_P (scope)) || dependent_p)
{
tree s;
tree type;
cp_parser_parse_tentatively (parser);
/* Parse the pseudo-destructor-name. */
s = NULL_TREE;
cp_parser_pseudo_destructor_name (parser, postfix_expression,
&s, &type);
if (dependent_p
&& (cp_parser_error_occurred (parser)
|| !SCALAR_TYPE_P (type)))
cp_parser_abort_tentative_parse (parser);
else if (cp_parser_parse_definitely (parser))
{
pseudo_destructor_p = true;
postfix_expression
= finish_pseudo_destructor_expr (postfix_expression,
s, type, location);
}
}
if (!pseudo_destructor_p)
{
/* If the SCOPE is not a scalar type, we are looking at an
ordinary class member access expression, rather than a
pseudo-destructor-name. */
bool template_p;
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* Parse the id-expression. */
name = (cp_parser_id_expression
(parser,
cp_parser_optional_template_keyword (parser),
/*check_dependency_p=*/true,
&template_p,
/*declarator_p=*/false,
/*optional_p=*/false));
/* In general, build a SCOPE_REF if the member name is qualified.
However, if the name was not dependent and has already been
resolved; there is no need to build the SCOPE_REF. For example;
struct X { void f(); };
template <typename T> void f(T* t) { t->X::f(); }
Even though "t" is dependent, "X::f" is not and has been resolved
to a BASELINK; there is no need to include scope information. */
/* But we do need to remember that there was an explicit scope for
virtual function calls. */
if (parser->scope)
*idk = CP_ID_KIND_QUALIFIED;
/* If the name is a template-id that names a type, we will get a
TYPE_DECL here. That is invalid code. */
if (TREE_CODE (name) == TYPE_DECL)
{
error_at (token->location, "invalid use of %qD", name);
postfix_expression = error_mark_node;
}
else
{
if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
{
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
{
error_at (token->location, "%<%D::%D%> is not a class member",
parser->scope, name);
postfix_expression = error_mark_node;
}
else
name = build_qualified_name (/*type=*/NULL_TREE,
parser->scope,
name,
template_p);
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
if (parser->scope && name && BASELINK_P (name))
adjust_result_of_qualified_name_lookup
(name, parser->scope, scope);
postfix_expression
= finish_class_member_access_expr (postfix_expression, name,
template_p,
tf_warning_or_error);
/* Build a location e.g.:
ptr->access_expr
~~~^~~~~~~~~~~~~
where the caret is at the deref token, ranging from
the start of postfix_expression to the end of the access expr. */
location_t end_loc
= get_finish (cp_lexer_previous_token (parser->lexer)->location);
location_t combined_loc
= make_location (input_location, start_loc, end_loc);
protected_set_expr_location (postfix_expression, combined_loc);
}
}
/* We no longer need to look up names in the scope of the object on
the left-hand side of the `.' or `->' operator. */
parser->context->object_type = NULL_TREE;
/* Outside of offsetof, these operators may not appear in
constant-expressions. */
if (!for_offsetof
&& (cp_parser_non_integral_constant_expression
(parser, token_type == CPP_DEREF ? NIC_ARROW : NIC_POINT)))
postfix_expression = error_mark_node;
return postfix_expression;
}
/* Parse a parenthesized expression-list.
expression-list:
assignment-expression
expression-list, assignment-expression
attribute-list:
expression-list
identifier
identifier, expression-list
CAST_P is true if this expression is the target of a cast.
ALLOW_EXPANSION_P is true if this expression allows expansion of an
argument pack.
WRAP_LOCATIONS_P is true if expressions within this list for which
CAN_HAVE_LOCATION_P is false should be wrapped with nodes expressing
their source locations.
Returns a vector of trees. Each element is a representation of an
assignment-expression. NULL is returned if the ( and or ) are
missing. An empty, but allocated, vector is returned on no
expressions. The parentheses are eaten. IS_ATTRIBUTE_LIST is id_attr
if we are parsing an attribute list for an attribute that wants a
plain identifier argument, normal_attr for an attribute that wants
an expression, or non_attr if we aren't parsing an attribute list. If
NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P indicates whether or
not all of the expressions in the list were constant.
If CLOSE_PAREN_LOC is non-NULL, and no errors occur, then *CLOSE_PAREN_LOC
will be written to with the location of the closing parenthesis. If
an error occurs, it may or may not be written to. */
static vec<tree, va_gc> *
cp_parser_parenthesized_expression_list (cp_parser* parser,
int is_attribute_list,
bool cast_p,
bool allow_expansion_p,
bool *non_constant_p,
location_t *close_paren_loc,
bool wrap_locations_p)
{
vec<tree, va_gc> *expression_list;
bool fold_expr_p = is_attribute_list != non_attr;
tree identifier = NULL_TREE;
bool saved_greater_than_is_operator_p;
/* Assume all the expressions will be constant. */
if (non_constant_p)
*non_constant_p = false;
matching_parens parens;
if (!parens.require_open (parser))
return NULL;
expression_list = make_tree_vector ();
/* Within a parenthesized expression, a `>' token is always
the greater-than operator. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
cp_expr expr (NULL_TREE);
/* Consume expressions until there are no more. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
while (true)
{
/* At the beginning of attribute lists, check to see if the
next token is an identifier. */
if (is_attribute_list == id_attr
&& cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
{
cp_token *token;
/* Consume the identifier. */
token = cp_lexer_consume_token (parser->lexer);
/* Save the identifier. */
identifier = token->u.value;
}
else
{
bool expr_non_constant_p;
/* Parse the next assignment-expression. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
/* A braced-init-list. */
cp_lexer_set_source_position (parser->lexer);
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
expr = cp_parser_braced_list (parser, &expr_non_constant_p);
if (non_constant_p && expr_non_constant_p)
*non_constant_p = true;
}
else if (non_constant_p)
{
expr = (cp_parser_constant_expression
(parser, /*allow_non_constant_p=*/true,
&expr_non_constant_p));
if (expr_non_constant_p)
*non_constant_p = true;
}
else
expr = cp_parser_assignment_expression (parser, /*pidk=*/NULL,
cast_p);
if (fold_expr_p)
expr = instantiate_non_dependent_expr (expr);
/* If we have an ellipsis, then this is an expression
expansion. */
if (allow_expansion_p
&& cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
/* Consume the `...'. */
cp_lexer_consume_token (parser->lexer);
/* Build the argument pack. */
expr = make_pack_expansion (expr);
}
if (wrap_locations_p)
expr.maybe_add_location_wrapper ();
/* Add it to the list. We add error_mark_node
expressions to the list, so that we can still tell if
the correct form for a parenthesized expression-list
is found. That gives better errors. */
vec_safe_push (expression_list, expr.get_value ());
if (expr == error_mark_node)
goto skip_comma;
}
/* After the first item, attribute lists look the same as
expression lists. */
is_attribute_list = non_attr;
get_comma:;
/* If the next token isn't a `,', then we are done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Otherwise, consume the `,' and keep going. */
cp_lexer_consume_token (parser->lexer);
}
if (close_paren_loc)
*close_paren_loc = cp_lexer_peek_token (parser->lexer)->location;
if (!parens.require_close (parser))
{
int ending;
skip_comma:;
/* We try and resync to an unnested comma, as that will give the
user better diagnostics. */
ending = cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/true,
/*consume_paren=*/true);
if (ending < 0)
goto get_comma;
if (!ending)
{
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
return NULL;
}
}
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
if (identifier)
vec_safe_insert (expression_list, 0, identifier);
return expression_list;
}
/* Parse a pseudo-destructor-name.
pseudo-destructor-name:
:: [opt] nested-name-specifier [opt] type-name :: ~ type-name
:: [opt] nested-name-specifier template template-id :: ~ type-name
:: [opt] nested-name-specifier [opt] ~ type-name
If either of the first two productions is used, sets *SCOPE to the
TYPE specified before the final `::'. Otherwise, *SCOPE is set to
NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
or ERROR_MARK_NODE if the parse fails. */
static void
cp_parser_pseudo_destructor_name (cp_parser* parser,
tree object,
tree* scope,
tree* type)
{
bool nested_name_specifier_p;
/* Handle ~auto. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMPL)
&& cp_lexer_nth_token_is_keyword (parser->lexer, 2, RID_AUTO)
&& !type_dependent_expression_p (object))
{
if (cxx_dialect < cxx14)
pedwarn (input_location, 0,
"%<~auto%> only available with "
"%<-std=c++14%> or %<-std=gnu++14%>");
cp_lexer_consume_token (parser->lexer);
cp_lexer_consume_token (parser->lexer);
*scope = NULL_TREE;
*type = TREE_TYPE (object);
return;
}
/* Assume that things will not work out. */
*type = error_mark_node;
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
/* Look for the optional nested-name-specifier. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/false)
!= NULL_TREE);
/* Now, if we saw a nested-name-specifier, we might be doing the
second production. */
if (nested_name_specifier_p
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* Consume the `template' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Parse the template-id. */
cp_parser_template_id (parser,
/*template_keyword_p=*/true,
/*check_dependency_p=*/false,
class_type,
/*is_declaration=*/true);
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, RT_SCOPE);
}
/* If the next token is not a `~', then there might be some
additional qualification. */
else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
{
/* At this point, we're looking for "type-name :: ~". The type-name
must not be a class-name, since this is a pseudo-destructor. So,
it must be either an enum-name, or a typedef-name -- both of which
are just identifiers. So, we peek ahead to check that the "::"
and "~" tokens are present; if they are not, then we can avoid
calling type_name. */
if (cp_lexer_peek_token (parser->lexer)->type != CPP_NAME
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE
|| cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_COMPL)
{
cp_parser_error (parser, "non-scalar type");
return;
}
/* Look for the type-name. */
*scope = TREE_TYPE (cp_parser_nonclass_name (parser));
if (*scope == error_mark_node)
return;
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, RT_SCOPE);
}
else
*scope = NULL_TREE;
/* Look for the `~'. */
cp_parser_require (parser, CPP_COMPL, RT_COMPL);
/* Once we see the ~, this has to be a pseudo-destructor. */
if (!processing_template_decl && !cp_parser_error_occurred (parser))
cp_parser_commit_to_topmost_tentative_parse (parser);
/* Look for the type-name again. We are not responsible for
checking that it matches the first type-name. */
*type = TREE_TYPE (cp_parser_nonclass_name (parser));
}
/* Parse a unary-expression.
unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
alignof ( type-id ) [C++0x]
new-expression
delete-expression
GNU Extensions:
unary-expression:
__extension__ cast-expression
__alignof__ unary-expression
__alignof__ ( type-id )
alignof unary-expression [C++0x]
__real__ cast-expression
__imag__ cast-expression
&& identifier
sizeof ( type-id ) { initializer-list , [opt] }
alignof ( type-id ) { initializer-list , [opt] } [C++0x]
__alignof__ ( type-id ) { initializer-list , [opt] }
ADDRESS_P is true iff the unary-expression is appearing as the
operand of the `&' operator. CAST_P is true if this expression is
the target of a cast.
Returns a representation of the expression. */
static cp_expr
cp_parser_unary_expression (cp_parser *parser, cp_id_kind * pidk,
bool address_p, bool cast_p, bool decltype_p)
{
cp_token *token;
enum tree_code unary_operator;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Some keywords give away the kind of expression. */
if (token->type == CPP_KEYWORD)
{
enum rid keyword = token->keyword;
switch (keyword)
{
case RID_ALIGNOF:
case RID_SIZEOF:
{
tree operand, ret;
enum tree_code op;
location_t start_loc = token->location;
op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
bool std_alignof = id_equal (token->u.value, "alignof");
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the operand. */
operand = cp_parser_sizeof_operand (parser, keyword);
if (TYPE_P (operand))
ret = cxx_sizeof_or_alignof_type (operand, op, std_alignof,
true);
else
{
/* ISO C++ defines alignof only with types, not with
expressions. So pedwarn if alignof is used with a non-
type expression. However, __alignof__ is ok. */
if (std_alignof)
pedwarn (token->location, OPT_Wpedantic,
"ISO C++ does not allow %<alignof%> "
"with a non-type");
ret = cxx_sizeof_or_alignof_expr (operand, op, true);
}
/* For SIZEOF_EXPR, just issue diagnostics, but keep
SIZEOF_EXPR with the original operand. */
if (op == SIZEOF_EXPR && ret != error_mark_node)
{
if (TREE_CODE (ret) != SIZEOF_EXPR || TYPE_P (operand))
{
if (!processing_template_decl && TYPE_P (operand))
{
ret = build_min (SIZEOF_EXPR, size_type_node,
build1 (NOP_EXPR, operand,
error_mark_node));
SIZEOF_EXPR_TYPE_P (ret) = 1;
}
else
ret = build_min (SIZEOF_EXPR, size_type_node, operand);
TREE_SIDE_EFFECTS (ret) = 0;
TREE_READONLY (ret) = 1;
}
}
/* Construct a location e.g. :
alignof (expr)
^~~~~~~~~~~~~~
with start == caret at the start of the "alignof"/"sizeof"
token, with the endpoint at the final closing paren. */
location_t finish_loc
= cp_lexer_previous_token (parser->lexer)->location;
location_t compound_loc
= make_location (start_loc, start_loc, finish_loc);
cp_expr ret_expr (ret);
ret_expr.set_location (compound_loc);
ret_expr = ret_expr.maybe_add_location_wrapper ();
return ret_expr;
}
case RID_BUILTIN_HAS_ATTRIBUTE:
return cp_parser_has_attribute_expression (parser);
case RID_NEW:
return cp_parser_new_expression (parser);
case RID_DELETE:
return cp_parser_delete_expression (parser);
case RID_EXTENSION:
{
/* The saved value of the PEDANTIC flag. */
int saved_pedantic;
tree expr;
/* Save away the PEDANTIC flag. */
cp_parser_extension_opt (parser, &saved_pedantic);
/* Parse the cast-expression. */
expr = cp_parser_simple_cast_expression (parser);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return expr;
}
case RID_REALPART:
case RID_IMAGPART:
{
tree expression;
/* Consume the `__real__' or `__imag__' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the cast-expression. */
expression = cp_parser_simple_cast_expression (parser);
/* Create the complete representation. */
return build_x_unary_op (token->location,
(keyword == RID_REALPART
? REALPART_EXPR : IMAGPART_EXPR),
expression,
tf_warning_or_error);
}
break;
case RID_TRANSACTION_ATOMIC:
case RID_TRANSACTION_RELAXED:
return cp_parser_transaction_expression (parser, keyword);
case RID_NOEXCEPT:
{
tree expr;
const char *saved_message;
bool saved_integral_constant_expression_p;
bool saved_non_integral_constant_expression_p;
bool saved_greater_than_is_operator_p;
location_t start_loc = token->location;
cp_lexer_consume_token (parser->lexer);
matching_parens parens;
parens.require_open (parser);
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in %<noexcept%> expressions");
saved_integral_constant_expression_p
= parser->integral_constant_expression_p;
saved_non_integral_constant_expression_p
= parser->non_integral_constant_expression_p;
parser->integral_constant_expression_p = false;
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
++cp_unevaluated_operand;
++c_inhibit_evaluation_warnings;
++cp_noexcept_operand;
expr = cp_parser_expression (parser);
--cp_noexcept_operand;
--c_inhibit_evaluation_warnings;
--cp_unevaluated_operand;
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
parser->type_definition_forbidden_message = saved_message;
location_t finish_loc
= cp_lexer_peek_token (parser->lexer)->location;
parens.require_close (parser);
/* Construct a location of the form:
noexcept (expr)
^~~~~~~~~~~~~~~
with start == caret, finishing at the close-paren. */
location_t noexcept_loc
= make_location (start_loc, start_loc, finish_loc);
return cp_expr (finish_noexcept_expr (expr, tf_warning_or_error),
noexcept_loc);
}
default:
break;
}
}
/* Look for the `:: new' and `:: delete', which also signal the
beginning of a new-expression, or delete-expression,
respectively. If the next token is `::', then it might be one of
these. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
{
enum rid keyword;
/* See if the token after the `::' is one of the keywords in
which we're interested. */
keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
/* If it's `new', we have a new-expression. */
if (keyword == RID_NEW)
return cp_parser_new_expression (parser);
/* Similarly, for `delete'. */
else if (keyword == RID_DELETE)
return cp_parser_delete_expression (parser);
}
/* Look for a unary operator. */
unary_operator = cp_parser_unary_operator (token);
/* The `++' and `--' operators can be handled similarly, even though
they are not technically unary-operators in the grammar. */
if (unary_operator == ERROR_MARK)
{
if (token->type == CPP_PLUS_PLUS)
unary_operator = PREINCREMENT_EXPR;
else if (token->type == CPP_MINUS_MINUS)
unary_operator = PREDECREMENT_EXPR;
/* Handle the GNU address-of-label extension. */
else if (cp_parser_allow_gnu_extensions_p (parser)
&& token->type == CPP_AND_AND)
{
tree identifier;
tree expression;
location_t start_loc = token->location;
/* Consume the '&&' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the identifier. */
location_t finish_loc
= get_finish (cp_lexer_peek_token (parser->lexer)->location);
identifier = cp_parser_identifier (parser);
/* Construct a location of the form:
&&label
^~~~~~~
with caret==start at the "&&", finish at the end of the label. */
location_t combined_loc
= make_location (start_loc, start_loc, finish_loc);
/* Create an expression representing the address. */
expression = finish_label_address_expr (identifier, combined_loc);
if (cp_parser_non_integral_constant_expression (parser,
NIC_ADDR_LABEL))
expression = error_mark_node;
return expression;
}
}
if (unary_operator != ERROR_MARK)
{
cp_expr cast_expression;
cp_expr expression = error_mark_node;
non_integral_constant non_constant_p = NIC_NONE;
location_t loc = token->location;
tsubst_flags_t complain = complain_flags (decltype_p);
/* Consume the operator token. */
token = cp_lexer_consume_token (parser->lexer);
enum cpp_ttype op_ttype = cp_lexer_peek_token (parser->lexer)->type;
/* Parse the cast-expression. */
cast_expression
= cp_parser_cast_expression (parser,
unary_operator == ADDR_EXPR,
/*cast_p=*/false,
/*decltype*/false,
pidk);
/* Make a location:
OP_TOKEN CAST_EXPRESSION
^~~~~~~~~~~~~~~~~~~~~~~~~
with start==caret at the operator token, and
extending to the end of the cast_expression. */
loc = make_location (loc, loc, cast_expression.get_finish ());
/* Now, build an appropriate representation. */
switch (unary_operator)
{
case INDIRECT_REF:
non_constant_p = NIC_STAR;
expression = build_x_indirect_ref (loc, cast_expression,
RO_UNARY_STAR,
complain);
/* TODO: build_x_indirect_ref does not always honor the
location, so ensure it is set. */
expression.set_location (loc);
break;
case ADDR_EXPR:
non_constant_p = NIC_ADDR;
/* Fall through. */
case BIT_NOT_EXPR:
expression = build_x_unary_op (loc, unary_operator,
cast_expression,
complain);
/* TODO: build_x_unary_op does not always honor the location,
so ensure it is set. */
expression.set_location (loc);
break;
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
non_constant_p = unary_operator == PREINCREMENT_EXPR
? NIC_PREINCREMENT : NIC_PREDECREMENT;
/* Fall through. */
case NEGATE_EXPR:
/* Immediately fold negation of a constant, unless the constant is 0
(since -0 == 0) or it would overflow. */
if (unary_operator == NEGATE_EXPR && op_ttype == CPP_NUMBER)
{
tree stripped_expr
= tree_strip_any_location_wrapper (cast_expression);
if (CONSTANT_CLASS_P (stripped_expr)
&& !integer_zerop (stripped_expr)
&& !TREE_OVERFLOW (stripped_expr))
{
tree folded = fold_build1 (unary_operator,
TREE_TYPE (stripped_expr),
stripped_expr);
if (CONSTANT_CLASS_P (folded) && !TREE_OVERFLOW (folded))
{
expression = maybe_wrap_with_location (folded, loc);
break;
}
}
}
/* Fall through. */
case UNARY_PLUS_EXPR:
case TRUTH_NOT_EXPR:
expression = finish_unary_op_expr (loc, unary_operator,
cast_expression, complain);
break;
default:
gcc_unreachable ();
}
if (non_constant_p != NIC_NONE
&& cp_parser_non_integral_constant_expression (parser,
non_constant_p))
expression = error_mark_node;
return expression;
}
return cp_parser_postfix_expression (parser, address_p, cast_p,
/*member_access_only_p=*/false,
decltype_p,
pidk);
}
/* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
unary-operator, the corresponding tree code is returned. */
static enum tree_code
cp_parser_unary_operator (cp_token* token)
{
switch (token->type)
{
case CPP_MULT:
return INDIRECT_REF;
case CPP_AND:
return ADDR_EXPR;
case CPP_PLUS:
return UNARY_PLUS_EXPR;
case CPP_MINUS:
return NEGATE_EXPR;
case CPP_NOT:
return TRUTH_NOT_EXPR;
case CPP_COMPL:
return BIT_NOT_EXPR;
default:
return ERROR_MARK;
}
}
/* Parse a __builtin_has_attribute([expr|type], attribute-spec) expression.
Returns a representation of the expression. */
static tree
cp_parser_has_attribute_expression (cp_parser *parser)
{
location_t start_loc = cp_lexer_peek_token (parser->lexer)->location;
/* Consume the __builtin_has_attribute token. */
cp_lexer_consume_token (parser->lexer);
matching_parens parens;
if (!parens.require_open (parser))
return error_mark_node;
/* Types cannot be defined in a `sizeof' expression. Save away the
old message. */
const char *saved_message = parser->type_definition_forbidden_message;
const char *saved_message_arg
= parser->type_definition_forbidden_message_arg;
parser->type_definition_forbidden_message
= G_("types may not be defined in %qs expressions");
parser->type_definition_forbidden_message_arg
= IDENTIFIER_POINTER (ridpointers[RID_BUILTIN_HAS_ATTRIBUTE]);
/* The restrictions on constant-expressions do not apply inside
sizeof expressions. */
bool saved_integral_constant_expression_p
= parser->integral_constant_expression_p;
bool saved_non_integral_constant_expression_p
= parser->non_integral_constant_expression_p;
parser->integral_constant_expression_p = false;
/* Do not actually evaluate the expression. */
++cp_unevaluated_operand;
++c_inhibit_evaluation_warnings;
tree oper = NULL_TREE;
/* We can't be sure yet whether we're looking at a type-id or an
expression. */
cp_parser_parse_tentatively (parser);
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
/* Look for the type-id. */
oper = cp_parser_type_id (parser);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
cp_parser_parse_definitely (parser);
/* If the type-id production did not work out, then we must be
looking at an expression. */
if (!oper || oper == error_mark_node)
oper = cp_parser_assignment_expression (parser);
STRIP_ANY_LOCATION_WRAPPER (oper);
/* Go back to evaluating expressions. */
--cp_unevaluated_operand;
--c_inhibit_evaluation_warnings;
/* And restore the old one. */
parser->type_definition_forbidden_message = saved_message;
parser->type_definition_forbidden_message_arg = saved_message_arg;
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
/* Consume the comma if it's there. */
if (!cp_parser_require (parser, CPP_COMMA, RT_COMMA))
{
cp_parser_skip_to_closing_parenthesis (parser, false, false,
/*consume_paren=*/true);
return error_mark_node;
}
/* Parse the attribute specification. */
bool ret = false;
location_t atloc = cp_lexer_peek_token (parser->lexer)->location;
if (tree attr = cp_parser_gnu_attribute_list (parser, /*exactly_one=*/true))
{
if (oper != error_mark_node)
{
/* Fold constant expressions used in attributes first. */
cp_check_const_attributes (attr);
/* Finally, see if OPER has been declared with ATTR. */
ret = has_attribute (atloc, oper, attr, default_conversion);
}
parens.require_close (parser);
}
else
{
error_at (atloc, "expected identifier");
cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
}
/* Construct a location e.g. :
__builtin_has_attribute (oper, attr)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with start == caret at the start of the built-in token,
and with the endpoint at the final closing paren. */
location_t finish_loc
= cp_lexer_previous_token (parser->lexer)->location;
location_t compound_loc
= make_location (start_loc, start_loc, finish_loc);
cp_expr ret_expr (ret ? boolean_true_node : boolean_false_node);
ret_expr.set_location (compound_loc);
ret_expr = ret_expr.maybe_add_location_wrapper ();
return ret_expr;
}
/* Parse a new-expression.
new-expression:
:: [opt] new new-placement [opt] new-type-id new-initializer [opt]
:: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
Returns a representation of the expression. */
static tree
cp_parser_new_expression (cp_parser* parser)
{
bool global_scope_p;
vec<tree, va_gc> *placement;
tree type;
vec<tree, va_gc> *initializer;
tree nelts = NULL_TREE;
tree ret;
location_t start_loc = cp_lexer_peek_token (parser->lexer)->location;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the `new' operator. */
cp_parser_require_keyword (parser, RID_NEW, RT_NEW);
/* There's no easy way to tell a new-placement from the
`( type-id )' construct. */
cp_parser_parse_tentatively (parser);
/* Look for a new-placement. */
placement = cp_parser_new_placement (parser);
/* If that didn't work out, there's no new-placement. */
if (!cp_parser_parse_definitely (parser))
{
if (placement != NULL)
release_tree_vector (placement);
placement = NULL;
}
/* If the next token is a `(', then we have a parenthesized
type-id. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
cp_token *token;
const char *saved_message = parser->type_definition_forbidden_message;
/* Consume the `('. */
matching_parens parens;
parens.consume_open (parser);
/* Parse the type-id. */
parser->type_definition_forbidden_message
= G_("types may not be defined in a new-expression");
{
type_id_in_expr_sentinel s (parser);
type = cp_parser_type_id (parser);
}
parser->type_definition_forbidden_message = saved_message;
/* Look for the closing `)'. */
parens.require_close (parser);
token = cp_lexer_peek_token (parser->lexer);
/* There should not be a direct-new-declarator in this production,
but GCC used to allowed this, so we check and emit a sensible error
message for this case. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
error_at (token->location,
"array bound forbidden after parenthesized type-id");
inform (token->location,
"try removing the parentheses around the type-id");
cp_parser_direct_new_declarator (parser);
}
}
/* Otherwise, there must be a new-type-id. */
else
type = cp_parser_new_type_id (parser, &nelts);
/* If the next token is a `(' or '{', then we have a new-initializer. */
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_BRACE)
initializer = cp_parser_new_initializer (parser);
else
initializer = NULL;
/* A new-expression may not appear in an integral constant
expression. */
if (cp_parser_non_integral_constant_expression (parser, NIC_NEW))
ret = error_mark_node;
/* 5.3.4/2: "If the auto type-specifier appears in the type-specifier-seq
of a new-type-id or type-id of a new-expression, the new-expression shall
contain a new-initializer of the form ( assignment-expression )".
Additionally, consistently with the spirit of DR 1467, we want to accept
'new auto { 2 }' too. */
else if ((ret = type_uses_auto (type))
&& !CLASS_PLACEHOLDER_TEMPLATE (ret)
&& (vec_safe_length (initializer) != 1
|| (BRACE_ENCLOSED_INITIALIZER_P ((*initializer)[0])
&& CONSTRUCTOR_NELTS ((*initializer)[0]) != 1)))
{
error_at (token->location,
"initialization of new-expression for type %<auto%> "
"requires exactly one element");
ret = error_mark_node;
}
else
{
/* Construct a location e.g.:
ptr = new int[100]
^~~~~~~~~~~~
with caret == start at the start of the "new" token, and the end
at the end of the final token we consumed. */
cp_token *end_tok = cp_lexer_previous_token (parser->lexer);
location_t end_loc = get_finish (end_tok->location);
location_t combined_loc = make_location (start_loc, start_loc, end_loc);
/* Create a representation of the new-expression. */
ret = build_new (&placement, type, nelts, &initializer, global_scope_p,
tf_warning_or_error);
protected_set_expr_location (ret, combined_loc);
}
if (placement != NULL)
release_tree_vector (placement);
if (initializer != NULL)
release_tree_vector (initializer);
return ret;
}
/* Parse a new-placement.
new-placement:
( expression-list )
Returns the same representation as for an expression-list. */
static vec<tree, va_gc> *
cp_parser_new_placement (cp_parser* parser)
{
vec<tree, va_gc> *expression_list;
/* Parse the expression-list. */
expression_list = (cp_parser_parenthesized_expression_list
(parser, non_attr, /*cast_p=*/false,
/*allow_expansion_p=*/true,
/*non_constant_p=*/NULL));
if (expression_list && expression_list->is_empty ())
error ("expected expression-list or type-id");
return expression_list;
}
/* Parse a new-type-id.
new-type-id:
type-specifier-seq new-declarator [opt]
Returns the TYPE allocated. If the new-type-id indicates an array
type, *NELTS is set to the number of elements in the last array
bound; the TYPE will not include the last array bound. */
static tree
cp_parser_new_type_id (cp_parser* parser, tree *nelts)
{
cp_decl_specifier_seq type_specifier_seq;
cp_declarator *new_declarator;
cp_declarator *declarator;
cp_declarator *outer_declarator;
const char *saved_message;
/* The type-specifier sequence must not contain type definitions.
(It cannot contain declarations of new types either, but if they
are not definitions we will catch that because they are not
complete.) */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in a new-type-id");
/* Parse the type-specifier-seq. */
cp_parser_type_specifier_seq (parser, CP_PARSER_FLAGS_TYPENAME_OPTIONAL,
/*is_declaration=*/false,
/*is_trailing_return=*/false,
&type_specifier_seq);
/* Restore the old message. */
parser->type_definition_forbidden_message = saved_message;
if (type_specifier_seq.type == error_mark_node)
return error_mark_node;
/* Parse the new-declarator. */
new_declarator = cp_parser_new_declarator_opt (parser);
/* Determine the number of elements in the last array dimension, if
any. */
*nelts = NULL_TREE;
/* Skip down to the last array dimension. */
declarator = new_declarator;
outer_declarator = NULL;
while (declarator && (declarator->kind == cdk_pointer
|| declarator->kind == cdk_ptrmem))
{
outer_declarator = declarator;
declarator = declarator->declarator;
}
while (declarator
&& declarator->kind == cdk_array
&& declarator->declarator
&& declarator->declarator->kind == cdk_array)
{
outer_declarator = declarator;
declarator = declarator->declarator;
}
if (declarator && declarator->kind == cdk_array)
{
*nelts = declarator->u.array.bounds;
if (*nelts == error_mark_node)
*nelts = integer_one_node;
if (outer_declarator)
outer_declarator->declarator = declarator->declarator;
else
new_declarator = NULL;
}
return groktypename (&type_specifier_seq, new_declarator, false);
}
/* Parse an (optional) new-declarator.
new-declarator:
ptr-operator new-declarator [opt]
direct-new-declarator
Returns the declarator. */
static cp_declarator *
cp_parser_new_declarator_opt (cp_parser* parser)
{
enum tree_code code;
tree type, std_attributes = NULL_TREE;
cp_cv_quals cv_quals;
/* We don't know if there's a ptr-operator next, or not. */
cp_parser_parse_tentatively (parser);
/* Look for a ptr-operator. */
code = cp_parser_ptr_operator (parser, &type, &cv_quals, &std_attributes);
/* If that worked, look for more new-declarators. */
if (cp_parser_parse_definitely (parser))
{
cp_declarator *declarator;
/* Parse another optional declarator. */
declarator = cp_parser_new_declarator_opt (parser);
declarator = cp_parser_make_indirect_declarator
(code, type, cv_quals, declarator, std_attributes);
return declarator;
}
/* If the next token is a `[', there is a direct-new-declarator. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
return cp_parser_direct_new_declarator (parser);
return NULL;
}
/* Parse a direct-new-declarator.
direct-new-declarator:
[ expression ]
direct-new-declarator [constant-expression]
*/
static cp_declarator *
cp_parser_direct_new_declarator (cp_parser* parser)
{
cp_declarator *declarator = NULL;
while (true)
{
tree expression;
cp_token *token;
/* Look for the opening `['. */
cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE);
token = cp_lexer_peek_token (parser->lexer);
expression = cp_parser_expression (parser);
/* The standard requires that the expression have integral
type. DR 74 adds enumeration types. We believe that the
real intent is that these expressions be handled like the
expression in a `switch' condition, which also allows
classes with a single conversion to integral or
enumeration type. */
if (!processing_template_decl)
{
expression
= build_expr_type_conversion (WANT_INT | WANT_ENUM,
expression,
/*complain=*/true);
if (!expression)
{
error_at (token->location,
"expression in new-declarator must have integral "
"or enumeration type");
expression = error_mark_node;
}
}
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
/* Add this bound to the declarator. */
declarator = make_array_declarator (declarator, expression);
/* If the next token is not a `[', then there are no more
bounds. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
break;
}
return declarator;
}
/* Parse a new-initializer.
new-initializer:
( expression-list [opt] )
braced-init-list
Returns a representation of the expression-list. */
static vec<tree, va_gc> *
cp_parser_new_initializer (cp_parser* parser)
{
vec<tree, va_gc> *expression_list;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
tree t;
bool expr_non_constant_p;
cp_lexer_set_source_position (parser->lexer);
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
t = cp_parser_braced_list (parser, &expr_non_constant_p);
CONSTRUCTOR_IS_DIRECT_INIT (t) = 1;
expression_list = make_tree_vector_single (t);
}
else
expression_list = (cp_parser_parenthesized_expression_list
(parser, non_attr, /*cast_p=*/false,
/*allow_expansion_p=*/true,
/*non_constant_p=*/NULL));
return expression_list;
}
/* Parse a delete-expression.
delete-expression:
:: [opt] delete cast-expression
:: [opt] delete [ ] cast-expression
Returns a representation of the expression. */
static tree
cp_parser_delete_expression (cp_parser* parser)
{
bool global_scope_p;
bool array_p;
tree expression;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the `delete' keyword. */
cp_parser_require_keyword (parser, RID_DELETE, RT_DELETE);
/* See if the array syntax is in use. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `]' token. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
/* Remember that this is the `[]' construct. */
array_p = true;
}
else
array_p = false;
/* Parse the cast-expression. */
expression = cp_parser_simple_cast_expression (parser);
/* A delete-expression may not appear in an integral constant
expression. */
if (cp_parser_non_integral_constant_expression (parser, NIC_DEL))
return error_mark_node;
return delete_sanity (expression, NULL_TREE, array_p, global_scope_p,
tf_warning_or_error);
}
/* Returns 1 if TOKEN may start a cast-expression and isn't '++', '--',
neither '[' in C++11; -1 if TOKEN is '++', '--', or '[' in C++11;
0 otherwise. */
static int
cp_parser_tokens_start_cast_expression (cp_parser *parser)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_COMMA:
case CPP_SEMICOLON:
case CPP_QUERY:
case CPP_COLON:
case CPP_CLOSE_SQUARE:
case CPP_CLOSE_PAREN:
case CPP_CLOSE_BRACE:
case CPP_OPEN_BRACE:
case CPP_DOT:
case CPP_DOT_STAR:
case CPP_DEREF:
case CPP_DEREF_STAR:
case CPP_DIV:
case CPP_MOD:
case CPP_LSHIFT:
case CPP_RSHIFT:
case CPP_LESS:
case CPP_GREATER:
case CPP_LESS_EQ:
case CPP_GREATER_EQ:
case CPP_EQ_EQ:
case CPP_NOT_EQ:
case CPP_EQ:
case CPP_MULT_EQ:
case CPP_DIV_EQ:
case CPP_MOD_EQ:
case CPP_PLUS_EQ:
case CPP_MINUS_EQ:
case CPP_RSHIFT_EQ:
case CPP_LSHIFT_EQ:
case CPP_AND_EQ:
case CPP_XOR_EQ:
case CPP_OR_EQ:
case CPP_XOR:
case CPP_OR:
case CPP_OR_OR:
case CPP_EOF:
case CPP_ELLIPSIS:
return 0;
case CPP_OPEN_PAREN:
/* In ((type ()) () the last () isn't a valid cast-expression,
so the whole must be parsed as postfix-expression. */
return cp_lexer_peek_nth_token (parser->lexer, 2)->type
!= CPP_CLOSE_PAREN;
case CPP_OPEN_SQUARE:
/* '[' may start a primary-expression in obj-c++ and in C++11,
as a lambda-expression, eg, '(void)[]{}'. */
if (cxx_dialect >= cxx11)
return -1;
return c_dialect_objc ();
case CPP_PLUS_PLUS:
case CPP_MINUS_MINUS:
/* '++' and '--' may or may not start a cast-expression:
struct T { void operator++(int); };
void f() { (T())++; }
vs
int a;
(int)++a; */
return -1;
default:
return 1;
}
}
/* Try to find a legal C++-style cast to DST_TYPE for ORIG_EXPR, trying them
in the order: const_cast, static_cast, reinterpret_cast.
Don't suggest dynamic_cast.
Return the first legal cast kind found, or NULL otherwise. */
static const char *
get_cast_suggestion (tree dst_type, tree orig_expr)
{
tree trial;
/* Reuse the parser logic by attempting to build the various kinds of
cast, with "complain" disabled.
Identify the first such cast that is valid. */
/* Don't attempt to run such logic within template processing. */
if (processing_template_decl)
return NULL;
/* First try const_cast. */
trial = build_const_cast (dst_type, orig_expr, tf_none);
if (trial != error_mark_node)
return "const_cast";
/* If that fails, try static_cast. */
trial = build_static_cast (dst_type, orig_expr, tf_none);
if (trial != error_mark_node)
return "static_cast";
/* Finally, try reinterpret_cast. */
trial = build_reinterpret_cast (dst_type, orig_expr, tf_none);
if (trial != error_mark_node)
return "reinterpret_cast";
/* No such cast possible. */
return NULL;
}
/* If -Wold-style-cast is enabled, add fix-its to RICHLOC,
suggesting how to convert a C-style cast of the form:
(DST_TYPE)ORIG_EXPR
to a C++-style cast.
The primary range of RICHLOC is asssumed to be that of the original
expression. OPEN_PAREN_LOC and CLOSE_PAREN_LOC give the locations
of the parens in the C-style cast. */
static void
maybe_add_cast_fixit (rich_location *rich_loc, location_t open_paren_loc,
location_t close_paren_loc, tree orig_expr,
tree dst_type)
{
/* This function is non-trivial, so bail out now if the warning isn't
going to be emitted. */
if (!warn_old_style_cast)
return;
/* Try to find a legal C++ cast, trying them in order:
const_cast, static_cast, reinterpret_cast. */
const char *cast_suggestion = get_cast_suggestion (dst_type, orig_expr);
if (!cast_suggestion)
return;
/* Replace the open paren with "CAST_SUGGESTION<". */
pretty_printer pp;
pp_printf (&pp, "%s<", cast_suggestion);
rich_loc->add_fixit_replace (open_paren_loc, pp_formatted_text (&pp));
/* Replace the close paren with "> (". */
rich_loc->add_fixit_replace (close_paren_loc, "> (");
/* Add a closing paren after the expr (the primary range of RICH_LOC). */
rich_loc->add_fixit_insert_after (")");
}
/* Parse a cast-expression.
cast-expression:
unary-expression
( type-id ) cast-expression
ADDRESS_P is true iff the unary-expression is appearing as the
operand of the `&' operator. CAST_P is true if this expression is
the target of a cast.
Returns a representation of the expression. */
static cp_expr
cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p,
bool decltype_p, cp_id_kind * pidk)
{
/* If it's a `(', then we might be looking at a cast. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree type = NULL_TREE;
cp_expr expr (NULL_TREE);
int cast_expression = 0;
const char *saved_message;
/* There's no way to know yet whether or not this is a cast.
For example, `(int (3))' is a unary-expression, while `(int)
3' is a cast. So, we resort to parsing tentatively. */
cp_parser_parse_tentatively (parser);
/* Types may not be defined in a cast. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in casts");
/* Consume the `('. */
matching_parens parens;
cp_token *open_paren = parens.consume_open (parser);
location_t open_paren_loc = open_paren->location;
location_t close_paren_loc = UNKNOWN_LOCATION;
/* A very tricky bit is that `(struct S) { 3 }' is a
compound-literal (which we permit in C++ as an extension).
But, that construct is not a cast-expression -- it is a
postfix-expression. (The reason is that `(struct S) { 3 }.i'
is legal; if the compound-literal were a cast-expression,
you'd need an extra set of parentheses.) But, if we parse
the type-id, and it happens to be a class-specifier, then we
will commit to the parse at that point, because we cannot
undo the action that is done when creating a new class. So,
then we cannot back up and do a postfix-expression.
Another tricky case is the following (c++/29234):
struct S { void operator () (); };
void foo ()
{
( S()() );
}
As a type-id we parse the parenthesized S()() as a function
returning a function, groktypename complains and we cannot
back up in this case either.
Therefore, we scan ahead to the closing `)', and check to see
if the tokens after the `)' can start a cast-expression. Otherwise
we are dealing with an unary-expression, a postfix-expression
or something else.
Yet another tricky case, in C++11, is the following (c++/54891):
(void)[]{};
The issue is that usually, besides the case of lambda-expressions,
the parenthesized type-id cannot be followed by '[', and, eg, we
want to parse '(C ())[2];' in parse/pr26997.C as unary-expression.
Thus, if cp_parser_tokens_start_cast_expression returns -1, below
we don't commit, we try a cast-expression, then an unary-expression.
Save tokens so that we can put them back. */
cp_lexer_save_tokens (parser->lexer);
/* We may be looking at a cast-expression. */
if (cp_parser_skip_to_closing_parenthesis (parser, false, false,
/*consume_paren=*/true))
cast_expression
= cp_parser_tokens_start_cast_expression (parser);
/* Roll back the tokens we skipped. */
cp_lexer_rollback_tokens (parser->lexer);
/* If we aren't looking at a cast-expression, simulate an error so
that the call to cp_parser_error_occurred below returns true. */
if (!cast_expression)
cp_parser_simulate_error (parser);
else
{
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
/* Look for the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_token *close_paren = parens.require_close (parser);
if (close_paren)
close_paren_loc = close_paren->location;
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
}
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* At this point this can only be either a cast or a
parenthesized ctor such as `(T ())' that looks like a cast to
function returning T. */
if (!cp_parser_error_occurred (parser))
{
/* Only commit if the cast-expression doesn't start with
'++', '--', or '[' in C++11. */
if (cast_expression > 0)
cp_parser_commit_to_topmost_tentative_parse (parser);
expr = cp_parser_cast_expression (parser,
/*address_p=*/false,
/*cast_p=*/true,
/*decltype_p=*/false,
pidk);
if (cp_parser_parse_definitely (parser))
{
/* Warn about old-style casts, if so requested. */
if (warn_old_style_cast
&& !in_system_header_at (input_location)
&& !VOID_TYPE_P (type)
&& current_lang_name != lang_name_c)
{
gcc_rich_location rich_loc (input_location);
maybe_add_cast_fixit (&rich_loc, open_paren_loc, close_paren_loc,
expr, type);
warning_at (&rich_loc, OPT_Wold_style_cast,
"use of old-style cast to %q#T", type);
}
/* Only type conversions to integral or enumeration types
can be used in constant-expressions. */
if (!cast_valid_in_integral_constant_expression_p (type)
&& cp_parser_non_integral_constant_expression (parser,
NIC_CAST))
return error_mark_node;
/* Perform the cast. */
/* Make a location:
(TYPE) EXPR
^~~~~~~~~~~
with start==caret at the open paren, extending to the
end of "expr". */
location_t cast_loc = make_location (open_paren_loc,
open_paren_loc,
expr.get_finish ());
expr = build_c_cast (cast_loc, type, expr);
return expr;
}
}
else
cp_parser_abort_tentative_parse (parser);
}
/* If we get here, then it's not a cast, so it must be a
unary-expression. */
return cp_parser_unary_expression (parser, pidk, address_p,
cast_p, decltype_p);
}
/* Parse a binary expression of the general form:
pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression
multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
GNU Extension:
relational-expression:
relational-expression <? shift-expression
relational-expression >? shift-expression
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
and-expression:
equality-expression
and-expression & equality-expression
exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression
inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression
logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression
logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
All these are implemented with a single function like:
binary-expression:
simple-cast-expression
binary-expression <token> binary-expression
CAST_P is true if this expression is the target of a cast.
The binops_by_token map is used to get the tree codes for each <token> type.
binary-expressions are associated according to a precedence table. */
#define TOKEN_PRECEDENCE(token) \
(((token->type == CPP_GREATER \
|| ((cxx_dialect != cxx98) && token->type == CPP_RSHIFT)) \
&& !parser->greater_than_is_operator_p) \
? PREC_NOT_OPERATOR \
: binops_by_token[token->type].prec)
static cp_expr
cp_parser_binary_expression (cp_parser* parser, bool cast_p,
bool no_toplevel_fold_p,
bool decltype_p,
enum cp_parser_prec prec,
cp_id_kind * pidk)
{
cp_parser_expression_stack stack;
cp_parser_expression_stack_entry *sp = &stack[0];
cp_parser_expression_stack_entry *disable_warnings_sp = NULL;
cp_parser_expression_stack_entry current;
cp_expr rhs;
cp_token *token;
enum tree_code rhs_type;
enum cp_parser_prec new_prec, lookahead_prec;
tree overload;
/* Parse the first expression. */
current.lhs_type = (cp_lexer_next_token_is (parser->lexer, CPP_NOT)
? TRUTH_NOT_EXPR : ERROR_MARK);
current.lhs = cp_parser_cast_expression (parser, /*address_p=*/false,
cast_p, decltype_p, pidk);
current.prec = prec;
if (cp_parser_error_occurred (parser))
return error_mark_node;
for (;;)
{
/* Get an operator token. */
token = cp_lexer_peek_token (parser->lexer);
if (warn_cxx11_compat
&& token->type == CPP_RSHIFT
&& !parser->greater_than_is_operator_p)
{
if (warning_at (token->location, OPT_Wc__11_compat,
"%<>>%> operator is treated"
" as two right angle brackets in C++11"))
inform (token->location,
"suggest parentheses around %<>>%> expression");
}
new_prec = TOKEN_PRECEDENCE (token);
if (new_prec != PREC_NOT_OPERATOR
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_ELLIPSIS))
/* This is a fold-expression; handle it later. */
new_prec = PREC_NOT_OPERATOR;
/* Popping an entry off the stack means we completed a subexpression:
- either we found a token which is not an operator (`>' where it is not
an operator, or prec == PREC_NOT_OPERATOR), in which case popping
will happen repeatedly;
- or, we found an operator which has lower priority. This is the case
where the recursive descent *ascends*, as in `3 * 4 + 5' after
parsing `3 * 4'. */
if (new_prec <= current.prec)
{
if (sp == stack)
break;
else
goto pop;
}
get_rhs:
current.tree_type = binops_by_token[token->type].tree_type;
current.loc = token->location;
/* We used the operator token. */
cp_lexer_consume_token (parser->lexer);
/* For "false && x" or "true || x", x will never be executed;
disable warnings while evaluating it. */
if ((current.tree_type == TRUTH_ANDIF_EXPR
&& cp_fully_fold (current.lhs) == truthvalue_false_node)
|| (current.tree_type == TRUTH_ORIF_EXPR
&& cp_fully_fold (current.lhs) == truthvalue_true_node))
{
disable_warnings_sp = sp;
++c_inhibit_evaluation_warnings;
}
/* Extract another operand. It may be the RHS of this expression
or the LHS of a new, higher priority expression. */
rhs_type = (cp_lexer_next_token_is (parser->lexer, CPP_NOT)
? TRUTH_NOT_EXPR : ERROR_MARK);
rhs = cp_parser_simple_cast_expression (parser);
/* Get another operator token. Look up its precedence to avoid
building a useless (immediately popped) stack entry for common
cases such as 3 + 4 + 5 or 3 * 4 + 5. */
token = cp_lexer_peek_token (parser->lexer);
lookahead_prec = TOKEN_PRECEDENCE (token);
if (lookahead_prec != PREC_NOT_OPERATOR
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_ELLIPSIS))
lookahead_prec = PREC_NOT_OPERATOR;
if (lookahead_prec > new_prec)
{
/* ... and prepare to parse the RHS of the new, higher priority
expression. Since precedence levels on the stack are
monotonically increasing, we do not have to care about
stack overflows. */
*sp = current;
++sp;
current.lhs = rhs;
current.lhs_type = rhs_type;
current.prec = new_prec;
new_prec = lookahead_prec;
goto get_rhs;
pop:
lookahead_prec = new_prec;
/* If the stack is not empty, we have parsed into LHS the right side
(`4' in the example above) of an expression we had suspended.
We can use the information on the stack to recover the LHS (`3')
from the stack together with the tree code (`MULT_EXPR'), and
the precedence of the higher level subexpression
(`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
which will be used to actually build the additive expression. */
rhs = current.lhs;
rhs_type = current.lhs_type;
--sp;
current = *sp;
}
/* Undo the disabling of warnings done above. */
if (sp == disable_warnings_sp)
{
disable_warnings_sp = NULL;
--c_inhibit_evaluation_warnings;
}
if (warn_logical_not_paren
&& TREE_CODE_CLASS (current.tree_type) == tcc_comparison
&& current.lhs_type == TRUTH_NOT_EXPR
/* Avoid warning for !!x == y. */
&& (TREE_CODE (current.lhs) != NE_EXPR
|| !integer_zerop (TREE_OPERAND (current.lhs, 1)))
&& (TREE_CODE (current.lhs) != TRUTH_NOT_EXPR
|| (TREE_CODE (TREE_OPERAND (current.lhs, 0)) != TRUTH_NOT_EXPR
/* Avoid warning for !b == y where b is boolean. */
&& (TREE_TYPE (TREE_OPERAND (current.lhs, 0)) == NULL_TREE
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (current.lhs, 0)))
!= BOOLEAN_TYPE))))
/* Avoid warning for !!b == y where b is boolean. */
&& (!DECL_P (tree_strip_any_location_wrapper (current.lhs))
|| TREE_TYPE (current.lhs) == NULL_TREE
|| TREE_CODE (TREE_TYPE (current.lhs)) != BOOLEAN_TYPE))
warn_logical_not_parentheses (current.loc, current.tree_type,
current.lhs, maybe_constant_value (rhs));
overload = NULL;
location_t combined_loc = make_location (current.loc,
current.lhs.get_start (),
rhs.get_finish ());
/* ??? Currently we pass lhs_type == ERROR_MARK and rhs_type ==
ERROR_MARK for everything that is not a binary expression.
This makes warn_about_parentheses miss some warnings that
involve unary operators. For unary expressions we should
pass the correct tree_code unless the unary expression was
surrounded by parentheses.
*/
if (no_toplevel_fold_p
&& lookahead_prec <= current.prec
&& sp == stack)
{
if (current.lhs == error_mark_node || rhs == error_mark_node)
current.lhs = error_mark_node;
else
{
current.lhs
= build_min (current.tree_type,
TREE_CODE_CLASS (current.tree_type)
== tcc_comparison
? boolean_type_node : TREE_TYPE (current.lhs),
current.lhs.get_value (), rhs.get_value ());
SET_EXPR_LOCATION (current.lhs, combined_loc);
}
}
else
{
op_location_t op_loc (current.loc, combined_loc);
current.lhs = build_x_binary_op (op_loc, current.tree_type,
current.lhs, current.lhs_type,
rhs, rhs_type, &overload,
complain_flags (decltype_p));
/* TODO: build_x_binary_op doesn't always honor the location. */
current.lhs.set_location (combined_loc);
}
current.lhs_type = current.tree_type;
/* If the binary operator required the use of an overloaded operator,
then this expression cannot be an integral constant-expression.
An overloaded operator can be used even if both operands are
otherwise permissible in an integral constant-expression if at
least one of the operands is of enumeration type. */
if (overload
&& cp_parser_non_integral_constant_expression (parser,
NIC_OVERLOADED))
return error_mark_node;
}
return current.lhs;
}
static cp_expr
cp_parser_binary_expression (cp_parser* parser, bool cast_p,
bool no_toplevel_fold_p,
enum cp_parser_prec prec,
cp_id_kind * pidk)
{
return cp_parser_binary_expression (parser, cast_p, no_toplevel_fold_p,
/*decltype*/false, prec, pidk);
}
/* Parse the `? expression : assignment-expression' part of a
conditional-expression. The LOGICAL_OR_EXPR is the
logical-or-expression that started the conditional-expression.
Returns a representation of the entire conditional-expression.
This routine is used by cp_parser_assignment_expression.
? expression : assignment-expression
GNU Extensions:
? : assignment-expression */
static tree
cp_parser_question_colon_clause (cp_parser* parser, cp_expr logical_or_expr)
{
tree expr, folded_logical_or_expr = cp_fully_fold (logical_or_expr);
cp_expr assignment_expr;
struct cp_token *token;
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
/* Consume the `?' token. */
cp_lexer_consume_token (parser->lexer);
token = cp_lexer_peek_token (parser->lexer);
if (cp_parser_allow_gnu_extensions_p (parser)
&& token->type == CPP_COLON)
{
pedwarn (token->location, OPT_Wpedantic,
"ISO C++ does not allow ?: with omitted middle operand");
/* Implicit true clause. */
expr = NULL_TREE;
c_inhibit_evaluation_warnings +=
folded_logical_or_expr == truthvalue_true_node;
warn_for_omitted_condop (token->location, logical_or_expr);
}
else
{
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
parser->colon_corrects_to_scope_p = false;
/* Parse the expression. */
c_inhibit_evaluation_warnings +=
folded_logical_or_expr == truthvalue_false_node;
expr = cp_parser_expression (parser);
c_inhibit_evaluation_warnings +=
((folded_logical_or_expr == truthvalue_true_node)
- (folded_logical_or_expr == truthvalue_false_node));
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
}
/* The next token should be a `:'. */
cp_parser_require (parser, CPP_COLON, RT_COLON);
/* Parse the assignment-expression. */
assignment_expr = cp_parser_assignment_expression (parser);
c_inhibit_evaluation_warnings -=
folded_logical_or_expr == truthvalue_true_node;
/* Make a location:
LOGICAL_OR_EXPR ? EXPR : ASSIGNMENT_EXPR
~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
with the caret at the "?", ranging from the start of
the logical_or_expr to the end of the assignment_expr. */
loc = make_location (loc,
logical_or_expr.get_start (),
assignment_expr.get_finish ());
/* Build the conditional-expression. */
return build_x_conditional_expr (loc, logical_or_expr,
expr,
assignment_expr,
tf_warning_or_error);
}
/* Parse an assignment-expression.
assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment_expression
throw-expression
CAST_P is true if this expression is the target of a cast.
DECLTYPE_P is true if this expression is the operand of decltype.
Returns a representation for the expression. */
static cp_expr
cp_parser_assignment_expression (cp_parser* parser, cp_id_kind * pidk,
bool cast_p, bool decltype_p)
{
cp_expr expr;
/* If the next token is the `throw' keyword, then we're looking at
a throw-expression. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
expr = cp_parser_throw_expression (parser);
/* Otherwise, it must be that we are looking at a
logical-or-expression. */
else
{
/* Parse the binary expressions (logical-or-expression). */
expr = cp_parser_binary_expression (parser, cast_p, false,
decltype_p,
PREC_NOT_OPERATOR, pidk);
/* If the next token is a `?' then we're actually looking at a
conditional-expression. */
if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
return cp_parser_question_colon_clause (parser, expr);
else
{
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
/* If it's an assignment-operator, we're using the second
production. */
enum tree_code assignment_operator
= cp_parser_assignment_operator_opt (parser);
if (assignment_operator != ERROR_MARK)
{
bool non_constant_p;
/* Parse the right-hand side of the assignment. */
cp_expr rhs = cp_parser_initializer_clause (parser,
&non_constant_p);
if (BRACE_ENCLOSED_INITIALIZER_P (rhs))
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
/* An assignment may not appear in a
constant-expression. */
if (cp_parser_non_integral_constant_expression (parser,
NIC_ASSIGNMENT))
return error_mark_node;
/* Build the assignment expression. Its default
location:
LHS = RHS
~~~~^~~~~
is the location of the '=' token as the
caret, ranging from the start of the lhs to the
end of the rhs. */
loc = make_location (loc,
expr.get_start (),
rhs.get_finish ());
expr = build_x_modify_expr (loc, expr,
assignment_operator,
rhs,
complain_flags (decltype_p));
/* TODO: build_x_modify_expr doesn't honor the location,
so we must set it here. */
expr.set_location (loc);
}
}
}
return expr;
}
/* Parse an (optional) assignment-operator.
assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=
GNU Extension:
assignment-operator: one of
<?= >?=
If the next token is an assignment operator, the corresponding tree
code is returned, and the token is consumed. For example, for
`+=', PLUS_EXPR is returned. For `=' itself, the code returned is
NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
operator, ERROR_MARK is returned. */
static enum tree_code
cp_parser_assignment_operator_opt (cp_parser* parser)
{
enum tree_code op;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EQ:
op = NOP_EXPR;
break;
case CPP_MULT_EQ:
op = MULT_EXPR;
break;
case CPP_DIV_EQ:
op = TRUNC_DIV_EXPR;
break;
case CPP_MOD_EQ:
op = TRUNC_MOD_EXPR;
break;
case CPP_PLUS_EQ:
op = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
op = MINUS_EXPR;
break;
case CPP_RSHIFT_EQ:
op = RSHIFT_EXPR;
break;
case CPP_LSHIFT_EQ:
op = LSHIFT_EXPR;
break;
case CPP_AND_EQ:
op = BIT_AND_EXPR;
break;
case CPP_XOR_EQ:
op = BIT_XOR_EXPR;
break;
case CPP_OR_EQ:
op = BIT_IOR_EXPR;
break;
default:
/* Nothing else is an assignment operator. */
op = ERROR_MARK;
}
/* An operator followed by ... is a fold-expression, handled elsewhere. */
if (op != ERROR_MARK
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_ELLIPSIS))
op = ERROR_MARK;
/* If it was an assignment operator, consume it. */
if (op != ERROR_MARK)
cp_lexer_consume_token (parser->lexer);
return op;
}
/* Parse an expression.
expression:
assignment-expression
expression , assignment-expression
CAST_P is true if this expression is the target of a cast.
DECLTYPE_P is true if this expression is the immediate operand of decltype,
except possibly parenthesized or on the RHS of a comma (N3276).
Returns a representation of the expression. */
static cp_expr
cp_parser_expression (cp_parser* parser, cp_id_kind * pidk,
bool cast_p, bool decltype_p)
{
cp_expr expression = NULL_TREE;
location_t loc = UNKNOWN_LOCATION;
while (true)
{
cp_expr assignment_expression;
/* Parse the next assignment-expression. */
assignment_expression
= cp_parser_assignment_expression (parser, pidk, cast_p, decltype_p);
/* We don't create a temporary for a call that is the immediate operand
of decltype or on the RHS of a comma. But when we see a comma, we
need to create a temporary for a call on the LHS. */
if (decltype_p && !processing_template_decl
&& TREE_CODE (assignment_expression) == CALL_EXPR
&& CLASS_TYPE_P (TREE_TYPE (assignment_expression))
&& cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
assignment_expression
= build_cplus_new (TREE_TYPE (assignment_expression),
assignment_expression, tf_warning_or_error);
/* If this is the first assignment-expression, we can just
save it away. */
if (!expression)
expression = assignment_expression;
else
{
/* Create a location with caret at the comma, ranging
from the start of the LHS to the end of the RHS. */
loc = make_location (loc,
expression.get_start (),
assignment_expression.get_finish ());
expression = build_x_compound_expr (loc, expression,
assignment_expression,
complain_flags (decltype_p));
expression.set_location (loc);
}
/* If the next token is not a comma, or we're in a fold-expression, then
we are done with the expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)
|| cp_lexer_nth_token_is (parser->lexer, 2, CPP_ELLIPSIS))
break;
/* Consume the `,'. */
loc = cp_lexer_peek_token (parser->lexer)->location;
cp_lexer_consume_token (parser->lexer);
/* A comma operator cannot appear in a constant-expression. */
if (cp_parser_non_integral_constant_expression (parser, NIC_COMMA))
expression = error_mark_node;
}
return expression;
}
/* Parse a constant-expression.
constant-expression:
conditional-expression
If ALLOW_NON_CONSTANT_P a non-constant expression is silently
accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
is false, NON_CONSTANT_P should be NULL. If STRICT_P is true,
only parse a conditional-expression, otherwise parse an
assignment-expression. See below for rationale. */
static cp_expr
cp_parser_constant_expression (cp_parser* parser,
bool allow_non_constant_p,
bool *non_constant_p,
bool strict_p)
{
bool saved_integral_constant_expression_p;
bool saved_allow_non_integral_constant_expression_p;
bool saved_non_integral_constant_expression_p;
cp_expr expression;
/* It might seem that we could simply parse the
conditional-expression, and then check to see if it were
TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
one that the compiler can figure out is constant, possibly after
doing some simplifications or optimizations. The standard has a
precise definition of constant-expression, and we must honor
that, even though it is somewhat more restrictive.
For example:
int i[(2, 3)];
is not a legal declaration, because `(2, 3)' is not a
constant-expression. The `,' operator is forbidden in a
constant-expression. However, GCC's constant-folding machinery
will fold this operation to an INTEGER_CST for `3'. */
/* Save the old settings. */
saved_integral_constant_expression_p = parser->integral_constant_expression_p;
saved_allow_non_integral_constant_expression_p
= parser->allow_non_integral_constant_expression_p;
saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
/* We are now parsing a constant-expression. */
parser->integral_constant_expression_p = true;
parser->allow_non_integral_constant_expression_p
= (allow_non_constant_p || cxx_dialect >= cxx11);
parser->non_integral_constant_expression_p = false;
/* Although the grammar says "conditional-expression", when not STRICT_P,
we parse an "assignment-expression", which also permits
"throw-expression" and the use of assignment operators. In the case
that ALLOW_NON_CONSTANT_P is false, we get better errors than we would
otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
actually essential that we look for an assignment-expression.
For example, cp_parser_initializer_clauses uses this function to
determine whether a particular assignment-expression is in fact
constant. */
if (strict_p)
{
/* Parse the binary expressions (logical-or-expression). */
expression = cp_parser_binary_expression (parser, false, false, false,
PREC_NOT_OPERATOR, NULL);
/* If the next token is a `?' then we're actually looking at
a conditional-expression; otherwise we're done. */
if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
expression = cp_parser_question_colon_clause (parser, expression);
}
else
expression = cp_parser_assignment_expression (parser);
/* Restore the old settings. */
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->allow_non_integral_constant_expression_p
= saved_allow_non_integral_constant_expression_p;
if (cxx_dialect >= cxx11)
{
/* Require an rvalue constant expression here; that's what our
callers expect. Reference constant expressions are handled
separately in e.g. cp_parser_template_argument. */
tree decay = expression;
if (TREE_TYPE (expression)
&& TREE_CODE (TREE_TYPE (expression)) == ARRAY_TYPE)
decay = build_address (expression);
bool is_const = potential_rvalue_constant_expression (decay);
parser->non_integral_constant_expression_p = !is_const;
if (!is_const && !allow_non_constant_p)
require_potential_rvalue_constant_expression (decay);
}
if (allow_non_constant_p)
*non_constant_p = parser->non_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
return expression;
}
/* Parse __builtin_offsetof.
offsetof-expression:
"__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
offsetof-member-designator:
id-expression
| offsetof-member-designator "." id-expression
| offsetof-member-designator "[" expression "]"
| offsetof-member-designator "->" id-expression */
static cp_expr
cp_parser_builtin_offsetof (cp_parser *parser)
{
int save_ice_p, save_non_ice_p;
tree type;
cp_expr expr;
cp_id_kind dummy;
cp_token *token;
location_t finish_loc;
/* We're about to accept non-integral-constant things, but will
definitely yield an integral constant expression. Save and
restore these values around our local parsing. */
save_ice_p = parser->integral_constant_expression_p;
save_non_ice_p = parser->non_integral_constant_expression_p;
location_t start_loc = cp_lexer_peek_token (parser->lexer)->location;
/* Consume the "__builtin_offsetof" token. */
cp_lexer_consume_token (parser->lexer);
/* Consume the opening `('. */
matching_parens parens;
parens.require_open (parser);
/* Parse the type-id. */
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
{
const char *saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined within %<__builtin_offsetof%>");
type = cp_parser_type_id (parser);
parser->type_definition_forbidden_message = saved_message;
}
/* Look for the `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
token = cp_lexer_peek_token (parser->lexer);
/* Build the (type *)null that begins the traditional offsetof macro. */
tree object_ptr
= build_static_cast (build_pointer_type (type), null_pointer_node,
tf_warning_or_error);
/* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, object_ptr,
true, &dummy, token->location);
while (true)
{
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_OPEN_SQUARE:
/* offsetof-member-designator "[" expression "]" */
expr = cp_parser_postfix_open_square_expression (parser, expr,
true, false);
break;
case CPP_DEREF:
/* offsetof-member-designator "->" identifier */
expr = grok_array_decl (token->location, expr,
integer_zero_node, false);
/* FALLTHRU */
case CPP_DOT:
/* offsetof-member-designator "." identifier */
cp_lexer_consume_token (parser->lexer);
expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT,
expr, true, &dummy,
token->location);
break;
case CPP_CLOSE_PAREN:
/* Consume the ")" token. */
finish_loc = cp_lexer_peek_token (parser->lexer)->location;
cp_lexer_consume_token (parser->lexer);
goto success;
default:
/* Error. We know the following require will fail, but
that gives the proper error message. */
parens.require_close (parser);
cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
expr = error_mark_node;
goto failure;
}
}
success:
/* Make a location of the form:
__builtin_offsetof (struct s, f)
~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~
with caret at the type-id, ranging from the start of the
"_builtin_offsetof" token to the close paren. */
loc = make_location (loc, start_loc, finish_loc);
/* The result will be an INTEGER_CST, so we need to explicitly
preserve the location. */
expr = cp_expr (finish_offsetof (object_ptr, expr, loc), loc);
failure:
parser->integral_constant_expression_p = save_ice_p;
parser->non_integral_constant_expression_p = save_non_ice_p;
expr = expr.maybe_add_location_wrapper ();
return expr;
}
/* Parse a trait expression.
Returns a representation of the expression, the underlying type
of the type at issue when KEYWORD is RID_UNDERLYING_TYPE. */
static cp_expr
cp_parser_trait_expr (cp_parser* parser, enum rid keyword)
{
cp_trait_kind kind;
tree type1, type2 = NULL_TREE;
bool binary = false;
bool variadic = false;
switch (keyword)
{
case RID_HAS_NOTHROW_ASSIGN:
kind = CPTK_HAS_NOTHROW_ASSIGN;
break;
case RID_HAS_NOTHROW_CONSTRUCTOR:
kind = CPTK_HAS_NOTHROW_CONSTRUCTOR;
break;
case RID_HAS_NOTHROW_COPY:
kind = CPTK_HAS_NOTHROW_COPY;
break;
case RID_HAS_TRIVIAL_ASSIGN:
kind = CPTK_HAS_TRIVIAL_ASSIGN;
break;
case RID_HAS_TRIVIAL_CONSTRUCTOR:
kind = CPTK_HAS_TRIVIAL_CONSTRUCTOR;
break;
case RID_HAS_TRIVIAL_COPY:
kind = CPTK_HAS_TRIVIAL_COPY;
break;
case RID_HAS_TRIVIAL_DESTRUCTOR:
kind = CPTK_HAS_TRIVIAL_DESTRUCTOR;
break;
case RID_HAS_UNIQUE_OBJ_REPRESENTATIONS:
kind = CPTK_HAS_UNIQUE_OBJ_REPRESENTATIONS;
break;
case RID_HAS_VIRTUAL_DESTRUCTOR:
kind = CPTK_HAS_VIRTUAL_DESTRUCTOR;
break;
case RID_IS_ABSTRACT:
kind = CPTK_IS_ABSTRACT;
break;
case RID_IS_AGGREGATE:
kind = CPTK_IS_AGGREGATE;
break;
case RID_IS_BASE_OF:
kind = CPTK_IS_BASE_OF;
binary = true;
break;
case RID_IS_CLASS:
kind = CPTK_IS_CLASS;
break;
case RID_IS_EMPTY:
kind = CPTK_IS_EMPTY;
break;
case RID_IS_ENUM:
kind = CPTK_IS_ENUM;
break;
case RID_IS_FINAL:
kind = CPTK_IS_FINAL;
break;
case RID_IS_LITERAL_TYPE:
kind = CPTK_IS_LITERAL_TYPE;
break;
case RID_IS_POD:
kind = CPTK_IS_POD;
break;
case RID_IS_POLYMORPHIC:
kind = CPTK_IS_POLYMORPHIC;
break;
case RID_IS_SAME_AS:
kind = CPTK_IS_SAME_AS;
binary = true;
break;
case RID_IS_STD_LAYOUT:
kind = CPTK_IS_STD_LAYOUT;
break;
case RID_IS_TRIVIAL:
kind = CPTK_IS_TRIVIAL;
break;
case RID_IS_TRIVIALLY_ASSIGNABLE:
kind = CPTK_IS_TRIVIALLY_ASSIGNABLE;
binary = true;
break;
case RID_IS_TRIVIALLY_CONSTRUCTIBLE:
kind = CPTK_IS_TRIVIALLY_CONSTRUCTIBLE;
variadic = true;
break;
case RID_IS_TRIVIALLY_COPYABLE:
kind = CPTK_IS_TRIVIALLY_COPYABLE;
break;
case RID_IS_UNION:
kind = CPTK_IS_UNION;
break;
case RID_UNDERLYING_TYPE:
kind = CPTK_UNDERLYING_TYPE;
break;
case RID_BASES:
kind = CPTK_BASES;
break;
case RID_DIRECT_BASES:
kind = CPTK_DIRECT_BASES;
break;
case RID_IS_ASSIGNABLE:
kind = CPTK_IS_ASSIGNABLE;
binary = true;
break;
case RID_IS_CONSTRUCTIBLE:
kind = CPTK_IS_CONSTRUCTIBLE;
variadic = true;
break;
default:
gcc_unreachable ();
}
/* Get location of initial token. */
location_t start_loc = cp_lexer_peek_token (parser->lexer)->location;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
matching_parens parens;
parens.require_open (parser);
{
type_id_in_expr_sentinel s (parser);
type1 = cp_parser_type_id (parser);
}
if (type1 == error_mark_node)
return error_mark_node;
if (binary)
{
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
{
type_id_in_expr_sentinel s (parser);
type2 = cp_parser_type_id (parser);
}
if (type2 == error_mark_node)
return error_mark_node;
}
else if (variadic)
{
while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
{
cp_lexer_consume_token (parser->lexer);
tree elt = cp_parser_type_id (parser);
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
cp_lexer_consume_token (parser->lexer);
elt = make_pack_expansion (elt);
}
if (elt == error_mark_node)
return error_mark_node;
type2 = tree_cons (NULL_TREE, elt, type2);
}
}
location_t finish_loc = cp_lexer_peek_token (parser->lexer)->location;
parens.require_close (parser);
/* Construct a location of the form:
__is_trivially_copyable(_Tp)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
with start == caret, finishing at the close-paren. */
location_t trait_loc = make_location (start_loc, start_loc, finish_loc);
/* Complete the trait expression, which may mean either processing
the trait expr now or saving it for template instantiation. */
switch (kind)
{
case CPTK_UNDERLYING_TYPE:
return cp_expr (finish_underlying_type (type1), trait_loc);
case CPTK_BASES:
return cp_expr (finish_bases (type1, false), trait_loc);
case CPTK_DIRECT_BASES:
return cp_expr (finish_bases (type1, true), trait_loc);
default:
return cp_expr (finish_trait_expr (kind, type1, type2), trait_loc);
}
}
/* Parse a lambda expression.
lambda-expression:
lambda-introducer lambda-declarator [opt] compound-statement
Returns a representation of the expression. */
static cp_expr
cp_parser_lambda_expression (cp_parser* parser)
{
tree lambda_expr = build_lambda_expr ();
tree type;
bool ok = true;
cp_token *token = cp_lexer_peek_token (parser->lexer);
cp_token_position start = 0;
LAMBDA_EXPR_LOCATION (lambda_expr) = token->location;
if (cxx_dialect >= cxx2a)
/* C++20 allows lambdas in unevaluated context. */;
else if (cp_unevaluated_operand)
{
if (!token->error_reported)
{
error_at (LAMBDA_EXPR_LOCATION (lambda_expr),
"lambda-expression in unevaluated context"
" only available with %<-std=c++2a%> or %<-std=gnu++2a%>");
token->error_reported = true;
}
ok = false;
}
else if (parser->in_template_argument_list_p || processing_template_parmlist)
{
if (!token->error_reported)
{
error_at (token->location, "lambda-expression in template-argument"
" only available with %<-std=c++2a%> or %<-std=gnu++2a%>");
token->error_reported = true;
}
ok = false;
}
/* We may be in the middle of deferred access check. Disable
it now. */
push_deferring_access_checks (dk_no_deferred);
cp_parser_lambda_introducer (parser, lambda_expr);
if (cp_parser_error_occurred (parser))
return error_mark_node;
type = begin_lambda_type (lambda_expr);
if (type == error_mark_node)
return error_mark_node;
record_lambda_scope (lambda_expr);
/* Do this again now that LAMBDA_EXPR_EXTRA_SCOPE is set. */
determine_visibility (TYPE_NAME (type));
/* Now that we've started the type, add the capture fields for any
explicit captures. */
register_capture_members (LAMBDA_EXPR_CAPTURE_LIST (lambda_expr));
{
/* Inside the class, surrounding template-parameter-lists do not apply. */
unsigned int saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
unsigned char in_statement = parser->in_statement;
bool in_switch_statement_p = parser->in_switch_statement_p;
bool fully_implicit_function_template_p
= parser->fully_implicit_function_template_p;
tree implicit_template_parms = parser->implicit_template_parms;
cp_binding_level* implicit_template_scope = parser->implicit_template_scope;
bool auto_is_implicit_function_template_parm_p
= parser->auto_is_implicit_function_template_parm_p;
parser->num_template_parameter_lists = 0;
parser->in_statement = 0;
parser->in_switch_statement_p = false;
parser->fully_implicit_function_template_p = false;
parser->implicit_template_parms = 0;
parser->implicit_template_scope = 0;
parser->auto_is_implicit_function_template_parm_p = false;
/* The body of a lambda in a discarded statement is not discarded. */
bool discarded = in_discarded_stmt;
in_discarded_stmt = 0;
/* By virtue of defining a local class, a lambda expression has access to
the private variables of enclosing classes. */
if (cp_parser_start_tentative_firewall (parser))
start = token;
ok &= cp_parser_lambda_declarator_opt (parser, lambda_expr);
if (ok && cp_parser_error_occurred (parser))
ok = false;
if (ok)
{
cp_parser_lambda_body (parser, lambda_expr);
}
else if (cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE))
{
if (cp_parser_skip_to_closing_brace (parser))
cp_lexer_consume_token (parser->lexer);
}
/* The capture list was built up in reverse order; fix that now. */
LAMBDA_EXPR_CAPTURE_LIST (lambda_expr)
= nreverse (LAMBDA_EXPR_CAPTURE_LIST (lambda_expr));
if (ok)
maybe_add_lambda_conv_op (type);
type = finish_struct (type, /*attributes=*/NULL_TREE);
in_discarded_stmt = discarded;
parser->num_template_parameter_lists = saved_num_template_parameter_lists;
parser->in_statement = in_statement;
parser->in_switch_statement_p = in_switch_statement_p;
parser->fully_implicit_function_template_p
= fully_implicit_function_template_p;
parser->implicit_template_parms = implicit_template_parms;
parser->implicit_template_scope = implicit_template_scope;
parser->auto_is_implicit_function_template_parm_p
= auto_is_implicit_function_template_parm_p;
}
/* This field is only used during parsing of the lambda. */
LAMBDA_EXPR_THIS_CAPTURE (lambda_expr) = NULL_TREE;
/* This lambda shouldn't have any proxies left at this point. */
gcc_assert (LAMBDA_EXPR_PENDING_PROXIES (lambda_expr) == NULL);
/* And now that we're done, push proxies for an enclosing lambda. */
insert_pending_capture_proxies ();
/* Update the lambda expression to a range. */
cp_token *end_tok = cp_lexer_previous_token (parser->lexer);
LAMBDA_EXPR_LOCATION (lambda_expr) = make_location (token->location,
token->location,
end_tok->location);
if (ok)
lambda_expr = build_lambda_object (lambda_expr);
else
lambda_expr = error_mark_node;
cp_parser_end_tentative_firewall (parser, start, lambda_expr);
pop_deferring_access_checks ();
return lambda_expr;
}
/* Parse the beginning of a lambda expression.
lambda-introducer:
[ lambda-capture [opt] ]
LAMBDA_EXPR is the current representation of the lambda expression. */
static void
cp_parser_lambda_introducer (cp_parser* parser, tree lambda_expr)
{
/* Need commas after the first capture. */
bool first = true;
/* Eat the leading `['. */
cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE);
/* Record default capture mode. "[&" "[=" "[&," "[=," */
if (cp_lexer_next_token_is (parser->lexer, CPP_AND)
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_NAME)
LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) = CPLD_REFERENCE;
else if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) = CPLD_COPY;
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) != CPLD_NONE)
{
cp_lexer_consume_token (parser->lexer);
first = false;
if (!(at_function_scope_p () || parsing_nsdmi ()))
error ("non-local lambda expression cannot have a capture-default");
}
hash_set<tree, true> ids;
tree first_capture_id = NULL_TREE;
while (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_SQUARE))
{
cp_token* capture_token;
tree capture_id;
tree capture_init_expr;
cp_id_kind idk = CP_ID_KIND_NONE;
bool explicit_init_p = false;
enum capture_kind_type
{
BY_COPY,
BY_REFERENCE
};
enum capture_kind_type capture_kind = BY_COPY;
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
{
error ("expected end of capture-list");
return;
}
if (first)
first = false;
else
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
/* Possibly capture `this'. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THIS))
{
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
if (cxx_dialect < cxx2a
&& LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_COPY)
pedwarn (loc, 0, "explicit by-copy capture of %<this%> redundant "
"with by-copy capture default");
cp_lexer_consume_token (parser->lexer);
if (LAMBDA_EXPR_THIS_CAPTURE (lambda_expr))
pedwarn (input_location, 0,
"already captured %qD in lambda expression",
this_identifier);
else
add_capture (lambda_expr, /*id=*/this_identifier,
/*initializer=*/finish_this_expr (),
/*by_reference_p=*/true, explicit_init_p);
continue;
}
/* Possibly capture `*this'. */
if (cp_lexer_next_token_is (parser->lexer, CPP_MULT)
&& cp_lexer_nth_token_is_keyword (parser->lexer, 2, RID_THIS))
{
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
if (cxx_dialect < cxx17)
pedwarn (loc, 0, "%<*this%> capture only available with "
"%<-std=c++17%> or %<-std=gnu++17%>");
cp_lexer_consume_token (parser->lexer);
cp_lexer_consume_token (parser->lexer);
if (LAMBDA_EXPR_THIS_CAPTURE (lambda_expr))
pedwarn (input_location, 0,
"already captured %qD in lambda expression",
this_identifier);
else
add_capture (lambda_expr, /*id=*/this_identifier,
/*initializer=*/finish_this_expr (),
/*by_reference_p=*/false, explicit_init_p);
continue;
}
bool init_pack_expansion = false;
location_t ellipsis_loc = UNKNOWN_LOCATION;
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
ellipsis_loc = cp_lexer_peek_token (parser->lexer)->location;
if (cxx_dialect < cxx2a)
pedwarn (ellipsis_loc, 0, "pack init-capture only available with "
"%<-std=c++2a%> or %<-std=gnu++2a%>");
cp_lexer_consume_token (parser->lexer);
init_pack_expansion = true;
}
/* Remember whether we want to capture as a reference or not. */
if (cp_lexer_next_token_is (parser->lexer, CPP_AND))
{
capture_kind = BY_REFERENCE;
cp_lexer_consume_token (parser->lexer);
}
/* Get the identifier. */
capture_token = cp_lexer_peek_token (parser->lexer);
capture_id = cp_parser_identifier (parser);
if (capture_id == error_mark_node)
/* Would be nice to have a cp_parser_skip_to_closing_x for general
delimiters, but I modified this to stop on unnested ']' as well. It
was already changed to stop on unnested '}', so the
"closing_parenthesis" name is no more misleading with my change. */
{
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/true,
/*consume_paren=*/true);
break;
}
/* Find the initializer for this capture. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
bool direct, non_constant;
/* An explicit initializer exists. */
if (cxx_dialect < cxx14)
pedwarn (input_location, 0,
"lambda capture initializers "
"only available with %<-std=c++14%> or %<-std=gnu++14%>");
capture_init_expr = cp_parser_initializer (parser, &direct,
&non_constant, true);
explicit_init_p = true;
if (capture_init_expr == NULL_TREE)
{
error ("empty initializer for lambda init-capture");
capture_init_expr = error_mark_node;
}
if (init_pack_expansion)
capture_init_expr = make_pack_expansion (capture_init_expr);
}
else
{
const char* error_msg;
/* Turn the identifier into an id-expression. */
capture_init_expr
= cp_parser_lookup_name_simple (parser, capture_id,
capture_token->location);
if (capture_init_expr == error_mark_node)
{
unqualified_name_lookup_error (capture_id);
continue;
}
else if (!VAR_P (capture_init_expr)
&& TREE_CODE (capture_init_expr) != PARM_DECL)
{
error_at (capture_token->location,
"capture of non-variable %qE",
capture_init_expr);
if (DECL_P (capture_init_expr))
inform (DECL_SOURCE_LOCATION (capture_init_expr),
"%q#D declared here", capture_init_expr);
continue;
}
if (VAR_P (capture_init_expr)
&& decl_storage_duration (capture_init_expr) != dk_auto)
{
if (pedwarn (capture_token->location, 0, "capture of variable "
"%qD with non-automatic storage duration",
capture_init_expr))
inform (DECL_SOURCE_LOCATION (capture_init_expr),
"%q#D declared here", capture_init_expr);
continue;
}
capture_init_expr
= finish_id_expression
(capture_id,
capture_init_expr,
parser->scope,
&idk,
/*integral_constant_expression_p=*/false,
/*allow_non_integral_constant_expression_p=*/false,
/*non_integral_constant_expression_p=*/NULL,
/*template_p=*/false,
/*done=*/true,
/*address_p=*/false,
/*template_arg_p=*/false,
&error_msg,
capture_token->location);
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
cp_lexer_consume_token (parser->lexer);
capture_init_expr = make_pack_expansion (capture_init_expr);
if (init_pack_expansion)
{
/* If what follows is an initializer, the second '...' is
invalid. But for cases like [...xs...], the first one
is invalid. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
ellipsis_loc = loc;
error_at (ellipsis_loc, "too many %<...%> in lambda capture");
continue;
}
}
}
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) != CPLD_NONE
&& !explicit_init_p)
{
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_COPY
&& capture_kind == BY_COPY)
pedwarn (capture_token->location, 0, "explicit by-copy capture "
"of %qD redundant with by-copy capture default",
capture_id);
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_REFERENCE
&& capture_kind == BY_REFERENCE)
pedwarn (capture_token->location, 0, "explicit by-reference "
"capture of %qD redundant with by-reference capture "
"default", capture_id);
}
/* Check for duplicates.
Optimize for the zero or one explicit captures cases and only create
the hash_set after adding second capture. */
bool found = false;
if (ids.elements ())
found = ids.add (capture_id);
else if (first_capture_id == NULL_TREE)
first_capture_id = capture_id;
else if (capture_id == first_capture_id)
found = true;
else
{
ids.add (first_capture_id);
ids.add (capture_id);
}
if (found)
pedwarn (input_location, 0,
"already captured %qD in lambda expression", capture_id);
else
add_capture (lambda_expr, capture_id, capture_init_expr,
/*by_reference_p=*/capture_kind == BY_REFERENCE,
explicit_init_p);
/* If there is any qualification still in effect, clear it
now; we will be starting fresh with the next capture. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
}
/* Parse the (optional) middle of a lambda expression.
lambda-declarator:
< template-parameter-list [opt] >
( parameter-declaration-clause [opt] )
attribute-specifier [opt]
decl-specifier-seq [opt]
exception-specification [opt]
lambda-return-type-clause [opt]
LAMBDA_EXPR is the current representation of the lambda expression. */
static bool
cp_parser_lambda_declarator_opt (cp_parser* parser, tree lambda_expr)
{
/* 5.1.1.4 of the standard says:
If a lambda-expression does not include a lambda-declarator, it is as if
the lambda-declarator were ().
This means an empty parameter list, no attributes, and no exception
specification. */
tree param_list = void_list_node;
tree std_attrs = NULL_TREE;
tree gnu_attrs = NULL_TREE;
tree exception_spec = NULL_TREE;
tree template_param_list = NULL_TREE;
tree tx_qual = NULL_TREE;
tree return_type = NULL_TREE;
cp_decl_specifier_seq lambda_specs;
clear_decl_specs (&lambda_specs);
/* The template-parameter-list is optional, but must begin with
an opening angle if present. */
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
{
if (cxx_dialect < cxx14)
pedwarn (parser->lexer->next_token->location, 0,
"lambda templates are only available with "
"%<-std=c++14%> or %<-std=gnu++14%>");
else if (cxx_dialect < cxx2a)
pedwarn (parser->lexer->next_token->location, OPT_Wpedantic,
"lambda templates are only available with "
"%<-std=c++2a%> or %<-std=gnu++2a%>");
cp_lexer_consume_token (parser->lexer);
template_param_list = cp_parser_template_parameter_list (parser);
cp_parser_skip_to_end_of_template_parameter_list (parser);
/* We just processed one more parameter list. */
++parser->num_template_parameter_lists;
}
/* Committee discussion supports allowing attributes here. */
lambda_specs.attributes = cp_parser_attributes_opt (parser);
/* The parameter-declaration-clause is optional (unless
template-parameter-list was given), but must begin with an
opening parenthesis if present. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
matching_parens parens;
parens.consume_open (parser);
begin_scope (sk_function_parms, /*entity=*/NULL_TREE);
/* Parse parameters. */
param_list
= cp_parser_parameter_declaration_clause
(parser, CP_PARSER_FLAGS_TYPENAME_OPTIONAL);
/* Default arguments shall not be specified in the
parameter-declaration-clause of a lambda-declarator. */
if (cxx_dialect < cxx14)
for (tree t = param_list; t; t = TREE_CHAIN (t))
if (TREE_PURPOSE (t) && DECL_P (TREE_VALUE (t)))
pedwarn (DECL_SOURCE_LOCATION (TREE_VALUE (t)), OPT_Wpedantic,
"default argument specified for lambda parameter");
parens.require_close (parser);
/* In the decl-specifier-seq of the lambda-declarator, each
decl-specifier shall either be mutable or constexpr. */
int declares_class_or_enum;
if (cp_lexer_next_token_is_decl_specifier_keyword (parser->lexer)
&& !cp_next_tokens_can_be_gnu_attribute_p (parser))
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR,
&lambda_specs, &declares_class_or_enum);
if (lambda_specs.storage_class == sc_mutable)
{
LAMBDA_EXPR_MUTABLE_P (lambda_expr) = 1;
if (lambda_specs.conflicting_specifiers_p)
error_at (lambda_specs.locations[ds_storage_class],
"duplicate %<mutable%>");
}
tx_qual = cp_parser_tx_qualifier_opt (parser);
/* Parse optional exception specification. */
exception_spec = cp_parser_exception_specification_opt (parser);
/* GCC 8 accepted attributes here, and this is the place for standard
C++11 attributes that appertain to the function type. */
if (cp_next_tokens_can_be_gnu_attribute_p (parser))
gnu_attrs = cp_parser_gnu_attributes_opt (parser);
else
std_attrs = cp_parser_std_attribute_spec_seq (parser);
/* Parse optional trailing return type. */
if (cp_lexer_next_token_is (parser->lexer, CPP_DEREF))
{
cp_lexer_consume_token (parser->lexer);
return_type = cp_parser_trailing_type_id (parser);
}
/* Also allow GNU attributes at the very end of the declaration, the
usual place for GNU attributes. */
if (cp_next_tokens_can_be_gnu_attribute_p (parser))
gnu_attrs = chainon (gnu_attrs, cp_parser_gnu_attributes_opt (parser));
/* The function parameters must be in scope all the way until after the
trailing-return-type in case of decltype. */
pop_bindings_and_leave_scope ();
}
else if (template_param_list != NULL_TREE) // generate diagnostic
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
/* Create the function call operator.
Messing with declarators like this is no uglier than building up the
FUNCTION_DECL by hand, and this is less likely to get out of sync with
other code. */
{
cp_decl_specifier_seq return_type_specs;
cp_declarator* declarator;
tree fco;
int quals;
void *p;
clear_decl_specs (&return_type_specs);
return_type_specs.type = make_auto ();
if (lambda_specs.locations[ds_constexpr])
{
if (cxx_dialect >= cxx17)
return_type_specs.locations[ds_constexpr]
= lambda_specs.locations[ds_constexpr];
else
error_at (lambda_specs.locations[ds_constexpr], "%<constexpr%> "
"lambda only available with %<-std=c++17%> or "
"%<-std=gnu++17%>");
}
p = obstack_alloc (&declarator_obstack, 0);
declarator = make_id_declarator (NULL_TREE, call_op_identifier, sfk_none,
LAMBDA_EXPR_LOCATION (lambda_expr));
quals = (LAMBDA_EXPR_MUTABLE_P (lambda_expr)
? TYPE_UNQUALIFIED : TYPE_QUAL_CONST);
declarator = make_call_declarator (declarator, param_list, quals,
VIRT_SPEC_UNSPECIFIED,
REF_QUAL_NONE,
tx_qual,
exception_spec,
return_type,
/*requires_clause*/NULL_TREE);
declarator->std_attributes = std_attrs;
fco = grokmethod (&return_type_specs,
declarator,
chainon (gnu_attrs, lambda_specs.attributes));
if (fco != error_mark_node)
{
DECL_INITIALIZED_IN_CLASS_P (fco) = 1;
DECL_ARTIFICIAL (fco) = 1;
/* Give the object parameter a different name. */
DECL_NAME (DECL_ARGUMENTS (fco)) = closure_identifier;
DECL_LAMBDA_FUNCTION (fco) = 1;
}
if (template_param_list)
{
fco = finish_member_template_decl (fco);
finish_template_decl (template_param_list);
--parser->num_template_parameter_lists;
}
else if (parser->fully_implicit_function_template_p)
fco = finish_fully_implicit_template (parser, fco);
finish_member_declaration (fco);
obstack_free (&declarator_obstack, p);
return (fco != error_mark_node);
}
}
/* Parse the body of a lambda expression, which is simply
compound-statement
but which requires special handling.
LAMBDA_EXPR is the current representation of the lambda expression. */
static void
cp_parser_lambda_body (cp_parser* parser, tree lambda_expr)
{
bool nested = (current_function_decl != NULL_TREE);
unsigned char local_variables_forbidden_p
= parser->local_variables_forbidden_p;
bool in_function_body = parser->in_function_body;
/* The body of a lambda-expression is not a subexpression of the enclosing
expression. */
cp_evaluated ev;
if (nested)
push_function_context ();
else
/* Still increment function_depth so that we don't GC in the
middle of an expression. */
++function_depth;
vec<tree> omp_privatization_save;
save_omp_privatization_clauses (omp_privatization_save);
/* Clear this in case we're in the middle of a default argument. */
parser->local_variables_forbidden_p = 0;
parser->in_function_body = true;
{
local_specialization_stack s (lss_copy);
tree fco = lambda_function (lambda_expr);
tree body = start_lambda_function (fco, lambda_expr);
matching_braces braces;
if (braces.require_open (parser))
{
tree compound_stmt = begin_compound_stmt (0);
/* Originally C++11 required us to peek for 'return expr'; and
process it specially here to deduce the return type. N3638
removed the need for that. */
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL))
cp_parser_label_declaration (parser);
cp_parser_statement_seq_opt (parser, NULL_TREE);
braces.require_close (parser);
finish_compound_stmt (compound_stmt);
}
finish_lambda_function (body);
}
restore_omp_privatization_clauses (omp_privatization_save);
parser->local_variables_forbidden_p = local_variables_forbidden_p;
parser->in_function_body = in_function_body;
if (nested)
pop_function_context();
else
--function_depth;
}
/* Statements [gram.stmt.stmt] */
/* Build and add a DEBUG_BEGIN_STMT statement with location LOC. */
static void
add_debug_begin_stmt (location_t loc)
{
if (!MAY_HAVE_DEBUG_MARKER_STMTS)
return;
if (DECL_DECLARED_CONCEPT_P (current_function_decl))
/* A concept is never expanded normally. */
return;
tree stmt = build0 (DEBUG_BEGIN_STMT, void_type_node);
SET_EXPR_LOCATION (stmt, loc);
add_stmt (stmt);
}
/* Parse a statement.
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block
C++11:
statement:
labeled-statement
attribute-specifier-seq (opt) expression-statement
attribute-specifier-seq (opt) compound-statement
attribute-specifier-seq (opt) selection-statement
attribute-specifier-seq (opt) iteration-statement
attribute-specifier-seq (opt) jump-statement
declaration-statement
attribute-specifier-seq (opt) try-block
init-statement:
expression-statement
simple-declaration
TM Extension:
statement:
atomic-statement
IN_COMPOUND is true when the statement is nested inside a
cp_parser_compound_statement; this matters for certain pragmas.
If IF_P is not NULL, *IF_P is set to indicate whether the statement
is a (possibly labeled) if statement which is not enclosed in braces
and has an else clause. This is used to implement -Wparentheses.
CHAIN is a vector of if-else-if conditions. */
static void
cp_parser_statement (cp_parser* parser, tree in_statement_expr,
bool in_compound, bool *if_p, vec<tree> *chain,
location_t *loc_after_labels)
{
tree statement, std_attrs = NULL_TREE;
cp_token *token;
location_t statement_location, attrs_loc;
restart:
if (if_p != NULL)
*if_p = false;
/* There is no statement yet. */
statement = NULL_TREE;
saved_token_sentinel saved_tokens (parser->lexer);
attrs_loc = cp_lexer_peek_token (parser->lexer)->location;
if (c_dialect_objc ())
/* In obj-c++, seeing '[[' might be the either the beginning of
c++11 attributes, or a nested objc-message-expression. So
let's parse the c++11 attributes tentatively. */
cp_parser_parse_tentatively (parser);
std_attrs = cp_parser_std_attribute_spec_seq (parser);
if (std_attrs)
{
location_t end_loc
= cp_lexer_previous_token (parser->lexer)->location;
attrs_loc = make_location (attrs_loc, attrs_loc, end_loc);
}
if (c_dialect_objc ())
{
if (!cp_parser_parse_definitely (parser))
std_attrs = NULL_TREE;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Remember the location of the first token in the statement. */
cp_token *statement_token = token;
statement_location = token->location;
add_debug_begin_stmt (statement_location);
/* If this is a keyword, then that will often determine what kind of
statement we have. */
if (token->type == CPP_KEYWORD)
{
enum rid keyword = token->keyword;
switch (keyword)
{
case RID_CASE:
case RID_DEFAULT:
/* Looks like a labeled-statement with a case label.
Parse the label, and then use tail recursion to parse
the statement. */
cp_parser_label_for_labeled_statement (parser, std_attrs);
in_compound = false;
goto restart;
case RID_IF:
case RID_SWITCH:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_selection_statement (parser, if_p, chain);
break;
case RID_WHILE:
case RID_DO:
case RID_FOR:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_iteration_statement (parser, if_p, false, 0);
break;
case RID_BREAK:
case RID_CONTINUE:
case RID_RETURN:
case RID_GOTO:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_jump_statement (parser);
break;
/* Objective-C++ exception-handling constructs. */
case RID_AT_TRY:
case RID_AT_CATCH:
case RID_AT_FINALLY:
case RID_AT_SYNCHRONIZED:
case RID_AT_THROW:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_objc_statement (parser);
break;
case RID_TRY:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_try_block (parser);
break;
case RID_NAMESPACE:
/* This must be a namespace alias definition. */
if (std_attrs != NULL_TREE)
{
/* Attributes should be parsed as part of the the
declaration, so let's un-parse them. */
saved_tokens.rollback();
std_attrs = NULL_TREE;
}
cp_parser_declaration_statement (parser);
return;
case RID_TRANSACTION_ATOMIC:
case RID_TRANSACTION_RELAXED:
case RID_SYNCHRONIZED:
case RID_ATOMIC_NOEXCEPT:
case RID_ATOMIC_CANCEL:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_transaction (parser, token);
break;
case RID_TRANSACTION_CANCEL:
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
statement = cp_parser_transaction_cancel (parser);
break;
default:
/* It might be a keyword like `int' that can start a
declaration-statement. */
break;
}
}
else if (token->type == CPP_NAME)
{
/* If the next token is a `:', then we are looking at a
labeled-statement. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token->type == CPP_COLON)
{
/* Looks like a labeled-statement with an ordinary label.
Parse the label, and then use tail recursion to parse
the statement. */
cp_parser_label_for_labeled_statement (parser, std_attrs);
in_compound = false;
goto restart;
}
}
/* Anything that starts with a `{' must be a compound-statement. */
else if (token->type == CPP_OPEN_BRACE)
statement = cp_parser_compound_statement (parser, NULL, BCS_NORMAL, false);
/* CPP_PRAGMA is a #pragma inside a function body, which constitutes
a statement all its own. */
else if (token->type == CPP_PRAGMA)
{
/* Only certain OpenMP pragmas are attached to statements, and thus
are considered statements themselves. All others are not. In
the context of a compound, accept the pragma as a "statement" and
return so that we can check for a close brace. Otherwise we
require a real statement and must go back and read one. */
if (in_compound)
cp_parser_pragma (parser, pragma_compound, if_p);
else if (!cp_parser_pragma (parser, pragma_stmt, if_p))
goto restart;
return;
}
else if (token->type == CPP_EOF)
{
cp_parser_error (parser, "expected statement");
return;
}
/* Everything else must be a declaration-statement or an
expression-statement. Try for the declaration-statement
first, unless we are looking at a `;', in which case we know that
we have an expression-statement. */
if (!statement)
{
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
if (std_attrs != NULL_TREE)
/* Attributes should be parsed as part of the declaration,
so let's un-parse them. */
saved_tokens.rollback();
cp_parser_parse_tentatively (parser);
/* Try to parse the declaration-statement. */
cp_parser_declaration_statement (parser);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return;
/* It didn't work, restore the post-attribute position. */
if (std_attrs)
cp_lexer_set_token_position (parser->lexer, statement_token);
}
/* All preceding labels have been parsed at this point. */
if (loc_after_labels != NULL)
*loc_after_labels = statement_location;
std_attrs = process_stmt_hotness_attribute (std_attrs, attrs_loc);
/* Look for an expression-statement instead. */
statement = cp_parser_expression_statement (parser, in_statement_expr);
/* Handle [[fallthrough]];. */
if (attribute_fallthrough_p (std_attrs))
{
/* The next token after the fallthrough attribute is ';'. */
if (statement == NULL_TREE)
{
/* Turn [[fallthrough]]; into FALLTHROUGH ();. */
statement = build_call_expr_internal_loc (statement_location,
IFN_FALLTHROUGH,
void_type_node, 0);
finish_expr_stmt (statement);
}
else
warning_at (statement_location, OPT_Wattributes,
"%<fallthrough%> attribute not followed by %<;%>");
std_attrs = NULL_TREE;
}
}
/* Set the line number for the statement. */
if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
SET_EXPR_LOCATION (statement, statement_location);
/* Allow "[[fallthrough]];", but warn otherwise. */
if (std_attrs != NULL_TREE)
warning_at (attrs_loc,
OPT_Wattributes,
"attributes at the beginning of statement are ignored");
}
/* Append ATTR to attribute list ATTRS. */
static tree
attr_chainon (tree attrs, tree attr)
{
if (attrs == error_mark_node)
return error_mark_node;
if (attr == error_mark_node)
return error_mark_node;
return chainon (attrs, attr);
}
/* Parse the label for a labeled-statement, i.e.
identifier :
case constant-expression :
default :
GNU Extension:
case constant-expression ... constant-expression : statement
When a label is parsed without errors, the label is added to the
parse tree by the finish_* functions, so this function doesn't
have to return the label. */
static void
cp_parser_label_for_labeled_statement (cp_parser* parser, tree attributes)
{
cp_token *token;
tree label = NULL_TREE;
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
/* The next token should be an identifier. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_NAME
&& token->type != CPP_KEYWORD)
{
cp_parser_error (parser, "expected labeled-statement");
return;
}
/* Remember whether this case or a user-defined label is allowed to fall
through to. */
bool fallthrough_p = token->flags & PREV_FALLTHROUGH;
parser->colon_corrects_to_scope_p = false;
switch (token->keyword)
{
case RID_CASE:
{
tree expr, expr_hi;
cp_token *ellipsis;
/* Consume the `case' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the constant-expression. */
expr = cp_parser_constant_expression (parser);
if (check_for_bare_parameter_packs (expr))
expr = error_mark_node;
ellipsis = cp_lexer_peek_token (parser->lexer);
if (ellipsis->type == CPP_ELLIPSIS)
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
expr_hi = cp_parser_constant_expression (parser);
if (check_for_bare_parameter_packs (expr_hi))
expr_hi = error_mark_node;
/* We don't need to emit warnings here, as the common code
will do this for us. */
}
else
expr_hi = NULL_TREE;
if (parser->in_switch_statement_p)
{
tree l = finish_case_label (token->location, expr, expr_hi);
if (l && TREE_CODE (l) == CASE_LABEL_EXPR)
{
label = CASE_LABEL (l);
FALLTHROUGH_LABEL_P (label) = fallthrough_p;
}
}
else
error_at (token->location,
"case label %qE not within a switch statement",
expr);
}
break;
case RID_DEFAULT:
/* Consume the `default' token. */
cp_lexer_consume_token (parser->lexer);
if (parser->in_switch_statement_p)
{
tree l = finish_case_label (token->location, NULL_TREE, NULL_TREE);
if (l && TREE_CODE (l) == CASE_LABEL_EXPR)
{
label = CASE_LABEL (l);
FALLTHROUGH_LABEL_P (label) = fallthrough_p;
}
}
else
error_at (token->location, "case label not within a switch statement");
break;
default:
/* Anything else must be an ordinary label. */
label = finish_label_stmt (cp_parser_identifier (parser));
if (label && TREE_CODE (label) == LABEL_DECL)
FALLTHROUGH_LABEL_P (label) = fallthrough_p;
break;
}
/* Require the `:' token. */
cp_parser_require (parser, CPP_COLON, RT_COLON);
/* An ordinary label may optionally be followed by attributes.
However, this is only permitted if the attributes are then
followed by a semicolon. This is because, for backward
compatibility, when parsing
lab: __attribute__ ((unused)) int i;
we want the attribute to attach to "i", not "lab". */
if (label != NULL_TREE
&& cp_next_tokens_can_be_gnu_attribute_p (parser))
{
tree attrs;
cp_parser_parse_tentatively (parser);
attrs = cp_parser_gnu_attributes_opt (parser);
if (attrs == NULL_TREE
/* And fallthrough always binds to the expression-statement. */
|| attribute_fallthrough_p (attrs)
|| cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
cp_parser_abort_tentative_parse (parser);
else if (!cp_parser_parse_definitely (parser))
;
else
attributes = attr_chainon (attributes, attrs);
}
if (attributes != NULL_TREE)
cplus_decl_attributes (&label, attributes, 0);
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
}
/* Parse an expression-statement.
expression-statement:
expression [opt] ;
Returns the new EXPR_STMT -- or NULL_TREE if the expression
statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
indicates whether this expression-statement is part of an
expression statement. */
static tree
cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
{
tree statement = NULL_TREE;
cp_token *token = cp_lexer_peek_token (parser->lexer);
location_t loc = token->location;
/* There might be attribute fallthrough. */
tree attr = cp_parser_gnu_attributes_opt (parser);
/* If the next token is a ';', then there is no expression
statement. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
statement = cp_parser_expression (parser);
if (statement == error_mark_node
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
{
cp_parser_skip_to_end_of_block_or_statement (parser);
return error_mark_node;
}
}
/* Handle [[fallthrough]];. */
if (attribute_fallthrough_p (attr))
{
/* The next token after the fallthrough attribute is ';'. */
if (statement == NULL_TREE)
/* Turn [[fallthrough]]; into FALLTHROUGH ();. */
statement = build_call_expr_internal_loc (loc, IFN_FALLTHROUGH,
void_type_node, 0);
else
warning_at (loc, OPT_Wattributes,
"%<fallthrough%> attribute not followed by %<;%>");
attr = NULL_TREE;
}
/* Allow "[[fallthrough]];", but warn otherwise. */
if (attr != NULL_TREE)
warning_at (loc, OPT_Wattributes,
"attributes at the beginning of statement are ignored");
/* Give a helpful message for "A<T>::type t;" and the like. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
{
if (TREE_CODE (statement) == SCOPE_REF)
error_at (token->location, "need %<typename%> before %qE because "
"%qT is a dependent scope",
statement, TREE_OPERAND (statement, 0));
else if (is_overloaded_fn (statement)
&& DECL_CONSTRUCTOR_P (get_first_fn (statement)))
{
/* A::A a; */
tree fn = get_first_fn (statement);
error_at (token->location,
"%<%T::%D%> names the constructor, not the type",
DECL_CONTEXT (fn), DECL_NAME (fn));
}
}
/* Consume the final `;'. */
cp_parser_consume_semicolon_at_end_of_statement (parser);
if (in_statement_expr
&& cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
/* This is the final expression statement of a statement
expression. */
statement = finish_stmt_expr_expr (statement, in_statement_expr);
else if (statement)
statement = finish_expr_stmt (statement);
return statement;
}
/* Parse a compound-statement.
compound-statement:
{ statement-seq [opt] }
GNU extension:
compound-statement:
{ label-declaration-seq [opt] statement-seq [opt] }
label-declaration-seq:
label-declaration
label-declaration-seq label-declaration
Returns a tree representing the statement. */
static tree
cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
int bcs_flags, bool function_body)
{
tree compound_stmt;
matching_braces braces;
/* Consume the `{'. */
if (!braces.require_open (parser))
return error_mark_node;
if (DECL_DECLARED_CONSTEXPR_P (current_function_decl)
&& !function_body && cxx_dialect < cxx14)
pedwarn (input_location, OPT_Wpedantic,
"compound-statement in %<constexpr%> function");
/* Begin the compound-statement. */
compound_stmt = begin_compound_stmt (bcs_flags);
/* If the next keyword is `__label__' we have a label declaration. */
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL))
cp_parser_label_declaration (parser);
/* Parse an (optional) statement-seq. */
cp_parser_statement_seq_opt (parser, in_statement_expr);
/* Finish the compound-statement. */
finish_compound_stmt (compound_stmt);
/* Consume the `}'. */
braces.require_close (parser);
return compound_stmt;
}
/* Parse an (optional) statement-seq.
statement-seq:
statement
statement-seq [opt] statement */
static void
cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
{
/* Scan statements until there aren't any more. */
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* If we are looking at a `}', then we have run out of
statements; the same is true if we have reached the end
of file, or have stumbled upon a stray '@end'. */
if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_EOF
|| token->type == CPP_PRAGMA_EOL
|| (token->type == CPP_KEYWORD && token->keyword == RID_AT_END))
break;
/* If we are in a compound statement and find 'else' then
something went wrong. */
else if (token->type == CPP_KEYWORD && token->keyword == RID_ELSE)
{
if (parser->in_statement & IN_IF_STMT)
break;
else
{
token = cp_lexer_consume_token (parser->lexer);
error_at (token->location, "%<else%> without a previous %<if%>");
}
}
/* Parse the statement. */
cp_parser_statement (parser, in_statement_expr, true, NULL);
}
}
/* Return true if this is the C++20 version of range-based-for with
init-statement. */
static bool
cp_parser_range_based_for_with_init_p (cp_parser *parser)
{
bool r = false;
/* Save tokens so that we can put them back. */
cp_lexer_save_tokens (parser->lexer);
/* There has to be an unnested ; followed by an unnested :. */
if (cp_parser_skip_to_closing_parenthesis_1 (parser,
/*recovering=*/false,
CPP_SEMICOLON,
/*consume_paren=*/false) != -1)
goto out;
/* We found the semicolon, eat it now. */
cp_lexer_consume_token (parser->lexer);
/* Now look for ':' that is not nested in () or {}. */
r = (cp_parser_skip_to_closing_parenthesis_1 (parser,
/*recovering=*/false,
CPP_COLON,
/*consume_paren=*/false) == -1);
out:
/* Roll back the tokens we skipped. */
cp_lexer_rollback_tokens (parser->lexer);
return r;
}
/* Return true if we're looking at (init; cond), false otherwise. */
static bool
cp_parser_init_statement_p (cp_parser *parser)
{
/* Save tokens so that we can put them back. */
cp_lexer_save_tokens (parser->lexer);
/* Look for ';' that is not nested in () or {}. */
int ret = cp_parser_skip_to_closing_parenthesis_1 (parser,
/*recovering=*/false,
CPP_SEMICOLON,
/*consume_paren=*/false);
/* Roll back the tokens we skipped. */
cp_lexer_rollback_tokens (parser->lexer);
return ret == -1;
}
/* Parse a selection-statement.
selection-statement:
if ( init-statement [opt] condition ) statement
if ( init-statement [opt] condition ) statement else statement
switch ( init-statement [opt] condition ) statement
Returns the new IF_STMT or SWITCH_STMT.
If IF_P is not NULL, *IF_P is set to indicate whether the statement
is a (possibly labeled) if statement which is not enclosed in
braces and has an else clause. This is used to implement
-Wparentheses.
CHAIN is a vector of if-else-if conditions. This is used to implement
-Wduplicated-cond. */
static tree
cp_parser_selection_statement (cp_parser* parser, bool *if_p,
vec<tree> *chain)
{
cp_token *token;
enum rid keyword;
token_indent_info guard_tinfo;
if (if_p != NULL)
*if_p = false;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, RT_SELECT);
guard_tinfo = get_token_indent_info (token);
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_IF:
case RID_SWITCH:
{
tree statement;
tree condition;
bool cx = false;
if (keyword == RID_IF
&& cp_lexer_next_token_is_keyword (parser->lexer,
RID_CONSTEXPR))
{
cx = true;
cp_token *tok = cp_lexer_consume_token (parser->lexer);
if (cxx_dialect < cxx17 && !in_system_header_at (tok->location))
pedwarn (tok->location, 0, "%<if constexpr%> only available "
"with %<-std=c++17%> or %<-std=gnu++17%>");
}
/* Look for the `('. */
matching_parens parens;
if (!parens.require_open (parser))
{
cp_parser_skip_to_end_of_statement (parser);
return error_mark_node;
}
/* Begin the selection-statement. */
if (keyword == RID_IF)
{
statement = begin_if_stmt ();
IF_STMT_CONSTEXPR_P (statement) = cx;
}
else
statement = begin_switch_stmt ();
/* Parse the optional init-statement. */
if (cp_parser_init_statement_p (parser))
{
tree decl;
if (cxx_dialect < cxx17)
pedwarn (cp_lexer_peek_token (parser->lexer)->location, 0,
"init-statement in selection statements only available "
"with %<-std=c++17%> or %<-std=gnu++17%>");
cp_parser_init_statement (parser, &decl);
}
/* Parse the condition. */
condition = cp_parser_condition (parser);
/* Look for the `)'. */
if (!parens.require_close (parser))
cp_parser_skip_to_closing_parenthesis (parser, true, false,
/*consume_paren=*/true);
if (keyword == RID_IF)
{
bool nested_if;
unsigned char in_statement;
/* Add the condition. */
condition = finish_if_stmt_cond (condition, statement);
if (warn_duplicated_cond)
warn_duplicated_cond_add_or_warn (token->location, condition,
&chain);
/* Parse the then-clause. */
in_statement = parser->in_statement;
parser->in_statement |= IN_IF_STMT;
/* Outside a template, the non-selected branch of a constexpr
if is a 'discarded statement', i.e. unevaluated. */
bool was_discarded = in_discarded_stmt;
bool discard_then = (cx && !processing_template_decl
&& integer_zerop (condition));
if (discard_then)
{
in_discarded_stmt = true;
++c_inhibit_evaluation_warnings;
}
cp_parser_implicitly_scoped_statement (parser, &nested_if,
guard_tinfo);
parser->in_statement = in_statement;
finish_then_clause (statement);
if (discard_then)
{
THEN_CLAUSE (statement) = NULL_TREE;
in_discarded_stmt = was_discarded;
--c_inhibit_evaluation_warnings;
}
/* If the next token is `else', parse the else-clause. */
if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_ELSE))
{
bool discard_else = (cx && !processing_template_decl
&& integer_nonzerop (condition));
if (discard_else)
{
in_discarded_stmt = true;
++c_inhibit_evaluation_warnings;
}
guard_tinfo
= get_token_indent_info (cp_lexer_peek_token (parser->lexer));
/* Consume the `else' keyword. */
cp_lexer_consume_token (parser->lexer);
if (warn_duplicated_cond)
{
if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_IF)
&& chain == NULL)
{
/* We've got "if (COND) else if (COND2)". Start
the condition chain and add COND as the first
element. */
chain = new vec<tree> ();
if (!CONSTANT_CLASS_P (condition)
&& !TREE_SIDE_EFFECTS (condition))
{
/* Wrap it in a NOP_EXPR so that we can set the
location of the condition. */
tree e = build1 (NOP_EXPR, TREE_TYPE (condition),
condition);
SET_EXPR_LOCATION (e, token->location);
chain->safe_push (e);
}
}
else if (!cp_lexer_next_token_is_keyword (parser->lexer,
RID_IF))
{
/* This is if-else without subsequent if. Zap the
condition chain; we would have already warned at
this point. */
delete chain;
chain = NULL;
}
}
begin_else_clause (statement);
/* Parse the else-clause. */
cp_parser_implicitly_scoped_statement (parser, NULL,
guard_tinfo, chain);
finish_else_clause (statement);
/* If we are currently parsing a then-clause, then
IF_P will not be NULL. We set it to true to
indicate that this if statement has an else clause.
This may trigger the Wparentheses warning below
when we get back up to the parent if statement. */
if (if_p != NULL)
*if_p = true;
if (discard_else)
{
ELSE_CLAUSE (statement) = NULL_TREE;
in_discarded_stmt = was_discarded;
--c_inhibit_evaluation_warnings;
}
}
else
{
/* This if statement does not have an else clause. If
NESTED_IF is true, then the then-clause has an if
statement which does have an else clause. We warn
about the potential ambiguity. */
if (nested_if)
warning_at (EXPR_LOCATION (statement), OPT_Wdangling_else,
"suggest explicit braces to avoid ambiguous"
" %<else%>");
if (warn_duplicated_cond)
{
/* We don't need the condition chain anymore. */
delete chain;
chain = NULL;
}
}
/* Now we're all done with the if-statement. */
finish_if_stmt (statement);
}
else
{
bool in_switch_statement_p;
unsigned char in_statement;
/* Add the condition. */
finish_switch_cond (condition, statement);
/* Parse the body of the switch-statement. */
in_switch_statement_p = parser->in_switch_statement_p;
in_statement = parser->in_statement;
parser->in_switch_statement_p = true;
parser->in_statement |= IN_SWITCH_STMT;
cp_parser_implicitly_scoped_statement (parser, if_p,
guard_tinfo);
parser->in_switch_statement_p = in_switch_statement_p;
parser->in_statement = in_statement;
/* Now we're all done with the switch-statement. */
finish_switch_stmt (statement);
}
return statement;
}
break;
default:
cp_parser_error (parser, "expected selection-statement");
return error_mark_node;
}
}
/* Helper function for cp_parser_condition and cp_parser_simple_declaration.
If we have seen at least one decl-specifier, and the next token
is not a parenthesis, then we must be looking at a declaration.
(After "int (" we might be looking at a functional cast.) */
static void
cp_parser_maybe_commit_to_declaration (cp_parser* parser,
bool any_specifiers_p)
{
if (any_specifiers_p
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
&& !cp_parser_error_occurred (parser))
cp_parser_commit_to_tentative_parse (parser);
}
/* Helper function for cp_parser_condition. Enforces [stmt.stmt]/2:
The declarator shall not specify a function or an array. Returns
TRUE if the declarator is valid, FALSE otherwise. */
static bool
cp_parser_check_condition_declarator (cp_parser* parser,
cp_declarator *declarator,
location_t loc)
{
if (declarator == cp_error_declarator
|| function_declarator_p (declarator)
|| declarator->kind == cdk_array)
{
if (declarator == cp_error_declarator)
/* Already complained. */;
else if (declarator->kind == cdk_array)
error_at (loc, "condition declares an array");
else
error_at (loc, "condition declares a function");
if (parser->fully_implicit_function_template_p)
abort_fully_implicit_template (parser);
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/false);
return false;
}
else
return true;
}
/* Parse a condition.
condition:
expression
type-specifier-seq declarator = initializer-clause
type-specifier-seq declarator braced-init-list
GNU Extension:
condition:
type-specifier-seq declarator asm-specification [opt]
attributes [opt] = assignment-expression
Returns the expression that should be tested. */
static tree
cp_parser_condition (cp_parser* parser)
{
cp_decl_specifier_seq type_specifiers;
const char *saved_message;
int declares_class_or_enum;
/* Try the declaration first. */
cp_parser_parse_tentatively (parser);
/* New types are not allowed in the type-specifier-seq for a
condition. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in conditions");
/* Parse the type-specifier-seq. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR,
&type_specifiers,
&declares_class_or_enum);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
cp_parser_maybe_commit_to_declaration (parser,
type_specifiers.any_specifiers_p);
/* If all is well, we might be looking at a declaration. */
if (!cp_parser_error_occurred (parser))
{
tree decl;
tree asm_specification;
tree attributes;
cp_declarator *declarator;
tree initializer = NULL_TREE;
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
/* Parse the declarator. */
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
CP_PARSER_FLAGS_NONE,
/*ctor_dtor_or_conv_p=*/NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false,
/*friend_p=*/false,
/*static_p=*/false);
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* Parse the asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* If the next token is not an `=' or '{', then we might still be
looking at an expression. For example:
if (A(a).x)
looks like a decl-specifier-seq and a declarator -- but then
there is no `=', so this is an expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
cp_parser_simulate_error (parser);
/* If we did see an `=' or '{', then we are looking at a declaration
for sure. */
if (cp_parser_parse_definitely (parser))
{
tree pushed_scope;
bool non_constant_p = false;
int flags = LOOKUP_ONLYCONVERTING;
if (!cp_parser_check_condition_declarator (parser, declarator, loc))
return error_mark_node;
/* Create the declaration. */
decl = start_decl (declarator, &type_specifiers,
/*initialized_p=*/true,
attributes, /*prefix_attributes=*/NULL_TREE,
&pushed_scope);
/* Parse the initializer. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
initializer = cp_parser_braced_list (parser, &non_constant_p);
CONSTRUCTOR_IS_DIRECT_INIT (initializer) = 1;
flags = 0;
}
else if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
initializer = cp_parser_initializer_clause (parser,
&non_constant_p);
}
else
{
cp_parser_error (parser, "expected initializer");
initializer = error_mark_node;
}
if (BRACE_ENCLOSED_INITIALIZER_P (initializer))
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
/* Process the initializer. */
cp_finish_decl (decl,
initializer, !non_constant_p,
asm_specification,
flags);
if (pushed_scope)
pop_scope (pushed_scope);
return convert_from_reference (decl);
}
}
/* If we didn't even get past the declarator successfully, we are
definitely not looking at a declaration. */
else
cp_parser_abort_tentative_parse (parser);
/* Otherwise, we are looking at an expression. */
return cp_parser_expression (parser);
}
/* Parses a for-statement or range-for-statement until the closing ')',
not included. */
static tree
cp_parser_for (cp_parser *parser, bool ivdep, unsigned short unroll)
{
tree init, scope, decl;
bool is_range_for;
/* Begin the for-statement. */
scope = begin_for_scope (&init);
/* Parse the initialization. */
is_range_for = cp_parser_init_statement (parser, &decl);
if (is_range_for)
return cp_parser_range_for (parser, scope, init, decl, ivdep, unroll,
false);
else
return cp_parser_c_for (parser, scope, init, ivdep, unroll);
}
static tree
cp_parser_c_for (cp_parser *parser, tree scope, tree init, bool ivdep,
unsigned short unroll)
{
/* Normal for loop */
tree condition = NULL_TREE;
tree expression = NULL_TREE;
tree stmt;
stmt = begin_for_stmt (scope, init);
/* The init-statement has already been parsed in
cp_parser_init_statement, so no work is needed here. */
finish_init_stmt (stmt);
/* If there's a condition, process it. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
condition = cp_parser_condition (parser);
else if (ivdep)
{
cp_parser_error (parser, "missing loop condition in loop with "
"%<GCC ivdep%> pragma");
condition = error_mark_node;
}
else if (unroll)
{
cp_parser_error (parser, "missing loop condition in loop with "
"%<GCC unroll%> pragma");
condition = error_mark_node;
}
finish_for_cond (condition, stmt, ivdep, unroll);
/* Look for the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
/* If there's an expression, process it. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
expression = cp_parser_expression (parser);
finish_for_expr (expression, stmt);
return stmt;
}
/* Tries to parse a range-based for-statement:
range-based-for:
decl-specifier-seq declarator : expression
The decl-specifier-seq declarator and the `:' are already parsed by
cp_parser_init_statement. If processing_template_decl it returns a
newly created RANGE_FOR_STMT; if not, it is converted to a
regular FOR_STMT. */
static tree
cp_parser_range_for (cp_parser *parser, tree scope, tree init, tree range_decl,
bool ivdep, unsigned short unroll, bool is_omp)
{
tree stmt, range_expr;
auto_vec <cxx_binding *, 16> bindings;
auto_vec <tree, 16> names;
tree decomp_first_name = NULL_TREE;
unsigned int decomp_cnt = 0;
/* Get the range declaration momentarily out of the way so that
the range expression doesn't clash with it. */
if (range_decl != error_mark_node)
{
if (DECL_HAS_VALUE_EXPR_P (range_decl))
{
tree v = DECL_VALUE_EXPR (range_decl);
/* For decomposition declaration get all of the corresponding
declarations out of the way. */
if (TREE_CODE (v) == ARRAY_REF
&& VAR_P (TREE_OPERAND (v, 0))
&& DECL_DECOMPOSITION_P (TREE_OPERAND (v, 0)))
{
tree d = range_decl;
range_decl = TREE_OPERAND (v, 0);
decomp_cnt = tree_to_uhwi (TREE_OPERAND (v, 1)) + 1;
decomp_first_name = d;
for (unsigned int i = 0; i < decomp_cnt; i++, d = DECL_CHAIN (d))
{
tree name = DECL_NAME (d);
names.safe_push (name);
bindings.safe_push (IDENTIFIER_BINDING (name));
IDENTIFIER_BINDING (name)
= IDENTIFIER_BINDING (name)->previous;
}
}
}
if (names.is_empty ())
{
tree name = DECL_NAME (range_decl);
names.safe_push (name);
bindings.safe_push (IDENTIFIER_BINDING (name));
IDENTIFIER_BINDING (name) = IDENTIFIER_BINDING (name)->previous;
}
}
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
bool expr_non_constant_p;
range_expr = cp_parser_braced_list (parser, &expr_non_constant_p);
}
else
range_expr = cp_parser_expression (parser);
/* Put the range declaration(s) back into scope. */
for (unsigned int i = 0; i < names.length (); i++)
{
cxx_binding *binding = bindings[i];
binding->previous = IDENTIFIER_BINDING (names[i]);
IDENTIFIER_BINDING (names[i]) = binding;
}
/* finish_omp_for has its own code for the following, so just
return the range_expr instead. */
if (is_omp)
return range_expr;
/* If in template, STMT is converted to a normal for-statement
at instantiation. If not, it is done just ahead. */
if (processing_template_decl)
{
if (check_for_bare_parameter_packs (range_expr))
range_expr = error_mark_node;
stmt = begin_range_for_stmt (scope, init);
if (ivdep)
RANGE_FOR_IVDEP (stmt) = 1;
if (unroll)
RANGE_FOR_UNROLL (stmt) = build_int_cst (integer_type_node, unroll);
finish_range_for_decl (stmt, range_decl, range_expr);
if (!type_dependent_expression_p (range_expr)
/* do_auto_deduction doesn't mess with template init-lists. */
&& !BRACE_ENCLOSED_INITIALIZER_P (range_expr))
do_range_for_auto_deduction (range_decl, range_expr);
}
else
{
stmt = begin_for_stmt (scope, init);
stmt = cp_convert_range_for (stmt, range_decl, range_expr,
decomp_first_name, decomp_cnt, ivdep,
unroll);
}
return stmt;
}
/* Subroutine of cp_convert_range_for: given the initializer expression,
builds up the range temporary. */
static tree
build_range_temp (tree range_expr)
{
tree range_type, range_temp;
/* Find out the type deduced by the declaration
`auto &&__range = range_expr'. */
range_type = cp_build_reference_type (make_auto (), true);
range_type = do_auto_deduction (range_type, range_expr,
type_uses_auto (range_type));
/* Create the __range variable. */
range_temp = build_decl (input_location, VAR_DECL, for_range__identifier,
range_type);
TREE_USED (range_temp) = 1;
DECL_ARTIFICIAL (range_temp) = 1;
return range_temp;
}
/* Used by cp_parser_range_for in template context: we aren't going to
do a full conversion yet, but we still need to resolve auto in the
type of the for-range-declaration if present. This is basically
a shortcut version of cp_convert_range_for. */
static void
do_range_for_auto_deduction (tree decl, tree range_expr)
{
tree auto_node = type_uses_auto (TREE_TYPE (decl));
if (auto_node)
{
tree begin_dummy, end_dummy, range_temp, iter_type, iter_decl;
range_temp = convert_from_reference (build_range_temp (range_expr));
iter_type = (cp_parser_perform_range_for_lookup
(range_temp, &begin_dummy, &end_dummy));
if (iter_type)
{
iter_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
iter_type);
iter_decl = build_x_indirect_ref (input_location, iter_decl,
RO_UNARY_STAR,
tf_warning_or_error);
TREE_TYPE (decl) = do_auto_deduction (TREE_TYPE (decl),
iter_decl, auto_node);
}
}
}
/* Converts a range-based for-statement into a normal
for-statement, as per the definition.
for (RANGE_DECL : RANGE_EXPR)
BLOCK
should be equivalent to:
{
auto &&__range = RANGE_EXPR;
for (auto __begin = BEGIN_EXPR, end = END_EXPR;
__begin != __end;
++__begin)
{
RANGE_DECL = *__begin;
BLOCK
}
}
If RANGE_EXPR is an array:
BEGIN_EXPR = __range
END_EXPR = __range + ARRAY_SIZE(__range)
Else if RANGE_EXPR has a member 'begin' or 'end':
BEGIN_EXPR = __range.begin()
END_EXPR = __range.end()
Else:
BEGIN_EXPR = begin(__range)
END_EXPR = end(__range);
If __range has a member 'begin' but not 'end', or vice versa, we must
still use the second alternative (it will surely fail, however).
When calling begin()/end() in the third alternative we must use
argument dependent lookup, but always considering 'std' as an associated
namespace. */
tree
cp_convert_range_for (tree statement, tree range_decl, tree range_expr,
tree decomp_first_name, unsigned int decomp_cnt,
bool ivdep, unsigned short unroll)
{
tree begin, end;
tree iter_type, begin_expr, end_expr;
tree condition, expression;
range_expr = mark_lvalue_use (range_expr);
if (range_decl == error_mark_node || range_expr == error_mark_node)
/* If an error happened previously do nothing or else a lot of
unhelpful errors would be issued. */
begin_expr = end_expr = iter_type = error_mark_node;
else
{
tree range_temp;
if (VAR_P (range_expr)
&& array_of_runtime_bound_p (TREE_TYPE (range_expr)))
/* Can't bind a reference to an array of runtime bound. */
range_temp = range_expr;
else
{
range_temp = build_range_temp (range_expr);
pushdecl (range_temp);
cp_finish_decl (range_temp, range_expr,
/*is_constant_init*/false, NULL_TREE,
LOOKUP_ONLYCONVERTING);
range_temp = convert_from_reference (range_temp);
}
iter_type = cp_parser_perform_range_for_lookup (range_temp,
&begin_expr, &end_expr);
}
/* The new for initialization statement. */
begin = build_decl (input_location, VAR_DECL, for_begin__identifier,
iter_type);
TREE_USED (begin) = 1;
DECL_ARTIFICIAL (begin) = 1;
pushdecl (begin);
cp_finish_decl (begin, begin_expr,
/*is_constant_init*/false, NULL_TREE,
LOOKUP_ONLYCONVERTING);
if (cxx_dialect >= cxx17)
iter_type = cv_unqualified (TREE_TYPE (end_expr));
end = build_decl (input_location, VAR_DECL, for_end__identifier, iter_type);
TREE_USED (end) = 1;
DECL_ARTIFICIAL (end) = 1;
pushdecl (end);
cp_finish_decl (end, end_expr,
/*is_constant_init*/false, NULL_TREE,
LOOKUP_ONLYCONVERTING);
finish_init_stmt (statement);
/* The new for condition. */
condition = build_x_binary_op (input_location, NE_EXPR,
begin, ERROR_MARK,
end, ERROR_MARK,
NULL, tf_warning_or_error);
finish_for_cond (condition, statement, ivdep, unroll);
/* The new increment expression. */
expression = finish_unary_op_expr (input_location,
PREINCREMENT_EXPR, begin,
tf_warning_or_error);
finish_for_expr (expression, statement);
if (VAR_P (range_decl) && DECL_DECOMPOSITION_P (range_decl))
cp_maybe_mangle_decomp (range_decl, decomp_first_name, decomp_cnt);
/* The declaration is initialized with *__begin inside the loop body. */
cp_finish_decl (range_decl,
build_x_indirect_ref (input_location, begin, RO_UNARY_STAR,
tf_warning_or_error),
/*is_constant_init*/false, NULL_TREE,
LOOKUP_ONLYCONVERTING);
if (VAR_P (range_decl) && DECL_DECOMPOSITION_P (range_decl))
cp_finish_decomp (range_decl, decomp_first_name, decomp_cnt);
return statement;
}
/* Solves BEGIN_EXPR and END_EXPR as described in cp_convert_range_for.
We need to solve both at the same time because the method used
depends on the existence of members begin or end.
Returns the type deduced for the iterator expression. */
static tree
cp_parser_perform_range_for_lookup (tree range, tree *begin, tree *end)
{
if (error_operand_p (range))
{
*begin = *end = error_mark_node;
return error_mark_node;
}
if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (range))))
{
error ("range-based %<for%> expression of type %qT "
"has incomplete type", TREE_TYPE (range));
*begin = *end = error_mark_node;
return error_mark_node;
}
if (TREE_CODE (TREE_TYPE (range)) == ARRAY_TYPE)
{
/* If RANGE is an array, we will use pointer arithmetic. */
*begin = decay_conversion (range, tf_warning_or_error);
*end = build_binary_op (input_location, PLUS_EXPR,
range,
array_type_nelts_top (TREE_TYPE (range)),
false);
return TREE_TYPE (*begin);
}
else
{
/* If it is not an array, we must do a bit of magic. */
tree id_begin, id_end;
tree member_begin, member_end;
*begin = *end = error_mark_node;
id_begin = get_identifier ("begin");
id_end = get_identifier ("end");
member_begin = lookup_member (TREE_TYPE (range), id_begin,
/*protect=*/2, /*want_type=*/false,
tf_warning_or_error);
member_end = lookup_member (TREE_TYPE (range), id_end,
/*protect=*/2, /*want_type=*/false,
tf_warning_or_error);
if (member_begin != NULL_TREE && member_end != NULL_TREE)
{
/* Use the member functions. */
*begin = cp_parser_range_for_member_function (range, id_begin);
*end = cp_parser_range_for_member_function (range, id_end);
}
else
{
/* Use global functions with ADL. */
vec<tree, va_gc> *vec;
vec = make_tree_vector ();
vec_safe_push (vec, range);
member_begin = perform_koenig_lookup (id_begin, vec,
tf_warning_or_error);
*begin = finish_call_expr (member_begin, &vec, false, true,
tf_warning_or_error);
member_end = perform_koenig_lookup (id_end, vec,
tf_warning_or_error);
*end = finish_call_expr (member_end, &vec, false, true,
tf_warning_or_error);
release_tree_vector (vec);
}
/* Last common checks. */
if (*begin == error_mark_node || *end == error_mark_node)
{
/* If one of the expressions is an error do no more checks. */
*begin = *end = error_mark_node;
return error_mark_node;
}
else if (type_dependent_expression_p (*begin)
|| type_dependent_expression_p (*end))
/* Can happen, when, eg, in a template context, Koenig lookup
can't resolve begin/end (c++/58503). */
return NULL_TREE;
else
{
tree iter_type = cv_unqualified (TREE_TYPE (*begin));
/* The unqualified type of the __begin and __end temporaries should
be the same, as required by the multiple auto declaration. */
if (!same_type_p (iter_type, cv_unqualified (TREE_TYPE (*end))))
{
if (cxx_dialect >= cxx17
&& (build_x_binary_op (input_location, NE_EXPR,
*begin, ERROR_MARK,
*end, ERROR_MARK,
NULL, tf_none)
!= error_mark_node))
/* P0184R0 allows __begin and __end to have different types,
but make sure they are comparable so we can give a better
diagnostic. */;
else
error ("inconsistent begin/end types in range-based %<for%> "
"statement: %qT and %qT",
TREE_TYPE (*begin), TREE_TYPE (*end));
}
return iter_type;
}
}
}
/* Helper function for cp_parser_perform_range_for_lookup.
Builds a tree for RANGE.IDENTIFIER(). */
static tree
cp_parser_range_for_member_function (tree range, tree identifier)
{
tree member, res;
vec<tree, va_gc> *vec;
member = finish_class_member_access_expr (range, identifier,
false, tf_warning_or_error);
if (member == error_mark_node)
return error_mark_node;
vec = make_tree_vector ();
res = finish_call_expr (member, &vec,
/*disallow_virtual=*/false,
/*koenig_p=*/false,
tf_warning_or_error);
release_tree_vector (vec);
return res;
}
/* Parse an iteration-statement.
iteration-statement:
while ( condition ) statement
do statement while ( expression ) ;
for ( init-statement condition [opt] ; expression [opt] )
statement
Returns the new WHILE_STMT, DO_STMT, FOR_STMT or RANGE_FOR_STMT. */
static tree
cp_parser_iteration_statement (cp_parser* parser, bool *if_p, bool ivdep,
unsigned short unroll)
{
cp_token *token;
enum rid keyword;
tree statement;
unsigned char in_statement;
token_indent_info guard_tinfo;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, RT_ITERATION);
if (!token)
return error_mark_node;
guard_tinfo = get_token_indent_info (token);
/* Remember whether or not we are already within an iteration
statement. */
in_statement = parser->in_statement;
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_WHILE:
{
tree condition;
/* Begin the while-statement. */
statement = begin_while_stmt ();
/* Look for the `('. */
matching_parens parens;
parens.require_open (parser);
/* Parse the condition. */
condition = cp_parser_condition (parser);
finish_while_stmt_cond (condition, statement, ivdep, unroll);
/* Look for the `)'. */
parens.require_close (parser);
/* Parse the dependent statement. */
parser->in_statement = IN_ITERATION_STMT;
bool prev = note_iteration_stmt_body_start ();
cp_parser_already_scoped_statement (parser, if_p, guard_tinfo);
note_iteration_stmt_body_end (prev);
parser->in_statement = in_statement;
/* We're done with the while-statement. */
finish_while_stmt (statement);
}
break;
case RID_DO:
{
tree expression;
/* Begin the do-statement. */
statement = begin_do_stmt ();
/* Parse the body of the do-statement. */
parser->in_statement = IN_ITERATION_STMT;
bool prev = note_iteration_stmt_body_start ();
cp_parser_implicitly_scoped_statement (parser, NULL, guard_tinfo);
note_iteration_stmt_body_end (prev);
parser->in_statement = in_statement;
finish_do_body (statement);
/* Look for the `while' keyword. */
cp_parser_require_keyword (parser, RID_WHILE, RT_WHILE);
/* Look for the `('. */
matching_parens parens;
parens.require_open (parser);
/* Parse the expression. */
expression = cp_parser_expression (parser);
/* We're done with the do-statement. */
finish_do_stmt (expression, statement, ivdep, unroll);
/* Look for the `)'. */
parens.require_close (parser);
/* Look for the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
}
break;
case RID_FOR:
{
/* Look for the `('. */
matching_parens parens;
parens.require_open (parser);
statement = cp_parser_for (parser, ivdep, unroll);
/* Look for the `)'. */
parens.require_close (parser);
/* Parse the body of the for-statement. */
parser->in_statement = IN_ITERATION_STMT;
bool prev = note_iteration_stmt_body_start ();
cp_parser_already_scoped_statement (parser, if_p, guard_tinfo);
note_iteration_stmt_body_end (prev);
parser->in_statement = in_statement;
/* We're done with the for-statement. */
finish_for_stmt (statement);
}
break;
default:
cp_parser_error (parser, "expected iteration-statement");
statement = error_mark_node;
break;
}
return statement;
}
/* Parse a init-statement or the declarator of a range-based-for.
Returns true if a range-based-for declaration is seen.
init-statement:
expression-statement
simple-declaration */
static bool
cp_parser_init_statement (cp_parser *parser, tree *decl)
{
/* If the next token is a `;', then we have an empty
expression-statement. Grammatically, this is also a
simple-declaration, but an invalid one, because it does not
declare anything. Therefore, if we did not handle this case
specially, we would issue an error message about an invalid
declaration. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
bool is_range_for = false;
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
/* Try to parse the init-statement. */
if (cp_parser_range_based_for_with_init_p (parser))
{
tree dummy;
cp_parser_parse_tentatively (parser);
/* Parse the declaration. */
cp_parser_simple_declaration (parser,
/*function_definition_allowed_p=*/false,
&dummy);
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
if (!cp_parser_parse_definitely (parser))
/* That didn't work, try to parse it as an expression-statement. */
cp_parser_expression_statement (parser, NULL_TREE);
if (cxx_dialect < cxx2a)
{
pedwarn (cp_lexer_peek_token (parser->lexer)->location, 0,
"range-based %<for%> loops with initializer only "
"available with %<-std=c++2a%> or %<-std=gnu++2a%>");
*decl = error_mark_node;
}
}
/* A colon is used in range-based for. */
parser->colon_corrects_to_scope_p = false;
/* We're going to speculatively look for a declaration, falling back
to an expression, if necessary. */
cp_parser_parse_tentatively (parser);
/* Parse the declaration. */
cp_parser_simple_declaration (parser,
/*function_definition_allowed_p=*/false,
decl);
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
/* It is a range-for, consume the ':'. */
cp_lexer_consume_token (parser->lexer);
is_range_for = true;
if (cxx_dialect < cxx11)
pedwarn (cp_lexer_peek_token (parser->lexer)->location, 0,
"range-based %<for%> loops only available with "
"%<-std=c++11%> or %<-std=gnu++11%>");
}
else
/* The ';' is not consumed yet because we told
cp_parser_simple_declaration not to. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
if (cp_parser_parse_definitely (parser))
return is_range_for;
/* If the tentative parse failed, then we shall need to look for an
expression-statement. */
}
/* If we are here, it is an expression-statement. */
cp_parser_expression_statement (parser, NULL_TREE);
return false;
}
/* Parse a jump-statement.
jump-statement:
break ;
continue ;
return expression [opt] ;
return braced-init-list ;
goto identifier ;
GNU extension:
jump-statement:
goto * expression ;
Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
static tree
cp_parser_jump_statement (cp_parser* parser)
{
tree statement = error_mark_node;
cp_token *token;
enum rid keyword;
unsigned char in_statement;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, RT_JUMP);
if (!token)
return error_mark_node;
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_BREAK:
in_statement = parser->in_statement & ~IN_IF_STMT;
switch (in_statement)
{
case 0:
error_at (token->location, "break statement not within loop or switch");
break;
default:
gcc_assert ((in_statement & IN_SWITCH_STMT)
|| in_statement == IN_ITERATION_STMT);
statement = finish_break_stmt ();
if (in_statement == IN_ITERATION_STMT)
break_maybe_infinite_loop ();
break;
case IN_OMP_BLOCK:
error_at (token->location, "invalid exit from OpenMP structured block");
break;
case IN_OMP_FOR:
error_at (token->location, "break statement used with OpenMP for loop");
break;
}
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
break;
case RID_CONTINUE:
switch (parser->in_statement & ~(IN_SWITCH_STMT | IN_IF_STMT))
{
case 0:
error_at (token->location, "continue statement not within a loop");
break;
/* Fall through. */
case IN_ITERATION_STMT:
case IN_OMP_FOR:
statement = finish_continue_stmt ();
break;
case IN_OMP_BLOCK:
error_at (token->location, "invalid exit from OpenMP structured block");
break;
default:
gcc_unreachable ();
}
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
break;
case RID_RETURN:
{
tree expr;
bool expr_non_constant_p;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
cp_lexer_set_source_position (parser->lexer);
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
expr = cp_parser_braced_list (parser, &expr_non_constant_p);
}
else if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
expr = cp_parser_expression (parser);
else
/* If the next token is a `;', then there is no
expression. */
expr = NULL_TREE;
/* Build the return-statement. */
if (current_function_auto_return_pattern && in_discarded_stmt)
/* Don't deduce from a discarded return statement. */;
else
statement = finish_return_stmt (expr);
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
}
break;
case RID_GOTO:
if (parser->in_function_body
&& DECL_DECLARED_CONSTEXPR_P (current_function_decl))
{
error ("%<goto%> in %<constexpr%> function");
cp_function_chain->invalid_constexpr = true;
}
/* Create the goto-statement. */
if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
{
/* Issue a warning about this use of a GNU extension. */
pedwarn (token->location, OPT_Wpedantic, "ISO C++ forbids computed gotos");
/* Consume the '*' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the dependent expression. */
finish_goto_stmt (cp_parser_expression (parser));
}
else
finish_goto_stmt (cp_parser_identifier (parser));
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
break;
default:
cp_parser_error (parser, "expected jump-statement");
break;
}
return statement;
}
/* Parse a declaration-statement.
declaration-statement:
block-declaration */
static void
cp_parser_declaration_statement (cp_parser* parser)
{
void *p;
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
p = obstack_alloc (&declarator_obstack, 0);
/* Parse the block-declaration. */
cp_parser_block_declaration (parser, /*statement_p=*/true);
/* Free any declarators allocated. */
obstack_free (&declarator_obstack, p);
}
/* Some dependent statements (like `if (cond) statement'), are
implicitly in their own scope. In other words, if the statement is
a single statement (as opposed to a compound-statement), it is
none-the-less treated as if it were enclosed in braces. Any
declarations appearing in the dependent statement are out of scope
after control passes that point. This function parses a statement,
but ensures that is in its own scope, even if it is not a
compound-statement.
If IF_P is not NULL, *IF_P is set to indicate whether the statement
is a (possibly labeled) if statement which is not enclosed in
braces and has an else clause. This is used to implement
-Wparentheses.
CHAIN is a vector of if-else-if conditions. This is used to implement
-Wduplicated-cond.
Returns the new statement. */
static tree
cp_parser_implicitly_scoped_statement (cp_parser* parser, bool *if_p,
const token_indent_info &guard_tinfo,
vec<tree> *chain)
{
tree statement;
location_t body_loc = cp_lexer_peek_token (parser->lexer)->location;
location_t body_loc_after_labels = UNKNOWN_LOCATION;
token_indent_info body_tinfo
= get_token_indent_info (cp_lexer_peek_token (parser->lexer));
if (if_p != NULL)
*if_p = false;
/* Mark if () ; with a special NOP_EXPR. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
{
cp_lexer_consume_token (parser->lexer);
statement = add_stmt (build_empty_stmt (body_loc));
if (guard_tinfo.keyword == RID_IF
&& !cp_lexer_next_token_is_keyword (parser->lexer, RID_ELSE))
warning_at (body_loc, OPT_Wempty_body,
"suggest braces around empty body in an %<if%> statement");
else if (guard_tinfo.keyword == RID_ELSE)
warning_at (body_loc, OPT_Wempty_body,
"suggest braces around empty body in an %<else%> statement");
}
/* if a compound is opened, we simply parse the statement directly. */
else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
statement = cp_parser_compound_statement (parser, NULL, BCS_NORMAL, false);
/* If the token is not a `{', then we must take special action. */
else
{
/* Create a compound-statement. */
statement = begin_compound_stmt (0);
/* Parse the dependent-statement. */
cp_parser_statement (parser, NULL_TREE, false, if_p, chain,
&body_loc_after_labels);
/* Finish the dummy compound-statement. */
finish_compound_stmt (statement);
}
token_indent_info next_tinfo
= get_token_indent_info (cp_lexer_peek_token (parser->lexer));
warn_for_misleading_indentation (guard_tinfo, body_tinfo, next_tinfo);
if (body_loc_after_labels != UNKNOWN_LOCATION
&& next_tinfo.type != CPP_SEMICOLON)
warn_for_multistatement_macros (body_loc_after_labels, next_tinfo.location,
guard_tinfo.location, guard_tinfo.keyword);
/* Return the statement. */
return statement;
}
/* For some dependent statements (like `while (cond) statement'), we
have already created a scope. Therefore, even if the dependent
statement is a compound-statement, we do not want to create another
scope. */
static void
cp_parser_already_scoped_statement (cp_parser* parser, bool *if_p,
const token_indent_info &guard_tinfo)
{
/* If the token is a `{', then we must take special action. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
{
token_indent_info body_tinfo
= get_token_indent_info (cp_lexer_peek_token (parser->lexer));
location_t loc_after_labels = UNKNOWN_LOCATION;
cp_parser_statement (parser, NULL_TREE, false, if_p, NULL,
&loc_after_labels);
token_indent_info next_tinfo
= get_token_indent_info (cp_lexer_peek_token (parser->lexer));
warn_for_misleading_indentation (guard_tinfo, body_tinfo, next_tinfo);
if (loc_after_labels != UNKNOWN_LOCATION
&& next_tinfo.type != CPP_SEMICOLON)
warn_for_multistatement_macros (loc_after_labels, next_tinfo.location,
guard_tinfo.location,
guard_tinfo.keyword);
}
else
{
/* Avoid calling cp_parser_compound_statement, so that we
don't create a new scope. Do everything else by hand. */
matching_braces braces;
braces.require_open (parser);
/* If the next keyword is `__label__' we have a label declaration. */
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL))
cp_parser_label_declaration (parser);
/* Parse an (optional) statement-seq. */
cp_parser_statement_seq_opt (parser, NULL_TREE);
braces.require_close (parser);
}
}
/* Declarations [gram.dcl.dcl] */
/* Parse an optional declaration-sequence.
declaration-seq:
declaration
declaration-seq declaration */
static void
cp_parser_declaration_seq_opt (cp_parser* parser)
{
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_EOF)
break;
else
cp_parser_toplevel_declaration (parser);
}
}
/* Parse a declaration.
declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
C++17:
deduction-guide
GNU extension:
declaration:
__extension__ declaration */
static void
cp_parser_declaration (cp_parser* parser)
{
cp_token token1;
cp_token token2;
int saved_pedantic;
void *p;
tree attributes = NULL_TREE;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the qualified declaration. */
cp_parser_declaration (parser);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Try to figure out what kind of declaration is present. */
token1 = *cp_lexer_peek_token (parser->lexer);
if (token1.type != CPP_EOF)
token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
else
{
token2.type = CPP_EOF;
token2.keyword = RID_MAX;
}
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
p = obstack_alloc (&declarator_obstack, 0);
/* If the next token is `extern' and the following token is a string
literal, then we have a linkage specification. */
if (token1.keyword == RID_EXTERN
&& cp_parser_is_pure_string_literal (&token2))
cp_parser_linkage_specification (parser);
/* If the next token is `template', then we have either a template
declaration, an explicit instantiation, or an explicit
specialization. */
else if (token1.keyword == RID_TEMPLATE)
{
/* `template <>' indicates a template specialization. */
if (token2.type == CPP_LESS
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
cp_parser_explicit_specialization (parser);
/* `template <' indicates a template declaration. */
else if (token2.type == CPP_LESS)
cp_parser_template_declaration (parser, /*member_p=*/false);
/* Anything else must be an explicit instantiation. */
else
cp_parser_explicit_instantiation (parser);
}
/* If the next token is `export', then we have a template
declaration. */
else if (token1.keyword == RID_EXPORT)
cp_parser_template_declaration (parser, /*member_p=*/false);
/* If the next token is `extern', 'static' or 'inline' and the one
after that is `template', we have a GNU extended explicit
instantiation directive. */
else if (cp_parser_allow_gnu_extensions_p (parser)
&& (token1.keyword == RID_EXTERN
|| token1.keyword == RID_STATIC
|| token1.keyword == RID_INLINE)
&& token2.keyword == RID_TEMPLATE)
cp_parser_explicit_instantiation (parser);
/* If the next token is `namespace', check for a named or unnamed
namespace definition. */
else if (token1.keyword == RID_NAMESPACE
&& (/* A named namespace definition. */
(token2.type == CPP_NAME
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
!= CPP_EQ))
|| (token2.type == CPP_OPEN_SQUARE
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type
== CPP_OPEN_SQUARE)
/* An unnamed namespace definition. */
|| token2.type == CPP_OPEN_BRACE
|| token2.keyword == RID_ATTRIBUTE))
cp_parser_namespace_definition (parser);
/* An inline (associated) namespace definition. */
else if (token1.keyword == RID_INLINE
&& token2.keyword == RID_NAMESPACE)
cp_parser_namespace_definition (parser);
/* Objective-C++ declaration/definition. */
else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword))
cp_parser_objc_declaration (parser, NULL_TREE);
else if (c_dialect_objc ()
&& token1.keyword == RID_ATTRIBUTE
&& cp_parser_objc_valid_prefix_attributes (parser, &attributes))
cp_parser_objc_declaration (parser, attributes);
/* At this point we may have a template declared by a concept
introduction. */
else if (flag_concepts
&& cp_parser_template_declaration_after_export (parser,
/*member_p=*/false))
/* We did. */;
else
/* Try to parse a block-declaration, or a function-definition. */
cp_parser_block_declaration (parser, /*statement_p=*/false);
/* Free any declarators allocated. */
obstack_free (&declarator_obstack, p);
}
/* Parse a namespace-scope declaration. */
static void
cp_parser_toplevel_declaration (cp_parser* parser)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_PRAGMA)
/* A top-level declaration can consist solely of a #pragma. A
nested declaration cannot, so this is done here and not in
cp_parser_declaration. (A #pragma at block scope is
handled in cp_parser_statement.) */
cp_parser_pragma (parser, pragma_external, NULL);
else if (token->type == CPP_SEMICOLON)
{
/* A declaration consisting of a single semicolon is
invalid. Allow it unless we're being pedantic. */
cp_lexer_consume_token (parser->lexer);
if (!in_system_header_at (input_location))
pedwarn (input_location, OPT_Wpedantic, "extra %<;%>");
}
else
/* Parse the declaration itself. */
cp_parser_declaration (parser);
}
/* Parse a block-declaration.
block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
GNU Extension:
block-declaration:
__extension__ block-declaration
C++0x Extension:
block-declaration:
static_assert-declaration
If STATEMENT_P is TRUE, then this block-declaration is occurring as
part of a declaration-statement. */
static void
cp_parser_block_declaration (cp_parser *parser,
bool statement_p)
{
cp_token *token1;
int saved_pedantic;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the qualified declaration. */
cp_parser_block_declaration (parser, statement_p);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Peek at the next token to figure out which kind of declaration is
present. */
token1 = cp_lexer_peek_token (parser->lexer);
/* If the next keyword is `asm', we have an asm-definition. */
if (token1->keyword == RID_ASM)
{
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
cp_parser_asm_definition (parser);
}
/* If the next keyword is `namespace', we have a
namespace-alias-definition. */
else if (token1->keyword == RID_NAMESPACE)
cp_parser_namespace_alias_definition (parser);
/* If the next keyword is `using', we have a
using-declaration, a using-directive, or an alias-declaration. */
else if (token1->keyword == RID_USING)
{
cp_token *token2;
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
/* If the token after `using' is `namespace', then we have a
using-directive. */
token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token2->keyword == RID_NAMESPACE)
cp_parser_using_directive (parser);
/* If the second token after 'using' is '=', then we have an
alias-declaration. */
else if (cxx_dialect >= cxx11
&& token2->type == CPP_NAME
&& ((cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_EQ)
|| (cp_nth_tokens_can_be_attribute_p (parser, 3))))
cp_parser_alias_declaration (parser);
/* Otherwise, it's a using-declaration. */
else
cp_parser_using_declaration (parser,
/*access_declaration_p=*/false);
}
/* If the next keyword is `__label__' we have a misplaced label
declaration. */
else if (token1->keyword == RID_LABEL)
{
cp_lexer_consume_token (parser->lexer);
error_at (token1->location, "%<__label__%> not at the beginning of a block");
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
}
/* If the next token is `static_assert' we have a static assertion. */
else if (token1->keyword == RID_STATIC_ASSERT)
cp_parser_static_assert (parser, /*member_p=*/false);
/* Anything else must be a simple-declaration. */
else
cp_parser_simple_declaration (parser, !statement_p,
/*maybe_range_for_decl*/NULL);
}
/* Parse a simple-declaration.
simple-declaration:
decl-specifier-seq [opt] init-declarator-list [opt] ;
decl-specifier-seq ref-qualifier [opt] [ identifier-list ]
brace-or-equal-initializer ;
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
function-definition as a simple-declaration.
If MAYBE_RANGE_FOR_DECL is not NULL, the pointed tree will be set to the
parsed declaration if it is an uninitialized single declarator not followed
by a `;', or to error_mark_node otherwise. Either way, the trailing `;',
if present, will not be consumed. */
static void
cp_parser_simple_declaration (cp_parser* parser,
bool function_definition_allowed_p,
tree *maybe_range_for_decl)
{
cp_decl_specifier_seq decl_specifiers;
int declares_class_or_enum;
bool saw_declarator;
location_t comma_loc = UNKNOWN_LOCATION;
location_t init_loc = UNKNOWN_LOCATION;
if (maybe_range_for_decl)
*maybe_range_for_decl = NULL_TREE;
/* Defer access checks until we know what is being declared; the
checks for names appearing in the decl-specifier-seq should be
done as if we were in the scope of the thing being declared. */
push_deferring_access_checks (dk_deferred);
/* Parse the decl-specifier-seq. We have to keep track of whether
or not the decl-specifier-seq declares a named class or
enumeration type, since that is the only case in which the
init-declarator-list is allowed to be empty.
[dcl.dcl]
In a simple-declaration, the optional init-declarator-list can be
omitted only when declaring a class or enumeration, that is when
the decl-specifier-seq contains either a class-specifier, an
elaborated-type-specifier, or an enum-specifier. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&decl_specifiers,
&declares_class_or_enum);
/* We no longer need to defer access checks. */
stop_deferring_access_checks ();
/* In a block scope, a valid declaration must always have a
decl-specifier-seq. By not trying to parse declarators, we can
resolve the declaration/expression ambiguity more quickly. */
if (!function_definition_allowed_p
&& !decl_specifiers.any_specifiers_p)
{
cp_parser_error (parser, "expected declaration");
goto done;
}
/* If the next two tokens are both identifiers, the code is
erroneous. The usual cause of this situation is code like:
T t;
where "T" should name a type -- but does not. */
if (!decl_specifiers.any_type_specifiers_p
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
{
/* If parsing tentatively, we should commit; we really are
looking at a declaration. */
cp_parser_commit_to_tentative_parse (parser);
/* Give up. */
goto done;
}
cp_parser_maybe_commit_to_declaration (parser,
decl_specifiers.any_specifiers_p);
/* Look for C++17 decomposition declaration. */
for (size_t n = 1; ; n++)
if (cp_lexer_nth_token_is (parser->lexer, n, CPP_AND)
|| cp_lexer_nth_token_is (parser->lexer, n, CPP_AND_AND))
continue;
else if (cp_lexer_nth_token_is (parser->lexer, n, CPP_OPEN_SQUARE)
&& !cp_lexer_nth_token_is (parser->lexer, n + 1, CPP_OPEN_SQUARE)
&& decl_specifiers.any_specifiers_p)
{
tree decl
= cp_parser_decomposition_declaration (parser, &decl_specifiers,
maybe_range_for_decl,
&init_loc);
/* The next token should be either a `,' or a `;'. */
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* If it's a `;', we are done. */
if (token->type == CPP_SEMICOLON)
goto finish;
else if (maybe_range_for_decl)
{
if (*maybe_range_for_decl == NULL_TREE)
*maybe_range_for_decl = error_mark_node;
goto finish;
}
/* Anything else is an error. */
else
{
/* If we have already issued an error message we don't need
to issue another one. */
if ((decl != error_mark_node
&& DECL_INITIAL (decl) != error_mark_node)
|| cp_parser_uncommitted_to_tentative_parse_p (parser))
cp_parser_error (parser, "expected %<;%>");
/* Skip tokens until we reach the end of the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
goto done;
}
}
else
break;
tree last_type;
bool auto_specifier_p;
/* NULL_TREE if both variable and function declaration are allowed,
error_mark_node if function declaration are not allowed and
a FUNCTION_DECL that should be diagnosed if it is followed by
variable declarations. */
tree auto_function_declaration;
last_type = NULL_TREE;
auto_specifier_p
= decl_specifiers.type && type_uses_auto (decl_specifiers.type);
auto_function_declaration = NULL_TREE;
/* Keep going until we hit the `;' at the end of the simple
declaration. */
saw_declarator = false;
while (cp_lexer_next_token_is_not (parser->lexer,
CPP_SEMICOLON))
{
cp_token *token;
bool function_definition_p;
tree decl;
tree auto_result = NULL_TREE;
if (saw_declarator)
{
/* If we are processing next declarator, comma is expected */
token = cp_lexer_peek_token (parser->lexer);
gcc_assert (token->type == CPP_COMMA);
cp_lexer_consume_token (parser->lexer);
if (maybe_range_for_decl)
{
*maybe_range_for_decl = error_mark_node;
if (comma_loc == UNKNOWN_LOCATION)
comma_loc = token->location;
}
}
else
saw_declarator = true;
/* Parse the init-declarator. */
decl = cp_parser_init_declarator (parser,
CP_PARSER_FLAGS_NONE,
&decl_specifiers,
/*checks=*/NULL,
function_definition_allowed_p,
/*member_p=*/false,
declares_class_or_enum,
&function_definition_p,
maybe_range_for_decl,
&init_loc,
&auto_result);
/* If an error occurred while parsing tentatively, exit quickly.
(That usually happens when in the body of a function; each
statement is treated as a declaration-statement until proven
otherwise.) */
if (cp_parser_error_occurred (parser))
goto done;
if (auto_specifier_p && cxx_dialect >= cxx14)
{
/* If the init-declarator-list contains more than one
init-declarator, they shall all form declarations of
variables. */
if (auto_function_declaration == NULL_TREE)
auto_function_declaration
= TREE_CODE (decl) == FUNCTION_DECL ? decl : error_mark_node;
else if (TREE_CODE (decl) == FUNCTION_DECL
|| auto_function_declaration != error_mark_node)
{
error_at (decl_specifiers.locations[ds_type_spec],
"non-variable %qD in declaration with more than one "
"declarator with placeholder type",
TREE_CODE (decl) == FUNCTION_DECL
? decl : auto_function_declaration);
auto_function_declaration = error_mark_node;
}
}
if (auto_result
&& (!processing_template_decl || !type_uses_auto (auto_result)))
{
if (last_type
&& last_type != error_mark_node
&& !same_type_p (auto_result, last_type))
{
/* If the list of declarators contains more than one declarator,
the type of each declared variable is determined as described
above. If the type deduced for the template parameter U is not
the same in each deduction, the program is ill-formed. */
error_at (decl_specifiers.locations[ds_type_spec],
"inconsistent deduction for %qT: %qT and then %qT",
decl_specifiers.type, last_type, auto_result);
last_type = error_mark_node;
}
else
last_type = auto_result;
}
/* Handle function definitions specially. */
if (function_definition_p)
{
/* If the next token is a `,', then we are probably
processing something like:
void f() {}, *p;
which is erroneous. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
error_at (token->location,
"mixing"
" declarations and function-definitions is forbidden");
}
/* Otherwise, we're done with the list of declarators. */
else
{
pop_deferring_access_checks ();
return;
}
}
if (maybe_range_for_decl && *maybe_range_for_decl == NULL_TREE)
*maybe_range_for_decl = decl;
/* The next token should be either a `,' or a `;'. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `,', there are more declarators to come. */
if (token->type == CPP_COMMA)
/* will be consumed next time around */;
/* If it's a `;', we are done. */
else if (token->type == CPP_SEMICOLON)
break;
else if (maybe_range_for_decl)
{
if ((declares_class_or_enum & 2) && token->type == CPP_COLON)
permerror (decl_specifiers.locations[ds_type_spec],
"types may not be defined in a for-range-declaration");
break;
}
/* Anything else is an error. */
else
{
/* If we have already issued an error message we don't need
to issue another one. */
if ((decl != error_mark_node
&& DECL_INITIAL (decl) != error_mark_node)
|| cp_parser_uncommitted_to_tentative_parse_p (parser))
cp_parser_error (parser, "expected %<,%> or %<;%>");
/* Skip tokens until we reach the end of the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
goto done;
}
/* After the first time around, a function-definition is not
allowed -- even if it was OK at first. For example:
int i, f() {}
is not valid. */
function_definition_allowed_p = false;
}
/* Issue an error message if no declarators are present, and the
decl-specifier-seq does not itself declare a class or
enumeration: [dcl.dcl]/3. */
if (!saw_declarator)
{
if (cp_parser_declares_only_class_p (parser))
{
if (!declares_class_or_enum
&& decl_specifiers.type
&& OVERLOAD_TYPE_P (decl_specifiers.type))
/* Ensure an error is issued anyway when finish_decltype_type,
called via cp_parser_decl_specifier_seq, returns a class or
an enumeration (c++/51786). */
decl_specifiers.type = NULL_TREE;
shadow_tag (&decl_specifiers);
}
/* Perform any deferred access checks. */
perform_deferred_access_checks (tf_warning_or_error);
}
/* Consume the `;'. */
finish:
if (!maybe_range_for_decl)
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
else if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
if (init_loc != UNKNOWN_LOCATION)
error_at (init_loc, "initializer in range-based %<for%> loop");
if (comma_loc != UNKNOWN_LOCATION)
error_at (comma_loc,
"multiple declarations in range-based %<for%> loop");
}
done:
pop_deferring_access_checks ();
}
/* Helper of cp_parser_simple_declaration, parse a decomposition declaration.
decl-specifier-seq ref-qualifier [opt] [ identifier-list ]
initializer ; */
static tree
cp_parser_decomposition_declaration (cp_parser *parser,
cp_decl_specifier_seq *decl_specifiers,
tree *maybe_range_for_decl,
location_t *init_loc)
{
cp_ref_qualifier ref_qual = cp_parser_ref_qualifier_opt (parser);
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE);
/* Parse the identifier-list. */
auto_vec<cp_expr, 10> v;
if (!cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_SQUARE))
while (true)
{
cp_expr e = cp_parser_identifier (parser);
if (e.get_value () == error_mark_node)
break;
v.safe_push (e);
if (!cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
break;
cp_lexer_consume_token (parser->lexer);
}
location_t end_loc = cp_lexer_peek_token (parser->lexer)->location;
if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE))
{
end_loc = UNKNOWN_LOCATION;
cp_parser_skip_to_closing_parenthesis_1 (parser, true, CPP_CLOSE_SQUARE,
false);
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_SQUARE))
cp_lexer_consume_token (parser->lexer);
else
{
cp_parser_skip_to_end_of_statement (parser);
return error_mark_node;
}
}
if (cxx_dialect < cxx17)
pedwarn (loc, 0, "structured bindings only available with "
"%<-std=c++17%> or %<-std=gnu++17%>");
tree pushed_scope;
cp_declarator *declarator = make_declarator (cdk_decomp);
loc = end_loc == UNKNOWN_LOCATION ? loc : make_location (loc, loc, end_loc);
declarator->id_loc = loc;
if (ref_qual != REF_QUAL_NONE)
declarator = make_reference_declarator (TYPE_UNQUALIFIED, declarator,
ref_qual == REF_QUAL_RVALUE,
NULL_TREE);
tree decl = start_decl (declarator, decl_specifiers, SD_INITIALIZED,
NULL_TREE, decl_specifiers->attributes,
&pushed_scope);
tree orig_decl = decl;
unsigned int i;
cp_expr e;
cp_decl_specifier_seq decl_specs;
clear_decl_specs (&decl_specs);
decl_specs.type = make_auto ();
tree prev = decl;
FOR_EACH_VEC_ELT (v, i, e)
{
if (i == 0)
declarator = make_id_declarator (NULL_TREE, e.get_value (),
sfk_none, e.get_location ());
else
{
declarator->u.id.unqualified_name = e.get_value ();
declarator->id_loc = e.get_location ();
}
tree elt_pushed_scope;
tree decl2 = start_decl (declarator, &decl_specs, SD_INITIALIZED,
NULL_TREE, NULL_TREE, &elt_pushed_scope);
if (decl2 == error_mark_node)
decl = error_mark_node;
else if (decl != error_mark_node && DECL_CHAIN (decl2) != prev)
{
/* Ensure we've diagnosed redeclaration if we aren't creating
a new VAR_DECL. */
gcc_assert (errorcount);
decl = error_mark_node;
}
else
prev = decl2;
if (elt_pushed_scope)
pop_scope (elt_pushed_scope);
}
if (v.is_empty ())
{
error_at (loc, "empty structured binding declaration");
decl = error_mark_node;
}
if (maybe_range_for_decl == NULL
|| cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
{
bool non_constant_p = false, is_direct_init = false;
*init_loc = cp_lexer_peek_token (parser->lexer)->location;
tree initializer = cp_parser_initializer (parser, &is_direct_init,
&non_constant_p);
if (initializer == NULL_TREE
|| (TREE_CODE (initializer) == TREE_LIST
&& TREE_CHAIN (initializer))
|| (is_direct_init
&& BRACE_ENCLOSED_INITIALIZER_P (initializer)
&& CONSTRUCTOR_NELTS (initializer) != 1))
{
error_at (loc, "invalid initializer for structured binding "
"declaration");
initializer = error_mark_node;
}
if (decl != error_mark_node)
{
cp_maybe_mangle_decomp (decl, prev, v.length ());
cp_finish_decl (decl, initializer, non_constant_p, NULL_TREE,
is_direct_init ? LOOKUP_NORMAL : LOOKUP_IMPLICIT);
cp_finish_decomp (decl, prev, v.length ());
}
}
else if (decl != error_mark_node)
{
*maybe_range_for_decl = prev;
/* Ensure DECL_VALUE_EXPR is created for all the decls but
the underlying DECL. */
cp_finish_decomp (decl, prev, v.length ());
}
if (pushed_scope)
pop_scope (pushed_scope);
if (decl == error_mark_node && DECL_P (orig_decl))
{
if (DECL_NAMESPACE_SCOPE_P (orig_decl))
SET_DECL_ASSEMBLER_NAME (orig_decl, get_identifier ("<decomp>"));
}
return decl;
}
/* Parse a decl-specifier-seq.
decl-specifier-seq:
decl-specifier-seq [opt] decl-specifier
decl-specifier attribute-specifier-seq [opt] (C++11)
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
GNU Extension:
decl-specifier:
attributes
Concepts Extension:
decl-specifier:
concept
Set *DECL_SPECS to a representation of the decl-specifier-seq.
The parser flags FLAGS is used to control type-specifier parsing.
*DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
flags:
1: one of the decl-specifiers is an elaborated-type-specifier
(i.e., a type declaration)
2: one of the decl-specifiers is an enum-specifier or a
class-specifier (i.e., a type definition)
*/
static void
cp_parser_decl_specifier_seq (cp_parser* parser,
cp_parser_flags flags,
cp_decl_specifier_seq *decl_specs,
int* declares_class_or_enum)
{
bool constructor_possible_p = !parser->in_declarator_p;
bool found_decl_spec = false;
cp_token *start_token = NULL;
cp_decl_spec ds;
/* Clear DECL_SPECS. */
clear_decl_specs (decl_specs);
/* Assume no class or enumeration type is declared. */
*declares_class_or_enum = 0;
/* Keep reading specifiers until there are no more to read. */
while (true)
{
bool constructor_p;
cp_token *token;
ds = ds_last;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Save the first token of the decl spec list for error
reporting. */
if (!start_token)
start_token = token;
/* Handle attributes. */
if (cp_next_tokens_can_be_attribute_p (parser))
{
/* Parse the attributes. */
tree attrs = cp_parser_attributes_opt (parser);
/* In a sequence of declaration specifiers, c++11 attributes
appertain to the type that precede them. In that case
[dcl.spec]/1 says:
The attribute-specifier-seq affects the type only for
the declaration it appears in, not other declarations
involving the same type.
But for now let's force the user to position the
attribute either at the beginning of the declaration or
after the declarator-id, which would clearly mean that it
applies to the declarator. */
if (cxx11_attribute_p (attrs))
{
if (!found_decl_spec)
/* The c++11 attribute is at the beginning of the
declaration. It appertains to the entity being
declared. */;
else
{
if (decl_specs->type && CLASS_TYPE_P (decl_specs->type))
{
/* This is an attribute following a
class-specifier. */
if (decl_specs->type_definition_p)
warn_misplaced_attr_for_class_type (token->location,
decl_specs->type);
attrs = NULL_TREE;
}
else
{
decl_specs->std_attributes
= attr_chainon (decl_specs->std_attributes, attrs);
if (decl_specs->locations[ds_std_attribute] == 0)
decl_specs->locations[ds_std_attribute] = token->location;
}
continue;
}
}
decl_specs->attributes
= attr_chainon (decl_specs->attributes, attrs);
if (decl_specs->locations[ds_attribute] == 0)
decl_specs->locations[ds_attribute] = token->location;
continue;
}
/* Assume we will find a decl-specifier keyword. */
found_decl_spec = true;
/* If the next token is an appropriate keyword, we can simply
add it to the list. */
switch (token->keyword)
{
/* decl-specifier:
friend
constexpr */
case RID_FRIEND:
if (!at_class_scope_p ())
{
gcc_rich_location richloc (token->location);
richloc.add_fixit_remove ();
error_at (&richloc, "%<friend%> used outside of class");
cp_lexer_purge_token (parser->lexer);
}
else
{
ds = ds_friend;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
break;
case RID_CONSTEXPR:
ds = ds_constexpr;
cp_lexer_consume_token (parser->lexer);
break;
case RID_CONCEPT:
ds = ds_concept;
cp_lexer_consume_token (parser->lexer);
if (flags & CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR)
break;
/* In C++20 a concept definition is just 'concept name = expr;'
Support that syntax by pretending we've seen 'bool'. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_EQ))
{
cp_parser_set_decl_spec_type (decl_specs, boolean_type_node,
token, /*type_definition*/false);
decl_specs->any_type_specifiers_p = true;
}
break;
/* function-specifier:
inline
virtual
explicit */
case RID_INLINE:
case RID_VIRTUAL:
case RID_EXPLICIT:
cp_parser_function_specifier_opt (parser, decl_specs);
break;
/* decl-specifier:
typedef */
case RID_TYPEDEF:
ds = ds_typedef;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
if (flags & CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR)
break;
/* A constructor declarator cannot appear in a typedef. */
constructor_possible_p = false;
/* The "typedef" keyword can only occur in a declaration; we
may as well commit at this point. */
cp_parser_commit_to_tentative_parse (parser);
if (decl_specs->storage_class != sc_none)
decl_specs->conflicting_specifiers_p = true;
break;
/* storage-class-specifier:
auto
register
static
extern
mutable
GNU Extension:
thread */
case RID_AUTO:
if (cxx_dialect == cxx98)
{
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* Complain about `auto' as a storage specifier, if
we're complaining about C++0x compatibility. */
gcc_rich_location richloc (token->location);
richloc.add_fixit_remove ();
warning_at (&richloc, OPT_Wc__11_compat,
"%<auto%> changes meaning in C++11; "
"please remove it");
/* Set the storage class anyway. */
cp_parser_set_storage_class (parser, decl_specs, RID_AUTO,
token);
}
else
/* C++0x auto type-specifier. */
found_decl_spec = false;
break;
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
cp_parser_set_storage_class (parser, decl_specs, token->keyword,
token);
break;
case RID_THREAD:
/* Consume the token. */
ds = ds_thread;
cp_lexer_consume_token (parser->lexer);
break;
default:
/* We did not yet find a decl-specifier yet. */
found_decl_spec = false;
break;
}
if (found_decl_spec
&& (flags & CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR)
&& token->keyword != RID_CONSTEXPR)
error ("decl-specifier invalid in condition");
if (found_decl_spec
&& (flags & CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR)
&& token->keyword != RID_MUTABLE
&& token->keyword != RID_CONSTEXPR)
error_at (token->location, "%qD invalid in lambda",
ridpointers[token->keyword]);
if (ds != ds_last)
set_and_check_decl_spec_loc (decl_specs, ds, token);
/* Constructors are a special case. The `S' in `S()' is not a
decl-specifier; it is the beginning of the declarator. */
constructor_p
= (!found_decl_spec
&& constructor_possible_p
&& (cp_parser_constructor_declarator_p
(parser, flags, decl_spec_seq_has_spec_p (decl_specs,
ds_friend))));
/* If we don't have a DECL_SPEC yet, then we must be looking at
a type-specifier. */
if (!found_decl_spec && !constructor_p)
{
int decl_spec_declares_class_or_enum;
bool is_cv_qualifier;
tree type_spec;
if (flags & CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR)
flags |= CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS;
type_spec
= cp_parser_type_specifier (parser, flags,
decl_specs,
/*is_declaration=*/true,
&decl_spec_declares_class_or_enum,
&is_cv_qualifier);
*declares_class_or_enum |= decl_spec_declares_class_or_enum;
/* If this type-specifier referenced a user-defined type
(a typedef, class-name, etc.), then we can't allow any
more such type-specifiers henceforth.
[dcl.spec]
The longest sequence of decl-specifiers that could
possibly be a type name is taken as the
decl-specifier-seq of a declaration. The sequence shall
be self-consistent as described below.
[dcl.type]
As a general rule, at most one type-specifier is allowed
in the complete decl-specifier-seq of a declaration. The
only exceptions are the following:
-- const or volatile can be combined with any other
type-specifier.
-- signed or unsigned can be combined with char, long,
short, or int.
-- ..
Example:
typedef char* Pc;
void g (const int Pc);
Here, Pc is *not* part of the decl-specifier seq; it's
the declarator. Therefore, once we see a type-specifier
(other than a cv-qualifier), we forbid any additional
user-defined types. We *do* still allow things like `int
int' to be considered a decl-specifier-seq, and issue the
error message later. */
if (type_spec && !is_cv_qualifier)
flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
/* A constructor declarator cannot follow a type-specifier. */
if (type_spec)
{
constructor_possible_p = false;
found_decl_spec = true;
if (!is_cv_qualifier)
decl_specs->any_type_specifiers_p = true;
if ((flags & CP_PARSER_FLAGS_ONLY_MUTABLE_OR_CONSTEXPR) != 0)
error_at (token->location, "type-specifier invalid in lambda");
}
}
/* If we still do not have a DECL_SPEC, then there are no more
decl-specifiers. */
if (!found_decl_spec)
break;
decl_specs->any_specifiers_p = true;
/* After we see one decl-specifier, further decl-specifiers are
always optional. */
flags |= CP_PARSER_FLAGS_OPTIONAL;
}
/* Don't allow a friend specifier with a class definition. */
if (decl_spec_seq_has_spec_p (decl_specs, ds_friend)
&& (*declares_class_or_enum & 2))
error_at (decl_specs->locations[ds_friend],
"class definition may not be declared a friend");
}
/* Parse an (optional) storage-class-specifier.
storage-class-specifier:
auto
register
static
extern
mutable
GNU Extension:
storage-class-specifier:
thread
Returns an IDENTIFIER_NODE corresponding to the keyword used. */
static tree
cp_parser_storage_class_specifier_opt (cp_parser* parser)
{
switch (cp_lexer_peek_token (parser->lexer)->keyword)
{
case RID_AUTO:
if (cxx_dialect != cxx98)
return NULL_TREE;
/* Fall through for C++98. */
gcc_fallthrough ();
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
case RID_THREAD:
/* Consume the token. */
return cp_lexer_consume_token (parser->lexer)->u.value;
default:
return NULL_TREE;
}
}
/* Parse an (optional) function-specifier.
function-specifier:
inline
virtual
explicit
C++2A Extension:
explicit(constant-expression)
Returns an IDENTIFIER_NODE corresponding to the keyword used.
Updates DECL_SPECS, if it is non-NULL. */
static tree
cp_parser_function_specifier_opt (cp_parser* parser,
cp_decl_specifier_seq *decl_specs)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->keyword)
{
case RID_INLINE:
set_and_check_decl_spec_loc (decl_specs, ds_inline, token);
break;
case RID_VIRTUAL:
/* 14.5.2.3 [temp.mem]
A member function template shall not be virtual. */
if (PROCESSING_REAL_TEMPLATE_DECL_P ()
&& current_class_type)
error_at (token->location, "templates may not be %<virtual%>");
else
set_and_check_decl_spec_loc (decl_specs, ds_virtual, token);
break;
case RID_EXPLICIT:
{
tree id = cp_lexer_consume_token (parser->lexer)->u.value;
/* If we see '(', it's C++20 explicit(bool). */
tree expr;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
matching_parens parens;
parens.consume_open (parser);
/* New types are not allowed in an explicit-specifier. */
const char *saved_message
= parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in explicit-specifier");
if (cxx_dialect < cxx2a)
pedwarn (token->location, 0,
"%<explicit(bool)%> only available with %<-std=c++2a%> "
"or %<-std=gnu++2a%>");
/* Parse the constant-expression. */
expr = cp_parser_constant_expression (parser);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
parens.require_close (parser);
}
else
/* The explicit-specifier explicit without a constant-expression is
equivalent to the explicit-specifier explicit(true). */
expr = boolean_true_node;
/* [dcl.fct.spec]
"the constant-expression, if supplied, shall be a contextually
converted constant expression of type bool." */
expr = build_explicit_specifier (expr, tf_warning_or_error);
/* We could evaluate it -- mark the decl as appropriate. */
if (expr == boolean_true_node)
set_and_check_decl_spec_loc (decl_specs, ds_explicit, token);
else if (expr == boolean_false_node)
/* Don't mark the decl as explicit. */;
else if (decl_specs)
/* The expression was value-dependent. Remember it so that we can
substitute it later. */
decl_specs->explicit_specifier = expr;
return id;
}
default:
return NULL_TREE;
}
/* Consume the token. */
return cp_lexer_consume_token (parser->lexer)->u.value;
}
/* Parse a linkage-specification.
linkage-specification:
extern string-literal { declaration-seq [opt] }
extern string-literal declaration */
static void
cp_parser_linkage_specification (cp_parser* parser)
{
tree linkage;
/* Look for the `extern' keyword. */
cp_token *extern_token
= cp_parser_require_keyword (parser, RID_EXTERN, RT_EXTERN);
/* Look for the string-literal. */
cp_token *string_token = cp_lexer_peek_token (parser->lexer);
linkage = cp_parser_string_literal (parser, false, false);
/* Transform the literal into an identifier. If the literal is a
wide-character string, or contains embedded NULs, then we can't
handle it as the user wants. */
if (strlen (TREE_STRING_POINTER (linkage))
!= (size_t) (TREE_STRING_LENGTH (linkage) - 1))
{
cp_parser_error (parser, "invalid linkage-specification");
/* Assume C++ linkage. */
linkage = lang_name_cplusplus;
}
else
linkage = get_identifier (TREE_STRING_POINTER (linkage));
/* We're now using the new linkage. */
push_lang_context (linkage);
/* Preserve the location of the the innermost linkage specification,
tracking the locations of nested specifications via a local. */
location_t saved_location
= parser->innermost_linkage_specification_location;
/* Construct a location ranging from the start of the "extern" to
the end of the string-literal, with the caret at the start, e.g.:
extern "C" {
^~~~~~~~~~
*/
parser->innermost_linkage_specification_location
= make_location (extern_token->location,
extern_token->location,
get_finish (string_token->location));
/* If the next token is a `{', then we're using the first
production. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
cp_ensure_no_omp_declare_simd (parser);
cp_ensure_no_oacc_routine (parser);
/* Consume the `{' token. */
matching_braces braces;
braces.consume_open (parser);
/* Parse the declarations. */
cp_parser_declaration_seq_opt (parser);
/* Look for the closing `}'. */
braces.require_close (parser);
}
/* Otherwise, there's just one declaration. */
else
{
bool saved_in_unbraced_linkage_specification_p;
saved_in_unbraced_linkage_specification_p
= parser->in_unbraced_linkage_specification_p;
parser->in_unbraced_linkage_specification_p = true;
cp_parser_declaration (parser);
parser->in_unbraced_linkage_specification_p
= saved_in_unbraced_linkage_specification_p;
}
/* We're done with the linkage-specification. */
pop_lang_context ();
/* Restore location of parent linkage specification, if any. */
parser->innermost_linkage_specification_location = saved_location;
}
/* Parse a static_assert-declaration.
static_assert-declaration:
static_assert ( constant-expression , string-literal ) ;
static_assert ( constant-expression ) ; (C++17)
If MEMBER_P, this static_assert is a class member. */
static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{
cp_expr condition;
location_t token_loc;
tree message;
bool dummy;
/* Peek at the `static_assert' token so we can keep track of exactly
where the static assertion started. */
token_loc = cp_lexer_peek_token (parser->lexer)->location;
/* Look for the `static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,
RT_STATIC_ASSERT))
return;
/* We know we are in a static assertion; commit to any tentative
parse. */
if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);
/* Parse the `(' starting the static assertion condition. */
matching_parens parens;
parens.require_open (parser);
/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */
condition =
cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/true,
/*non_constant_p=*/&dummy);
if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
{
if (cxx_dialect < cxx17)
pedwarn (input_location, OPT_Wpedantic,
"static_assert without a message "
"only available with %<-std=c++17%> or %<-std=gnu++17%>");
/* Eat the ')' */
cp_lexer_consume_token (parser->lexer);
message = build_string (1, "");
TREE_TYPE (message) = char_array_type_node;
fix_string_type (message);
}
else
{
/* Parse the separating `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
/* Parse the string-literal message. */
message = cp_parser_string_literal (parser,
/*translate=*/false,
/*wide_ok=*/true);
/* A `)' completes the static assertion. */
if (!parens.require_close (parser))
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
}
/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
/* Get the location for the static assertion. Use that of the
condition if available, otherwise, use that of the "static_assert"
token. */
location_t assert_loc = condition.get_location ();
if (assert_loc == UNKNOWN_LOCATION)
assert_loc = token_loc;
/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */
finish_static_assert (condition, message, assert_loc, member_p);
}
/* Parse the expression in decltype ( expression ). */
static tree
cp_parser_decltype_expr (cp_parser *parser,
bool &id_expression_or_member_access_p)
{
cp_token *id_expr_start_token;
tree expr;
/* Since we're going to preserve any side-effects from this parse, set up a
firewall to protect our callers from cp_parser_commit_to_tentative_parse
in the expression. */
tentative_firewall firewall (parser);
/* First, try parsing an id-expression. */
id_expr_start_token = cp_lexer_peek_token (parser->lexer);
cp_parser_parse_tentatively (parser);
expr = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/false,
/*optional_p=*/false);
if (!cp_parser_error_occurred (parser) && expr != error_mark_node)
{
bool non_integral_constant_expression_p = false;
tree id_expression = expr;
cp_id_kind idk;
const char *error_msg;
if (identifier_p (expr))
/* Lookup the name we got back from the id-expression. */
expr = cp_parser_lookup_name_simple (parser, expr,
id_expr_start_token->location);
if (expr && TREE_CODE (expr) == TEMPLATE_DECL)
/* A template without args is not a complete id-expression. */
expr = error_mark_node;
if (expr
&& expr != error_mark_node
&& TREE_CODE (expr) != TYPE_DECL
&& (TREE_CODE (expr) != BIT_NOT_EXPR
|| !TYPE_P (TREE_OPERAND (expr, 0)))
&& cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
{
/* Complete lookup of the id-expression. */
expr = (finish_id_expression
(id_expression, expr, parser->scope, &idk,
/*integral_constant_expression_p=*/false,
/*allow_non_integral_constant_expression_p=*/true,
&non_integral_constant_expression_p,
/*template_p=*/false,
/*done=*/true,
/*address_p=*/false,
/*template_arg_p=*/false,
&error_msg,
id_expr_start_token->location));
if (expr == error_mark_node)
/* We found an id-expression, but it was something that we
should not have found. This is an error, not something
we can recover from, so note that we found an
id-expression and we'll recover as gracefully as
possible. */
id_expression_or_member_access_p = true;
}
if (expr
&& expr != error_mark_node
&& cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
/* We have an id-expression. */
id_expression_or_member_access_p = true;
}
if (!id_expression_or_member_access_p)
{
/* Abort the id-expression parse. */
cp_parser_abort_tentative_parse (parser);
/* Parsing tentatively, again. */
cp_parser_parse_tentatively (parser);
/* Parse a class member access. */
expr = cp_parser_postfix_expression (parser, /*address_p=*/false,
/*cast_p=*/false, /*decltype*/true,
/*member_access_only_p=*/true, NULL);
if (expr
&& expr != error_mark_node
&& cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
/* We have an id-expression. */
id_expression_or_member_access_p = true;
}
if (id_expression_or_member_access_p)
/* We have parsed the complete id-expression or member access. */
cp_parser_parse_definitely (parser);
else
{
/* Abort our attempt to parse an id-expression or member access
expression. */
cp_parser_abort_tentative_parse (parser);
/* Commit to the tentative_firewall so we get syntax errors. */
cp_parser_commit_to_tentative_parse (parser);
/* Parse a full expression. */
expr = cp_parser_expression (parser, /*pidk=*/NULL, /*cast_p=*/false,
/*decltype_p=*/true);
}
return expr;
}
/* Parse a `decltype' type. Returns the type.
simple-type-specifier:
decltype ( expression )
C++14 proposal:
decltype ( auto ) */
static tree
cp_parser_decltype (cp_parser *parser)
{
bool id_expression_or_member_access_p = false;
cp_token *start_token = cp_lexer_peek_token (parser->lexer);
if (start_token->type == CPP_DECLTYPE)
{
/* Already parsed. */
cp_lexer_consume_token (parser->lexer);
return saved_checks_value (start_token->u.tree_check_value);
}
/* Look for the `decltype' token. */
if (!cp_parser_require_keyword (parser, RID_DECLTYPE, RT_DECLTYPE))
return error_mark_node;
/* Parse the opening `('. */
matching_parens parens;
if (!parens.require_open (parser))
return error_mark_node;
push_deferring_access_checks (dk_deferred);
tree expr = NULL_TREE;
if (cxx_dialect >= cxx14
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_AUTO))
/* decltype (auto) */
cp_lexer_consume_token (parser->lexer);
else
{
/* decltype (expression) */
/* Types cannot be defined in a `decltype' expression. Save away the
old message and set the new one. */
const char *saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in %<decltype%> expressions");
/* The restrictions on constant-expressions do not apply inside
decltype expressions. */
bool saved_integral_constant_expression_p
= parser->integral_constant_expression_p;
bool saved_non_integral_constant_expression_p
= parser->non_integral_constant_expression_p;
parser->integral_constant_expression_p = false;
/* Within a parenthesized expression, a `>' token is always
the greater-than operator. */
bool saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
/* Do not actually evaluate the expression. */
++cp_unevaluated_operand;
/* Do not warn about problems with the expression. */
++c_inhibit_evaluation_warnings;
expr = cp_parser_decltype_expr (parser, id_expression_or_member_access_p);
STRIP_ANY_LOCATION_WRAPPER (expr);
/* Go back to evaluating expressions. */
--cp_unevaluated_operand;
--c_inhibit_evaluation_warnings;
/* The `>' token might be the end of a template-id or
template-parameter-list now. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Restore the old message and the integral constant expression
flags. */
parser->type_definition_forbidden_message = saved_message;
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
}
/* Parse to the closing `)'. */
if (!parens.require_close (parser))
{
cp_parser_skip_to_closing_parenthesis (parser, true, false,
/*consume_paren=*/true);
pop_deferring_access_checks ();
return error_mark_node;
}
if (!expr)
{
/* Build auto. */
expr = make_decltype_auto ();
AUTO_IS_DECLTYPE (expr) = true;
}
else
expr = finish_decltype_type (expr, id_expression_or_member_access_p,
tf_warning_or_error);
/* Replace the decltype with a CPP_DECLTYPE so we don't need to parse
it again. */
start_token->type = CPP_DECLTYPE;
start_token->u.tree_check_value = ggc_cleared_alloc<struct tree_check> ();
start_token->u.tree_check_value->value = expr;
start_token->u.tree_check_value->checks = get_deferred_access_checks ();
start_token->keyword = RID_MAX;
cp_lexer_purge_tokens_after (parser->lexer, start_token);
pop_to_parent_deferring_access_checks ();
return expr;
}
/* Special member functions [gram.special] */
/* Parse a conversion-function-id.
conversion-function-id:
operator conversion-type-id
Returns an IDENTIFIER_NODE representing the operator. */
static tree
cp_parser_conversion_function_id (cp_parser* parser)
{
tree type;
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
tree pushed_scope = NULL_TREE;
/* Look for the `operator' token. */
if (!cp_parser_require_keyword (parser, RID_OPERATOR, RT_OPERATOR))
return error_mark_node;
/* When we parse the conversion-type-id, the current scope will be
reset. However, we need that information in able to look up the
conversion function later, so we save it here. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* We must enter the scope of the class so that the names of
entities declared within the class are available in the
conversion-type-id. For example, consider:
struct S {
typedef int I;
operator I();
};
S::operator I() { ... }
In order to see that `I' is a type-name in the definition, we
must be in the scope of `S'. */
if (saved_scope)
pushed_scope = push_scope (saved_scope);
/* Parse the conversion-type-id. */
type = cp_parser_conversion_type_id (parser);
/* Leave the scope of the class, if any. */
if (pushed_scope)
pop_scope (pushed_scope);
/* Restore the saved scope. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* If the TYPE is invalid, indicate failure. */
if (type == error_mark_node)
return error_mark_node;
return make_conv_op_name (type);
}
/* Parse a conversion-type-id:
conversion-type-id:
type-specifier-seq conversion-declarator [opt]
Returns the TYPE specified. */
static tree
cp_parser_conversion_type_id (cp_parser* parser)
{
tree attributes;
cp_decl_specifier_seq type_specifiers;
cp_declarator *declarator;
tree type_specified;
const char *saved_message;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= G_("types may not be defined in a conversion-type-id");
/* Parse the type-specifiers. */
cp_parser_type_specifier_seq (parser, CP_PARSER_FLAGS_NONE,
/*is_declaration=*/false,
/*is_trailing_return=*/false,
&type_specifiers);
parser->type_definition_forbidden_message = saved_message;
/* If that didn't work, stop. */
if (type_specifiers.type == error_mark_node)
return error_mark_node;
/* Parse the conversion-declarator. */
declarator = cp_parser_conversion_declarator_opt (parser);
type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
/*initialized=*/0, &attributes);
if (attributes)
cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
/* Don't give this error when parsing tentatively. This happens to
work because we always parse this definitively once. */
if (! cp_parser_uncommitted_to_tentative_parse_p (parser)
&& type_uses_auto (type_specified))
{
if (cxx_dialect < cxx14)
{
error ("invalid use of %<auto%> in conversion operator");
return error_mark_node;
}
else if (template_parm_scope_p ())
warning (0, "use of %<auto%> in member template "
"conversion operator can never be deduced");
}
return type_specified;
}
/* Parse an (optional) conversion-declarator.
conversion-declarator:
ptr-operator conversion-declarator [opt]
*/
static cp_declarator *
cp_parser_conversion_declarator_opt (cp_parser* parser)
{
enum tree_code code;
tree class_type, std_attributes = NULL_TREE;
cp_cv_quals cv_quals;
/* We don't know if there's a ptr-operator next, or not. */
cp_parser_parse_tentatively (parser);
/* Try the ptr-operator. */
code = cp_parser_ptr_operator (parser, &class_type, &cv_quals,
&std_attributes);
/* If it worked, look for more conversion-declarators. */
if (cp_parser_parse_definitely (parser))
{
cp_declarator *declarator;
/* Parse another optional declarator. */
declarator = cp_parser_conversion_declarator_opt (parser);
declarator = cp_parser_make_indirect_declarator
(code, class_type, cv_quals, declarator, std_attributes);
return declarator;
}
return NULL;
}
/* Parse an (optional) ctor-initializer.
ctor-initializer:
: mem-initializer-list */
static void
cp_parser_ctor_initializer_opt (cp_parser* parser)
{
/* If the next token is not a `:', then there is no
ctor-initializer. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
{
/* Do default initialization of any bases and members. */
if (DECL_CONSTRUCTOR_P (current_function_decl))
finish_mem_initializers (NULL_TREE);
return;
}
/* Consume the `:' token. */
cp_lexer_consume_token (parser->lexer);
/* And the mem-initializer-list. */
cp_parser_mem_initializer_list (parser);
}
/* Parse a mem-initializer-list.
mem-initializer-list:
mem-initializer ... [opt]
mem-initializer ... [opt] , mem-initializer-list */
static void
cp_parser_mem_initializer_list (cp_parser* parser)
{
tree mem_initializer_list = NULL_TREE;
tree target_ctor = error_mark_node;
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* Let the semantic analysis code know that we are starting the
mem-initializer-list. */
if (!DECL_CONSTRUCTOR_P (current_function_decl))
error_at (token->location,
"only constructors take member initializers");
/* Loop through the list. */
while (true)
{
tree mem_initializer;
token = cp_lexer_peek_token (parser->lexer);
/* Parse the mem-initializer. */
mem_initializer = cp_parser_mem_initializer (parser);
/* If the next token is a `...', we're expanding member initializers. */
bool ellipsis = cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS);
if (ellipsis
|| (mem_initializer != error_mark_node
&& check_for_bare_parameter_packs (TREE_PURPOSE
(mem_initializer))))
{
/* Consume the `...'. */
if (ellipsis)
cp_lexer_consume_token (parser->lexer);
/* The TREE_PURPOSE must be a _TYPE, because base-specifiers
can be expanded but members cannot. */
if (mem_initializer != error_mark_node
&& !TYPE_P (TREE_PURPOSE (mem_initializer)))
{
error_at (token->location,
"cannot expand initializer for member %qD",
TREE_PURPOSE (mem_initializer));
mem_initializer = error_mark_node;
}
/* Construct the pack expansion type. */
if (mem_initializer != error_mark_node)
mem_initializer = make_pack_expansion (mem_initializer);
}
if (target_ctor != error_mark_node
&& mem_initializer != error_mark_node)
{
error ("mem-initializer for %qD follows constructor delegation",
TREE_PURPOSE (mem_initializer));
mem_initializer = error_mark_node;
}
/* Look for a target constructor. */
if (mem_initializer != error_mark_node
&& CLASS_TYPE_P (TREE_PURPOSE (mem_initializer))
&& same_type_p (TREE_PURPOSE (mem_initializer), current_class_type))
{
maybe_warn_cpp0x (CPP0X_DELEGATING_CTORS);
if (mem_initializer_list)
{
error ("constructor delegation follows mem-initializer for %qD",
TREE_PURPOSE (mem_initializer_list));
mem_initializer = error_mark_node;
}
target_ctor = mem_initializer;
}
/* Add it to the list, unless it was erroneous. */
if (mem_initializer != error_mark_node)
{
TREE_CHAIN (mem_initializer) = mem_initializer_list;
mem_initializer_list = mem_initializer;
}
/* If the next token is not a `,', we're done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
/* Perform semantic analysis. */
if (DECL_CONSTRUCTOR_P (current_function_decl))
finish_mem_initializers (mem_initializer_list);
}
/* Parse a mem-initializer.
mem-initializer:
mem-initializer-id ( expression-list [opt] )
mem-initializer-id braced-init-list
GNU extension:
mem-initializer:
( expression-list [opt] )
Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
class) or FIELD_DECL (for a non-static data member) to initialize;
the TREE_VALUE is the expression-list. An empty initialization
list is represented by void_list_node. */
static tree
cp_parser_mem_initializer (cp_parser* parser)
{
tree mem_initializer_id;
tree expression_list;
tree member;
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* Find out what is being initialized. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
permerror (token->location,
"anachronistic old-style base class initializer");
mem_initializer_id = NULL_TREE;
}
else
{
mem_initializer_id = cp_parser_mem_initializer_id (parser);
if (mem_initializer_id == error_mark_node)
return mem_initializer_id;
}
member = expand_member_init (mem_initializer_id);
if (member && !DECL_P (member))
in_base_initializer = 1;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
bool expr_non_constant_p;
cp_lexer_set_source_position (parser->lexer);
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
expression_list = cp_parser_braced_list (parser, &expr_non_constant_p);
CONSTRUCTOR_IS_DIRECT_INIT (expression_list) = 1;
expression_list = build_tree_list (NULL_TREE, expression_list);
}
else
{
vec<tree, va_gc> *vec;
vec = cp_parser_parenthesized_expression_list (parser, non_attr,
/*cast_p=*/false,
/*allow_expansion_p=*/true,
/*non_constant_p=*/NULL,
/*close_paren_loc=*/NULL,
/*wrap_locations_p=*/true);
if (vec == NULL)
return error_mark_node;
expression_list = build_tree_list_vec (vec);
release_tree_vector (vec);
}
if (expression_list == error_mark_node)
return error_mark_node;
if (!expression_list)
expression_list = void_type_node;
in_base_initializer = 0;
return member ? build_tree_list (member, expression_list) : error_mark_node;
}
/* Parse a mem-initializer-id.
mem-initializer-id:
:: [opt] nested-name-specifier [opt] class-name
decltype-specifier (C++11)
identifier
Returns a TYPE indicating the class to be initialized for the first
production (and the second in C++11). Returns an IDENTIFIER_NODE
indicating the data member to be initialized for the last production. */
static tree
cp_parser_mem_initializer_id (cp_parser* parser)
{
bool global_scope_p;
bool nested_name_specifier_p;
bool template_p = false;
tree id;
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* `typename' is not allowed in this context ([temp.res]). */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
{
error_at (token->location,
"keyword %<typename%> not allowed in this context (a qualified "
"member initializer is implicitly a type)");
cp_lexer_consume_token (parser->lexer);
}
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the optional nested-name-specifier. The simplest way to
implement:
[temp.res]
The keyword `typename' is not permitted in a base-specifier or
mem-initializer; in these contexts a qualified name that
depends on a template-parameter is implicitly assumed to be a
type name.
is to assume that we have seen the `typename' keyword at this
point. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true,
/*is_declaration=*/true)
!= NULL_TREE);
if (nested_name_specifier_p)
template_p = cp_parser_optional_template_keyword (parser);
/* If there is a `::' operator or a nested-name-specifier, then we
are definitely looking for a class-name. */
if (global_scope_p || nested_name_specifier_p)
return cp_parser_class_name (parser,
/*typename_keyword_p=*/true,
/*template_keyword_p=*/template_p,
typename_type,
/*check_dependency_p=*/true,
/*class_head_p=*/false,
/*is_declaration=*/true);
/* Otherwise, we could also be looking for an ordinary identifier. */
cp_parser_parse_tentatively (parser);
if (cp_lexer_next_token_is_decltype (parser->lexer))
/* Try a decltype-specifier. */
id = cp_parser_decltype (parser);
else
/* Otherwise, try a class-name. */
id = cp_parser_class_name (parser,
/*typename_keyword_p=*/true,
/*template_keyword_p=*/false,
none_type,
/*check_dependency_p=*/true,
/*class_head_p=*/false,
/*is_declaration=*/true);
/* If we found one, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Otherwise, look for an ordinary identifier. */
return cp_parser_identifier (parser);
}
/* Overloading [gram.over] */
/* Parse an operator-function-id.
operator-function-id:
operator operator
Returns an IDENTIFIER_NODE for the operator which is a
human-readable spelling of the identifier, e.g., `operator +'. */
static cp_expr
cp_parser_operator_function_id (cp_parser* parser)
{
location_t start_loc = cp_lexer_peek_token (parser->lexer)->location;
/* Look for the `operator' keyword. */
if (!cp_parser_require_keyword (parser, RID_OPERATOR, RT_OPERATOR))
return error_mark_node;
/* And then the name of the operator itself. */
return cp_parser_operator (parser, start_loc);
}
/* Return an identifier node for a user-defined literal operator.
The suffix identifier is chained to the operator name identifier. */
tree
cp_literal_operator_id (const char* name)
{
tree identifier;
char *buffer = XNEWVEC (char, strlen (UDLIT_OP_ANSI_PREFIX)
+ strlen (name) + 10);
sprintf (buffer, UDLIT_OP_ANSI_FORMAT, name);
identifier = get_identifier (buffer);
return identifier;
}
/* Parse an operator.
operator:
new delete new[] delete[] + - * / % ^ & | ~ ! = < >
+= -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
|| ++ -- , ->* -> () []
GNU Extensions:
operator:
<? >? <?= >?=
Returns an IDENTIFIER_NODE for the operator which is a
human-readable spelling of the identifier, e.g., `operator +'. */
static cp_expr
cp_parser_operator (cp_parser* parser, location_t start_loc)
{
tree id = NULL_TREE;
cp_token *token;
bool utf8 = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
location_t end_loc = token->location;
/* Figure out which operator we have. */
enum tree_code op = ERROR_MARK;
bool assop = false;
bool consumed = false;
switch (token->type)
{
case CPP_KEYWORD:
{
/* The keyword should be either `new' or `delete'. */
if (token->keyword == RID_NEW)
op = NEW_EXPR;
else if (token->keyword == RID_DELETE)
op = DELETE_EXPR;
else
break;
/* Consume the `new' or `delete' token. */
end_loc = cp_lexer_consume_token (parser->lexer)->location;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `[' token then this is the array variant of the
operator. */
if (token->type == CPP_OPEN_SQUARE)
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `]' token. */
if (cp_token *close_token
= cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE))
end_loc = close_token->location;
op = op == NEW_EXPR ? VEC_NEW_EXPR : VEC_DELETE_EXPR;
}
consumed = true;
break;
}
case CPP_PLUS:
op = PLUS_EXPR;
break;
case CPP_MINUS:
op = MINUS_EXPR;
break;
case CPP_MULT:
op = MULT_EXPR;
break;
case CPP_DIV:
op = TRUNC_DIV_EXPR;
break;
case CPP_MOD:
op = TRUNC_MOD_EXPR;
break;
case CPP_XOR:
op = BIT_XOR_EXPR;
break;
case CPP_AND:
op = BIT_AND_EXPR;
break;
case CPP_OR:
op = BIT_IOR_EXPR;
break;
case CPP_COMPL:
op = BIT_NOT_EXPR;
break;
case CPP_NOT:
op = TRUTH_NOT_EXPR;
break;
case CPP_EQ:
assop = true;
op = NOP_EXPR;
break;
case CPP_LESS:
op = LT_EXPR;
break;
case CPP_GREATER:
op = GT_EXPR;
break;
case CPP_PLUS_EQ:
assop = true;
op = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
assop = true;
op = MINUS_EXPR;
break;
case CPP_MULT_EQ:
assop = true;
op = MULT_EXPR;
break;
case CPP_DIV_EQ:
assop = true;
op = TRUNC_DIV_EXPR;
break;
case CPP_MOD_EQ:
assop = true;
op = TRUNC_MOD_EXPR;
break;
case CPP_XOR_EQ:
assop = true;
op = BIT_XOR_EXPR;
break;
case CPP_AND_EQ:
assop = true;
op = BIT_AND_EXPR;
break;
case CPP_OR_EQ:
assop = true;
op = BIT_IOR_EXPR;
break;
case CPP_LSHIFT:
op = LSHIFT_EXPR;
break;
case CPP_RSHIFT:
op = RSHIFT_EXPR;
break;
case CPP_LSHIFT_EQ:
assop = true;
op = LSHIFT_EXPR;
break;
case CPP_RSHIFT_EQ:
assop = true;
op = RSHIFT_EXPR;
break;
case CPP_EQ_EQ:
op = EQ_EXPR;
break;
case CPP_NOT_EQ:
op = NE_EXPR;
break;
case CPP_LESS_EQ:
op = LE_EXPR;
break;
case CPP_GREATER_EQ:
op = GE_EXPR;
break;
case CPP_AND_AND:
op = TRUTH_ANDIF_EXPR;
break;
case CPP_OR_OR:
op = TRUTH_ORIF_EXPR;
break;
case CPP_PLUS_PLUS:
op = POSTINCREMENT_EXPR;
break;
case CPP_MINUS_MINUS:
op = PREDECREMENT_EXPR;
break;
case CPP_COMMA:
op = COMPOUND_EXPR;
break;
case CPP_DEREF_STAR:
op = MEMBER_REF;
break;
case CPP_DEREF:
op = COMPONENT_REF;
break;
case CPP_OPEN_PAREN:
{
/* Consume the `('. */
matching_parens parens;
parens.consume_open (parser);
/* Look for the matching `)'. */
token = parens.require_close (parser);
if (token)
end_loc = token->location;
op = CALL_EXPR;
consumed = true;
break;
}
case CPP_OPEN_SQUARE:
/* Consume the `['. */
cp_lexer_consume_token (parser->lexer);
/* Look for the matching `]'. */
token = cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
if (token)
end_loc = token->location;
op = ARRAY_REF;
consumed = true;
break;
case CPP_UTF8STRING:
case CPP_UTF8STRING_USERDEF:
utf8 = true;
/* FALLTHRU */
case CPP_STRING:
case CPP_WSTRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_STRING_USERDEF:
case CPP_WSTRING_USERDEF:
case CPP_STRING16_USERDEF:
case CPP_STRING32_USERDEF:
{
cp_expr str;
tree string_tree;
int sz, len;
if (cxx_dialect == cxx98)
maybe_warn_cpp0x (CPP0X_USER_DEFINED_LITERALS);
/* Consume the string. */
str = cp_parser_string_literal (parser, /*translate=*/true,
/*wide_ok=*/true, /*lookup_udlit=*/false);
if (str == error_mark_node)
return error_mark_node;
else if (TREE_CODE (str) == USERDEF_LITERAL)
{
string_tree = USERDEF_LITERAL_VALUE (str.get_value ());
id = USERDEF_LITERAL_SUFFIX_ID (str.get_value ());
end_loc = str.get_location ();
}
else
{
string_tree = str;
/* Look for the suffix identifier. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_NAME)
{
id = cp_parser_identifier (parser);
end_loc = token->location;
}
else if (token->type == CPP_KEYWORD)
{
error ("unexpected keyword;"
" remove space between quotes and suffix identifier");
return error_mark_node;
}
else
{
error ("expected suffix identifier");
return error_mark_node;
}
}
sz = TREE_INT_CST_LOW (TYPE_SIZE_UNIT
(TREE_TYPE (TREE_TYPE (string_tree))));
len = TREE_STRING_LENGTH (string_tree) / sz - 1;
if (len != 0)
{
error ("expected empty string after %<operator%> keyword");
return error_mark_node;
}
if (utf8 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (string_tree)))
!= char_type_node)
{
error ("invalid encoding prefix in literal operator");
return error_mark_node;
}
if (id != error_mark_node)
{
const char *name = IDENTIFIER_POINTER (id);
id = cp_literal_operator_id (name);
}
/* Generate a location of the form:
"" _suffix_identifier
^~~~~~~~~~~~~~~~~~~~~
with caret == start at the start token, finish at the end of the
suffix identifier. */
location_t finish_loc
= get_finish (cp_lexer_previous_token (parser->lexer)->location);
location_t combined_loc
= make_location (start_loc, start_loc, finish_loc);
return cp_expr (id, combined_loc);
}
default:
/* Anything else is an error. */
break;
}
/* If we have selected an identifier, we need to consume the
operator token. */
if (op != ERROR_MARK)
{
id = ovl_op_identifier (assop, op);
if (!consumed)
cp_lexer_consume_token (parser->lexer);
}
/* Otherwise, no valid operator name was present. */
else
{
cp_parser_error (parser, "expected operator");
id = error_mark_node;
}
start_loc = make_location (start_loc, start_loc, get_finish (end_loc));
return cp_expr (id, start_loc);
}
/* Parse a template-declaration.
template-declaration:
export [opt] template < template-parameter-list > declaration
If MEMBER_P is TRUE, this template-declaration occurs within a
class-specifier.
The grammar rule given by the standard isn't correct. What
is really meant is:
template-declaration:
export [opt] template-parameter-list-seq
decl-specifier-seq [opt] init-declarator [opt] ;
export [opt] template-parameter-list-seq
function-definition
template-parameter-list-seq:
template-parameter-list-seq [opt]
template < template-parameter-list >
Concept Extensions:
template-parameter-list-seq:
template < template-parameter-list > requires-clause [opt]
requires-clause:
requires logical-or-expression */
static void
cp_parser_template_declaration (cp_parser* parser, bool member_p)
{
/* Check for `export'. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
{
/* Consume the `export' token. */
cp_lexer_consume_token (parser->lexer);
/* Warn that we do not support `export'. */
warning (0, "keyword %<export%> not implemented, and will be ignored");
}
cp_parser_template_declaration_after_export (parser, member_p);
}
/* Parse a template-parameter-list.
template-parameter-list:
template-parameter
template-parameter-list , template-parameter
Returns a TREE_LIST. Each node represents a template parameter.
The nodes are connected via their TREE_CHAINs. */
static tree
cp_parser_template_parameter_list (cp_parser* parser)
{
tree parameter_list = NULL_TREE;
/* Don't create wrapper nodes within a template-parameter-list,
since we don't want to have different types based on the
spelling location of constants and decls within them. */
auto_suppress_location_wrappers sentinel;
begin_template_parm_list ();
/* The loop below parses the template parms. We first need to know
the total number of template parms to be able to compute proper
canonical types of each dependent type. So after the loop, when
we know the total number of template parms,
end_template_parm_list computes the proper canonical types and
fixes up the dependent types accordingly. */
while (true)
{
tree parameter;
bool is_non_type;
bool is_parameter_pack;
location_t parm_loc;
/* Parse the template-parameter. */
parm_loc = cp_lexer_peek_token (parser->lexer)->location;
parameter = cp_parser_template_parameter (parser,
&is_non_type,
&is_parameter_pack);
/* Add it to the list. */
if (parameter != error_mark_node)
parameter_list = process_template_parm (parameter_list,
parm_loc,
parameter,
is_non_type,
is_parameter_pack);
else
{
tree err_parm = build_tree_list (parameter, parameter);
parameter_list = chainon (parameter_list, err_parm);
}
/* If the next token is not a `,', we're done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Otherwise, consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
return end_template_parm_list (parameter_list);
}
/* Parse a introduction-list.
introduction-list:
introduced-parameter
introduction-list , introduced-parameter
introduced-parameter:
...[opt] identifier
Returns a TREE_VEC of WILDCARD_DECLs. If the parameter is a pack
then the introduced parm will have WILDCARD_PACK_P set. In addition, the
WILDCARD_DECL will also have DECL_NAME set and token location in
DECL_SOURCE_LOCATION. */
static tree
cp_parser_introduction_list (cp_parser *parser)
{
vec<tree, va_gc> *introduction_vec = make_tree_vector ();
while (true)
{
bool is_pack = cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS);
if (is_pack)
cp_lexer_consume_token (parser->lexer);
tree identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
break;
/* Build placeholder. */
tree parm = build_nt (WILDCARD_DECL);
DECL_SOURCE_LOCATION (parm)
= cp_lexer_peek_token (parser->lexer)->location;
DECL_NAME (parm) = identifier;
WILDCARD_PACK_P (parm) = is_pack;
vec_safe_push (introduction_vec, parm);
/* If the next token is not a `,', we're done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Otherwise, consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
/* Convert the vec into a TREE_VEC. */
tree introduction_list = make_tree_vec (introduction_vec->length ());
unsigned int n;
tree parm;
FOR_EACH_VEC_ELT (*introduction_vec, n, parm)
TREE_VEC_ELT (introduction_list, n) = parm;
release_tree_vector (introduction_vec);
return introduction_list;
}
/* Given a declarator, get the declarator-id part, or NULL_TREE if this
is an abstract declarator. */
static inline cp_declarator*
get_id_declarator (cp_declarator *declarator)
{
cp_declarator *d = declarator;
while (d && d->kind != cdk_id)
d = d->declarator;
return d;
}
/* Get the unqualified-id from the DECLARATOR or NULL_TREE if this
is an abstract declarator. */
static inline tree
get_unqualified_id (cp_declarator *declarator)
{
declarator = get_id_declarator (declarator);
if (declarator)
return declarator->u.id.unqualified_name;
else
return NULL_TREE;
}
/* Returns true if DECL represents a constrained-parameter. */
static inline bool
is_constrained_parameter (tree decl)
{
return (decl
&& TREE_CODE (decl) == TYPE_DECL
&& CONSTRAINED_PARM_CONCEPT (decl)
&& DECL_P (CONSTRAINED_PARM_CONCEPT (decl)));
}
/* Returns true if PARM declares a constrained-parameter. */
static inline bool
is_constrained_parameter (cp_parameter_declarator *parm)
{
return is_constrained_parameter (parm->decl_specifiers.type);
}
/* Check that the type parameter is only a declarator-id, and that its
type is not cv-qualified. */
bool
cp_parser_check_constrained_type_parm (cp_parser *parser,
cp_parameter_declarator *parm)
{
if (!parm->declarator)
return true;
if (parm->declarator->kind != cdk_id)
{
cp_parser_error (parser, "invalid constrained type parameter");
return false;
}
/* Don't allow cv-qualified type parameters. */
if (decl_spec_seq_has_spec_p (&parm->decl_specifiers, ds_const)
|| decl_spec_seq_has_spec_p (&parm->decl_specifiers, ds_volatile))
{
cp_parser_error (parser, "cv-qualified type parameter");
return false;
}
return true;
}
/* Finish parsing/processing a template type parameter and checking
various restrictions. */
static inline tree
cp_parser_constrained_type_template_parm (cp_parser *parser,
tree id,
cp_parameter_declarator* parmdecl)
{
if (cp_parser_check_constrained_type_parm (parser, parmdecl))
return finish_template_type_parm (class_type_node, id);
else
return error_mark_node;
}
static tree
finish_constrained_template_template_parm (tree proto, tree id)
{
/* FIXME: This should probably be copied, and we may need to adjust
the template parameter depths. */
tree saved_parms = current_template_parms;
begin_template_parm_list ();
current_template_parms = DECL_TEMPLATE_PARMS (proto);
end_template_parm_list ();
tree parm = finish_template_template_parm (class_type_node, id);
current_template_parms = saved_parms;
return parm;
}
/* Finish parsing/processing a template template parameter by borrowing
the template parameter list from the prototype parameter. */
static tree
cp_parser_constrained_template_template_parm (cp_parser *parser,
tree proto,
tree id,
cp_parameter_declarator *parmdecl)
{
if (!cp_parser_check_constrained_type_parm (parser, parmdecl))
return error_mark_node;
return finish_constrained_template_template_parm (proto, id);
}
/* Create a new non-type template parameter from the given PARM
declarator. */
static tree
constrained_non_type_template_parm (bool *is_non_type,
cp_parameter_declarator *parm)
{
*is_non_type = true;
cp_declarator *decl = parm->declarator;
cp_decl_specifier_seq *specs = &parm->decl_specifiers;
specs->type = TREE_TYPE (DECL_INITIAL (specs->type));
return grokdeclarator (decl, specs, TPARM, 0, NULL);
}
/* Build a constrained template parameter based on the PARMDECL
declarator. The type of PARMDECL is the constrained type, which
refers to the prototype template parameter that ultimately
specifies the type of the declared parameter. */
static tree
finish_constrained_parameter (cp_parser *parser,
cp_parameter_declarator *parmdecl,
bool *is_non_type,
bool *is_parameter_pack)
{
tree decl = parmdecl->decl_specifiers.type;
tree id = get_unqualified_id (parmdecl->declarator);
tree def = parmdecl->default_argument;
tree proto = DECL_INITIAL (decl);
/* A template parameter constrained by a variadic concept shall also
be declared as a template parameter pack. */
bool is_variadic = template_parameter_pack_p (proto);
if (is_variadic && !*is_parameter_pack)
cp_parser_error (parser, "variadic constraint introduced without %<...%>");
/* Build the parameter. Return an error if the declarator was invalid. */
tree parm;
if (TREE_CODE (proto) == TYPE_DECL)
parm = cp_parser_constrained_type_template_parm (parser, id, parmdecl);
else if (TREE_CODE (proto) == TEMPLATE_DECL)
parm = cp_parser_constrained_template_template_parm (parser, proto, id,
parmdecl);
else
parm = constrained_non_type_template_parm (is_non_type, parmdecl);
if (parm == error_mark_node)
return error_mark_node;
/* Finish the parameter decl and create a node attaching the
default argument and constraint. */
parm = build_tree_list (def, parm);
TEMPLATE_PARM_CONSTRAINTS (parm) = decl;
return parm;
}
/* Returns true if the parsed type actually represents the declaration
of a type template-parameter. */
static inline bool
declares_constrained_type_template_parameter (tree type)
{
return (is_constrained_parameter (type)
&& TREE_CODE (TREE_TYPE (type)) == TEMPLATE_TYPE_PARM);
}
/* Returns true if the parsed type actually represents the declaration of
a template template-parameter. */
static bool
declares_constrained_template_template_parameter (tree type)
{
return (is_constrained_parameter (type)
&& TREE_CODE (TREE_TYPE (type)) == TEMPLATE_TEMPLATE_PARM);
}
/* Parse a default argument for a type template-parameter.
Note that diagnostics are handled in cp_parser_template_parameter. */
static tree
cp_parser_default_type_template_argument (cp_parser *parser)
{
gcc_assert (cp_lexer_next_token_is (parser->lexer, CPP_EQ));
/* Consume the `=' token. */
cp_lexer_consume_token (parser->lexer);
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* Parse the default-argument. */
push_deferring_access_checks (dk_no_deferred);
tree default_argument = cp_parser_type_id (parser,
CP_PARSER_FLAGS_TYPENAME_OPTIONAL,
NULL);
pop_deferring_access_checks ();
if (flag_concepts && type_uses_auto (default_argument))
{
error_at (token->location,
"invalid use of %<auto%> in default template argument");
return error_mark_node;
}
return default_argument;
}
/* Parse a default argument for a template template-parameter. */
static tree
cp_parser_default_template_template_argument (cp_parser *parser)
{
gcc_assert (cp_lexer_next_token_is (parser->lexer, CPP_EQ));
bool is_template;
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* Parse the id-expression. */
push_deferring_access_checks (dk_no_deferred);
/* save token before parsing the id-expression, for error
reporting */
const cp_token* token = cp_lexer_peek_token (parser->lexer);
tree default_argument
= cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/&is_template,
/*declarator_p=*/false,
/*optional_p=*/false);
if (TREE_CODE (default_argument) == TYPE_DECL)
/* If the id-expression was a template-id that refers to
a template-class, we already have the declaration here,
so no further lookup is needed. */
;
else
/* Look up the name. */
default_argument
= cp_parser_lookup_name (parser, default_argument,
none_type,
/*is_template=*/is_template,
/*is_namespace=*/false,
/*check_dependency=*/true,
/*ambiguous_decls=*/NULL,
token->location);
/* See if the default argument is valid. */
default_argument = check_template_template_default_arg (default_argument);
pop_deferring_access_checks ();
return default_argument;
}
/* Parse a template-parameter.
template-parameter:
type-parameter
parameter-declaration
If all goes well, returns a TREE_LIST. The TREE_VALUE represents
the parameter. The TREE_PURPOSE is the default value, if any.
Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true
iff this parameter is a non-type parameter. *IS_PARAMETER_PACK is
set to true iff this parameter is a parameter pack. */
static tree
cp_parser_template_parameter (cp_parser* parser, bool *is_non_type,
bool *is_parameter_pack)
{
cp_token *token;
cp_parameter_declarator *parameter_declarator;
tree parm;
/* Assume it is a type parameter or a template parameter. */
*is_non_type = false;
/* Assume it not a parameter pack. */
*is_parameter_pack = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it is `template', we have a type-parameter. */
if (token->keyword == RID_TEMPLATE)
return cp_parser_type_parameter (parser, is_parameter_pack);
/* If it is `class' or `typename' we do not know yet whether it is a
type parameter or a non-type parameter. Consider:
template <typename T, typename T::X X> ...
or:
template <class C, class D*> ...
Here, the first parameter is a type parameter, and the second is
a non-type parameter. We can tell by looking at the token after
the identifier -- if it is a `,', `=', or `>' then we have a type
parameter. */
if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
{
/* Peek at the token after `class' or `typename'. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If it's an ellipsis, we have a template type parameter
pack. */
if (token->type == CPP_ELLIPSIS)
return cp_parser_type_parameter (parser, is_parameter_pack);
/* If it's an identifier, skip it. */
if (token->type == CPP_NAME)
token = cp_lexer_peek_nth_token (parser->lexer, 3);
/* Now, see if the token looks like the end of a template
parameter. */
if (token->type == CPP_COMMA
|| token->type == CPP_EQ
|| token->type == CPP_GREATER)
return cp_parser_type_parameter (parser, is_parameter_pack);
}
/* Otherwise, it is a non-type parameter or a constrained parameter.
[temp.param]
When parsing a default template-argument for a non-type
template-parameter, the first non-nested `>' is taken as the end
of the template parameter-list rather than a greater-than
operator. */
parameter_declarator
= cp_parser_parameter_declaration (parser,
CP_PARSER_FLAGS_TYPENAME_OPTIONAL,
/*template_parm_p=*/true,
/*parenthesized_p=*/NULL);
if (!parameter_declarator)
return error_mark_node;
/* If the parameter declaration is marked as a parameter pack, set
*IS_PARAMETER_PACK to notify the caller. */
if (parameter_declarator->template_parameter_pack_p)
*is_parameter_pack = true;
if (parameter_declarator->default_argument)
{
/* Can happen in some cases of erroneous input (c++/34892). */
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
/* Consume the `...' for better error recovery. */
cp_lexer_consume_token (parser->lexer);
}
// The parameter may have been constrained.
if (is_constrained_parameter (parameter_declarator))
return finish_constrained_parameter (parser,
parameter_declarator,
is_non_type,
is_parameter_pack);
// Now we're sure that the parameter is a non-type parameter.
*is_non_type = true;
parm = grokdeclarator (parameter_declarator->declarator,
&parameter_declarator->decl_specifiers,
TPARM, /*initialized=*/0,
/*attrlist=*/NULL);
if (parm == error_mark_node)
return error_mark_node;
return build_tree_list (parameter_declarator->default_argument, parm);
}
/* Parse a type-parameter.
type-parameter:
class identifier [opt]
class identifier [opt] = type-id
typename identifier [opt]
typename identifier [opt] = type-id
template < template-parameter-list > class identifier [opt]
template < template-parameter-list > class identifier [opt]
= id-expression
GNU Extension (variadic templates):
type-parameter:
class ... identifier [opt]
typename ... identifier [opt]
Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
the declaration of the parameter.
Sets *IS_PARAMETER_PACK if this is a template parameter pack. */
static tree
cp_parser_type_parameter (cp_parser* parser, bool *is_parameter_pack)
{
cp_token *token;
tree parameter;
/* Look for a keyword to tell us what kind of parameter this is. */
token = cp_parser_require (parser, CPP_KEYWORD, RT_CLASS_TYPENAME_TEMPLATE);
if (!token)
return error_mark_node;
switch (token->keyword)
{
case RID_CLASS:
case RID_TYPENAME:
{
tree identifier;
tree default_argument;
/* If the next token is an ellipsis, we have a template
argument pack. */
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
maybe_warn_variadic_templates ();
*is_parameter_pack = true;
}
/* If the next token is an identifier, then it names the
parameter. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Create the parameter. */
parameter = finish_template_type_parm (class_type_node, identifier);
/* If the next token is an `=', we have a default argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
default_argument
= cp_parser_default_type_template_argument (parser);
/* Template parameter packs cannot have default
arguments. */
if (*is_parameter_pack)
{
if (identifier)
error_at (token->location,
"template parameter pack %qD cannot have a "
"default argument", identifier);
else
error_at (token->location,
"template parameter packs cannot have "
"default arguments");
default_argument = NULL_TREE;
}
else if (check_for_bare_parameter_packs (default_argument))
default_argument = error_mark_node;
}
else
default_argument = NULL_TREE;
/* Create the combined representation of the parameter and the
default argument. */
parameter = build_tree_list (default_argument, parameter);
}
break;
case RID_TEMPLATE:
{
tree identifier;
tree default_argument;
/* Look for the `<'. */
cp_parser_require (parser, CPP_LESS, RT_LESS);
/* Parse the template-parameter-list. */
cp_parser_template_parameter_list (parser);
/* Look for the `>'. */
cp_parser_require (parser, CPP_GREATER, RT_GREATER);
// If template requirements are present, parse them.
if (flag_concepts)
{
tree reqs = get_shorthand_constraints (current_template_parms);
if (tree r = cp_parser_requires_clause_opt (parser))
reqs = conjoin_constraints (reqs, normalize_expression (r));
TEMPLATE_PARMS_CONSTRAINTS (current_template_parms) = reqs;
}
/* Look for the `class' or 'typename' keywords. */
cp_parser_type_parameter_key (parser);
/* If the next token is an ellipsis, we have a template
argument pack. */
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
maybe_warn_variadic_templates ();
*is_parameter_pack = true;
}
/* If the next token is an `=', then there is a
default-argument. If the next token is a `>', we are at
the end of the parameter-list. If the next token is a `,',
then we are at the end of this parameter. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
{
identifier = cp_parser_identifier (parser);
/* Treat invalid names as if the parameter were nameless. */
if (identifier == error_mark_node)
identifier = NULL_TREE;
}
else
identifier = NULL_TREE;
/* Create the template parameter. */
parameter = finish_template_template_parm (class_type_node,
identifier);
/* If the next token is an `=', then there is a
default-argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
default_argument
= cp_parser_default_template_template_argument (parser);
/* Template parameter packs cannot have default
arguments. */
if (*is_parameter_pack)
{
if (identifier)
error_at (token->location,
"template parameter pack %qD cannot "
"have a default argument",
identifier);
else
error_at (token->location, "template parameter packs cannot "
"have default arguments");
default_argument = NULL_TREE;
}
}
else
default_argument = NULL_TREE;
/* Create the combined representation of the parameter and the
default argument. */
parameter = build_tree_list (default_argument, parameter);
}
break;
default:
gcc_unreachable ();
break;
}
return parameter;
}
/* Parse a template-id.
template-id:
template-name < template-argument-list [opt] >
If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
`template' keyword. In this case, a TEMPLATE_ID_EXPR will be
returned. Otherwise, if the template-name names a function, or set
of functions, returns a TEMPLATE_ID_EXPR. If the template-name
names a class, returns a TYPE_DECL for the specialization.
If CHECK_DEPENDENCY_P is FALSE, names are looked up in
uninstantiated templates. */
static tree
cp_parser_template_id (cp_parser *parser,
bool template_keyword_p,
bool check_dependency_p,
enum tag_types tag_type,
bool is_declaration)
{
tree templ;
tree arguments;
tree template_id;
cp_token_position start_of_id = 0;
cp_token *next_token = NULL, *next_token_2 = NULL;
bool is_identifier;
/* If the next token corresponds to a template-id, there is no need
to reparse it. */
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_TEMPLATE_ID)
{
cp_lexer_consume_token (parser->lexer);
return saved_checks_value (token->u.tree_check_value);
}
/* Avoid performing name lookup if there is no possibility of
finding a template-id. */
if ((token->type != CPP_NAME && token->keyword != RID_OPERATOR)
|| (token->type == CPP_NAME
&& !cp_parser_nth_token_starts_template_argument_list_p
(parser, 2)))
{
cp_parser_error (parser, "expected template-id");
return error_mark_node;
}
/* Remember where the template-id starts. */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
start_of_id = cp_lexer_token_position (parser->lexer, false);
push_deferring_access_checks (dk_deferred);
/* Parse the template-name. */
is_identifier = false;
templ = cp_parser_template_name (parser, template_keyword_p,
check_dependency_p,
is_declaration,
tag_type,
&is_identifier);
/* Push any access checks inside the firewall we're about to create. */
vec<deferred_access_check, va_gc> *checks = get_deferred_access_checks ();
pop_deferring_access_checks ();
if (templ == error_mark_node || is_identifier)
return templ;
/* Since we're going to preserve any side-effects from this parse, set up a
firewall to protect our callers from cp_parser_commit_to_tentative_parse
in the template arguments. */
tentative_firewall firewall (parser);
reopen_deferring_access_checks (checks);
/* If we find the sequence `[:' after a template-name, it's probably
a digraph-typo for `< ::'. Substitute the tokens and check if we can
parse correctly the argument list. */
if (((next_token = cp_lexer_peek_token (parser->lexer))->type
== CPP_OPEN_SQUARE)
&& next_token->flags & DIGRAPH
&& ((next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2))->type
== CPP_COLON)
&& !(next_token_2->flags & PREV_WHITE))
{
cp_parser_parse_tentatively (parser);
/* Change `:' into `::'. */
next_token_2->type = CPP_SCOPE;
/* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
CPP_LESS. */
cp_lexer_consume_token (parser->lexer);
/* Parse the arguments. */
arguments = cp_parser_enclosed_template_argument_list (parser);
if (!cp_parser_parse_definitely (parser))
{
/* If we couldn't parse an argument list, then we revert our changes
and return simply an error. Maybe this is not a template-id
after all. */
next_token_2->type = CPP_COLON;
cp_parser_error (parser, "expected %<<%>");
pop_deferring_access_checks ();
return error_mark_node;
}
/* Otherwise, emit an error about the invalid digraph, but continue
parsing because we got our argument list. */
if (permerror (next_token->location,
"%<<::%> cannot begin a template-argument list"))
{
static bool hint = false;
inform (next_token->location,
"%<<:%> is an alternate spelling for %<[%>."
" Insert whitespace between %<<%> and %<::%>");
if (!hint && !flag_permissive)
{
inform (next_token->location, "(if you use %<-fpermissive%> "
"or %<-std=c++11%>, or %<-std=gnu++11%> G++ will "
"accept your code)");
hint = true;
}
}
}
else
{
/* Look for the `<' that starts the template-argument-list. */
if (!cp_parser_require (parser, CPP_LESS, RT_LESS))
{
pop_deferring_access_checks ();
return error_mark_node;
}
/* Parse the arguments. */
arguments = cp_parser_enclosed_template_argument_list (parser);
if ((cxx_dialect > cxx17)
&& (TREE_CODE (templ) == FUNCTION_DECL || identifier_p (templ))
&& !template_keyword_p
&& (cp_parser_error_occurred (parser)
|| cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN)))
{
/* This didn't go well. */
if (TREE_CODE (templ) == FUNCTION_DECL)
{
/* C++2A says that "function-name < a;" is now ill-formed. */
if (cp_parser_error_occurred (parser))
{
error_at (token->location, "invalid template-argument-list");
inform (token->location, "function name as the left hand "
"operand of %<<%> is ill-formed in C++2a; wrap the "
"function name in %<()%>");
}
else
/* We expect "f<targs>" to be followed by "(args)". */
error_at (cp_lexer_peek_token (parser->lexer)->location,
"expected %<(%> after template-argument-list");
if (start_of_id)
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
}
else
cp_parser_simulate_error (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
}
/* Set the location to be of the form:
template-name < template-argument-list [opt] >
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with caret == start at the start of the template-name,
ranging until the closing '>'. */
location_t finish_loc
= get_finish (cp_lexer_previous_token (parser->lexer)->location);
location_t combined_loc
= make_location (token->location, token->location, finish_loc);
/* Check for concepts autos where they don't belong. We could
identify types in some cases of idnetifier TEMPL, looking ahead
for a CPP_SCOPE, but that would buy us nothing: we accept auto in
types. We reject them in functions, but if what we have is an
identifier, even with none_type we can't conclude it's NOT a
type, we have to wait for template substitution. */
if (flag_concepts && check_auto_in_tmpl_args (templ, arguments))
template_id = error_mark_node;
/* Build a representation of the specialization. */
else if (identifier_p (templ))
template_id = build_min_nt_loc (combined_loc,
TEMPLATE_ID_EXPR,
templ, arguments);
else if (DECL_TYPE_TEMPLATE_P (templ)
|| DECL_TEMPLATE_TEMPLATE_PARM_P (templ))
{
/* In "template <typename T> ... A<T>::", A<T> is the abstract A
template (rather than some instantiation thereof) only if
is not nested within some other construct. For example, in
"template <typename T> void f(T) { A<T>::", A<T> is just an
instantiation of A. */
bool entering_scope
= (template_parm_scope_p ()
&& cp_lexer_next_token_is (parser->lexer, CPP_SCOPE));
template_id
= finish_template_type (templ, arguments, entering_scope);
}
/* A template-like identifier may be a partial concept id. */
else if (flag_concepts
&& (template_id = (cp_parser_maybe_partial_concept_id
(parser, templ, arguments))))
return template_id;
else if (variable_template_p (templ))
{
template_id = lookup_template_variable (templ, arguments);
if (TREE_CODE (template_id) == TEMPLATE_ID_EXPR)
SET_EXPR_LOCATION (template_id, combined_loc);
}
else
{
/* If it's not a class-template or a template-template, it should be
a function-template. */
gcc_assert ((DECL_FUNCTION_TEMPLATE_P (templ)
|| TREE_CODE (templ) == OVERLOAD
|| TREE_CODE (templ) == FUNCTION_DECL
|| BASELINK_P (templ)));
template_id = lookup_template_function (templ, arguments);
if (TREE_CODE (template_id) == TEMPLATE_ID_EXPR)
SET_EXPR_LOCATION (template_id, combined_loc);
}
/* If parsing tentatively, replace the sequence of tokens that makes
up the template-id with a CPP_TEMPLATE_ID token. That way,
should we re-parse the token stream, we will not have to repeat
the effort required to do the parse, nor will we issue duplicate
error messages about problems during instantiation of the
template. */
if (start_of_id
/* Don't do this if we had a parse error in a declarator; re-parsing
might succeed if a name changes meaning (60361). */
&& !(cp_parser_error_occurred (parser)
&& cp_parser_parsing_tentatively (parser)
&& parser->in_declarator_p))
{
/* Reset the contents of the START_OF_ID token. */
token->type = CPP_TEMPLATE_ID;
token->location = combined_loc;
/* Retrieve any deferred checks. Do not pop this access checks yet
so the memory will not be reclaimed during token replacing below. */
token->u.tree_check_value = ggc_cleared_alloc<struct tree_check> ();
token->u.tree_check_value->value = template_id;
token->u.tree_check_value->checks = get_deferred_access_checks ();
token->keyword = RID_MAX;
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
/* ??? Can we actually assume that, if template_id ==
error_mark_node, we will have issued a diagnostic to the
user, as opposed to simply marking the tentative parse as
failed? */
if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
error_at (token->location, "parse error in template argument list");
}
pop_to_parent_deferring_access_checks ();
return template_id;
}
/* Parse a template-name.
template-name:
identifier
The standard should actually say:
template-name:
identifier
operator-function-id
A defect report has been filed about this issue.
A conversion-function-id cannot be a template name because they cannot
be part of a template-id. In fact, looking at this code:
a.operator K<int>()
the conversion-function-id is "operator K<int>", and K<int> is a type-id.
It is impossible to call a templated conversion-function-id with an
explicit argument list, since the only allowed template parameter is
the type to which it is converting.
If TEMPLATE_KEYWORD_P is true, then we have just seen the
`template' keyword, in a construction like:
T::template f<3>()
In that case `f' is taken to be a template-name, even though there
is no way of knowing for sure.
Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
name refers to a set of overloaded functions, at least one of which
is a template, or an IDENTIFIER_NODE with the name of the template,
if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
names are looked up inside uninstantiated templates. */
static tree
cp_parser_template_name (cp_parser* parser,
bool template_keyword_p,
bool check_dependency_p,
bool is_declaration,
enum tag_types tag_type,
bool *is_identifier)
{
tree identifier;
tree decl;
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* If the next token is `operator', then we have either an
operator-function-id or a conversion-function-id. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
{
/* We don't know whether we're looking at an
operator-function-id or a conversion-function-id. */
cp_parser_parse_tentatively (parser);
/* Try an operator-function-id. */
identifier = cp_parser_operator_function_id (parser);
/* If that didn't work, try a conversion-function-id. */
if (!cp_parser_parse_definitely (parser))
{
cp_parser_error (parser, "expected template-name");
return error_mark_node;
}
}
/* Look for the identifier. */
else
identifier = cp_parser_identifier (parser);
/* If we didn't find an identifier, we don't have a template-id. */
if (identifier == error_mark_node)
return error_mark_node;
/* If the name immediately followed the `template' keyword, then it
is a template-name. However, if the next token is not `<', then
we do not treat it as a template-name, since it is not being used
as part of a template-id. This enables us to handle constructs
like:
template <typename T> struct S { S(); };
template <typename T> S<T>::S();
correctly. We would treat `S' as a template -- if it were `S<T>'
-- but we do not if there is no `<'. */
if (processing_template_decl
&& cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
{
/* In a declaration, in a dependent context, we pretend that the
"template" keyword was present in order to improve error
recovery. For example, given:
template <typename T> void f(T::X<int>);
we want to treat "X<int>" as a template-id. */
if (is_declaration
&& !template_keyword_p
&& parser->scope && TYPE_P (parser->scope)
&& check_dependency_p
&& dependent_scope_p (parser->scope)
/* Do not do this for dtors (or ctors), since they never
need the template keyword before their name. */
&& !constructor_name_p (identifier, parser->scope))
{
cp_token_position start = 0;
/* Explain what went wrong. */
error_at (token->location, "non-template %qD used as template",
identifier);
inform (token->location, "use %<%T::template %D%> to indicate that it is a template",
parser->scope, identifier);
/* If parsing tentatively, find the location of the "<" token. */
if (cp_parser_simulate_error (parser))
start = cp_lexer_token_position (parser->lexer, true);
/* Parse the template arguments so that we can issue error
messages about them. */
cp_lexer_consume_token (parser->lexer);
cp_parser_enclosed_template_argument_list (parser);
/* Skip tokens until we find a good place from which to
continue parsing. */
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/true,
/*consume_paren=*/false);
/* If parsing tentatively, permanently remove the
template argument list. That will prevent duplicate
error messages from being issued about the missing
"template" keyword. */
if (start)
cp_lexer_purge_tokens_after (parser->lexer, start);
if (is_identifier)
*is_identifier = true;
parser->context->object_type = NULL_TREE;
return identifier;
}
/* If the "template" keyword is present, then there is generally
no point in doing name-lookup, so we just return IDENTIFIER.
But, if the qualifying scope is non-dependent then we can
(and must) do name-lookup normally. */
if (template_keyword_p)
{
tree scope = (parser->scope ? parser->scope
: parser->context->object_type);
if (scope && TYPE_P (scope)
&& (!CLASS_TYPE_P (scope)
|| (check_dependency_p && dependent_type_p (scope))))
{
/* We're optimizing away the call to cp_parser_lookup_name, but
we still need to do this. */
parser->context->object_type = NULL_TREE;
return identifier;
}
}
}
/* cp_parser_lookup_name clears OBJECT_TYPE. */
const bool scoped_p = ((parser->scope ? parser->scope
: parser->context->object_type) != NULL_TREE);
/* Look up the name. */
decl = cp_parser_lookup_name (parser, identifier,
tag_type,
/*is_template=*/true,
/*is_namespace=*/false,
check_dependency_p,
/*ambiguous_decls=*/NULL,
token->location);
decl = strip_using_decl (decl);
/* If DECL is a template, then the name was a template-name. */
if (TREE_CODE (decl) == TEMPLATE_DECL)
{
if (TREE_DEPRECATED (decl)
&& deprecated_state != DEPRECATED_SUPPRESS)
{