| /* Definitions of target machine for GNU compiler. Convex version. |
| Copyright (C) 1988, 1994, 1995, 1996 Free Software Foundation, Inc. |
| |
| This file is part of GNU CC. |
| |
| GNU CC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GNU CC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU CC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| |
| /* Standard GCC variables that we reference. */ |
| |
| extern int target_flags; |
| |
| /* Convex machine-specific flags |
| -mc1 target instruction set, libraries, scheduling |
| -mc2 |
| -mc32 |
| -mc34 |
| -mc38 |
| -margcount use standard calling sequence, with arg count word |
| -mno-argcount don't push arg count, depend on symbol table |
| -margcount-nop place arg count in a nop instruction (faster than push) |
| -mvolatile-cache use data cache for volatile mem refs (default) |
| -mvolatile-nocache bypass data cache for volatile mem refs |
| -mlong32 cc- and libc-compatible 32-bit longs |
| -mlong64 64-bit longs |
| */ |
| |
| /* Macro to define tables used to set -mXXX flags. |
| This is a list in braces of pairs in braces, |
| each pair being { "NAME", VALUE } |
| where VALUE is the bits to set or minus the bits to clear. |
| An empty string NAME is used to identify the default VALUE. */ |
| |
| #ifndef TARGET_DEFAULT |
| #define TARGET_DEFAULT 0 |
| #endif |
| |
| #define TARGET_SWITCHES \ |
| { { "c1", 001 }, \ |
| { "c2", 002 }, \ |
| { "c32", 004 }, \ |
| { "c34", 010 }, \ |
| { "c38", 020 }, \ |
| { "argcount", 0100 }, \ |
| { "argcount-nop", 0200 }, \ |
| { "no-argcount", -0300 }, \ |
| { "volatile-cache", -0400 }, \ |
| { "no-volatile-cache", 0400 }, \ |
| { "volatile-nocache", 0400 }, \ |
| { "long64", 01000 }, \ |
| { "long32", -01000 }, \ |
| { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT}} |
| |
| /* Macros used in the machine description to test the flags. */ |
| |
| #define TARGET_C1 (target_cpu == 0) |
| #define TARGET_C2 (target_cpu == 1) |
| #define TARGET_C34 (target_cpu == 2) |
| #define TARGET_C38 (target_cpu == 3) |
| #define TARGET_ARGCOUNT (target_flags & 0100) |
| #define TARGET_ARGCOUNT_NOP (target_flags & 0200) |
| #define TARGET_LONG64 (target_flags & 01000) |
| #define TARGET_VOLATILE_NOCACHE (target_flags & 0400) |
| |
| #define OVERRIDE_OPTIONS \ |
| { \ |
| init_convex (); \ |
| if ((target_flags & 077) != ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 077)) \ |
| target_flags &= ~ (TARGET_DEFAULT | TARGET_CPU_DEFAULT); \ |
| if (target_flags & 001) \ |
| target_cpu = 0; \ |
| else if (target_flags & 006) \ |
| target_cpu = 1; \ |
| else if (target_flags & 010) \ |
| target_cpu = 2; \ |
| else if (target_flags & 020) \ |
| target_cpu = 3; \ |
| } |
| |
| /* Names to predefine in the preprocessor for this target machine. */ |
| |
| #define CPP_PREDEFINES "-Dconvex -Dunix -Asystem(unix) -Acpu(convex) -Amachine(convex)" |
| |
| /* Print subsidiary information on the compiler version in use. */ |
| |
| #define TARGET_VERSION fprintf (stderr, " (convex)"); |
| |
| /* Target-dependent specs. |
| Some libraries come in c1 and c2+ versions; use the appropriate ones. |
| Make a target-dependent __convex_cxx__ define to relay the target cpu |
| to the program being compiled. */ |
| |
| #if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 1 |
| |
| /* C1 default */ |
| |
| #if _IEEE_FLOAT_ |
| |
| #define CPP_SPEC \ |
| "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \ |
| %{mc2:-D__convex_c2__} \ |
| %{mc32:-D__convex_c32__} \ |
| %{mc34:-D__convex_c34__} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_IEEE_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #else |
| |
| #define CPP_SPEC \ |
| "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \ |
| %{mc2:-D__convex_c2__} \ |
| %{mc32:-D__convex_c32__} \ |
| %{mc34:-D__convex_c34__} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_CONVEX_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #endif |
| |
| #define LIB_SPEC \ |
| "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-lC1%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ |
| %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| -lc%{traditional:_old}%{p:_p}%{pg:_p}" |
| |
| #endif |
| |
| #if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 2 |
| |
| /* C2 default */ |
| |
| #if _IEEE_FLOAT_ |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \ |
| %{mc32:-D__convex_c32__} \ |
| %{mc34:-D__convex_c34__} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_IEEE_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #else |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \ |
| %{mc32:-D__convex_c32__} \ |
| %{mc34:-D__convex_c34__} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_CONVEX_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #endif |
| |
| #define LIB_SPEC \ |
| "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{!mc1:%{!mc32:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ |
| %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| -lc%{traditional:_old}%{p:_p}%{pg:_p}" |
| |
| #endif |
| |
| #if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 4 |
| |
| /* C32 default */ |
| |
| #if _IEEE_FLOAT_ |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{mc2:-D__convex_c2__} \ |
| %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \ |
| %{mc34:-D__convex_c34__} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_IEEE_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #else |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{mc2:-D__convex_c2__} \ |
| %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \ |
| %{mc34:-D__convex_c34__} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_CONVEX_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #endif |
| |
| #define LIB_SPEC \ |
| "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{!mc1:%{!mc2:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ |
| %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| -lc%{traditional:_old}%{p:_p}%{pg:_p}" |
| |
| #endif |
| |
| #if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 010 |
| |
| /* C34 default */ |
| |
| #if _IEEE_FLOAT_ |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{mc2:-D__convex_c2__} \ |
| %{mc32:-D__convex_c32__} \ |
| %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_IEEE_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #else |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{mc2:-D__convex_c2__} \ |
| %{mc32:-D__convex_c32__} \ |
| %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \ |
| %{mc38:-D__convex_c38__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_CONVEX_FLOAT_ \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #endif |
| |
| #define LIB_SPEC \ |
| "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{!mc1:%{!mc2:%{!mc32:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ |
| %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| -lc%{traditional:_old}%{p:_p}%{pg:_p}" |
| |
| #endif |
| |
| #if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 020 |
| |
| /* C38 default */ |
| |
| #if _IEEE_FLOAT_ |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{mc2:-D__convex_c2__} \ |
| %{mc32:-D__convex_c32__} \ |
| %{mc34:-D__convex_c34__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_IEEE_FLOAT_ \ |
| %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #else |
| |
| #define CPP_SPEC \ |
| "%{mc1:-D__convex_c1__} \ |
| %{mc2:-D__convex_c2__} \ |
| %{mc32:-D__convex_c32__} \ |
| %{mc34:-D__convex_c34__} \ |
| %{fno-builtin:-D__NO_INLINE} \ |
| -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ |
| -D_CONVEX_FLOAT_ \ |
| %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \ |
| %{.S:-P} \ |
| %{!traditional:-D__stdc__} \ |
| %{!traditional:-D_LONGLONG} \ |
| %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ |
| %{!ansi:-D_POSIX_SOURCE} \ |
| %{!ansi:-D_CONVEX_SOURCE}" |
| |
| #endif |
| |
| #define LIB_SPEC \ |
| "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ |
| %{!mc1:%{!mc2:%{!mc32:%{!mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ |
| -lc%{traditional:_old}%{p:_p}%{pg:_p}" |
| |
| #endif |
| |
| #if _IEEE_FLOAT_ |
| |
| /* ieee default */ |
| |
| #define ASM_SPEC "-fi" |
| |
| #define LINK_SPEC \ |
| "-E%{traditional:no}posix \ |
| -X \ |
| %{F} %{M*} %{y*} \ |
| -fi \ |
| -A__iob=___ap$iob \ |
| -A_use_libc_sema=___ap$use_libc_sema \ |
| %{traditional:-A___gcc_cleanup=__cleanup} \ |
| %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \ |
| -L/usr/lib" |
| |
| #define STARTFILE_SPEC \ |
| "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \ |
| %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \ |
| %{pg:/usr/lib/crt/gcrt0.o} \ |
| /usr/lib/crt/fpmode_i.o" |
| |
| #else |
| |
| /* native default */ |
| |
| #define ASM_SPEC "-fn" |
| |
| #define LINK_SPEC \ |
| "-E%{traditional:no}posix \ |
| -X \ |
| %{F} %{M*} %{y*} \ |
| -fn \ |
| -A__iob=___ap$iob \ |
| -A_use_libc_sema=___ap$use_libc_sema \ |
| %{traditional:-A___gcc_cleanup=__cleanup} \ |
| %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \ |
| -L/usr/lib" |
| |
| #define STARTFILE_SPEC \ |
| "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \ |
| %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \ |
| %{pg:/usr/lib/crt/gcrt0.o}" |
| |
| #endif |
| |
| /* Use /path/libgcc.a instead of -lgcc, makes bootstrap work more smoothly. */ |
| |
| #define LINK_LIBGCC_SPECIAL_1 |
| |
| /* Since IEEE support was added to gcc, most things seem to like it |
| better if we disable exceptions and check afterward for infinity. */ |
| |
| #if __convex__ |
| #if _IEEE_FLOAT_ |
| #define REAL_VALUE_ISNAN(x) 0 |
| #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0x7ff0) == 0x7ff0) |
| #else |
| #define REAL_VALUE_ISNAN(x) 0 |
| #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0xfff0) == 0x8000) |
| #endif |
| #endif |
| |
| /* Target machine storage layout */ |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. */ |
| #define BITS_BIG_ENDIAN 1 |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| #define BYTES_BIG_ENDIAN 1 |
| |
| /* Define this if most significant word of a multiword number is numbered. */ |
| #define WORDS_BIG_ENDIAN 1 |
| |
| /* Number of bits in an addressable storage unit */ |
| #define BITS_PER_UNIT 8 |
| |
| /* Width in bits of a "word", which is the contents of a machine register. |
| Note that this is not necessarily the width of data type `int'; |
| if using 16-bit ints on a 68000, this would still be 32. |
| But on a machine with 16-bit registers, this would be 16. */ |
| #define BITS_PER_WORD 64 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD 8 |
| |
| /* Width in bits of a pointer. |
| See also the macro `Pmode' defined below. */ |
| #define POINTER_SIZE 32 |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY 32 |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY 64 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 16 |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Every structure's size must be a multiple of this. */ |
| #define STRUCTURE_SIZE_BOUNDARY 8 |
| |
| /* A bitfield declared as `int' forces `int' alignment for the struct. */ |
| #define PCC_BITFIELD_TYPE_MATTERS 1 |
| |
| /* No data type wants to be aligned rounder than this. */ |
| /* beware of doubles in structs -- 64 is incompatible with cc */ |
| #define BIGGEST_ALIGNMENT 32 |
| |
| /* Set this nonzero if move instructions will actually fail to work |
| when given unaligned data. */ |
| #define STRICT_ALIGNMENT 0 |
| |
| /* Define sizes of basic C types to conform to ordinary usage -- these |
| types depend on BITS_PER_WORD otherwise. */ |
| #define CHAR_TYPE_SIZE 8 |
| #define SHORT_TYPE_SIZE 16 |
| #define INT_TYPE_SIZE 32 |
| #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32) |
| #define LONG_LONG_TYPE_SIZE 64 |
| #define FLOAT_TYPE_SIZE 32 |
| #define DOUBLE_TYPE_SIZE 64 |
| #define LONG_DOUBLE_TYPE_SIZE 64 |
| /* This prevents cexp.c from depending on LONG_TYPE_SIZE. */ |
| #define MAX_LONG_TYPE_SIZE 64 |
| |
| /* Declare the standard types used by builtins to match convex stddef.h -- |
| with int rather than long. */ |
| |
| #define SIZE_TYPE "unsigned int" |
| #define PTRDIFF_TYPE "int" |
| |
| /* Standard register usage. */ |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. */ |
| #define FIRST_PSEUDO_REGISTER 16 |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. |
| For Convex, these are AP, FP, and SP. */ |
| #define FIXED_REGISTERS \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 } |
| |
| /* 1 for registers not available across function calls. |
| These must include the FIXED_REGISTERS and also any |
| registers that can be used without being saved. |
| The latter must include the registers where values are returned |
| and the register where structure-value addresses are passed. |
| Aside from that, you can include as many other registers as you like. */ |
| #define CALL_USED_REGISTERS \ |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } |
| |
| /* List the order in which to allocate registers. Each register must be |
| listed once, even those in FIXED_REGISTERS. |
| For Convex, put S0 (the return register) last. */ |
| #define REG_ALLOC_ORDER \ |
| { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 0, 8, 14, 15 } |
| |
| /* Return number of consecutive hard regs needed starting at reg REGNO |
| to hold something of mode MODE. |
| This is ordinarily the length in words of a value of mode MODE |
| but can be less for certain modes in special long registers. */ |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) |
| |
| /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. |
| On Convex, S registers can hold any type, A registers any nonfloat. */ |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
| (S_REGNO_P (REGNO) \ |
| || (GET_MODE_SIZE (MODE) <= 4 && (MODE) != SFmode)) |
| |
| /* Value is 1 if it is a good idea to tie two pseudo registers |
| when one has mode MODE1 and one has mode MODE2. |
| If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, |
| for any hard reg, then this must be 0 for correct output. */ |
| #define MODES_TIEABLE_P(MODE1, MODE2) \ |
| ((GET_MODE_SIZE (MODE1) <= 4 && (MODE1) != SFmode) \ |
| == (GET_MODE_SIZE (MODE2) <= 4 && (MODE2) != SFmode)) |
| |
| /* Specify the registers used for certain standard purposes. |
| The values of these macros are register numbers. */ |
| |
| #define S0_REGNUM 0 |
| #define A0_REGNUM 8 |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM A0_REGNUM |
| |
| /* Base register for access to local variables of the function. */ |
| #define FRAME_POINTER_REGNUM (A0_REGNUM + 7) |
| |
| /* Value should be nonzero if functions must have frame pointers. |
| Zero means the frame pointer need not be set up (and parms |
| may be accessed via the stack pointer) in functions that seem suitable. |
| This is computed in `reload', in reload1.c. */ |
| #define FRAME_POINTER_REQUIRED 1 |
| |
| /* Base register for access to arguments of the function. */ |
| #define ARG_POINTER_REGNUM (A0_REGNUM + 6) |
| |
| /* Register in which static-chain is passed to a function. |
| Use S0, not an A reg, because this rare use would otherwise prevent |
| an A reg from being available to global-alloc across calls. */ |
| #define STATIC_CHAIN_REGNUM S0_REGNUM |
| |
| /* Register in which address to store a structure value |
| is passed to a function. */ |
| #define STRUCT_VALUE_REGNUM (A0_REGNUM + 1) |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. Also define ranges of constants. |
| |
| One of the classes must always be named ALL_REGS and include all hard regs. |
| If there is more than one class, another class must be named NO_REGS |
| and contain no registers. |
| |
| The name GENERAL_REGS must be the name of a class (or an alias for |
| another name such as ALL_REGS). This is the class of registers |
| that is allowed by "g" or "r" in a register constraint. |
| Also, registers outside this class are allocated only when |
| instructions express preferences for them. |
| |
| The classes must be numbered in nondecreasing order; that is, |
| a larger-numbered class must never be contained completely |
| in a smaller-numbered class. |
| |
| For any two classes, it is very desirable that there be another |
| class that represents their union. */ |
| |
| /* Convex has classes A (address) and S (scalar). |
| A is further divided into SP_REGS (stack pointer) and INDEX_REGS. |
| SI_REGS is S_REGS + INDEX_REGS -- all the regs except SP. */ |
| |
| enum reg_class { |
| NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, SI_REGS, |
| ALL_REGS, LIM_REG_CLASSES |
| }; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| /* Since GENERAL_REGS is the same class as ALL_REGS, |
| don't give it a different class number; just make it an alias. */ |
| |
| #define GENERAL_REGS ALL_REGS |
| |
| /* Give names of register classes as strings for dump file. */ |
| |
| #define REG_CLASS_NAMES \ |
| {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "SI_REGS", \ |
| "ALL_REGS" } |
| |
| /* Define which registers fit in which classes. |
| This is an initializer for a vector of HARD_REG_SET |
| of length N_REG_CLASSES. */ |
| |
| #define REG_CLASS_CONTENTS \ |
| { 0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xfeff, 0xffff } |
| |
| /* The same information, inverted: |
| Return the class number of the smallest class containing |
| reg number REGNO. This could be a conditional expression |
| or could index an array. */ |
| |
| #define REGNO_REG_CLASS(REGNO) (regno_reg_class[REGNO]) |
| |
| #define S_REGNO_P(REGNO) (((REGNO) - S0_REGNUM) < (unsigned) 8) |
| #define A_REGNO_P(REGNO) (((REGNO) - A0_REGNUM) < (unsigned) 8) |
| |
| #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X))) |
| #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X))) |
| |
| /* The class value for index registers, and the one for base regs. */ |
| |
| #define INDEX_REG_CLASS INDEX_REGS |
| #define BASE_REG_CLASS INDEX_REGS |
| |
| /* Get reg_class from a letter such as appears in the machine description. */ |
| /* a => A_REGS |
| d => S_REGS ('s' is taken) |
| A => INDEX_REGS (i.e., A_REGS except sp) */ |
| |
| #define REG_CLASS_FROM_LETTER(C) \ |
| reg_class_from_letter[(unsigned char) (C)] |
| |
| /* The letters I, J, K, L and M in a register constraint string |
| can be used to stand for particular ranges of immediate operands. |
| This macro defines what the ranges are. |
| C is the letter, and VALUE is a constant value. |
| Return 1 if VALUE is in the range specified by C. */ |
| /* 'I' is used to pass any CONST_INT and reject any CONST_DOUBLE. |
| CONST_DOUBLE integers are handled by G and H constraint chars. */ |
| |
| #define CONST_OK_FOR_LETTER_P(VALUE, C) 1 |
| |
| /* Similar, but for floating constants, and defining letters G and H. |
| Here VALUE is the CONST_DOUBLE rtx itself. */ |
| /* Convex uses G, H: |
| value usable in ld.d (low word 0) or ld.l (high word all sign) */ |
| |
| #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ |
| (((C) == 'G' && LD_D_P (VALUE)) || \ |
| ((C) == 'H' && LD_L_P (VALUE)) || \ |
| 0) |
| |
| #define LD_D_P(X) (const_double_low_int (X) == 0) |
| |
| #define LD_L_P(X) (const_double_low_int (X) >= 0 \ |
| ? const_double_high_int (X) == 0 \ |
| : const_double_high_int (X) == -1) |
| |
| /* Optional extra constraints for this machine. |
| For Convex, 'Q' means that OP is a volatile MEM. |
| For volatile scalars, we use instructions that bypass the data cache. */ |
| |
| #define EXTRA_CONSTRAINT(OP, C) \ |
| ((C) == 'Q' ? (GET_CODE (OP) == MEM && MEM_VOLATILE_P (OP) \ |
| && ! TARGET_C1 && TARGET_VOLATILE_NOCACHE) \ |
| : 0) |
| |
| /* Given an rtx X being reloaded into a reg required to be |
| in class CLASS, return the class of reg to actually use. |
| In general this is just CLASS; but on some machines |
| in some cases it is preferable to use a more restrictive class. */ |
| |
| /* Put 2-word constants that can't be immediate operands into memory. */ |
| |
| #define PREFERRED_RELOAD_CLASS(X,CLASS) \ |
| ((GET_CODE (X) != CONST_DOUBLE \ |
| || GET_MODE (X) == SFmode \ |
| || LD_L_P (X) || LD_D_P (X)) ? (CLASS) : NO_REGS) |
| |
| /* Return the maximum number of consecutive registers |
| needed to represent mode MODE in a register of class CLASS. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8) |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| /* Define this if pushing a word on the stack |
| makes the stack pointer a smaller address. */ |
| #define STACK_GROWS_DOWNWARD |
| |
| /* Define this if the nominal address of the stack frame |
| is at the high-address end of the local variables; |
| that is, each additional local variable allocated |
| goes at a more negative offset in the frame. */ |
| #define FRAME_GROWS_DOWNWARD |
| |
| /* Define this if should default to -fcaller-saves. */ |
| #define DEFAULT_CALLER_SAVES |
| |
| /* Offset within stack frame to start allocating local variables at. |
| If FRAME_GROWS_DOWNWARD, this is the offset to the END of the |
| first local allocated. Otherwise, it is the offset to the BEGINNING |
| of the first local allocated. */ |
| #define STARTING_FRAME_OFFSET 0 |
| |
| /* If we generate an insn to push BYTES bytes, |
| this says how many the stack pointer really advances by. */ |
| #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3) |
| |
| /* Offset of first parameter from the argument pointer register value. */ |
| #define FIRST_PARM_OFFSET(FNDECL) 0 |
| |
| /* Value is the number of bytes of arguments automatically |
| popped when returning from a subroutine call. |
| FUNDECL is the declaration node of the function (as a tree), |
| FUNTYPE is the data type of the function (as a tree), |
| or for a library call it is an identifier node for the subroutine name. |
| SIZE is the number of bytes of arguments passed on the stack. */ |
| |
| #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE) |
| |
| /* Define how to find the value returned by a function. |
| VALTYPE is the data type of the value (as a tree). |
| If the precise function being called is known, FUNC is its FUNCTION_DECL; |
| otherwise, FUNC is 0. */ |
| |
| #define FUNCTION_VALUE(VALTYPE, FUNC) \ |
| gen_rtx (REG, TYPE_MODE (VALTYPE), S0_REGNUM) |
| |
| /* Define how to find the value returned by a library function |
| assuming the value has mode MODE. */ |
| |
| #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, S0_REGNUM) |
| |
| /* Define this if PCC uses the nonreentrant convention for returning |
| structure and union values. */ |
| |
| #define PCC_STATIC_STRUCT_RETURN |
| |
| /* 1 if N is a possible register number for a function value. |
| On the Convex, S0 is the only register thus used. */ |
| |
| #define FUNCTION_VALUE_REGNO_P(N) ((N) == S0_REGNUM) |
| |
| /* 1 if N is a possible register number for function argument passing. */ |
| |
| #define FUNCTION_ARG_REGNO_P(N) 0 |
| |
| /* Define a data type for recording info about an argument list |
| during the scan of that argument list. This data type should |
| hold all necessary information about the function itself |
| and about the args processed so far, enough to enable macros |
| such as FUNCTION_ARG to determine where the next arg should go. */ |
| /* On convex, simply count the arguments in case TARGET_ARGCOUNT is set. */ |
| |
| #define CUMULATIVE_ARGS int |
| |
| /* Initialize a variable CUM of type CUMULATIVE_ARGS |
| for a call to a function whose data type is FNTYPE. |
| For a library call, FNTYPE is 0. */ |
| |
| #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ |
| ((CUM) = 0) |
| |
| /* Update the data in CUM to advance over an argument |
| of mode MODE and data type TYPE. |
| (TYPE is null for libcalls where that information may not be available.) */ |
| |
| #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ |
| ((CUM) += 1) |
| |
| /* Define where to put the arguments to a function. |
| Value is zero to push the argument on the stack, |
| or a hard register in which to store the argument. |
| |
| MODE is the argument's machine mode. |
| TYPE is the data type of the argument (as a tree). |
| This is null for libcalls where that information may |
| not be available. |
| CUM is a variable of type CUMULATIVE_ARGS which gives info about |
| the preceding args and about the function being called. |
| NAMED is nonzero if this argument is a named parameter |
| (otherwise it is an extra parameter matching an ellipsis). |
| |
| Convex: all args go on the stack. But return the arg count |
| as the "next arg register" to be passed to gen_call. */ |
| |
| #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ |
| ((MODE) == VOIDmode ? gen_rtx (CONST_INT, VOIDmode, (CUM)) : 0) |
| |
| /* This macro generates the assembly code for function entry. |
| FILE is a stdio stream to output the code to. |
| SIZE is an int: how many units of temporary storage to allocate. |
| Refer to the array `regs_ever_live' to determine which registers |
| to save; `regs_ever_live[I]' is nonzero if register number I |
| is ever used in the function. This macro is responsible for |
| knowing which registers should not be saved even if used. */ |
| |
| #define FUNCTION_PROLOGUE(FILE, SIZE) \ |
| { \ |
| int size = ((SIZE) + 7) & -8; \ |
| if (size != 0) \ |
| fprintf (FILE, "\tsub.w #%d,sp\n", size); \ |
| } |
| |
| /* This macro generates the assembly code for function exit, |
| on machines that need it. If FUNCTION_EPILOGUE is not defined |
| then individual return instructions are generated for each |
| return statement. Args are same as for FUNCTION_PROLOGUE. */ |
| |
| #define FUNCTION_EPILOGUE(FILE, SIZE) \ |
| { \ |
| /* Follow function with a zero to stop c34 icache prefetching. */ \ |
| fprintf (FILE, "\tds.h 0\n"); \ |
| } |
| |
| /* Output assembler code for a block containing the constant parts |
| of a trampoline, leaving space for the variable parts. */ |
| |
| /* On convex, the code for a trampoline is |
| ld.w #<link>,s0 |
| jmp <func> */ |
| |
| #define TRAMPOLINE_TEMPLATE(FILE) \ |
| { \ |
| fprintf (FILE, "\tld.w #69696969,s0\n"); \ |
| fprintf (FILE, "\tjmp 52525252\n"); \ |
| } |
| |
| /* Length in units of the trampoline for entering a nested function. */ |
| |
| #define TRAMPOLINE_SIZE 12 |
| |
| /* Emit RTL insns to initialize the variable parts of a trampoline. |
| FNADDR is an RTX for the address of the function's pure code. |
| CXT is an RTX for the static chain value for the function. */ |
| |
| #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ |
| { \ |
| emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \ |
| emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \ |
| emit_call_insn (gen_call_pop (gen_rtx (MEM, QImode, \ |
| gen_rtx (SYMBOL_REF, Pmode, \ |
| "__enable_execute_stack")), \ |
| const0_rtx, const0_rtx, const0_rtx)); \ |
| } |
| |
| /* Output assembler code to FILE to increment profiler label # LABELNO |
| for profiling a function entry. */ |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO)); |
| |
| /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
| the stack pointer does not matter. The value is tested only in |
| functions that have frame pointers. |
| No definition is equivalent to always zero. */ |
| |
| #define EXIT_IGNORE_STACK 1 |
| |
| /* Store in the variable DEPTH the initial difference between the |
| frame pointer reg contents and the stack pointer reg contents, |
| as of the start of the function body. This depends on the layout |
| of the fixed parts of the stack frame and on how registers are saved. */ |
| #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ |
| { (DEPTH) = (get_frame_size () + 7) & -8; } |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| /* #define HAVE_POST_INCREMENT */ |
| /* #define HAVE_POST_DECREMENT */ |
| |
| /* #define HAVE_PRE_DECREMENT */ |
| /* #define HAVE_PRE_INCREMENT */ |
| |
| /* Macros to check register numbers against specific register classes. */ |
| |
| /* These assume that REGNO is a hard or pseudo reg number. |
| They give nonzero only if REGNO is a hard reg of the suitable class |
| or a pseudo reg currently allocated to a suitable hard reg. |
| Since they use reg_renumber, they are safe only once reg_renumber |
| has been allocated, which happens in local-alloc.c. */ |
| |
| #define REGNO_OK_FOR_INDEX_P(regno) \ |
| ((regno) <= LAST_VIRTUAL_REGISTER \ |
| ? regno_ok_for_index_p[regno] \ |
| : regno_ok_for_index_p[reg_renumber[regno]]) |
| |
| #define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno) |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| |
| #define MAX_REGS_PER_ADDRESS 1 |
| |
| /* 1 if X is an rtx for a constant that is a valid address. */ |
| |
| #define CONSTANT_ADDRESS_P(X) \ |
| (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ |
| || GET_CODE (X) == HIGH) |
| |
| /* Nonzero if the constant value X is a legitimate general operand. |
| It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ |
| |
| /* For convex, bounce 2-word constants that can't be immediate operands. */ |
| |
| #define LEGITIMATE_CONSTANT_P(X) \ |
| (GET_CODE (X) != CONST_DOUBLE \ |
| || GET_MODE (X) == SFmode \ |
| || LD_L_P (X) || LD_D_P (X)) |
| |
| /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx |
| and check its validity for a certain class. |
| We have two alternate definitions for each of them. |
| The usual definition accepts all pseudo regs; the other rejects |
| them unless they have been allocated suitable hard regs. |
| The symbol REG_OK_STRICT causes the latter definition to be used. |
| |
| Most source files want to accept pseudo regs in the hope that |
| they will get allocated to the class that the insn wants them to be in. |
| Source files for reload pass need to be strict. |
| After reload, it makes no difference, since pseudo regs have |
| been eliminated by then. */ |
| |
| #ifndef REG_OK_STRICT |
| |
| /* Nonzero if X is a hard reg that can be used as an index |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_INDEX_P(X) \ |
| (REGNO (X) > LAST_VIRTUAL_REGISTER || regno_ok_for_index_p[REGNO (X)]) |
| |
| /* Nonzero if X is a hard reg that can be used as a base reg |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X) |
| |
| #else |
| |
| /* Nonzero if X is a hard reg that can be used as an index. */ |
| #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) |
| |
| /* Nonzero if X is a hard reg that can be used as a base reg. */ |
| #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) |
| |
| #endif |
| |
| /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression |
| that is a valid memory address for an instruction. |
| The MODE argument is the machine mode for the MEM expression |
| that wants to use this address. |
| |
| For Convex, valid addresses are |
| indirectable or (MEM indirectable) |
| where indirectable is |
| const, reg, (PLUS reg const) |
| |
| We don't use indirection since with insn scheduling, load + indexing |
| is better. */ |
| |
| /* 1 if X is an address that we could indirect through. */ |
| #define INDIRECTABLE_ADDRESS_P(X) \ |
| (CONSTANT_ADDRESS_P (X) \ |
| || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ |
| || (GET_CODE (X) == PLUS \ |
| && GET_CODE (XEXP (X, 0)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ |
| && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ |
| || (GET_CODE (X) == PLUS \ |
| && GET_CODE (XEXP (X, 1)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 1)) \ |
| && CONSTANT_ADDRESS_P (XEXP (X, 0)))) |
| |
| /* Go to ADDR if X is a valid address. */ |
| #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ |
| { register rtx xfoob = (X); \ |
| if (INDIRECTABLE_ADDRESS_P (xfoob)) \ |
| goto ADDR; \ |
| if (GET_CODE (xfoob) == PRE_DEC && XEXP (xfoob, 0) == stack_pointer_rtx) \ |
| goto ADDR; \ |
| } |
| |
| /* Try machine-dependent ways of modifying an illegitimate address |
| to be legitimate. If we find one, return the new, valid address. |
| This macro is used in only one place: `memory_address' in explow.c. |
| |
| OLDX is the address as it was before break_out_memory_refs was called. |
| In some cases it is useful to look at this to decide what needs to be done. |
| |
| MODE and WIN are passed so that this macro can use |
| GO_IF_LEGITIMATE_ADDRESS. |
| |
| It is always safe for this macro to do nothing. It exists to recognize |
| opportunities to optimize the output. |
| |
| For Convex, nothing needs to be done. */ |
| |
| #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {} |
| |
| /* Go to LABEL if ADDR (a legitimate address expression) |
| has an effect that depends on the machine mode it is used for. */ |
| |
| #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {} |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| #define CASE_VECTOR_MODE SImode |
| |
| /* Define this if the case instruction expects the table |
| to contain offsets from the address of the table. |
| Do not define this if the table should contain absolute addresses. */ |
| /* #define CASE_VECTOR_PC_RELATIVE */ |
| |
| /* Define this if the case instruction drops through after the table |
| when the index is out of range. Don't define it if the case insn |
| jumps to the default label instead. */ |
| /* #define CASE_DROPS_THROUGH */ |
| |
| /* Specify the tree operation to be used to convert reals to integers. */ |
| #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR |
| |
| /* This is the kind of divide that is easiest to do in the general case. */ |
| #define EASY_DIV_EXPR TRUNC_DIV_EXPR |
| |
| /* Define this as 1 if `char' should by default be signed; else as 0. */ |
| #define DEFAULT_SIGNED_CHAR 1 |
| |
| /* This flag, if defined, says the same insns that convert to a signed fixnum |
| also convert validly to an unsigned one. */ |
| #define FIXUNS_TRUNC_LIKE_FIX_TRUNC |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX 8 |
| |
| /* Define this if zero-extension is slow (more than one real instruction). */ |
| /* #define SLOW_ZERO_EXTEND */ |
| |
| /* Nonzero if access to memory by bytes is slow and undesirable. */ |
| #define SLOW_BYTE_ACCESS (! TARGET_C2) |
| |
| /* Define if shifts truncate the shift count |
| which implies one can omit a sign-extension or zero-extension |
| of a shift count. */ |
| /* #define SHIFT_COUNT_TRUNCATED */ |
| |
| /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
| is done just by pretending it is already truncated. */ |
| #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 |
| |
| /* On Convex, it is as good to call a constant function address as to |
| call an address kept in a register. */ |
| #define NO_FUNCTION_CSE |
| |
| /* When a prototype says `char' or `short', really pass an `int'. */ |
| #define PROMOTE_PROTOTYPES |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode SImode |
| |
| /* A function address in a call instruction |
| is a byte address (for indexing purposes) |
| so give the MEM rtx a byte's mode. */ |
| #define FUNCTION_MODE QImode |
| |
| /* Compute the cost of computing a constant rtl expression RTX |
| whose rtx-code is CODE. The body of this macro is a portion |
| of a switch statement. If the code is computed here, |
| return it with a return statement. Otherwise, break from the switch. */ |
| |
| #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
| case CONST: \ |
| case LABEL_REF: \ |
| case SYMBOL_REF: \ |
| case CONST_INT: \ |
| case CONST_DOUBLE: \ |
| return 0; |
| |
| /* Provide the costs of a rtl expression. This is in the body of a |
| switch on CODE. */ |
| |
| #define RTX_COSTS(RTX,CODE,OUTER_CODE) \ |
| case PLUS: \ |
| if (regno_pointer_flag != 0 \ |
| && GET_CODE (XEXP (RTX, 0)) == REG \ |
| && REGNO_POINTER_FLAG (REGNO (XEXP (RTX, 0))) \ |
| && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \ |
| return 0; \ |
| else break; \ |
| case MULT: \ |
| return 4 * (char) (0x03060403 >> target_cpu * 8); \ |
| case ASHIFT: \ |
| case LSHIFTRT: \ |
| case ASHIFTRT: \ |
| return 4 * (char) (0x03010403 >> target_cpu * 8); \ |
| case MEM: \ |
| return 5; |
| |
| /* Compute the cost of an address. This is meant to approximate the size |
| and/or execution delay of an insn using that address. If the cost is |
| approximated by the RTL complexity, including CONST_COSTS above, as |
| is usually the case for CISC machines, this macro should not be defined. |
| For aggressively RISCy machines, only one insn format is allowed, so |
| this macro should be a constant. The value of this macro only matters |
| for valid addresses. */ |
| |
| #define ADDRESS_COST(RTX) 0 |
| |
| /* Specify the cost of a branch insn; roughly the number of extra insns that |
| should be added to avoid a branch. */ |
| |
| #define BRANCH_COST 0 |
| |
| /* Adjust the cost of dependences. */ |
| |
| #define ADJUST_COST(INSN,LINK,DEP,COST) \ |
| { \ |
| /* Antidependencies don't block issue. */ \ |
| if (REG_NOTE_KIND (LINK) != 0) \ |
| (COST) = 0; \ |
| /* C38 situations where delay depends on context */ \ |
| else if (TARGET_C38 \ |
| && GET_CODE (PATTERN (INSN)) == SET \ |
| && GET_CODE (PATTERN (DEP)) == SET) \ |
| { \ |
| enum attr_type insn_type = get_attr_type (INSN); \ |
| enum attr_type dep_type = get_attr_type (DEP); \ |
| /* index register must be ready one cycle early */ \ |
| if (insn_type == TYPE_MLDW || insn_type == TYPE_MLDL \ |
| || (insn_type == TYPE_MST \ |
| && reg_mentioned_p (SET_DEST (PATTERN (DEP)), \ |
| SET_SRC (PATTERN (INSN))))) \ |
| (COST) += 1; \ |
| /* alu forwarding off alu takes two */ \ |
| if (dep_type == TYPE_ALU \ |
| && insn_type != TYPE_ALU \ |
| && ! (insn_type == TYPE_MST \ |
| && SET_DEST (PATTERN (DEP)) == SET_SRC (PATTERN (INSN)))) \ |
| (COST) += 1; \ |
| } \ |
| } |
| |
| /* Convex uses Vax or IEEE floats. |
| Follow the host format. */ |
| #define TARGET_FLOAT_FORMAT HOST_FLOAT_FORMAT |
| |
| /* But must prevent real.c from constructing Vax dfloats */ |
| #define REAL_VALUE_ATOF(X,S) atof (X) |
| extern double atof(); |
| |
| /* Check a `double' value for validity for a particular machine mode. */ |
| #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \ |
| OVERFLOW = check_float_value (MODE, &D, OVERFLOW) |
| |
| /* Tell final.c how to eliminate redundant test instructions. */ |
| |
| /* Here we define machine-dependent flags and fields in cc_status |
| (see `conditions.h'). No extra ones are needed for convex. */ |
| |
| /* Store in cc_status the expressions |
| that the condition codes will describe |
| after execution of an instruction whose pattern is EXP. |
| Do not alter them if the instruction would not alter the cc's. */ |
| |
| #define NOTICE_UPDATE_CC(EXP,INSN) {} |
| |
| /* Control the assembler format that we output. */ |
| |
| /* Output at beginning of assembler file. */ |
| |
| #if _IEEE_FLOAT_ |
| #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode ieee\n") |
| #else |
| #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode native\n") |
| #endif |
| |
| /* Output to assembler file text saying following lines |
| may contain character constants, extra white space, comments, etc. */ |
| |
| #define ASM_APP_ON ";APP\n" |
| |
| /* Output to assembler file text saying following lines |
| no longer contain unusual constructs. */ |
| |
| #define ASM_APP_OFF ";NO_APP\n" |
| |
| /* Alignment with Convex's assembler goes like this: |
| .text can be .aligned up to a halfword. |
| .data and .bss can be .aligned up to a longword. |
| .lcomm is not supported, explicit declarations in .bss must be used instead. |
| We get alignment for word and longword .text data by conventionally |
| using .text 2 for word-aligned data and .text 3 for longword-aligned |
| data. This requires that the data's size be a multiple of its alignment, |
| which seems to be always true. */ |
| |
| /* Output before read-only data. */ |
| |
| #define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text") |
| |
| /* Output before writable data. */ |
| |
| #define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data") |
| |
| /* Output before uninitialized data. */ |
| |
| #define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss") |
| |
| /* This is how to output an assembler line |
| that says to advance the location counter |
| to a multiple of 2**LOG bytes. */ |
| |
| #define ASM_OUTPUT_ALIGN(FILE,LOG) \ |
| if (current_section_is_text && (LOG) > 1) \ |
| fprintf (FILE, ".text %d\n", LOG); \ |
| else if (current_section_is_text) \ |
| fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \ |
| else \ |
| fprintf (FILE, ".align %d\n", 1 << (LOG)) |
| |
| /* How to refer to registers in assembler output. |
| This sequence is indexed by compiler's hard-register-number (see above). */ |
| |
| #define REGISTER_NAMES \ |
| { \ |
| "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \ |
| "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp", \ |
| } |
| |
| /* This is BSD, so it wants DBX format. */ |
| |
| #define DBX_DEBUGGING_INFO |
| |
| /* How to renumber registers for dbx and gdb. */ |
| |
| #define DBX_REGISTER_NUMBER(REGNO) (REGNO) |
| |
| /* Do not break .stabs pseudos into continuations. */ |
| |
| #define DBX_CONTIN_LENGTH 0 |
| |
| /* This is the char to use for continuation (in case we need to turn |
| continuation back on). */ |
| |
| #define DBX_CONTIN_CHAR '?' |
| |
| /* Don't use stab extensions until GDB v4 port is available for convex. */ |
| |
| #define DEFAULT_GDB_EXTENSIONS 0 |
| #define DBX_NO_XREFS |
| |
| /* This is how to output the definition of a user-level label named NAME, |
| such as the label on a static function or variable NAME. */ |
| |
| #define ASM_OUTPUT_LABEL(FILE,NAME) \ |
| do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) |
| |
| /* This is how to output a command to make the user-level label named NAME |
| defined for reference from other files. */ |
| |
| #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ |
| do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) |
| |
| /* The prefix to add to user-visible assembler symbols. */ |
| |
| #define USER_LABEL_PREFIX "_" |
| |
| /* This is how to output an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. */ |
| |
| #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ |
| fprintf (FILE, "%s%d:\n", PREFIX, NUM) |
| |
| /* Put case tables in .text 2, where they will be word-aligned */ |
| |
| #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \ |
| ASM_OUTPUT_ALIGN (FILE, 2); \ |
| ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM) |
| |
| #define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \ |
| ASM_OUTPUT_ALIGN (FILE, 1) |
| |
| /* This is how to store into the string LABEL |
| the symbol_ref name of an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. |
| This is suitable for output with `assemble_name'. */ |
| |
| #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ |
| sprintf (LABEL, "*%s%d", PREFIX, NUM) |
| |
| /* This is how to output an assembler line defining a `double' constant. */ |
| |
| #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ |
| outfloat (FILE, VALUE, "%.17e", "\tds.d ", "\n") |
| |
| /* This is how to output an assembler line defining a `float' constant. */ |
| |
| #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ |
| outfloat (FILE, VALUE, "%.9e", "\tds.s ", "\n") |
| |
| /* This is how to output an assembler line defining an `int' constant. */ |
| |
| #define ASM_OUTPUT_INT(FILE,VALUE) \ |
| { \ |
| fprintf (FILE, "\tds.w "); \ |
| output_addr_const (FILE, simplify_for_convex (VALUE)); \ |
| fprintf (FILE, "\n"); \ |
| } |
| |
| /* Likewise for a `long long int' constant. */ |
| |
| #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \ |
| { \ |
| if (GET_CODE (VALUE) == CONST_DOUBLE) \ |
| fprintf (FILE, "\tds.w %d,%d\n", \ |
| const_double_high_int (VALUE), const_double_low_int (VALUE)); \ |
| else if (GET_CODE (VALUE) == CONST_INT) \ |
| { \ |
| int val = INTVAL (VALUE); \ |
| fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \ |
| } \ |
| else \ |
| abort (); \ |
| } |
| |
| /* Likewise for `char' and `short' constants. */ |
| |
| #define ASM_OUTPUT_SHORT(FILE,VALUE) \ |
| ( fprintf (FILE, "\tds.h "), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fprintf (FILE, "\n")) |
| |
| #define ASM_OUTPUT_CHAR(FILE,VALUE) \ |
| ( fprintf (FILE, "\tds.b "), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fprintf (FILE, "\n")) |
| |
| /* This is how to output an assembler line for a numeric constant byte. */ |
| |
| #define ASM_OUTPUT_BYTE(FILE,VALUE) \ |
| fprintf (FILE, "\tds.b %#x\n", (VALUE)) |
| |
| /* This is how to output a string */ |
| |
| #define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \ |
| int i; \ |
| fprintf ((FILE), "\tds.b \""); \ |
| for (i = 0; i < (SIZE); i++) { \ |
| register int c = (STR)[i] & 0377; \ |
| if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \ |
| putc (c, (FILE)); \ |
| else \ |
| fprintf ((FILE), "\\%03o", c);} \ |
| fprintf ((FILE), "\"\n");} while (0) |
| |
| /* This is how to output an insn to push a register on the stack. |
| It need not be very fast code. */ |
| |
| #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ |
| fprintf (FILE, "\tpsh.%c %s\n", \ |
| S_REGNO_P (REGNO) ? 'l' : 'w', \ |
| reg_names[REGNO]) |
| |
| /* This is how to output an insn to pop a register from the stack. |
| It need not be very fast code. */ |
| |
| #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ |
| fprintf (FILE, "\tpop.%c %s\n", \ |
| S_REGNO_P (REGNO) ? 'l' : 'w', \ |
| reg_names[REGNO]) |
| |
| /* This is how to output an element of a case-vector that is absolute. */ |
| |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| fprintf (FILE, "\tds.w L%d\n", VALUE) |
| |
| /* This is how to output an element of a case-vector that is relative. |
| (not used on Convex) */ |
| |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ |
| fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL) |
| |
| /* This is how to output an assembler line |
| that says to advance the location counter by SIZE bytes. */ |
| |
| #define ASM_OUTPUT_SKIP(FILE,SIZE) \ |
| fprintf (FILE, "\tds.b %u(0)\n", (SIZE)) |
| |
| /* This says how to output an assembler line |
| to define a global common symbol. */ |
| |
| #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ |
| ( fputs (".comm ", (FILE)), \ |
| assemble_name ((FILE), (NAME)), \ |
| fprintf ((FILE), ",%u\n", (ROUNDED))) |
| |
| /* This says how to output an assembler line |
| to define a local common symbol. */ |
| |
| #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ |
| ( bss_section (), \ |
| assemble_name ((FILE), (NAME)), \ |
| fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED))) |
| |
| /* Store in OUTPUT a string (made with alloca) containing |
| an assembler-name for a local static variable named NAME. |
| LABELNO is an integer which is different for each call. */ |
| |
| #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ |
| ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ |
| sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) |
| |
| /* Output an arg count before function entries. */ |
| |
| #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ |
| asm_declare_function_name (FILE, NAME, DECL) |
| |
| /* Define the parentheses used to group arithmetic operations |
| in assembler code. */ |
| |
| #define ASM_OPEN_PAREN "(" |
| #define ASM_CLOSE_PAREN ")" |
| |
| /* Define results of standard character escape sequences. */ |
| #define TARGET_BELL 007 |
| #define TARGET_BS 010 |
| #define TARGET_TAB 011 |
| #define TARGET_NEWLINE 012 |
| #define TARGET_VT 013 |
| #define TARGET_FF 014 |
| #define TARGET_CR 015 |
| |
| /* Print an instruction operand X on file FILE. |
| CODE is the code from the %-spec that requested printing this operand; |
| if `%z3' was used to print operand 3, then CODE is 'z'. */ |
| |
| #define PRINT_OPERAND(FILE, X, CODE) \ |
| print_operand (FILE, X, CODE) |
| |
| /* Print a memory operand whose address is X, on file FILE. */ |
| |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ |
| print_operand_address (FILE, ADDR) |
| |
| /* Do not put out GNU stabs for constructors and destructors. |
| ld bounces them. */ |
| |
| #define FASCIST_ASSEMBLER |
| |
| /* __gcc_cleanup is loader-aliased to __ap$do_registered_functions if we |
| are linking against standard libc, 0 if old (-traditional) libc. */ |
| |
| #define EXIT_BODY \ |
| { \ |
| extern void __gcc_cleanup (); \ |
| if (__gcc_cleanup != _cleanup) \ |
| __gcc_cleanup (); \ |
| _cleanup (); \ |
| } |
| |
| /* Header for convex.c. |
| Here at the end so we can use types defined above. */ |
| |
| extern int target_cpu; |
| extern int current_section_is_text; |
| extern enum reg_class regno_reg_class[]; |
| extern enum reg_class reg_class_from_letter[]; |
| extern char regno_ok_for_index_p_base[]; |
| #define regno_ok_for_index_p (regno_ok_for_index_p_base + 1) |
| |
| extern int const_double_low_int (); |
| extern int const_double_high_int (); |
| extern char *output_cmp (); |
| extern char *output_condjump (); |
| extern char *output_call (); |
| extern void gen_ap_for_call (); |
| extern int check_float_value (); |
| extern void asm_declare_function_name (); |