blob: 58ed718cad72a42b1823fca408452d7ca88cecb1 [file] [log] [blame]
/* Definitions of target machine for GNU compiler. MIPS version.
Copyright (C) 1989, 90-6, 1997 Free Software Foundation, Inc.
Contributed by A. Lichnewsky (lich@inria.inria.fr).
Changed by Michael Meissner (meissner@osf.org).
64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
Brendan Eich (brendan@microunity.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Standard GCC variables that we reference. */
extern char *asm_file_name;
extern char call_used_regs[];
extern int current_function_calls_alloca;
extern int flag_omit_frame_pointer;
extern int frame_pointer_needed;
extern char *language_string;
extern int may_call_alloca;
extern int optimize;
extern char **save_argv;
extern int target_flags;
extern char *version_string;
/* MIPS external variables defined in mips.c. */
/* comparison type */
enum cmp_type {
CMP_SI, /* compare four byte integers */
CMP_DI, /* compare eight byte integers */
CMP_SF, /* compare single precision floats */
CMP_DF, /* compare double precision floats */
CMP_MAX /* max comparison type */
};
/* types of delay slot */
enum delay_type {
DELAY_NONE, /* no delay slot */
DELAY_LOAD, /* load from memory delay */
DELAY_HILO, /* move from/to hi/lo registers */
DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
};
/* Which processor to schedule for. Since there is no difference between
a R2000 and R3000 in terms of the scheduler, we collapse them into
just an R3000. The elements of the enumeration must match exactly
the cpu attribute in the mips.md machine description. */
enum processor_type {
PROCESSOR_DEFAULT,
PROCESSOR_R3000,
PROCESSOR_R6000,
PROCESSOR_R4000,
PROCESSOR_R4100,
PROCESSOR_R4300,
PROCESSOR_R4600,
PROCESSOR_R4650,
PROCESSOR_R5000,
PROCESSOR_R8000
};
/* Recast the cpu class to be the cpu attribute. */
#define mips_cpu_attr ((enum attr_cpu)mips_cpu)
/* Which ABI to use. This is only used by the Irix 6 port currently. */
enum mips_abi_type {
ABI_32,
ABI_N32,
ABI_64,
ABI_EABI
};
#ifndef MIPS_ABI_DEFAULT
/* We define this away so that there is no extra runtime cost if the target
doesn't support multiple ABIs. */
#define mips_abi ABI_32
#else
extern enum mips_abi_type mips_abi;
#endif
/* Whether to emit abicalls code sequences or not. */
enum mips_abicalls_type {
MIPS_ABICALLS_NO,
MIPS_ABICALLS_YES
};
/* Recast the abicalls class to be the abicalls attribute. */
#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
/* Which type of block move to do (whether or not the last store is
split out so it can fill a branch delay slot). */
enum block_move_type {
BLOCK_MOVE_NORMAL, /* generate complete block move */
BLOCK_MOVE_NOT_LAST, /* generate all but last store */
BLOCK_MOVE_LAST /* generate just the last store */
};
extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
extern char *current_function_file; /* filename current function is in */
extern int num_source_filenames; /* current .file # */
extern int inside_function; /* != 0 if inside of a function */
extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
extern int file_in_function_warning; /* warning given about .file in func */
extern int sdb_label_count; /* block start/end next label # */
extern int sdb_begin_function_line; /* Starting Line of current function */
extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
extern int g_switch_value; /* value of the -G xx switch */
extern int g_switch_set; /* whether -G xx was passed. */
extern int sym_lineno; /* sgi next label # for each stmt */
extern int set_noreorder; /* # of nested .set noreorder's */
extern int set_nomacro; /* # of nested .set nomacro's */
extern int set_noat; /* # of nested .set noat's */
extern int set_volatile; /* # of nested .set volatile's */
extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
extern int mips_dbx_regno[]; /* Map register # to debug register # */
extern struct rtx_def *branch_cmp[2]; /* operands for compare */
extern enum cmp_type branch_type; /* what type of branch to use */
extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
extern int mips_isa; /* architectural level */
extern char *mips_cpu_string; /* for -mcpu=<xxx> */
extern char *mips_isa_string; /* for -mips{1,2,3,4} */
extern char *mips_abi_string; /* for -misa={32,n32,64} */
extern int mips_split_addresses; /* perform high/lo_sum support */
extern int dslots_load_total; /* total # load related delay slots */
extern int dslots_load_filled; /* # filled load delay slots */
extern int dslots_jump_total; /* total # jump related delay slots */
extern int dslots_jump_filled; /* # filled jump delay slots */
extern int dslots_number_nops; /* # of nops needed by previous insn */
extern int num_refs[3]; /* # 1/2/3 word references */
extern struct rtx_def *mips_load_reg; /* register to check for load delay */
extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
/* Functions within mips.c that we reference. */
extern void abort_with_insn ();
extern int arith32_operand ();
extern int arith_operand ();
extern int cmp_op ();
extern long compute_frame_size ();
extern int epilogue_reg_mentioned_p ();
extern void expand_block_move ();
extern int equality_op ();
extern void final_prescan_insn ();
extern struct rtx_def * function_arg ();
extern void function_arg_advance ();
extern int function_arg_partial_nregs ();
extern int function_arg_pass_by_reference ();
extern void function_epilogue ();
extern void function_prologue ();
extern void gen_conditional_branch ();
extern void gen_conditional_move ();
extern struct rtx_def * gen_int_relational ();
extern void init_cumulative_args ();
extern int large_int ();
extern int mips_address_cost ();
extern void mips_asm_file_end ();
extern void mips_asm_file_start ();
extern int mips_const_double_ok ();
extern void mips_count_memory_refs ();
extern int mips_debugger_offset ();
extern void mips_declare_object ();
extern int mips_epilogue_delay_slots ();
extern void mips_expand_epilogue ();
extern void mips_expand_prologue ();
extern int mips_check_split ();
extern char *mips_fill_delay_slot ();
extern char *mips_move_1word ();
extern char *mips_move_2words ();
extern void mips_output_double ();
extern int mips_output_external ();
extern void mips_output_float ();
extern void mips_output_filename ();
extern void mips_output_lineno ();
extern char *output_block_move ();
extern void override_options ();
extern int pc_or_label_operand ();
extern void print_operand_address ();
extern void print_operand ();
extern void print_options ();
extern int reg_or_0_operand ();
extern int simple_epilogue_p ();
extern int simple_memory_operand ();
extern int small_int ();
extern void trace();
extern int uns_arith_operand ();
extern struct rtx_def * embedded_pic_offset ();
/* Recognition functions that return if a condition is true. */
extern int address_operand ();
extern int const_double_operand ();
extern int const_int_operand ();
extern int general_operand ();
extern int immediate_operand ();
extern int memory_address_p ();
extern int memory_operand ();
extern int nonimmediate_operand ();
extern int nonmemory_operand ();
extern int register_operand ();
extern int scratch_operand ();
extern int move_operand ();
extern int movdi_operand ();
extern int se_register_operand ();
extern int se_reg_or_0_operand ();
extern int se_uns_arith_operand ();
extern int se_arith_operand ();
extern int se_nonmemory_operand ();
extern int se_nonimmediate_operand ();
/* Functions to change what output section we are using. */
extern void data_section ();
extern void rdata_section ();
extern void readonly_data_section ();
extern void sdata_section ();
extern void text_section ();
/* Stubs for half-pic support if not OSF/1 reference platform. */
#ifndef HALF_PIC_P
#define HALF_PIC_P() 0
#define HALF_PIC_NUMBER_PTRS 0
#define HALF_PIC_NUMBER_REFS 0
#define HALF_PIC_ENCODE(DECL)
#define HALF_PIC_DECLARE(NAME)
#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
#define HALF_PIC_ADDRESS_P(X) 0
#define HALF_PIC_PTR(X) X
#define HALF_PIC_FINISH(STREAM)
#endif
/* Run-time compilation parameters selecting different hardware subsets. */
/* Macros used in the machine description to test the flags. */
/* Bits for real switches */
#define MASK_INT64 0x00000001 /* ints are 64 bits */
#define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
#define MASK_STATS 0x00000040 /* print statistics to stderr */
#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
#define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
#define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
#define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
/* Dummy switches used only in spec's*/
#define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
/* Debug switches, not documented */
#define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
#define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
#define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
#define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
#define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
#define MASK_DEBUG_E 0x02000000 /* function_arg debug */
#define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
#define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
#define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
#define MASK_DEBUG_I 0x00200000 /* unused */
#define MASK_DEBUG_J 0x00100000 /* unused */
/* r4000 64 bit sizes */
#define TARGET_INT64 (target_flags & MASK_INT64)
#define TARGET_LONG64 (target_flags & MASK_LONG64)
#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
#define TARGET_64BIT (target_flags & MASK_64BIT)
/* Mips vs. GNU linker */
#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
/* Mips vs. GNU assembler */
#define TARGET_GAS (target_flags & MASK_GAS)
#define TARGET_UNIX_ASM (!TARGET_GAS)
#define TARGET_MIPS_AS TARGET_UNIX_ASM
/* Debug Mode */
#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
#define TARGET_DEBUG_J_MODE (target_flags & MASK_DEBUG_J)
/* Reg. Naming in .s ($21 vs. $a0) */
#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
/* Optimize for Sdata/Sbss */
#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
/* print program statistics */
#define TARGET_STATS (target_flags & MASK_STATS)
/* call memcpy instead of inline code */
#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
/* .abicalls, etc from Pyramid V.4 */
#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
/* OSF pic references to externs */
#define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
/* software floating point */
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
/* always call through a register */
#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
/* generate embedded PIC code;
requires gas. */
#define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
/* for embedded systems, optimize for
reduced RAM space instead of for
fastest code. */
#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
/* generate big endian code. */
#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
#define TARGET_MAD (target_flags & MASK_MAD)
#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
/* This is true if we must enable the assembly language file switching
code. */
#define TARGET_FILE_SWITCHING (TARGET_GP_OPT && ! TARGET_GAS)
/* We must disable the function end stabs when doing the file switching trick,
because the Lscope stabs end up in the wrong place, making it impossible
to debug the resulting code. */
#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ \
{"int64", MASK_INT64 | MASK_LONG64}, \
{"long64", MASK_LONG64}, \
{"split-addresses", MASK_SPLIT_ADDR}, \
{"no-split-addresses", -MASK_SPLIT_ADDR}, \
{"mips-as", -MASK_GAS}, \
{"gas", MASK_GAS}, \
{"rnames", MASK_NAME_REGS}, \
{"no-rnames", -MASK_NAME_REGS}, \
{"gpOPT", MASK_GPOPT}, \
{"gpopt", MASK_GPOPT}, \
{"no-gpOPT", -MASK_GPOPT}, \
{"no-gpopt", -MASK_GPOPT}, \
{"stats", MASK_STATS}, \
{"no-stats", -MASK_STATS}, \
{"memcpy", MASK_MEMCPY}, \
{"no-memcpy", -MASK_MEMCPY}, \
{"mips-tfile", MASK_MIPS_TFILE}, \
{"no-mips-tfile", -MASK_MIPS_TFILE}, \
{"soft-float", MASK_SOFT_FLOAT}, \
{"hard-float", -MASK_SOFT_FLOAT}, \
{"fp64", MASK_FLOAT64}, \
{"fp32", -MASK_FLOAT64}, \
{"gp64", MASK_64BIT}, \
{"gp32", -MASK_64BIT}, \
{"abicalls", MASK_ABICALLS}, \
{"no-abicalls", -MASK_ABICALLS}, \
{"half-pic", MASK_HALF_PIC}, \
{"no-half-pic", -MASK_HALF_PIC}, \
{"long-calls", MASK_LONG_CALLS}, \
{"no-long-calls", -MASK_LONG_CALLS}, \
{"embedded-pic", MASK_EMBEDDED_PIC}, \
{"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
{"embedded-data", MASK_EMBEDDED_DATA}, \
{"no-embedded-data", -MASK_EMBEDDED_DATA}, \
{"eb", MASK_BIG_ENDIAN}, \
{"el", -MASK_BIG_ENDIAN}, \
{"single-float", MASK_SINGLE_FLOAT}, \
{"double-float", -MASK_SINGLE_FLOAT}, \
{"mad", MASK_MAD}, \
{"no-mad", -MASK_MAD}, \
{"fix4300", MASK_4300_MUL_FIX}, \
{"no-fix4300", -MASK_4300_MUL_FIX}, \
{"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
{"debug", MASK_DEBUG}, \
{"debuga", MASK_DEBUG_A}, \
{"debugb", MASK_DEBUG_B}, \
{"debugc", MASK_DEBUG_C}, \
{"debugd", MASK_DEBUG_D}, \
{"debuge", MASK_DEBUG_E}, \
{"debugf", MASK_DEBUG_F}, \
{"debugg", MASK_DEBUG_G}, \
{"debugh", MASK_DEBUG_H}, \
{"debugi", MASK_DEBUG_I}, \
{"debugj", MASK_DEBUG_J}, \
{"", (TARGET_DEFAULT \
| TARGET_CPU_DEFAULT \
| TARGET_ENDIAN_DEFAULT)} \
}
/* Default target_flags if no switches are specified */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
#ifndef TARGET_ENDIAN_DEFAULT
#ifndef DECSTATION
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
#else
#define TARGET_ENDIAN_DEFAULT 0
#endif
#endif
#ifndef MULTILIB_DEFAULTS
#if TARGET_ENDIAN_DEFAULT == 0
#define MULTILIB_DEFAULTS { "EL", "mips1" }
#else
#define MULTILIB_DEFAULTS { "EB", "mips1" }
#endif
#endif
/* We must pass -EL to the linker by default for little endian embedded
targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
linker will default to using big-endian output files. The OUTPUT_FORMAT
line must be in the linker script, otherwise -EB/-EL will not work. */
#ifndef LINKER_ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == 0
#define LINKER_ENDIAN_SPEC "%{!EB:%{!meb:-EL}}"
#else
#define LINKER_ENDIAN_SPEC ""
#endif
#endif
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable.
The variable, type `char *', is set to the variable part of the
given option if the fixed part matches. The actual option name
is made by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
#define TARGET_OPTIONS \
{ \
SUBTARGET_TARGET_OPTIONS \
{ "cpu=", &mips_cpu_string }, \
{ "ips", &mips_isa_string } \
}
/* This is meant to be redefined in the host dependent files. */
#define SUBTARGET_TARGET_OPTIONS
/* Macros to decide whether certain features are available or not,
depending on the instruction set architecture level. */
#define BRANCH_LIKELY_P() (mips_isa >= 2)
#define HAVE_SQRT_P() (mips_isa >= 2)
/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
-mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
-mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
target_flags, and -mgp64 sets MASK_64BIT.
Setting MASK_64BIT in target_flags will cause gcc to assume that
registers are 64 bits wide. int, long and void * will be 32 bit;
this may be changed with -mint64 or -mlong64.
The gen* programs link code that refers to MASK_64BIT. They don't
actually use the information in target_flags; they just refer to
it. */
/* Switch Recognition by gcc.c. Add -G xx support */
#ifdef SWITCH_TAKES_ARG
#undef SWITCH_TAKES_ARG
#endif
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
On the MIPS, it is used to handle -G. We also use it to set up all
of the tables referenced in the other macros. */
#define OVERRIDE_OPTIONS override_options ()
/* Zero or more C statements that may conditionally modify two
variables `fixed_regs' and `call_used_regs' (both of type `char
[]') after they have been initialized from the two preceding
macros.
This is necessary in case the fixed or call-clobbered registers
depend on target flags.
You need not define this macro if it has no work to do.
If the usage of an entire class of registers depends on the target
flags, you may indicate this to GCC by using this macro to modify
`fixed_regs' and `call_used_regs' to 1 for each of the registers in
the classes which should not be used by GCC. Also define the macro
`REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
letter for a class that shouldn't be used.
(However, if this class is not included in `GENERAL_REGS' and all
of the insn patterns whose constraints permit this class are
controlled by target switches, then GCC will automatically avoid
using these registers when the target switches are opposed to
them.) */
#define CONDITIONAL_REGISTER_USAGE \
do \
{ \
if (!TARGET_HARD_FLOAT) \
{ \
int regno; \
\
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
else if (mips_isa < 4) \
{ \
int regno; \
\
/* We only have a single condition code register. We \
implement this by hiding all the condition code registers, \
and generating RTL that refers directly to ST_REG_FIRST. */ \
for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
SUBTARGET_CONDITIONAL_REGISTER_USAGE \
} \
while (0)
/* This is meant to be redefined in the host dependent files. */
#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* Complain about missing specs and predefines that should be defined in each
of the target tm files to override the defaults. This is mostly a place-
holder until I can get each of the files updated [mm]. */
#if defined(OSF_OS) \
|| defined(DECSTATION) \
|| defined(SGI_TARGET) \
|| defined(MIPS_NEWS) \
|| defined(MIPS_SYSV) \
|| defined(MIPS_SVR4) \
|| defined(MIPS_BSD43)
#ifndef CPP_PREDEFINES
#error "Define CPP_PREDEFINES in the appropriate tm.h file"
#endif
#ifndef LIB_SPEC
#error "Define LIB_SPEC in the appropriate tm.h file"
#endif
#ifndef STARTFILE_SPEC
#error "Define STARTFILE_SPEC in the appropriate tm.h file"
#endif
#ifndef MACHINE_TYPE
#error "Define MACHINE_TYPE in the appropriate tm.h file"
#endif
#endif
/* Tell collect what flags to pass to nm. */
#ifndef NM_FLAGS
#define NM_FLAGS "-Bp"
#endif
/* Names to predefine in the preprocessor for this target machine. */
#ifndef CPP_PREDEFINES
#define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
-D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
-Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
#endif
/* Assembler specs. */
/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
than gas. */
#define MIPS_AS_ASM_SPEC "\
%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
%{pipe: %e-pipe is not supported.} \
%{K} %(subtarget_mips_as_asm_spec)"
/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
rather than gas. It may be overridden by subtargets. */
#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
#endif
/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
assembler. */
#define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{v}"
/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
GAS_ASM_SPEC as the default, depending upon the value of
TARGET_DEFAULT. */
#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */
#define TARGET_ASM_SPEC "\
%{mmips-as: %(mips_as_asm_spec)} \
%{!mmips-as: %(gas_asm_spec)}"
#else /* not GAS */
#define TARGET_ASM_SPEC "\
%{!mgas: %(mips_as_asm_spec)} \
%{mgas: %(gas_asm_spec)}"
#endif /* not GAS */
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
to the assembler. It may be overridden by subtargets. */
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
%{noasmopt:-O0} \
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
#endif
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
the assembler. It may be overridden by subtargets. */
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
%{g} %{g0} %{g1} %{g2} %{g3} \
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
#endif
/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
overridden by subtargets. */
#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC ""
#endif
/* ASM_SPEC is the set of arguments to pass to the assembler. */
#define ASM_SPEC "\
%{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
%(subtarget_asm_optimizing_spec) \
%(subtarget_asm_debugging_spec) \
%{membedded-pic} \
%{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
%(target_asm_spec) \
%(subtarget_asm_spec)"
/* Specify to run a post-processor, mips-tfile after the assembler
has run to stuff the mips debug information into the object file.
This is needed because the $#!%^ MIPS assembler provides no way
of specifying such information in the assembly file. If we are
cross compiling, disable mips-tfile unless the user specifies
-mmips-tfile. */
#ifndef ASM_FINAL_SPEC
#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */
#define ASM_FINAL_SPEC "\
%{mmips-as: %{!mno-mips-tfile: \
\n mips-tfile %{v*: -v} \
%{K: -I %b.o~} \
%{!K: %{save-temps: -I %b.o~}} \
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
%{.s:%i} %{!.s:%g.s}}}"
#else
/* not GAS */
#define ASM_FINAL_SPEC "\
%{!mgas: %{!mno-mips-tfile: \
\n mips-tfile %{v*: -v} \
%{K: -I %b.o~} \
%{!K: %{save-temps: -I %b.o~}} \
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
%{.s:%i} %{!.s:%g.s}}}"
#endif
#endif /* ASM_FINAL_SPEC */
/* Redefinition of libraries used. Mips doesn't support normal
UNIX style profiling via calling _mcount. It does offer
profiling that samples the PC, so do what we can... */
#ifndef LIB_SPEC
#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
#endif
/* Extra switches sometimes passed to the linker. */
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
will interpret it as a -b option. */
#ifndef LINK_SPEC
#define LINK_SPEC "\
%{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
%{bestGnum} %{shared} %{non_shared} \
%(linker_endian_spec)"
#endif /* LINK_SPEC defined */
/* Specs for the compiler proper */
/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CC1_SPEC
#define SUBTARGET_CC1_SPEC ""
#endif
/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
#ifndef CC1_SPEC
#define CC1_SPEC "\
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
%{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
%{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
%{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
%{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
%{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
%{m4650:-mcpu=r4650} \
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
%{pic-none: -mno-half-pic} \
%{pic-lib: -mhalf-pic} \
%{pic-extern: -mhalf-pic} \
%{pic-calls: -mhalf-pic} \
%{save-temps: } \
%(subtarget_cc1_spec) "
#endif
/* Preprocessor specs. */
/* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
be overridden by subtargets. */
#ifndef SUBTARGET_CPP_SIZE_SPEC
#define SUBTARGET_CPP_SIZE_SPEC "\
%{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
%{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
#endif
/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
/* CPP_SPEC is the set of arguments to pass to the preprocessor. */
#ifndef CPP_SPEC
#define CPP_SPEC "\
%{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
%{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
%{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
%{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
%{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
%{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
%{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}} \
%(subtarget_cpp_size_spec) \
%{mips3:-U__mips -D__mips=3 -D__mips64} \
%{mips4:-U__mips -D__mips=4 -D__mips64} \
%{mgp32:-U__mips64} %{mgp64:-D__mips64} \
%{msingle-float:%{!msoft-float:-D__mips_single_float}} \
%{m4650:%{!msoft-float:-D__mips_single_float}} \
%{msoft-float:-D__mips_soft_float} \
%{mabi=eabi:-D__mips_eabi} \
%{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
%{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
%(subtarget_cpp_spec) "
#endif
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#define EXTRA_SPECS \
{ "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
{ "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
{ "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
{ "gas_asm_spec", GAS_ASM_SPEC }, \
{ "target_asm_spec", TARGET_ASM_SPEC }, \
{ "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
{ "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
{ "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
{ "linker_endian_spec", LINKER_ENDIAN_SPEC }, \
SUBTARGET_EXTRA_SPECS
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
/* If defined, this macro is an additional prefix to try after
`STANDARD_EXEC_PREFIX'. */
#ifndef MD_EXEC_PREFIX
#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
#endif
#ifndef MD_STARTFILE_PREFIX
#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
#endif
/* Print subsidiary information on the compiler version in use. */
#define MIPS_VERSION "[AL 1.1, MM 40]"
#ifndef MACHINE_TYPE
#define MACHINE_TYPE "BSD Mips"
#endif
#ifndef TARGET_VERSION_INTERNAL
#define TARGET_VERSION_INTERNAL(STREAM) \
fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
#endif
#ifndef TARGET_VERSION
#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
#endif
#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
#define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
#endif
/* By default, turn on GDB extensions. */
#define DEFAULT_GDB_EXTENSIONS 1
/* If we are passing smuggling stabs through the MIPS ECOFF object
format, put a comment in front of the .stab<x> operation so
that the MIPS assembler does not choke. The mips-tfile program
will correctly put the stab into the object file. */
#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
/* Local compiler-generated symbols must have a prefix that the assembler
understands. By default, this is $, although some targets (e.g.,
NetBSD-ELF) need to override this. */
#ifndef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX "$"
#endif
/* By default on the mips, external symbols do not have an underscore
prepended, but some targets (e.g., NetBSD) require this. */
#ifndef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
#endif
/* Forward references to tags are allowed. */
#define SDB_ALLOW_FORWARD_REFERENCES
/* Unknown tags are also allowed. */
#define SDB_ALLOW_UNKNOWN_REFERENCES
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
since the length can run past this up to a continuation point. */
#define DBX_CONTIN_LENGTH 1500
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
/* The mapping from gcc register number to DWARF 2 CFA column number.
This mapping does not allow for tracking DBX register 0, since column 0
is used for the frame address, but since register 0 is fixed this is
not really a problem. */
#define DWARF_FRAME_REGNUM(REG) \
(REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN \
: DBX_REGISTER_NUMBER (REG))
/* The DWARF 2 CFA column which tracks the return address. */
#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
/* Before the prologue, RA lives in r31. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx (REG, VOIDmode, GP_REG_FIRST + 31)
/* Overrides for the COFF debug format. */
#define PUT_SDB_SCL(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
} while (0)
#define PUT_SDB_INT_VAL(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
} while (0)
#define PUT_SDB_VAL(a) \
do { \
extern FILE *asm_out_text_file; \
fputs ("\t.val\t", asm_out_text_file); \
output_addr_const (asm_out_text_file, (a)); \
fputc (';', asm_out_text_file); \
} while (0)
#define PUT_SDB_DEF(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t%s.def\t", \
(TARGET_GAS) ? "" : "#"); \
ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
fputc (';', asm_out_text_file); \
} while (0)
#define PUT_SDB_PLAIN_DEF(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
(TARGET_GAS) ? "" : "#", (a)); \
} while (0)
#define PUT_SDB_ENDEF \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.endef\n"); \
} while (0)
#define PUT_SDB_TYPE(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
} while (0)
#define PUT_SDB_SIZE(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
} while (0)
#define PUT_SDB_DIM(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
} while (0)
#ifndef PUT_SDB_START_DIM
#define PUT_SDB_START_DIM \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.dim\t"); \
} while (0)
#endif
#ifndef PUT_SDB_NEXT_DIM
#define PUT_SDB_NEXT_DIM(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "%d,", a); \
} while (0)
#endif
#ifndef PUT_SDB_LAST_DIM
#define PUT_SDB_LAST_DIM(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "%d;", a); \
} while (0)
#endif
#define PUT_SDB_TAG(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.tag\t"); \
ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
fputc (';', asm_out_text_file); \
} while (0)
/* For block start and end, we create labels, so that
later we can figure out where the correct offset is.
The normal .ent/.end serve well enough for functions,
so those are just commented out. */
#define PUT_SDB_BLOCK_START(LINE) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, \
"%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(TARGET_GAS) ? "" : "#", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(LINE)); \
sdb_label_count++; \
} while (0)
#define PUT_SDB_BLOCK_END(LINE) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, \
"%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(TARGET_GAS) ? "" : "#", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(LINE)); \
sdb_label_count++; \
} while (0)
#define PUT_SDB_FUNCTION_START(LINE)
#define PUT_SDB_FUNCTION_END(LINE) \
do { \
extern FILE *asm_out_text_file; \
ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
} while (0)
#define PUT_SDB_EPILOGUE_END(NAME)
#define PUT_SDB_SRC_FILE(FILENAME) \
do { \
extern FILE *asm_out_text_file; \
output_file_directive (asm_out_text_file, (FILENAME)); \
} while (0)
#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
sprintf ((BUFFER), ".%dfake", (NUMBER));
/* Correct the offset of automatic variables and arguments. Note that
the MIPS debug format wants all automatic variables and arguments
to be in terms of the virtual frame pointer (stack pointer before
any adjustment in the function), while the MIPS 3.0 linker wants
the frame pointer to be the stack pointer after the initial
adjustment. */
#define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
#define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
/* Tell collect that the object format is ECOFF */
#ifndef OBJECT_FORMAT_ROSE
#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
#define EXTENDED_COFF /* ECOFF, not normal coff */
#endif
#if 0 /* These definitions normally have no effect because
MIPS systems define USE_COLLECT2, so
assemble_constructor does nothing anyway. */
/* Don't use the default definitions, because we don't have gld.
Also, we don't want stabs when generating ECOFF output.
Instead we depend on collect to handle these. */
#define ASM_OUTPUT_CONSTRUCTOR(file, name)
#define ASM_OUTPUT_DESTRUCTOR(file, name)
#endif /* 0 */
/* Target machine storage layout */
/* Define in order to support both big and little endian float formats
in the same gcc binary. */
#define REAL_ARITHMETIC
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
*/
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
/* Define this if most significant word of a multiword number is the lowest. */
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
/* Define this to set the endianness to use in libgcc2.c, which can
not depend on target_flags. */
#if !defined(MIPSEL) && !defined(__MIPSEL__)
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#define MIN_UNITS_PER_WORD 4
/* For MIPS, width of a floating point register. */
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
/* A C expression for the size in bits of the type `int' on the
target machine. If you don't define this, the default is one
word. */
#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
#define MAX_INT_TYPE_SIZE 64
/* Tell the preprocessor the maximum size of wchar_t. */
#ifndef MAX_WCHAR_TYPE_SIZE
#ifndef WCHAR_TYPE_SIZE
#define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
#endif
#endif
/* A C expression for the size in bits of the type `short' on the
target machine. If you don't define this, the default is half a
word. (If this would be less than one storage unit, it is
rounded up to one unit.) */
#define SHORT_TYPE_SIZE 16
/* A C expression for the size in bits of the type `long' on the
target machine. If you don't define this, the default is one
word. */
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
#define MAX_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long long' on the
target machine. If you don't define this, the default is two
words. */
#define LONG_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `char' on the
target machine. If you don't define this, the default is one
quarter of a word. (If this would be less than one storage unit,
it is rounded up to one unit.) */
#define CHAR_TYPE_SIZE BITS_PER_UNIT
/* A C expression for the size in bits of the type `float' on the
target machine. If you don't define this, the default is one
word. */
#define FLOAT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `double' on the
target machine. If you don't define this, the default is two
words. */
#define DOUBLE_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long double' on
the target machine. If you don't define this, the default is two
words. */
#define LONG_DOUBLE_TYPE_SIZE 64
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
/* 8 is observed right on a DECstation and on riscos 4.02. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT 64
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Define this if you wish to imitate the way many other C compilers
handle alignment of bitfields and the structures that contain
them.
The behavior is that the type written for a bitfield (`int',
`short', or other integer type) imposes an alignment for the
entire structure, as if the structure really did contain an
ordinary field of that type. In addition, the bitfield is placed
within the structure so that it would fit within such a field,
not crossing a boundary for it.
Thus, on most machines, a bitfield whose type is written as `int'
would not cross a four-byte boundary, and would force four-byte
alignment for the whole structure. (The alignment used may not
be four bytes; it is controlled by the other alignment
parameters.)
If the macro is defined, its definition should be a C expression;
a nonzero value for the expression enables this behavior. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. CONSTANT is the constant
and ALIGN is the alignment that the object would ordinarily have.
The value of this macro is used instead of that alignment to align
the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that `strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
&& (ALIGN) < BITS_PER_WORD \
? BITS_PER_WORD \
: (ALIGN))
/* If defined, a C expression to compute the alignment for a static
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that `strcpy' calls
that copy constants to character arrays can be done inline. */
#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
/* Define this macro if an argument declared as `char' or `short' in a
prototype should actually be passed as an `int'. In addition to
avoiding errors in certain cases of mismatch, it also makes for
better code on certain machines. */
#define PROMOTE_PROTOTYPES
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
On the Mips, we have 32 integer registers, 32 floating point
registers, 8 condition code registers, and the special registers
hi, lo, hilo, and rap. The 8 condition code registers are only
used if mips_isa >= 4. The hilo register is only used in 64 bit
mode. It represents a 64 bit value stored as two 32 bit values in
the hi and lo registers; this is the result of the mult
instruction. rap is a pointer to the stack where the return
address reg ($31) was stored. This is needed for C++ exception
handling. */
#define FIRST_PSEUDO_REGISTER 76
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the MIPS, see conventions, page D-2 */
#define FIXED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
}
/* Internal macros to classify a register number as to whether it's a
general purpose register, a floating point register, a
multiply/divide register, or a status register. */
#define GP_REG_FIRST 0
#define GP_REG_LAST 31
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
#define GP_DBX_FIRST 0
#define FP_REG_FIRST 32
#define FP_REG_LAST 63
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
#define MD_REG_FIRST 64
#define MD_REG_LAST 66
#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
#define ST_REG_FIRST 67
#define ST_REG_LAST 74
#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
#define RAP_REG_NUM 75
#define AT_REGNUM (GP_REG_FIRST + 1)
#define HI_REGNUM (MD_REG_FIRST + 0)
#define LO_REGNUM (MD_REG_FIRST + 1)
#define HILO_REGNUM (MD_REG_FIRST + 2)
/* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
mips_isa >= 4, it should not be used, and an arbitrary ST_REG
should be used instead. */
#define FPSW_REGNUM ST_REG_FIRST
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
#define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
#define ST_REG_P(REGNO) ((unsigned) ((REGNO) - ST_REG_FIRST) < ST_REG_NUM)
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the MIPS, all general registers are one word long. Except on
the R4000 with the FR bit set, the floating point uses register
pairs, with the second register not being allocatable. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(! FP_REG_P (REGNO) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE. In 32 bit mode, require that DImode and DFmode be in even
registers. For DImode, this makes some of the insns easier to
write, since you don't have to worry about a DImode value in
registers 3 & 4, producing a result in 4 & 5.
To make the code simpler HARD_REGNO_MODE_OK now just references an
array built in override_options. Because machmodes.h is not yet
included before this file is processed, the MODE bound can't be
expressed here. */
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
/* MIPS pc is not overloaded on a register. */
/* #define PC_REGNUM xx */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
/* Offset from the stack pointer to the first available location. Use
the default value zero. */
/* #define STACK_POINTER_OFFSET 0 */
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM GP_REG_FIRST
/* Fake register that holds the address on the stack of the
current function's return address. */
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
/* If the structure value address is passed in a register, then
`STRUCT_VALUE_REGNUM' should be the number of that register. */
/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
/* If the structure value address is not passed in a register, define
`STRUCT_VALUE' as an expression returning an RTX for the place
where the address is passed. If it returns 0, the address is
passed as an "invisible" first argument. */
#define STRUCT_VALUE 0
/* Mips registers used in prologue/epilogue code when the stack frame
is larger than 32K bytes. These registers must come from the
scratch register set, and not used for passing and returning
arguments and any other information used in the calling sequence
(such as pic). Must start at 12, since t0/t3 are parameter passing
registers in the 64 bit ABI. */
#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register. */
#define NO_FUNCTION_CSE 1
/* Define this macro if it is as good or better for a function to
call itself with an explicit address than to call an address
kept in a register. */
#define NO_RECURSIVE_FUNCTION_CSE 1
/* The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor's "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent
files to allocate such a register (if necessary). */
#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
/* Initialize embedded_pic_fnaddr_rtx before RTL generation for
each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
isn't always called for static inline functions. */
#define INIT_EXPANDERS embedded_pic_fnaddr_rtx = NULL;
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS, /* no registers in set */
GR_REGS, /* integer registers */
FP_REGS, /* floating point registers */
HI_REG, /* hi register */
LO_REG, /* lo register */
HILO_REG, /* hilo register pair for 64 bit mode mult */
MD_REGS, /* multiply/divide registers (hi/lo) */
ST_REGS, /* status registers (fp status) */
ALL_REGS, /* all registers */
LIM_REG_CLASSES /* max value + 1 */
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define GENERAL_REGS GR_REGS
/* An initializer containing the names of the register classes as C
string constants. These names are used in writing some of the
debugging dumps. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"GR_REGS", \
"FP_REGS", \
"HI_REG", \
"LO_REG", \
"HILO_REG", \
"MD_REGS", \
"ST_REGS", \
"ALL_REGS" \
}
/* An initializer containing the contents of the register classes,
as integers which are bit masks. The Nth integer specifies the
contents of class N. The way the integer MASK is interpreted is
that register R is in the class if `MASK & (1 << R)' is 1.
When the machine has more than 32 registers, an integer does not
suffice. Then the integers are replaced by sub-initializers,
braced groupings containing several integers. Each
sub-initializer must be suitable as an initializer for the type
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
{ 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
{ 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
{ 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
{ 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
{ 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
{ 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
{ 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
{ 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more that one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
extern enum reg_class mips_regno_to_class[];
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
/* A macro whose definition is the name of the class to which a
valid base register must belong. A base register is one used in
an address which is the register value plus a displacement. */
#define BASE_REG_CLASS GR_REGS
/* A macro whose definition is the name of the class to which a
valid index register must belong. An index register is one used
in an address where its value is either multiplied by a scale
factor or added to another register (as well as added to a
displacement). */
#define INDEX_REG_CLASS NO_REGS
/* REGISTER AND CONSTANT CLASSES */
/* Get reg_class from a letter such as appears in the machine
description.
DEFINED REGISTER CLASSES:
'd' General (aka integer) registers
'f' Floating point registers
'h' Hi register
'l' Lo register
'x' Multiply/divide registers
'a' HILO_REG
'z' FP Status register
'b' All registers */
extern enum reg_class mips_char_to_class[];
#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
/* The letters I, J, K, L, M, N, O, and P in a register constraint
string can be used to stand for particular ranges of immediate
operands. This macro defines what the ranges are. C is the
letter, and VALUE is a constant value. Return 1 if VALUE is
in the range specified by C. */
/* For MIPS:
`I' is used for the range of constants an arithmetic insn can
actually contain (16 bits signed integers).
`J' is used for the range which is just zero (ie, $r0).
`K' is used for the range of constants a logical insn can actually
contain (16 bit zero-extended integers).
`L' is used for the range of constants that be loaded with lui
(ie, the bottom 16 bits are zero).
`M' is used for the range of constants that take two words to load
(ie, not matched by `I', `K', and `L').
`N' is used for negative 16 bit constants.
`O' is an exact power of 2 (not yet used in the md file).
`P' is used for positive 16 bit constants. */
#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
: (C) == 'J' ? ((VALUE) == 0) \
: (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
: (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
&& (((VALUE) & ~2147483647) == 0 \
|| ((VALUE) & ~2147483647) == ~2147483647)) \
: (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
&& (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
&& (((VALUE) & 0x0000ffff) != 0 \
|| (((VALUE) & ~2147483647) != 0 \
&& ((VALUE) & ~2147483647) != ~2147483647))) \
: (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
: (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
: (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
/* For Mips
'G' : Floating point 0 */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
/* Letters in the range `Q' through `U' may be defined in a
machine-dependent fashion to stand for arbitrary operand types.
The machine description macro `EXTRA_CONSTRAINT' is passed the
operand as its first argument and the constraint letter as its
second operand.
`Q' is for memory references which take more than 1 instruction.
`R' is for memory references which take 1 word for the instruction.
`S' is for references to extern items which are PIC for OSF/rose. */
#define EXTRA_CONSTRAINT(OP,CODE) \
((GET_CODE (OP) != MEM) ? FALSE \
: ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
: ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
: ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
&& HALF_PIC_ADDRESS_P (OP)) \
: FALSE)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((CLASS) != ALL_REGS \
? (CLASS) \
: ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|| GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
: ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
|| GET_MODE (X) == VOIDmode) \
? GR_REGS \
: (CLASS))))
/* Certain machines have the property that some registers cannot be
copied to some other registers without using memory. Define this
macro on those machines to be a C expression that is non-zero if
objects of mode MODE in registers of CLASS1 can only be copied to
registers of class CLASS2 by storing a register of CLASS1 into
memory and loading that memory location into a register of CLASS2.
Do not define this macro if its value would always be zero. */
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
((!TARGET_DEBUG_H_MODE \
&& GET_MODE_CLASS (MODE) == MODE_INT \
&& ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
|| (CLASS1 == GR_REGS && CLASS2 == FP_REGS))) \
|| (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
&& ((CLASS1 == GR_REGS && CLASS2 == FP_REGS) \
|| (CLASS2 == GR_REGS && CLASS1 == FP_REGS))))
/* The HI and LO registers can only be reloaded via the general
registers. Condition code registers can only be loaded to the
general registers, and from the floating point registers. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, 1)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, 0)
/* Not declared above, with the other functions, because enum
reg_class is not declared yet. */
extern enum reg_class mips_secondary_reload_class ();
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_UNITS(mode, size) \
((GET_MODE_SIZE (mode) + (size) - 1) / (size))
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FP_REGS \
? (TARGET_FLOAT64 \
? CLASS_UNITS (MODE, 8) \
: 2 * CLASS_UNITS (MODE, 8)) \
: CLASS_UNITS (MODE, UNITS_PER_WORD))
/* If defined, this is a C expression whose value should be
nonzero if the insn INSN has the effect of mysteriously
clobbering the contents of hard register number REGNO. By
"mysterious" we mean that the insn's RTL expression doesn't
describe such an effect.
If this macro is not defined, it means that no insn clobbers
registers mysteriously. This is the usual situation; all else
being equal, it is best for the RTL expression to show all the
activity. */
/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET \
(current_function_outgoing_args_size \
+ (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'.
The default value for this macro is `STACK_POINTER_OFFSET' plus the
length of the outgoing arguments. The default is correct for most
machines. See `function.c' for details.
The MIPS ABI states that functions which dynamically allocate the
stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
we are trying to create a second frame pointer to the function, so
allocate some stack space to make it happy.
However, the linker currently complains about linking any code that
dynamically allocates stack space, and there seems to be a bug in
STACK_DYNAMIC_OFFSET, so don't define this right now. */
#if 0
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
? 4*UNITS_PER_WORD \
: current_function_outgoing_args_size)
#endif
/* The return address for the current frame is in r31 is this is a leaf
function. Otherwise, it is on the stack. It is at a variable offset
from sp/fp/ap, so we define a fake hard register rap which is a
poiner to the return address on the stack. This always gets eliminated
during reload to be either the frame pointer or the stack pointer plus
an offset. */
/* ??? This definition fails for leaf functions. There is currently no
general solution for this problem. */
/* ??? There appears to be no way to get the return address of any previous
frame except by disassembling instructions in the prologue/epilogue.
So currently we support only the current frame. */
#define RETURN_ADDR_RTX(count, frame) \
((count == 0) \
? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
: (rtx) 0)
/* Structure to be filled in by compute_frame_size with register
save masks, and offsets for the current function. */
struct mips_frame_info
{
long total_size; /* # bytes that the entire frame takes up */
long var_size; /* # bytes that variables take up */
long args_size; /* # bytes that outgoing arguments take up */
long extra_size; /* # bytes of extra gunk */
int gp_reg_size; /* # bytes needed to store gp regs */
int fp_reg_size; /* # bytes needed to store fp regs */
long mask; /* mask of saved gp registers */
long fmask; /* mask of saved fp registers */
long gp_save_offset; /* offset from vfp to store gp registers */
long fp_save_offset; /* offset from vfp to store fp registers */
long gp_sp_offset; /* offset from new sp to store gp registers */
long fp_sp_offset; /* offset from new sp to store fp registers */
int initialized; /* != 0 if frame size already calculated */
int num_gp; /* number of gp registers saved */
int num_fp; /* number of fp registers saved */
};
extern struct mips_frame_info current_frame_info;
/* If defined, this macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. If
it is not defined, the only elimination attempted by the compiler
is to replace references to the frame pointer with references to
the stack pointer.
The definition of this macro is a list of structure
initializations, each of which specifies an original and
replacement register.
On some machines, the position of the argument pointer is not
known until the compilation is completed. In such a case, a
separate hard register must be used for the argument pointer.
This register can be eliminated by replacing it with either the
frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.
In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
Note that the elimination of the argument pointer with the stack
pointer is specified first since that is the preferred elimination. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
/* A C expression that returns non-zero if the compiler is allowed to
try to replace register number FROM-REG with register number
TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
defined, and will usually be the constant 1, since most of the
cases preventing register elimination are things that the compiler
already knows about. */
#define CAN_ELIMINATE(FROM, TO) \
(!frame_pointer_needed \
|| ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
|| ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
&& (TO) == FRAME_POINTER_REGNUM))
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
specifies the initial difference between the specified pair of
registers. This macro must be defined if `ELIMINABLE_REGS' is
defined. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ compute_frame_size (get_frame_size ()); \
if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
(OFFSET) = 0; \
else if ((FROM) == ARG_POINTER_REGNUM \
&& ((TO) == FRAME_POINTER_REGNUM \
|| (TO) == STACK_POINTER_REGNUM)) \
(OFFSET) = (current_frame_info.total_size \
- ((mips_abi != ABI_32 && mips_abi != ABI_EABI) \
? current_function_pretend_args_size \
: 0)); \
else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
&& ((TO) == FRAME_POINTER_REGNUM \
|| (TO) == STACK_POINTER_REGNUM)) \
(OFFSET) = current_frame_info.gp_sp_offset \
+ ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
* (BYTES_BIG_ENDIAN != 0)); \
else \
abort (); \
}
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the vax, sp@- in a byte insn really pushes a word. */
/* #define PUSH_ROUNDING(BYTES) 0 */
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
`current_function_outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue
should increase the stack frame size by this amount.
It is not proper to define both `PUSH_ROUNDING' and
`ACCUMULATE_OUTGOING_ARGS'. */
#define ACCUMULATE_OUTGOING_ARGS
/* Offset from the argument pointer register to the first argument's
address. On some machines it may depend on the data type of the
function.
If `ARGS_GROW_DOWNWARD', this is the offset to the location above
the first argument's address.
On the MIPS, we must skip the first argument position if we are
returning a structure or a union, to account for its address being
passed in $4. However, at the current time, this produces a compiler
that can't bootstrap, so comment it out for now. */
#if 0
#define FIRST_PARM_OFFSET(FNDECL) \
(FNDECL != 0 \
&& TREE_TYPE (FNDECL) != 0 \
&& TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
|| TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
? UNITS_PER_WORD \
: 0)
#else
#define FIRST_PARM_OFFSET(FNDECL) 0
#endif
/* When a parameter is passed in a register, stack space is still
allocated for it. For the MIPS, stack space must be allocated, cf
Asm Lang Prog Guide page 7-8.
BEWARE that some space is also allocated for non existing arguments
in register. In case an argument list is of form GF used registers
are a0 (a2,a3), but we should push over a1... */
#define REG_PARM_STACK_SPACE(FNDECL) \
((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
/* Define this if it is the responsibility of the caller to
allocate the area reserved for arguments passed in registers.
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
of this macro is to determine whether the space is included in
`current_function_outgoing_args_size'. */
#define OUTGOING_REG_PARM_STACK_SPACE
/* Align stack frames on 64 bits (Double Word ). */
#define STACK_BOUNDARY 64
/* Make sure 4 words are always allocated on the stack. */
#ifndef STACK_ARGS_ADJUST
#define STACK_ARGS_ADJUST(SIZE) \
{ \
if (SIZE.constant < 4 * UNITS_PER_WORD) \
SIZE.constant = 4 * UNITS_PER_WORD; \
}
#endif
/* A C expression that should indicate the number of bytes of its
own arguments that a function function pops on returning, or 0
if the function pops no arguments and the caller must therefore
pop them all after the function returns.
FUNDECL is the declaration node of the function (as a tree).
FUNTYPE is a C variable whose value is a tree node that
describes the function in question. Normally it is a node of
type `FUNCTION_TYPE' that describes the data type of the function.
From this it is possible to obtain the data types of the value
and arguments (if known).
When a call to a library function is being considered, FUNTYPE
will contain an identifier node for the library function. Thus,
if you need to distinguish among various library functions, you
can do so by their names. Note that "library function" in this
context means a function used to perform arithmetic, whose name
is known specially in the compiler and was not mentioned in the
C code being compiled.
STACK-SIZE is the number of bytes of arguments passed on the
stack. If a variable number of bytes is passed, it is zero, and
argument popping will always be the responsibility of the
calling function. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Symbolic macros for the registers used to return integer and floating
point values. */
#define GP_RETURN (GP_REG_FIRST + 2)
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
/* Symbolic macros for the first/last argument registers. */
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
#define GP_ARG_LAST (GP_REG_FIRST + 7)
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
#define FP_ARG_LAST (FP_REG_FIRST + 15)
#define MAX_ARGS_IN_REGISTERS 4
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, \
((GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& (! TARGET_SINGLE_FLOAT \
|| GET_MODE_SIZE (MODE) <= 4)) \
? FP_RETURN \
: GP_RETURN))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
/* 1 if N is a possible register number for a function value.
On the MIPS, R2 R3 and F0 F2 are the only register thus used.
Currently, R2 and F0 are only implemented here (C has no complex type) */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
/* 1 if N is a possible register number for function argument passing.
We have no FP argument registers when soft-float. When FP registers
are 32 bits, we can't directly reference the odd numbered ones. */
#define FUNCTION_ARG_REGNO_P(N) \
(((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
|| (! TARGET_SOFT_FLOAT \
&& ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
&& (TARGET_FLOAT64 || (0 == (N) % 2))))
/* A C expression which can inhibit the returning of certain function
values in registers, based on the type of value. A nonzero value says
to return the function value in memory, just as large structures are
always returned. Here TYPE will be a C expression of type
`tree', representing the data type of the value.
Note that values of mode `BLKmode' must be explicitly
handled by this macro. Also, the option `-fpcc-struct-return'
takes effect regardless of this macro. On most systems, it is
possible to leave the macro undefined; this causes a default
definition to be used, whose value is the constant 1 for BLKmode
values, and 0 otherwise.
GCC normally converts 1 byte structures into chars, 2 byte
structs into shorts, and 4 byte structs into ints, and returns
them this way. Defining the following macro overrides this,
to give us MIPS cc compatibility. */
#define RETURN_IN_MEMORY(TYPE) \
(TYPE_MODE (TYPE) == BLKmode)
/* A code distinguishing the floating point format of the target
machine. There are three defined values: IEEE_FLOAT_FORMAT,
VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
*/
typedef struct mips_args {
int gp_reg_found; /* whether a gp register was found yet */
int arg_number; /* argument number */
int arg_words; /* # total words the arguments take */
int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
int num_adjusts; /* number of adjustments made */
/* Adjustments made to args pass in regs. */
/* ??? The size is doubled to work around a
bug in the code that sets the adjustments
in function_arg. */
struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
*/
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (&CUM, MODE, TYPE, NAMED)
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg( &CUM, MODE, TYPE, NAMED)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
/* If defined, a C expression that gives the alignment boundary, in
bits, of an argument with the specified mode and type. If it is
not defined, `PARM_BOUNDARY' is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) != 0) \
? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: TYPE_ALIGN(TYPE)) \
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: GET_MODE_ALIGNMENT(MODE)))
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE. */
#define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
#define MUST_SAVE_REGISTER(regno) \
((regs_ever_live[regno] && !call_used_regs[regno]) \
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
|| (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
/* ALIGN FRAMES on double word boundaries */
#define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
fprintf (FILE, "\t.set\tnoreorder\n"); \
fprintf (FILE, "\t.set\tnoat\n"); \
fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
fprintf (FILE, "\tjal\t_mcount\n"); \
fprintf (FILE, \
"\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
TARGET_64BIT ? "dsubu" : "subu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_LONG64 ? 16 : 8); \
fprintf (FILE, "\t.set\treorder\n"); \
fprintf (FILE, "\t.set\tat\n"); \
}
/* Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after. */
/* #define PROFILE_BEFORE_PROLOGUE */
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* A C statement to output, on the stream FILE, assembler code for a
block of data that contains the constant parts of a trampoline.
This code should not include a label--the label is taken care of
automatically. */
#define TRAMPOLINE_TEMPLATE(STREAM) \
{ \
fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
if (TARGET_LONG64) \
{ \
fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
} \
else \
{ \
fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
} \
fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
if (TARGET_LONG64) \
{ \
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
} \
else \
{ \
fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
} \
}
/* A C expression for the size in bytes of the trampoline, as an
integer. */
#define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
/* Alignment required for trampolines, in bits. */
#define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
/* A C statement to initialize the variable parts of a trampoline.
ADDR is an RTX for the address of the trampoline; FNADDR is an
RTX for the address of the nested function; STATIC_CHAIN is an
RTX for the static chain value that should be passed to the
function when it is called. */
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
{ \
rtx addr = ADDR; \
if (TARGET_LONG64) \
{ \
emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 32)), FUNC); \
emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 40)), CHAIN);\
} \
else \
{ \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), FUNC); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 36)), CHAIN);\
} \
\
/* Flush both caches. We need to flush the data cache in case \
the system has a write-back cache. */ \
/* ??? Should check the return value for errors. */ \
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "_flush_cache"), \
0, VOIDmode, 3, addr, Pmode, \
GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
GEN_INT (3), TYPE_MODE (integer_type_node)); \
}
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT */
/* #define HAVE_POST_DECREMENT */
/* #define HAVE_PRE_DECREMENT */
/* #define HAVE_PRE_INCREMENT */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
These definitions are NOT overridden anywhere. */
#define GP_REG_OR_PSEUDO_STRICT_P(regno) \
GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
(((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
#define REGNO_OK_FOR_INDEX_P(regno) 0
#define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects them all.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Some source files that are used after register allocation
need to be strict. */
#ifndef REG_OK_STRICT
#define REG_OK_STRICT_P 0
#define REG_OK_FOR_INDEX_P(X) 0
#define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
#else
#define REG_OK_STRICT_P 1
#define REG_OK_FOR_INDEX_P(X) 0
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* A C compound statement with a conditional `goto LABEL;' executed
if X (an RTX) is a legitimate memory address on the target
machine for a memory operand of mode MODE.
It usually pays to define several simpler macros to serve as
subroutines for this one. Otherwise it may be too complicated
to understand.
This macro must exist in two variants: a strict variant and a
non-strict one. The strict variant is used in the reload pass.
It must be defined so that any pseudo-register that has not been
allocated a hard register is considered a memory reference. In
contexts where some kind of register is required, a
pseudo-register with no hard register must be rejected.
The non-strict variant is used in other passes. It must be
defined to accept all pseudo-registers in every context where
some kind of register is required.
Compiler source files that want to use the strict variant of
this macro define the macro `REG_OK_STRICT'. You should use an
`#ifdef REG_OK_STRICT' conditional to define the strict variant
in that case and the non-strict variant otherwise.
Typically among the subroutines used to define
`GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
acceptable registers for various purposes (one for base
registers, one for index registers, and so on). Then only these
subroutine macros need have two variants; the higher levels of
macros may be the same whether strict or not.
Normally, constant addresses which are the sum of a `symbol_ref'
and an integer are stored inside a `const' RTX to mark them as
constant. Therefore, there is no need to recognize such sums
specifically as legitimate addresses. Normally you would simply
recognize any `const' as legitimate.
Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
constant sums that are not marked with `const'. It assumes
that a naked `plus' indicates indexing. If so, then you *must*
reject such naked constant sums as illegitimate addresses, so
that none of them will be given to `PRINT_OPERAND_ADDRESS'.
On some machines, whether a symbolic address is legitimate
depends on the section that the address refers to. On these
machines, define the macro `ENCODE_SECTION_INFO' to store the
information into the `symbol_ref', and then check for it here.
When you see a `const', you will have to look inside it to find
the `symbol_ref' in order to determine the section. */
#if 1
#define GO_PRINTF(x) trace(x)
#define GO_PRINTF2(x,y) trace(x,y)
#define GO_DEBUG_RTX(x) debug_rtx(x)
#else
#define GO_PRINTF(x)
#define GO_PRINTF2(x,y)
#define GO_DEBUG_RTX(x)
#endif
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
register rtx xinsn = (X); \
\
if (TARGET_DEBUG_B_MODE) \
{ \
GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
(REG_OK_STRICT_P) ? "" : "not "); \
GO_DEBUG_RTX (xinsn); \
} \
\
if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
goto ADDR; \
\
if (CONSTANT_ADDRESS_P (xinsn) \
&& ! (mips_split_addresses && mips_check_split (xinsn, MODE))) \
goto ADDR; \
\
if (GET_CODE (xinsn) == LO_SUM && mips_split_addresses) \
{ \
register rtx xlow0 = XEXP (xinsn, 0); \
register rtx xlow1 = XEXP (xinsn, 1); \
\
if (GET_CODE (xlow0) == REG && REG_OK_FOR_BASE_P (xlow0) \
&& mips_check_split (xlow1, MODE)) \
goto ADDR; \
} \
\
if (GET_CODE (xinsn) == PLUS) \
{ \
register rtx xplus0 = XEXP (xinsn, 0); \
register rtx xplus1 = XEXP (xinsn, 1); \
register enum rtx_code code0 = GET_CODE (xplus0); \
register enum rtx_code code1 = GET_CODE (xplus1); \
\
if (code0 != REG && code1 == REG) \
{ \
xplus0 = XEXP (xinsn, 1); \
xplus1 = XEXP (xinsn, 0); \
code0 = GET_CODE (xplus0); \
code1 = GET_CODE (xplus1); \
} \
\
if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
{ \
if (code1 == CONST_INT \
&& INTVAL (xplus1) >= -32768 \
&& INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
goto ADDR; \
\
/* For some code sequences, you actually get better code by \
pretending that the MIPS supports an address mode of a \
constant address + a register, even though the real \
machine doesn't support it. This is because the \
assembler can use $r1 to load just the high 16 bits, add \
in the register, and fold the low 16 bits into the memory \
reference, whereas the compiler generates a 4 instruction \
sequence. On the other hand, CSE is not as effective. \
It would be a win to generate the lui directly, but the \
MIPS assembler does not have syntax to generate the \
appropriate relocation. */ \
\
/* Also accept CONST_INT addresses here, so no else. */ \
/* Reject combining an embedded PIC text segment reference \
with a register. That requires an additional \
instruction. */ \
/* ??? Reject combining an address with a register for the MIPS \
64 bit ABI, because the SGI assembler can not handle this. */ \
if (!TARGET_DEBUG_A_MODE \
&& (mips_abi == ABI_32 || mips_abi == ABI_EABI) \
&& CONSTANT_ADDRESS_P (xplus1) \
&& ! mips_split_addresses \
&& (!TARGET_EMBEDDED_PIC \
|| code1 != CONST \
|| GET_CODE (XEXP (xplus1, 0)) != MINUS)) \
goto ADDR; \
} \
} \
\
if (TARGET_DEBUG_B_MODE) \
GO_PRINTF ("Not a legitimate address\n"); \
}
/* A C expression that is 1 if the RTX X is a constant which is a
valid address. This is defined to be the same as `CONSTANT_P (X)',
but rejecting CONST_DOUBLE. */
/* When pic, we must reject addresses of the form symbol+large int.
This is because an instruction `sw $4,s+70000' needs to be converted
by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
assembler would use $at as a temp to load in the large offset. In this
case $at is already in use. We convert such problem addresses to
`la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
/* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
#define CONSTANT_ADDRESS_P(X) \
((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|| (GET_CODE (X) == CONST \
&& ! (flag_pic && pic_address_needs_scratch (X)) \
&& (mips_abi == ABI_32 || mips_abi == ABI_EABI))) \
&& (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
/* Define this, so that when PIC, reload won't try to reload invalid
addresses which require two reload registers. */
#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
At present, GAS doesn't understand li.[sd], so don't allow it
to be generated at present. Also, the MIPS assembler does not
grok li.d Infinity. */
/* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
#define LEGITIMATE_CONSTANT_P(X) \
((GET_CODE (X) != CONST_DOUBLE \
|| mips_const_double_ok (X, GET_MODE (X))) \
&& ! (GET_CODE (X) == CONST \
&& mips_abi != ABI_32 && mips_abi != ABI_EABI))
/* A C compound statement that attempts to replace X with a valid
memory address for an operand of mode MODE. WIN will be a C
statement label elsewhere in the code; the macro definition may
use
GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
to avoid further processing if the address has become legitimate.
X will always be the result of a call to `break_out_memory_refs',
and OLDX will be the operand that was given to that function to
produce X.
The code generated by this macro should not alter the
substructure of X. If it transforms X into a more legitimate
form, it should assign X (which will always be a C variable) a
new value.
It is not necessary for this macro to come up with a legitimate
address. The compiler has standard ways of doing so in all
cases. In fact, it is safe for this macro to do nothing. But
often a machine-dependent strategy can generate better code.
For the MIPS, transform:
memory(X + <large int>)
into:
Y = <large int> & ~0x7fff;
Z = X + Y
memory (Z + (<large int> & 0x7fff));
This is for CSE to find several similar references, and only use one Z.
When PIC, convert addresses of the form memory (symbol+large int) to
memory (reg+large int). */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ \
register rtx xinsn = (X); \
\
if (TARGET_DEBUG_B_MODE) \
{ \
GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
GO_DEBUG_RTX (xinsn); \
} \
\
if (mips_split_addresses && mips_check_split (X, MODE)) \
{ \
/* ??? Is this ever executed? */ \
X = gen_rtx (LO_SUM, Pmode, \
copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
goto WIN; \
} \
\
if (GET_CODE (xinsn) == CONST \
&& ((flag_pic && pic_address_needs_scratch (xinsn)) \
/* ??? SGI's Irix 6 assembler can't handle CONST. */ \
|| (mips_abi != ABI_32 && mips_abi != ABI_EABI))) \
{ \
rtx ptr_reg = gen_reg_rtx (Pmode); \
rtx constant = XEXP (XEXP (xinsn, 0), 1); \
\
emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
\
X = gen_rtx (PLUS, Pmode, ptr_reg, constant); \
if (SMALL_INT (constant)) \
goto WIN; \
/* Otherwise we fall through so the code below will fix the \
constant. */ \
xinsn = X; \
} \
\
if (GET_CODE (xinsn) == PLUS) \
{ \
register rtx xplus0 = XEXP (xinsn, 0); \
register rtx xplus1 = XEXP (xinsn, 1); \
register enum rtx_code code0 = GET_CODE (xplus0); \
register enum rtx_code code1 = GET_CODE (xplus1); \
\
if (code0 != REG && code1 == REG) \
{ \
xplus0 = XEXP (xinsn, 1); \
xplus1 = XEXP (xinsn, 0); \
code0 = GET_CODE (xplus0); \
code1 = GET_CODE (xplus1); \
} \
\
if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
&& code1 == CONST_INT && !SMALL_INT (xplus1)) \
{ \
rtx int_reg = gen_reg_rtx (Pmode); \
rtx ptr_reg = gen_reg_rtx (Pmode); \
\
emit_move_insn (int_reg, \
GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
\
emit_insn (gen_rtx (SET, VOIDmode, \
ptr_reg, \
gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
\
X = gen_rtx (PLUS, Pmode, ptr_reg, \
GEN_INT (INTVAL (xplus1) & 0x7fff)); \
goto WIN; \
} \
} \
\
if (TARGET_DEBUG_B_MODE) \
GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
}
/* A C statement or compound statement with a conditional `goto
LABEL;' executed if memory address X (an RTX) can have different
meanings depending on the machine mode of the memory reference it
is used for.
Autoincrement and autodecrement addresses typically have
mode-dependent effects because the amount of the increment or
decrement is the size of the operand being addressed. Some
machines have other mode-dependent addresses. Many RISC machines
have no mode-dependent addresses.
You may assume that ADDR is a valid address for the machine. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
The macro definition, if any, is executed immediately after the
rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
The value of the rtl will be a `mem' whose address is a
`symbol_ref'.
The usual thing for this macro to do is to a flag in the
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
name string in the `symbol_ref' (if one bit is not enough
information).
The best way to modify the name string is by adding text to the
beginning, with suitable punctuation to prevent any ambiguity.
Allocate the new name in `saveable_obstack'. You will have to
modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
and output the name accordingly.
You can also check the information stored in the `symbol_ref' in
the definition of `GO_IF_LEGITIMATE_ADDRESS' or
`PRINT_OPERAND_ADDRESS'. */
#define ENCODE_SECTION_INFO(DECL) \
do \
{ \
if (TARGET_EMBEDDED_PIC) \
{ \
if (TREE_CODE (DECL) == VAR_DECL) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
else if (TREE_CODE (DECL) == FUNCTION_DECL) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
else if (TREE_CODE (DECL) == STRING_CST \
&& ! flag_writable_strings) \
SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
else \
SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
} \
\
else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
{ \
int size = int_size_in_bytes (TREE_TYPE (DECL)); \
\
if (size > 0 && size <= mips_section_threshold) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
} \
\
else if (HALF_PIC_P ()) \
HALF_PIC_ENCODE (DECL); \
} \
while (0)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE (TARGET_LONG64 ? DImode : SImode)
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#ifndef DEFAULT_SIGNED_CHAR
#define DEFAULT_SIGNED_CHAR 1
#endif
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
#define MAX_MOVE_MAX 8
/* Define this macro as a C expression which is nonzero if
accessing less than a word of memory (i.e. a `char' or a
`short') is no faster than accessing a word of memory, i.e., if
such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.
On RISC machines, it tends to generate better code to define
this as 1, since it avoids making a QI or HI mode register. */
#define SLOW_BYTE_ACCESS 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Define this if zero-extension is slow (more than one real instruction). */
#define SLOW_ZERO_EXTEND
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
/* In 64 bit mode, 32 bit instructions require that register values be properly
sign-extended to 64 bits. As a result, a truncate is not a no-op if it
converts a value >32 bits to a value <32 bits. */
/* ??? This results in inefficient code for 64 bit to 32 conversions.
Something needs to be done about this. Perhaps not use any 32 bit
instructions? Perhaps use PROMOTE_MODE? */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
(TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode (TARGET_LONG64 ? DImode : SImode)
/* A function address in a call instruction
is a word address (for indexing purposes)
so give the MEM rtx a words's mode. */
#define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
/* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
memset, instead of the BSD functions bcopy and bzero. */
#if defined(MIPS_SYSV) || defined(OSF_OS)
#define TARGET_MEM_FUNCTIONS
#endif
/* A part of a C `switch' statement that describes the relative
costs of constant RTL expressions. It must contain `case'
labels for expression codes `const_int', `const', `symbol_ref',
`label_ref' and `const_double'. Each case must ultimately reach
a `return' statement to return the relative cost of the use of
that kind of constant value in an expression. The cost may
depend on the precise value of the constant, which is available
for examination in X.
CODE is the expression code--redundant, since it can be obtained
with `GET_CODE (X)'. */
#define CONST_COSTS(X,CODE,OUTER_CODE) \
case CONST_INT: \
/* Always return 0, since we don't have different sized \
instructions, hence different costs according to Richard \
Kenner */ \
return 0; \
\
case LABEL_REF: \
return COSTS_N_INSNS (2); \
\
case CONST: \
{ \
rtx offset = const0_rtx; \
rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
\
if (GET_CODE (symref) == LABEL_REF) \
return COSTS_N_INSNS (2); \
\
if (GET_CODE (symref) != SYMBOL_REF) \
return COSTS_N_INSNS (4); \
\
/* let's be paranoid.... */ \
if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
return COSTS_N_INSNS (2); \
\
return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
} \
\
case SYMBOL_REF: \
return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
\
case CONST_DOUBLE: \
{ \
rtx high, low; \
split_double (X, &high, &low); \
return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
|| low == CONST0_RTX (GET_MODE (low))) \
? 2 : 4); \
}
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
This can be used, for example, to indicate how costly a multiply
instruction is. In writing this macro, you can use the construct
`COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
This macro is optional; do not define it if the default cost
assumptions are adequate for the target machine.
If -mdebugd is used, change the multiply cost to 2, so multiply by
a constant isn't converted to a series of shifts. This helps
strength reduction, and also makes it easier to identify what the
compiler is doing. */
/* ??? Fix this to be right for the R8000. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case MEM: \
{ \
int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
if (simple_memory_operand (X, GET_MODE (X))) \
return COSTS_N_INSNS (num_words); \
\
return COSTS_N_INSNS (2*num_words); \
} \
\
case FFS: \
return COSTS_N_INSNS (6); \
\
case NOT: \
return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
\
case AND: \
case IOR: \
case XOR: \
if (GET_MODE (X) == DImode && !TARGET_64BIT) \
return COSTS_N_INSNS (2); \
\
return COSTS_N_INSNS (1); \
\
case ASHIFT: \
case ASHIFTRT: \
case LSHIFTRT: \
if (GET_MODE (X) == DImode && !TARGET_64BIT) \
return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
\
return COSTS_N_INSNS (1); \
\
case ABS: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode || xmode == DFmode) \
return COSTS_N_INSNS (1); \
\
return COSTS_N_INSNS (4); \
} \
\
case PLUS: \
case MINUS: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode || xmode == DFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000) \
return COSTS_N_INSNS (2); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (3); \
else \
return COSTS_N_INSNS (6); \
} \
\
if (xmode == DImode && !TARGET_64BIT) \
return COSTS_N_INSNS (4); \
\
return COSTS_N_INSNS (1); \
} \
\
case NEG: \
return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 4 : 1); \
\
case MULT: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000 \
|| mips_cpu == PROCESSOR_R5000) \
return COSTS_N_INSNS (4); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (5); \
else \
return COSTS_N_INSNS (7); \
} \
\
if (xmode == DFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000 \
|| mips_cpu == PROCESSOR_R5000) \
return COSTS_N_INSNS (5); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (6); \
else \
return COSTS_N_INSNS (8); \
} \
\
if (mips_cpu == PROCESSOR_R3000) \
return COSTS_N_INSNS (12); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (17); \
else if (mips_cpu == PROCESSOR_R5000) \
return COSTS_N_INSNS (5); \
else \
return COSTS_N_INSNS (10); \
} \
\
case DIV: \
case MOD: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000) \
return COSTS_N_INSNS (12); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (15); \
else \
return COSTS_N_INSNS (23); \
} \
\
if (xmode == DFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000) \
return COSTS_N_INSNS (19); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (16); \
else \
return COSTS_N_INSNS (36); \
} \
} \
/* fall through */ \
\
case UDIV: \
case UMOD: \
if (mips_cpu == PROCESSOR_R3000) \
return COSTS_N_INSNS (35); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (38); \
else if (mips_cpu == PROCESSOR_R5000) \
return COSTS_N_INSNS (36); \
else \
return COSTS_N_INSNS (69); \
\
case SIGN_EXTEND: \
/* A sign extend from SImode to DImode in 64 bit mode is often \
zero instructions, because the result can often be used \
directly by another instruction; we'll call it one. */ \
if (TARGET_64BIT && GET_MODE (X) == DImode \
&& GET_MODE (XEXP (X, 0)) == SImode) \
return COSTS_N_INSNS (1); \
else \
return COSTS_N_INSNS (2); \
\
case ZERO_EXTEND: \
if (TARGET_64BIT && GET_MODE (X) == DImode \
&& GET_MODE (XEXP (X, 0)) == SImode) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (1);
/* An expression giving the cost of an addressing mode that
contains ADDRESS. If not defined, the cost is computed from the
form of the ADDRESS expression and the `CONST_COSTS' values.
For most CISC machines, the default cost is a good approximation
of the true cost of the addressing mode. However, on RISC
machines, all instructions normally have the same length and
execution time. Hence all addresses will have equal costs.
In cases where more than one form of an address is known, the
form with the lowest cost will be used. If multiple forms have
the same, lowest, cost, the one that is the most complex will be
used.
For example, suppose an address that is equal to the sum of a
register and a constant is used twice in the same basic block.
When this macro is not defined, the address will be computed in
a register and memory references will be indirect through that
register. On machines where the cost of the addressing mode
containing the sum is no higher than that of a simple indirect
reference, this will produce an additional instruction and
possibly require an additional register. Proper specification
of this macro eliminates this overhead for such machines.
Similar use of this macro is made in strength reduction of loops.
ADDRESS need not be valid as an address. In such a case, the
cost is not relevant and can be any value; invalid addresses
need not be assigned a different cost.
On machines where an address involving more than one register is
as cheap as an address computation involving only one register,
defining `ADDRESS_COST' to reflect this can cause two registers
to be live over a region of code where only one would have been
if `ADDRESS_COST' were not defined in that manner. This effect
should be considered in the definition of this macro.
Equivalent costs should probably only be given to addresses with
different numbers of registers on machines with lots of registers.
This macro will normally either not be defined or be defined as
a constant. */
#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
/* A C expression for the cost of moving data from a register in
class FROM to one in class TO. The classes are expressed using
the enumeration values such as `GENERAL_REGS'. A value of 2 is
the default; other values are interpreted relative to that.
It is not required that the cost always equal 2 when FROM is the
same as TO; on some machines it is expensive to move between
registers if they are not general registers.
If reload sees an insn consisting of a single `set' between two
hard registers, and if `REGISTER_MOVE_COST' applied to their
classes returns a value of 2, reload does not check to ensure
that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are
met. You should do this if the `movM' pattern's constraints do
not allow such copying. */
#define REGISTER_MOVE_COST(FROM, TO) \
((FROM) == GR_REGS && (TO) == GR_REGS ? 2 \
: (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
: (FROM) == GR_REGS && (TO) == FP_REGS ? 4 \
: (FROM) == FP_REGS && (TO) == GR_REGS ? 4 \
: (((FROM) == HI_REG || (FROM) == LO_REG \
|| (FROM) == MD_REGS || (FROM) == HILO_REG) \
&& (TO) == GR_REGS) ? 6 \
: (((TO) == HI_REG || (TO) == LO_REG \
|| (TO) == MD_REGS || (FROM) == HILO_REG) \
&& (FROM) == GR_REGS) ? 6 \
: (FROM) == ST_REGS && (TO) == GR_REGS ? 4 \
: (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
: 12)
/* ??? Fix this to be right for the R8000. */
#define MEMORY_MOVE_COST(MODE) \
((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4)
/* A C expression for the cost of a branch instruction. A value of
1 is the default; other values are interpreted relative to that. */
/* ??? Fix this to be right for the R8000. */
#define BRANCH_COST \
((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
/* A C statement (sans semicolon) to update the integer variable COST
based on the relationship between INSN that is dependent on
DEP_INSN through the dependence LINK. The default is to make no
adjustment to COST. On the MIPS, ignore the cost of anti- and
output-dependencies. */
#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
if (REG_NOTE_KIND (LINK) != 0) \
(COST) = 0; /* Anti or output dependence. */
/* Optionally define this if you have added predicates to
`MACHINE.c'. This macro is called within an initializer of an
array of structures. The first field in the structure is the
name of a predicate and the second field is an array of rtl
codes. For each predicate, list all rtl codes that can be in
expressions matched by the predicate. The list should have a
trailing comma. Here is an example of two entries in the list
for a typical RISC machine:
#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
Defining this macro does not affect the generated code (however,
incorrect definitions that omit an rtl code that may be matched
by the predicate can cause the compiler to malfunction).
Instead, it allows the table built by `genrecog' to be more
compact and efficient, thus speeding up the compiler. The most
important predicates to include in the list specified by this
macro are thoses used in the most insn patterns. */
#define PREDICATE_CODES \
{"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
{"arith_operand", { REG, CONST_INT, SUBREG }}, \
{"arith32_operand", { REG, CONST_INT, SUBREG }}, \
{"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
{"small_int", { CONST_INT }}, \
{"large_int", { CONST_INT }}, \
{"mips_const_double_ok", { CONST_DOUBLE }}, \
{"const_float_1_operand", { CONST_DOUBLE }}, \
{"simple_memory_operand", { MEM, SUBREG }}, \
{"equality_op", { EQ, NE }}, \
{"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
LTU, LEU }}, \
{"pc_or_label_operand", { PC, LABEL_REF }}, \
{"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
{"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, \
REG, MEM}}, \
{"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, REG, \
MEM, SIGN_EXTEND }}, \
{"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
{"se_reg_or_0_operand", { REG, CONST_INT, SUBREG, \
SIGN_EXTEND }}, \
{"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
SIGN_EXTEND }}, \
{"se_arith_operand", { REG, CONST_INT, SUBREG, \
SIGN_EXTEND }}, \
{"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, \
REG, SIGN_EXTEND }}, \
{"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }},
/* If defined, a C statement to be executed just prior to the
output of assembler code for INSN, to modify the extracted
operands so they will be output differently.
Here the argument OPVEC is the vector containing the operands
extracted from INSN, and NOPERANDS is the number of elements of
the vector which contain meaningful data for this insn. The
contents of this vector are what will be used to convert the
insn template into assembler code, so you can change the
assembler output by changing the contents of the vector.
We use it to check if the current insn needs a nop in front of it
because of load delays, and also to update the delay slot
statistics. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
final_prescan_insn (INSN, OPVEC, NOPERANDS)
/* Control the assembler format that we output. */
/* Output at beginning of assembler file.
If we are optimizing to use the global pointer, create a temporary
file to hold all of the text stuff, and write it out to the end.
This is needed because the MIPS assembler is evidently one pass,
and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
declaration when the code is processed, it generates a two
instruction sequence. */
#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON " #APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF " #NO_APP\n"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above).
In order to support the two different conventions for register names,
we use the name of a table set up in mips.c, which is overwritten
if -mrnames is used. */
#define REGISTER_NAMES \
{ \
&mips_reg_names[ 0][0], \
&mips_reg_names[ 1][0], \
&mips_reg_names[ 2][0], \
&mips_reg_names[ 3][0], \
&mips_reg_names[ 4][0], \
&mips_reg_names[ 5][0], \
&mips_reg_names[ 6][0], \
&mips_reg_names[ 7][