| /* Definitions of target machine for GNU compiler, for the HP Spectrum. |
| Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. |
| Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support |
| and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for |
| Software Science at the University of Utah. |
| |
| This file is part of GNU CC. |
| |
| GNU CC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 1, or (at your option) |
| any later version. |
| |
| GNU CC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU CC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| enum cmp_type /* comparison type */ |
| { |
| CMP_SI, /* compare integers */ |
| CMP_SF, /* compare single precision floats */ |
| CMP_DF, /* compare double precision floats */ |
| CMP_MAX /* max comparison type */ |
| }; |
| |
| /* For long call handling. */ |
| extern unsigned int total_code_bytes; |
| |
| /* Which processor to schedule for. */ |
| |
| enum processor_type |
| { |
| PROCESSOR_700, |
| PROCESSOR_7100, |
| PROCESSOR_7100LC, |
| }; |
| |
| #define pa_cpu_attr ((enum attr_cpu)pa_cpu) |
| |
| /* For -mschedule= option. */ |
| extern char *pa_cpu_string; |
| extern enum processor_type pa_cpu; |
| |
| /* Print subsidiary information on the compiler version in use. */ |
| |
| #define TARGET_VERSION fputs (" (hppa)", stderr); |
| |
| /* Run-time compilation parameters selecting different hardware subsets. */ |
| |
| extern int target_flags; |
| |
| /* compile code for HP-PA 1.1 ("Snake") */ |
| |
| #define TARGET_SNAKE (target_flags & 1) |
| |
| /* Disable all FP registers (they all become fixed). This may be necessary |
| for compiling kernels which perform lazy context switching of FP regs. |
| Note if you use this option and try to perform floating point operations |
| the compiler will abort! */ |
| |
| #define TARGET_DISABLE_FPREGS (target_flags & 2) |
| |
| /* Generate code which assumes that calls through function pointers will |
| never cross a space boundary. Such assumptions are generally safe for |
| building kernels and statically linked executables. Code compiled with |
| this option will fail miserably if the executable is dynamically linked |
| or uses nested functions! |
| |
| This is also used to trigger agressive unscaled index addressing. */ |
| #define TARGET_NO_SPACE_REGS (target_flags & 4) |
| |
| /* Allow unconditional jumps in the delay slots of call instructions. */ |
| #define TARGET_JUMP_IN_DELAY (target_flags & 8) |
| |
| /* Optimize for space. Currently this only turns on out of line |
| prologues and epilogues. */ |
| #define TARGET_SPACE (target_flags & 16) |
| |
| /* Disable indexed addressing modes. */ |
| |
| #define TARGET_DISABLE_INDEXING (target_flags & 32) |
| |
| /* Emit code which follows the new portable runtime calling conventions |
| HP wants everyone to use for ELF objects. If at all possible you want |
| to avoid this since it's a performance loss for non-prototyped code. |
| |
| Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline |
| long-call stubs which is quite expensive. */ |
| |
| #define TARGET_PORTABLE_RUNTIME (target_flags & 64) |
| |
| /* Emit directives only understood by GAS. This allows parameter |
| relocations to work for static functions. There is no way |
| to make them work the HP assembler at this time. */ |
| |
| #define TARGET_GAS (target_flags & 128) |
| |
| /* Emit code for processors which do not have an FPU. */ |
| |
| #define TARGET_SOFT_FLOAT (target_flags & 256) |
| |
| /* Use 3-insn load/store sequences for access to large data segments |
| in shared libraries on hpux10. */ |
| #define TARGET_LONG_LOAD_STORE (target_flags & 512) |
| |
| /* Use a faster sequence for indirect calls. */ |
| #define TARGET_FAST_INDIRECT_CALLS (target_flags & 1024) |
| |
| /* Generate code with big switch statements to avoid out of range branches |
| occuring within the switch table. */ |
| #define TARGET_BIG_SWITCH (target_flags & 2048) |
| |
| /* Macro to define tables used to set the flags. |
| This is a list in braces of pairs in braces, |
| each pair being { "NAME", VALUE } |
| where VALUE is the bits to set or minus the bits to clear. |
| An empty string NAME is used to identify the default VALUE. */ |
| |
| #define TARGET_SWITCHES \ |
| {{"snake", 1}, \ |
| {"nosnake", -1}, \ |
| {"pa-risc-1-0", -1}, \ |
| {"pa-risc-1-1", 1}, \ |
| {"disable-fpregs", 2}, \ |
| {"no-disable-fpregs", -2}, \ |
| {"no-space-regs", 4}, \ |
| {"space-regs", -4}, \ |
| {"jump-in-delay", 8}, \ |
| {"no-jump-in-delay", -8}, \ |
| {"space", 16}, \ |
| {"no-space", -16}, \ |
| {"disable-indexing", 32}, \ |
| {"no-disable-indexing", -32},\ |
| {"portable-runtime", 64}, \ |
| {"no-portable-runtime", -64},\ |
| {"gas", 128}, \ |
| {"no-gas", -128}, \ |
| {"soft-float", 256}, \ |
| {"no-soft-float", -256}, \ |
| {"long-load-store", 512}, \ |
| {"no-long-load-store", -512},\ |
| {"fast-indirect-calls", 1024},\ |
| {"no-fast-indirect-calls", -1024},\ |
| {"big-switch", 2048}, \ |
| {"no-big-switch", -2048}, \ |
| {"linker-opt", 0}, \ |
| { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT}} |
| |
| #ifndef TARGET_DEFAULT |
| #define TARGET_DEFAULT 0x88 /* TARGET_GAS + TARGET_JUMP_IN_DELAY */ |
| #endif |
| |
| #ifndef TARGET_CPU_DEFAULT |
| #define TARGET_CPU_DEFAULT 0 |
| #endif |
| |
| #define TARGET_OPTIONS \ |
| { \ |
| { "schedule=", &pa_cpu_string }\ |
| } |
| |
| #define OVERRIDE_OPTIONS override_options () |
| |
| #define DBX_DEBUGGING_INFO |
| #define DEFAULT_GDB_EXTENSIONS 1 |
| |
| /* This is the way other stabs-in-XXX tools do things. We will be |
| compatible. */ |
| #define DBX_BLOCKS_FUNCTION_RELATIVE 1 |
| |
| /* Likewise for linenos. |
| |
| We make the first line stab special to avoid adding several |
| gross hacks to GAS. */ |
| #undef ASM_OUTPUT_SOURCE_LINE |
| #define ASM_OUTPUT_SOURCE_LINE(file, line) \ |
| { static int sym_lineno = 1; \ |
| static tree last_function_decl = NULL; \ |
| if (current_function_decl == last_function_decl) \ |
| fprintf (file, "\t.stabn 68,0,%d,L$M%d-%s\nL$M%d:\n", \ |
| line, sym_lineno, \ |
| XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0) + 1, \ |
| sym_lineno); \ |
| else \ |
| fprintf (file, "\t.stabn 68,0,%d,0\n", line); \ |
| last_function_decl = current_function_decl; \ |
| sym_lineno += 1; } |
| |
| /* But, to make this work, we have to output the stabs for the function |
| name *first*... */ |
| #define DBX_FUNCTION_FIRST |
| |
| /* Only labels should ever begin in column zero. */ |
| #define ASM_STABS_OP "\t.stabs" |
| #define ASM_STABN_OP "\t.stabn" |
| |
| /* GDB always assumes the current function's frame begins at the value |
| of the stack pointer upon entry to the current function. Accessing |
| local variables and parameters passed on the stack is done using the |
| base of the frame + an offset provided by GCC. |
| |
| For functions which have frame pointers this method works fine; |
| the (frame pointer) == (stack pointer at function entry) and GCC provides |
| an offset relative to the frame pointer. |
| |
| This loses for functions without a frame pointer; GCC provides an offset |
| which is relative to the stack pointer after adjusting for the function's |
| frame size. GDB would prefer the offset to be relative to the value of |
| the stack pointer at the function's entry. Yuk! */ |
| #define DEBUGGER_AUTO_OFFSET(X) \ |
| ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \ |
| + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0))) |
| |
| #define DEBUGGER_ARG_OFFSET(OFFSET, X) \ |
| ((GET_CODE (X) == PLUS ? OFFSET : 0) \ |
| + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0))) |
| |
| /* gdb needs a null N_SO at the end of each file for scattered loading. */ |
| |
| #undef DBX_OUTPUT_MAIN_SOURCE_FILE_END |
| #define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME) \ |
| text_section (); \ |
| if (!TARGET_PORTABLE_RUNTIME) \ |
| fputs ("\t.SPACE $TEXT$\n\t.NSUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n", FILE); \ |
| else \ |
| fprintf (FILE, "%s\n", TEXT_SECTION_ASM_OP); \ |
| fprintf (FILE, \ |
| "\t.stabs \"\",%d,0,0,L$text_end0000\nL$text_end0000:\n", N_SO) |
| |
| #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 1) == 0 |
| #define CPP_SPEC "%{msnake:-D__hp9000s700 -D_PA_RISC1_1}\ |
| %{mpa-risc-1-1:-D__hp9000s700 -D_PA_RISC1_1}\ |
| %{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE}" |
| #else |
| #define CPP_SPEC "%{!mpa-risc-1-0:%{!mnosnake:%{!msoft-float:-D__hp9000s700 -D_PA_RISC1_1}}} %{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE}" |
| #endif |
| |
| /* Defines for a K&R CC */ |
| |
| #define CC1_SPEC "%{pg:} %{p:}" |
| |
| #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}" |
| |
| /* We don't want -lg. */ |
| #ifndef LIB_SPEC |
| #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}" |
| #endif |
| |
| /* Make gcc agree with <machine/ansi.h> */ |
| |
| #define SIZE_TYPE "unsigned int" |
| #define PTRDIFF_TYPE "int" |
| #define WCHAR_TYPE "unsigned int" |
| #define WCHAR_TYPE_SIZE 32 |
| |
| /* Show we can debug even without a frame pointer. */ |
| #define CAN_DEBUG_WITHOUT_FP |
| |
| /* Machine dependent reorg pass. */ |
| #define MACHINE_DEPENDENT_REORG(X) pa_reorg(X) |
| |
| /* Names to predefine in the preprocessor for this target machine. */ |
| |
| #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem(unix) -Asystem(bsd) -Acpu(hppa) -Amachine(hppa)" |
| |
| /* HPUX has a program 'chatr' to list the dependencies of dynamically |
| linked executables and shared libraries. */ |
| #define LDD_SUFFIX "chatr" |
| /* Look for lines like "dynamic /usr/lib/X11R5/libX11.sl" |
| or "static /usr/lib/X11R5/libX11.sl". |
| |
| HPUX 10.20 also has lines like "static branch prediction ..." |
| so we filter that out explcitly. |
| |
| We also try to bound our search for libraries with marker |
| lines. What a pain. */ |
| #define PARSE_LDD_OUTPUT(PTR) \ |
| do { \ |
| static int in_shlib_list = 0; \ |
| while (*PTR == ' ') PTR++; \ |
| if (strncmp (PTR, "shared library list:", \ |
| sizeof ("shared library list:") - 1) == 0) \ |
| { \ |
| PTR = 0; \ |
| in_shlib_list = 1; \ |
| } \ |
| else if (strncmp (PTR, "shared library binding:", \ |
| sizeof ("shared library binding:") - 1) == 0)\ |
| { \ |
| PTR = 0; \ |
| in_shlib_list = 0; \ |
| } \ |
| else if (strncmp (PTR, "static branch prediction disabled", \ |
| sizeof ("static branch prediction disabled") - 1) == 0)\ |
| { \ |
| PTR = 0; \ |
| in_shlib_list = 0; \ |
| } \ |
| else if (in_shlib_list \ |
| && strncmp (PTR, "dynamic", sizeof ("dynamic") - 1) == 0) \ |
| { \ |
| PTR += sizeof ("dynamic") - 1; \ |
| while (*p == ' ') PTR++; \ |
| } \ |
| else if (in_shlib_list \ |
| && strncmp (PTR, "static", sizeof ("static") - 1) == 0) \ |
| { \ |
| PTR += sizeof ("static") - 1; \ |
| while (*p == ' ') PTR++; \ |
| } \ |
| else \ |
| PTR = 0; \ |
| } while (0) |
| |
| /* target machine storage layout */ |
| |
| /* Define for cross-compilation from a host with a different float format |
| or endianness (e.g. VAX, x86). */ |
| #define REAL_ARITHMETIC |
| |
| /* Define this macro if it is advisable to hold scalars in registers |
| in a wider mode than that declared by the program. In such cases, |
| the value is constrained to be within the bounds of the declared |
| type, but kept valid in the wider mode. The signedness of the |
| extension may differ from that of the type. */ |
| |
| #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ |
| if (GET_MODE_CLASS (MODE) == MODE_INT \ |
| && GET_MODE_SIZE (MODE) < 4) \ |
| (MODE) = SImode; |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. */ |
| #define BITS_BIG_ENDIAN 1 |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| /* That is true on the HP-PA. */ |
| #define BYTES_BIG_ENDIAN 1 |
| |
| /* Define this if most significant word of a multiword number is lowest |
| numbered. */ |
| #define WORDS_BIG_ENDIAN 1 |
| |
| /* number of bits in an addressable storage unit */ |
| #define BITS_PER_UNIT 8 |
| |
| /* Width in bits of a "word", which is the contents of a machine register. |
| Note that this is not necessarily the width of data type `int'; |
| if using 16-bit ints on a 68000, this would still be 32. |
| But on a machine with 16-bit registers, this would be 16. */ |
| #define BITS_PER_WORD 32 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD 4 |
| |
| /* Width in bits of a pointer. |
| See also the macro `Pmode' defined below. */ |
| #define POINTER_SIZE 32 |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY 32 |
| |
| /* Largest alignment required for any stack parameter, in bits. |
| Don't define this if it is equal to PARM_BOUNDARY */ |
| #define MAX_PARM_BOUNDARY 64 |
| |
| /* Boundary (in *bits*) on which stack pointer is always aligned; |
| certain optimizations in combine depend on this. |
| |
| GCC for the PA always rounds its stacks to a 512bit boundary, |
| but that happens late in the compilation process. */ |
| #define STACK_BOUNDARY 64 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 32 |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Every structure's size must be a multiple of this. */ |
| #define STRUCTURE_SIZE_BOUNDARY 8 |
| |
| /* A bitfield declared as `int' forces `int' alignment for the struct. */ |
| #define PCC_BITFIELD_TYPE_MATTERS 1 |
| |
| /* No data type wants to be aligned rounder than this. */ |
| #define BIGGEST_ALIGNMENT 64 |
| |
| /* The .align directive in the HP assembler allows up to a 32 alignment. */ |
| #define MAX_OFILE_ALIGNMENT 32768 |
| |
| /* Get around hp-ux assembler bug, and make strcpy of constants fast. */ |
| #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \ |
| ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN)) |
| |
| /* Make arrays of chars word-aligned for the same reasons. */ |
| #define DATA_ALIGNMENT(TYPE, ALIGN) \ |
| (TREE_CODE (TYPE) == ARRAY_TYPE \ |
| && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ |
| && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) |
| |
| |
| /* Set this nonzero if move instructions will actually fail to work |
| when given unaligned data. */ |
| #define STRICT_ALIGNMENT 1 |
| |
| /* Generate calls to memcpy, memcmp and memset. */ |
| #define TARGET_MEM_FUNCTIONS |
| |
| /* Standard register usage. */ |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. |
| |
| HP-PA 1.0 has 32 fullword registers and 16 floating point |
| registers. The floating point registers hold either word or double |
| word values. |
| |
| 16 additional registers are reserved. |
| |
| HP-PA 1.1 has 32 fullword registers and 32 floating point |
| registers. However, the floating point registers behave |
| differently: the left and right halves of registers are addressable |
| as 32 bit registers. So, we will set things up like the 68k which |
| has different fp units: define separate register sets for the 1.0 |
| and 1.1 fp units. */ |
| |
| #define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs + |
| + 1 shift reg */ |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. |
| |
| On the HP-PA, these are: |
| Reg 0 = 0 (hardware). However, 0 is used for condition code, |
| so is not fixed. |
| Reg 1 = ADDIL target/Temporary (hardware). |
| Reg 2 = Return Pointer |
| Reg 3 = Frame Pointer |
| Reg 4 = Frame Pointer (>8k varying frame with HP compilers only) |
| Reg 4-18 = Preserved Registers |
| Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme. |
| Reg 20-22 = Temporary Registers |
| Reg 23-26 = Temporary/Parameter Registers |
| Reg 27 = Global Data Pointer (hp) |
| Reg 28 = Temporary/???/Return Value register |
| Reg 29 = Temporary/Static Chain/Return Value register #2 |
| Reg 30 = stack pointer |
| Reg 31 = Temporary/Millicode Return Pointer (hp) |
| |
| Freg 0-3 = Status Registers -- Not known to the compiler. |
| Freg 4-7 = Arguments/Return Value |
| Freg 8-11 = Temporary Registers |
| Freg 12-15 = Preserved Registers |
| |
| Freg 16-31 = Reserved |
| |
| On the Snake, fp regs are |
| |
| Freg 0-3 = Status Registers -- Not known to the compiler. |
| Freg 4L-7R = Arguments/Return Value |
| Freg 8L-11R = Temporary Registers |
| Freg 12L-21R = Preserved Registers |
| Freg 22L-31R = Temporary Registers |
| |
| */ |
| |
| #define FIXED_REGISTERS \ |
| {0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 1, 0, 0, 1, 0, \ |
| /* fp registers */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0} |
| |
| /* 1 for registers not available across function calls. |
| These must include the FIXED_REGISTERS and also any |
| registers that can be used without being saved. |
| The latter must include the registers where values are returned |
| and the register where structure-value addresses are passed. |
| Aside from that, you can include as many other registers as you like. */ |
| #define CALL_USED_REGISTERS \ |
| {1, 1, 1, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| /* fp registers */ \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1} |
| |
| #define CONDITIONAL_REGISTER_USAGE \ |
| { \ |
| if (!TARGET_SNAKE) \ |
| { \ |
| for (i = 56; i < 88; i++) \ |
| fixed_regs[i] = call_used_regs[i] = 1; \ |
| for (i = 33; i < 88; i += 2) \ |
| fixed_regs[i] = call_used_regs[i] = 1; \ |
| } \ |
| if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\ |
| { \ |
| for (i = 32; i < 88; i++) \ |
| fixed_regs[i] = call_used_regs[i] = 1; \ |
| } \ |
| if (flag_pic) \ |
| { \ |
| fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ |
| fixed_regs[PIC_OFFSET_TABLE_REGNUM_SAVED] = 1;\ |
| } \ |
| } |
| |
| /* Allocate the call used registers first. This should minimize |
| the number of registers that need to be saved (as call used |
| registers will generally not be allocated across a call). |
| |
| Experimentation has shown slightly better results by allocating |
| FP registers first. */ |
| |
| #define REG_ALLOC_ORDER \ |
| { \ |
| /* caller-saved fp regs. */ \ |
| 68, 69, 70, 71, 72, 73, 74, 75, \ |
| 76, 77, 78, 79, 80, 81, 82, 83, \ |
| 84, 85, 86, 87, \ |
| 40, 41, 42, 43, 44, 45, 46, 47, \ |
| 32, 33, 34, 35, 36, 37, 38, 39, \ |
| /* caller-saved general regs. */ \ |
| 19, 20, 21, 22, 23, 24, 25, 26, \ |
| 27, 28, 29, 31, 2, \ |
| /* callee-saved fp regs. */ \ |
| 48, 49, 50, 51, 52, 53, 54, 55, \ |
| 56, 57, 58, 59, 60, 61, 62, 63, \ |
| 64, 65, 66, 67, \ |
| /* callee-saved general regs. */ \ |
| 3, 4, 5, 6, 7, 8, 9, 10, \ |
| 11, 12, 13, 14, 15, 16, 17, 18, \ |
| /* special registers. */ \ |
| 1, 30, 0, 88} |
| |
| |
| /* True if register is floating-point. */ |
| #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 87) |
| |
| /* Return number of consecutive hard regs needed starting at reg REGNO |
| to hold something of mode MODE. |
| This is ordinarily the length in words of a value of mode MODE |
| but can be less for certain modes in special long registers. |
| |
| On the HP-PA, ordinary registers hold 32 bits worth; |
| The floating point registers are 64 bits wide. Snake fp regs are 32 |
| bits wide */ |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| (!TARGET_SNAKE && FP_REGNO_P (REGNO) ? 1 \ |
| : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. |
| On the HP-PA, the cpu registers can hold any mode. We |
| force this to be an even register is it cannot hold the full mode. */ |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
| ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \ |
| /* On 1.0 machines, don't allow wide non-fp modes in fp regs. */ \ |
| : !TARGET_SNAKE && FP_REGNO_P (REGNO) \ |
| ? GET_MODE_SIZE (MODE) <= 4 || GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| /* Make wide modes be in aligned registers. */ \ |
| : GET_MODE_SIZE (MODE) <= 4 || ((REGNO) & 1) == 0) |
| |
| /* Value is 1 if it is a good idea to tie two pseudo registers |
| when one has mode MODE1 and one has mode MODE2. |
| If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, |
| for any hard reg, then this must be 0 for correct output. */ |
| #define MODES_TIEABLE_P(MODE1, MODE2) \ |
| (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) |
| |
| /* Specify the registers used for certain standard purposes. |
| The values of these macros are register numbers. */ |
| |
| /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */ |
| /* #define PC_REGNUM */ |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM 30 |
| |
| /* Base register for access to local variables of the function. */ |
| #define FRAME_POINTER_REGNUM 3 |
| |
| /* Value should be nonzero if functions must have frame pointers. */ |
| #define FRAME_POINTER_REQUIRED \ |
| (current_function_calls_alloca) |
| |
| /* C statement to store the difference between the frame pointer |
| and the stack pointer values immediately after the function prologue. |
| |
| Note, we always pretend that this is a leaf function because if |
| it's not, there's no point in trying to eliminate the |
| frame pointer. If it is a leaf function, we guessed right! */ |
| #define INITIAL_FRAME_POINTER_OFFSET(VAR) \ |
| do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0) |
| |
| /* Base register for access to arguments of the function. */ |
| #define ARG_POINTER_REGNUM 3 |
| |
| /* Register in which static-chain is passed to a function. */ |
| /* ??? */ |
| #define STATIC_CHAIN_REGNUM 29 |
| |
| /* Register which holds offset table for position-independent |
| data references. */ |
| |
| #define PIC_OFFSET_TABLE_REGNUM 19 |
| #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1 |
| |
| /* Register into which we save the PIC_OFFEST_TABLE_REGNUM so that it |
| can be restore across function calls. */ |
| #define PIC_OFFSET_TABLE_REGNUM_SAVED 4 |
| |
| /* SOM ABI says that objects larger than 64 bits are returned in memory. */ |
| #define DEFAULT_PCC_STRUCT_RETURN 0 |
| #define RETURN_IN_MEMORY(TYPE) \ |
| (int_size_in_bytes (TYPE) > 8) |
| |
| /* Register in which address to store a structure value |
| is passed to a function. */ |
| #define STRUCT_VALUE_REGNUM 28 |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. Also define ranges of constants. |
| |
| One of the classes must always be named ALL_REGS and include all hard regs. |
| If there is more than one class, another class must be named NO_REGS |
| and contain no registers. |
| |
| The name GENERAL_REGS must be the name of a class (or an alias for |
| another name such as ALL_REGS). This is the class of registers |
| that is allowed by "g" or "r" in a register constraint. |
| Also, registers outside this class are allocated only when |
| instructions express preferences for them. |
| |
| The classes must be numbered in nondecreasing order; that is, |
| a larger-numbered class must never be contained completely |
| in a smaller-numbered class. |
| |
| For any two classes, it is very desirable that there be another |
| class that represents their union. */ |
| |
| /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs, |
| 1.1 fp regs, and the high 1.1 fp regs, to which the operands of |
| fmpyadd and fmpysub are restricted. */ |
| |
| enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FP_REGS, GENERAL_OR_FP_REGS, |
| SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES}; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| /* Give names of register classes as strings for dump file. */ |
| |
| #define REG_CLASS_NAMES \ |
| {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FP_REGS", \ |
| "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"} |
| |
| /* Define which registers fit in which classes. |
| This is an initializer for a vector of HARD_REG_SET |
| of length N_REG_CLASSES. Register 0, the "condition code" register, |
| is in no class. */ |
| |
| #define REG_CLASS_CONTENTS \ |
| {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \ |
| {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \ |
| {0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \ |
| {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \ |
| {0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \ |
| {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \ |
| {0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */ |
| |
| /* The same information, inverted: |
| Return the class number of the smallest class containing |
| reg number REGNO. This could be a conditional expression |
| or could index an array. */ |
| |
| #define REGNO_REG_CLASS(REGNO) \ |
| ((REGNO) == 0 ? NO_REGS \ |
| : (REGNO) == 1 ? R1_REGS \ |
| : (REGNO) < 32 ? GENERAL_REGS \ |
| : (REGNO) < 88 ? FP_REGS \ |
| : SHIFT_REGS) |
| |
| /* The class value for index registers, and the one for base regs. */ |
| #define INDEX_REG_CLASS GENERAL_REGS |
| #define BASE_REG_CLASS GENERAL_REGS |
| |
| #define FP_REG_CLASS_P(CLASS) \ |
| ((CLASS) == FP_REGS) |
| |
| /* Get reg_class from a letter such as appears in the machine description. */ |
| /* Keep 'x' for backward compatibility with user asm. */ |
| #define REG_CLASS_FROM_LETTER(C) \ |
| ((C) == 'f' ? FP_REGS : \ |
| (C) == 'x' ? FP_REGS : \ |
| (C) == 'q' ? SHIFT_REGS : \ |
| (C) == 'a' ? R1_REGS : \ |
| (C) == 'Z' ? ALL_REGS : NO_REGS) |
| |
| /* The letters I, J, K, L and M in a register constraint string |
| can be used to stand for particular ranges of immediate operands. |
| This macro defines what the ranges are. |
| C is the letter, and VALUE is a constant value. |
| Return 1 if VALUE is in the range specified by C. |
| |
| `I' is used for the 11 bit constants. |
| `J' is used for the 14 bit constants. |
| `K' is used for values that can be moved with a zdepi insn. |
| `L' is used for the 5 bit constants. |
| `M' is used for 0. |
| `N' is used for values with the least significant 11 bits equal to zero. |
| `O' is used for numbers n such that n+1 is a power of 2. |
| */ |
| |
| #define CONST_OK_FOR_LETTER_P(VALUE, C) \ |
| ((C) == 'I' ? VAL_11_BITS_P (VALUE) \ |
| : (C) == 'J' ? VAL_14_BITS_P (VALUE) \ |
| : (C) == 'K' ? zdepi_cint_p (VALUE) \ |
| : (C) == 'L' ? VAL_5_BITS_P (VALUE) \ |
| : (C) == 'M' ? (VALUE) == 0 \ |
| : (C) == 'N' ? ((VALUE) & 0x7ff) == 0 \ |
| : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \ |
| : (C) == 'P' ? and_mask_p (VALUE) \ |
| : 0) |
| |
| /* Similar, but for floating or large integer constants, and defining letters |
| G and H. Here VALUE is the CONST_DOUBLE rtx itself. |
| |
| For PA, `G' is the floating-point constant zero. `H' is undefined. */ |
| |
| #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ |
| ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \ |
| && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \ |
| : 0) |
| |
| /* Given an rtx X being reloaded into a reg required to be |
| in class CLASS, return the class of reg to actually use. |
| In general this is just CLASS; but on some machines |
| in some cases it is preferable to use a more restrictive class. */ |
| #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS) |
| |
| /* Return the register class of a scratch register needed to copy IN into |
| or out of a register in CLASS in MODE. If it can be done directly |
| NO_REGS is returned. |
| |
| Avoid doing any work for the common case calls. */ |
| |
| #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ |
| ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \ |
| && REGNO (IN) < FIRST_PSEUDO_REGISTER) \ |
| ? NO_REGS : secondary_reload_class (CLASS, MODE, IN)) |
| |
| /* On the PA it is not possible to directly move data between |
| GENERAL_REGS and FP_REGS. */ |
| #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ |
| (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) |
| |
| /* Return the stack location to use for secondary memory needed reloads. */ |
| #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \ |
| gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (-16))) |
| |
| /* Return the maximum number of consecutive registers |
| needed to represent mode MODE in a register of class CLASS. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) \ |
| (!TARGET_SNAKE && (CLASS) == FP_REGS ? 1 : \ |
| ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| /* Define this if pushing a word on the stack |
| makes the stack pointer a smaller address. */ |
| /* #define STACK_GROWS_DOWNWARD */ |
| |
| /* Believe it or not. */ |
| #define ARGS_GROW_DOWNWARD |
| |
| /* Define this if the nominal address of the stack frame |
| is at the high-address end of the local variables; |
| that is, each additional local variable allocated |
| goes at a more negative offset in the frame. */ |
| /* #define FRAME_GROWS_DOWNWARD */ |
| |
| /* Offset within stack frame to start allocating local variables at. |
| If FRAME_GROWS_DOWNWARD, this is the offset to the END of the |
| first local allocated. Otherwise, it is the offset to the BEGINNING |
| of the first local allocated. */ |
| #define STARTING_FRAME_OFFSET 8 |
| |
| /* If we generate an insn to push BYTES bytes, |
| this says how many the stack pointer really advances by. |
| On the HP-PA, don't define this because there are no push insns. */ |
| /* #define PUSH_ROUNDING(BYTES) */ |
| |
| /* Offset of first parameter from the argument pointer register value. |
| This value will be negated because the arguments grow down. |
| Also note that on STACK_GROWS_UPWARD machines (such as this one) |
| this is the distance from the frame pointer to the end of the first |
| argument, not it's beginning. To get the real offset of the first |
| argument, the size of the argument must be added. |
| |
| ??? Have to check on this.*/ |
| |
| #define FIRST_PARM_OFFSET(FNDECL) -32 |
| |
| /* Absolute value of offset from top-of-stack address to location to store the |
| function parameter if it can't go in a register. |
| Addresses for following parameters are computed relative to this one. */ |
| #define FIRST_PARM_CALLER_OFFSET(FNDECL) -32 |
| |
| |
| /* When a parameter is passed in a register, stack space is still |
| allocated for it. */ |
| #define REG_PARM_STACK_SPACE(DECL) 16 |
| |
| /* Define this if the above stack space is to be considered part of the |
| space allocated by the caller. */ |
| #define OUTGOING_REG_PARM_STACK_SPACE |
| |
| /* Keep the stack pointer constant throughout the function. |
| This is both an optimization and a necessity: longjmp |
| doesn't behave itself when the stack pointer moves within |
| the function! */ |
| #define ACCUMULATE_OUTGOING_ARGS |
| |
| /* The weird HPPA calling conventions require a minimum of 48 bytes on |
| the stack: 16 bytes for register saves, and 32 bytes for magic. |
| This is the difference between the logical top of stack and the |
| actual sp. */ |
| #define STACK_POINTER_OFFSET -32 |
| |
| #define STACK_DYNAMIC_OFFSET(FNDECL) \ |
| ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size) |
| |
| /* Value is 1 if returning from a function call automatically |
| pops the arguments described by the number-of-args field in the call. |
| FUNDECL is the declaration node of the function (as a tree), |
| FUNTYPE is the data type of the function (as a tree), |
| or for a library call it is an identifier node for the subroutine name. */ |
| |
| #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 |
| |
| /* Define how to find the value returned by a function. |
| VALTYPE is the data type of the value (as a tree). |
| If the precise function being called is known, FUNC is its FUNCTION_DECL; |
| otherwise, FUNC is 0. */ |
| |
| /* On the HP-PA the value is found in register(s) 28(-29), unless |
| the mode is SF or DF. Then the value is returned in fr4 (32, ) */ |
| |
| |
| #define FUNCTION_VALUE(VALTYPE, FUNC) \ |
| gen_rtx (REG, TYPE_MODE (VALTYPE), ((! TARGET_SOFT_FLOAT \ |
| && (TYPE_MODE (VALTYPE) == SFmode || \ |
| TYPE_MODE (VALTYPE) == DFmode)) ? \ |
| 32 : 28)) |
| |
| /* Define how to find the value returned by a library function |
| assuming the value has mode MODE. */ |
| |
| #define LIBCALL_VALUE(MODE) \ |
| gen_rtx (REG, MODE, \ |
| (! TARGET_SOFT_FLOAT \ |
| && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28)) |
| |
| /* 1 if N is a possible register number for a function value |
| as seen by the caller. */ |
| |
| #define FUNCTION_VALUE_REGNO_P(N) \ |
| ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32)) |
| |
| /* 1 if N is a possible register number for function argument passing. */ |
| |
| #define FUNCTION_ARG_REGNO_P(N) \ |
| (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) |
| |
| /* Define a data type for recording info about an argument list |
| during the scan of that argument list. This data type should |
| hold all necessary information about the function itself |
| and about the args processed so far, enough to enable macros |
| such as FUNCTION_ARG to determine where the next arg should go. |
| |
| On the HP-PA, this is a single integer, which is a number of words |
| of arguments scanned so far (including the invisible argument, |
| if any, which holds the structure-value-address). |
| Thus 4 or more means all following args should go on the stack. */ |
| |
| struct hppa_args {int words, nargs_prototype, indirect; }; |
| |
| #define CUMULATIVE_ARGS struct hppa_args |
| |
| /* Initialize a variable CUM of type CUMULATIVE_ARGS |
| for a call to a function whose data type is FNTYPE. |
| For a library call, FNTYPE is 0. */ |
| |
| #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ |
| (CUM).words = 0, \ |
| (CUM).indirect = INDIRECT, \ |
| (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \ |
| ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \ |
| + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \ |
| || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \ |
| : 0) |
| |
| |
| |
| /* Similar, but when scanning the definition of a procedure. We always |
| set NARGS_PROTOTYPE large so we never return a PARALLEL. */ |
| |
| #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \ |
| (CUM).words = 0, \ |
| (CUM).indirect = 0, \ |
| (CUM).nargs_prototype = 1000 |
| |
| /* Figure out the size in words of the function argument. */ |
| |
| #define FUNCTION_ARG_SIZE(MODE, TYPE) \ |
| ((((MODE) != BLKmode ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))+3)/4) |
| |
| /* Update the data in CUM to advance over an argument |
| of mode MODE and data type TYPE. |
| (TYPE is null for libcalls where that information may not be available.) */ |
| |
| #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ |
| { (CUM).nargs_prototype--; \ |
| ((((CUM).words & 01) && (TYPE) != 0 \ |
| && FUNCTION_ARG_SIZE(MODE, TYPE) > 1) \ |
| && (CUM).words++), \ |
| (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE); \ |
| } |
| |
| /* Determine where to put an argument to a function. |
| Value is zero to push the argument on the stack, |
| or a hard register in which to store the argument. |
| |
| MODE is the argument's machine mode. |
| TYPE is the data type of the argument (as a tree). |
| This is null for libcalls where that information may |
| not be available. |
| CUM is a variable of type CUMULATIVE_ARGS which gives info about |
| the preceding args and about the function being called. |
| NAMED is nonzero if this argument is a named parameter |
| (otherwise it is an extra parameter matching an ellipsis). |
| |
| On the HP-PA the first four words of args are normally in registers |
| and the rest are pushed. But any arg that won't entirely fit in regs |
| is pushed. |
| |
| Arguments passed in registers are either 1 or 2 words long. |
| |
| The caller must make a distinction between calls to explicitly named |
| functions and calls through pointers to functions -- the conventions |
| are different! Calls through pointers to functions only use general |
| registers for the first four argument words. |
| |
| Of course all this is different for the portable runtime model |
| HP wants everyone to use for ELF. Ugh. Here's a quick description |
| of how it's supposed to work. |
| |
| 1) callee side remains unchanged. It expects integer args to be |
| in the integer registers, float args in the float registers and |
| unnamed args in integer registers. |
| |
| 2) caller side now depends on if the function being called has |
| a prototype in scope (rather than if it's being called indirectly). |
| |
| 2a) If there is a prototype in scope, then arguments are passed |
| according to their type (ints in integer registers, floats in float |
| registers, unnamed args in integer registers. |
| |
| 2b) If there is no prototype in scope, then floating point arguments |
| are passed in both integer and float registers. egad. |
| |
| FYI: The portable parameter passing conventions are almost exactly like |
| the standard parameter passing conventions on the RS6000. That's why |
| you'll see lots of similar code in rs6000.h. */ |
| |
| #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE)) |
| |
| /* Do not expect to understand this without reading it several times. I'm |
| tempted to try and simply it, but I worry about breaking something. */ |
| |
| #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ |
| (4 >= ((CUM).words + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \ |
| ? (!TARGET_PORTABLE_RUNTIME || (TYPE) == 0 \ |
| || !FLOAT_MODE_P (MODE) || TARGET_SOFT_FLOAT \ |
| || (CUM).nargs_prototype > 0) \ |
| ? gen_rtx (REG, (MODE), \ |
| (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \ |
| ? (((!(CUM).indirect \ |
| || TARGET_PORTABLE_RUNTIME) \ |
| && (MODE) == DFmode \ |
| && ! TARGET_SOFT_FLOAT) \ |
| ? ((CUM).words ? 38 : 34) \ |
| : ((CUM).words ? 23 : 25)) \ |
| : (((!(CUM).indirect \ |
| || TARGET_PORTABLE_RUNTIME) \ |
| && (MODE) == SFmode \ |
| && ! TARGET_SOFT_FLOAT) \ |
| ? (32 + 2 * (CUM).words) \ |
| : (27 - (CUM).words - FUNCTION_ARG_SIZE ((MODE), \ |
| (TYPE))))))\ |
| /* We are calling a non-prototyped function with floating point \ |
| arguments using the portable conventions. */ \ |
| : gen_rtx (PARALLEL, (MODE), \ |
| gen_rtvec \ |
| (2, \ |
| gen_rtx (EXPR_LIST, VOIDmode, \ |
| gen_rtx (REG, (MODE), \ |
| (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \ |
| ? ((CUM).words ? 38 : 34) \ |
| : (32 + 2 * (CUM).words))), \ |
| const0_rtx), \ |
| gen_rtx (EXPR_LIST, VOIDmode, \ |
| gen_rtx (REG, (MODE), \ |
| (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \ |
| ? ((CUM).words ? 23 : 25) \ |
| : (27 - (CUM).words - \ |
| FUNCTION_ARG_SIZE ((MODE), \ |
| (TYPE))))), \ |
| const0_rtx))) \ |
| /* Pass this parameter in the stack. */ \ |
| : 0) |
| |
| /* For an arg passed partly in registers and partly in memory, |
| this is the number of registers used. |
| For args passed entirely in registers or entirely in memory, zero. */ |
| |
| #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 |
| |
| /* If defined, a C expression that gives the alignment boundary, in |
| bits, of an argument with the specified mode and type. If it is |
| not defined, `PARM_BOUNDARY' is used for all arguments. */ |
| |
| #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ |
| (((TYPE) != 0) \ |
| ? (((int_size_in_bytes (TYPE)) + 3) / 4) * BITS_PER_WORD \ |
| : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \ |
| ? PARM_BOUNDARY \ |
| : GET_MODE_ALIGNMENT(MODE))) |
| |
| /* Arguments larger than eight bytes are passed by invisible reference */ |
| |
| #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ |
| ((TYPE) && int_size_in_bytes (TYPE) > 8) |
| |
| #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \ |
| ((TYPE) && int_size_in_bytes (TYPE) > 8) |
| |
| |
| extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1; |
| extern enum cmp_type hppa_branch_type; |
| |
| /* Output the label for a function definition. */ |
| #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED |
| #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \ |
| do { fprintf (FILE, ",ARGW%d=FR", (ARG0)); \ |
| fprintf (FILE, ",ARGW%d=FU", (ARG1));} while (0) |
| #define DFMODE_RETURN_STRING ",RTNVAL=FU" |
| #define SFMODE_RETURN_STRING ",RTNVAL=FR" |
| #else |
| #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \ |
| do { fprintf (FILE, ",ARGW%d=FU", (ARG0)); \ |
| fprintf (FILE, ",ARGW%d=FR", (ARG1));} while (0) |
| #define DFMODE_RETURN_STRING ",RTNVAL=FR" |
| #define SFMODE_RETURN_STRING ",RTNVAL=FU" |
| #endif |
| |
| #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \ |
| { char *my_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (THUNK_FNDECL)); \ |
| char *target_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (FUNCTION)); \ |
| output_function_prologue (FILE, 0); \ |
| if (VAL_14_BITS_P (DELTA)) \ |
| fprintf (FILE, "\tb %s\n\tldo %d(%%r26),%%r26\n", target_name, DELTA); \ |
| else \ |
| fprintf (FILE, "\taddil L%%%d,%r26\n\tb %s\n\tldo R%%%d(%%r1),%%r26\n", \ |
| DELTA, target_name, DELTA); \ |
| fprintf (FILE, "\n\t.EXIT\n\t.PROCEND\n"); \ |
| } |
| |
| #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, NAME) \ |
| { \ |
| char *name; \ |
| STRIP_NAME_ENCODING (name, NAME); \ |
| if (!TARGET_PORTABLE_RUNTIME && TARGET_GAS && in_section == in_text) \ |
| fputs ("\t.NSUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n", FILE); \ |
| else if (! TARGET_PORTABLE_RUNTIME && TARGET_GAS) \ |
| fprintf (FILE, \ |
| "\t.SUBSPA %s\n", name); \ |
| } |
| |
| #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ |
| do { tree fntype = TREE_TYPE (TREE_TYPE (DECL)); \ |
| tree tree_type = TREE_TYPE (DECL); \ |
| tree parm; \ |
| int i; \ |
| if (TREE_PUBLIC (DECL) || TARGET_GAS) \ |
| { extern int current_function_varargs; \ |
| if (TREE_PUBLIC (DECL)) \ |
| { \ |
| fputs ("\t.EXPORT ", FILE); \ |
| assemble_name (FILE, NAME); \ |
| fputs (",ENTRY,PRIV_LEV=3", FILE); \ |
| } \ |
| else \ |
| { \ |
| fputs ("\t.PARAM ", FILE); \ |
| assemble_name (FILE, NAME); \ |
| } \ |
| if (TARGET_PORTABLE_RUNTIME) \ |
| { \ |
| fputs (",ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,", FILE); \ |
| fputs ("RTNVAL=NO\n", FILE); \ |
| break; \ |
| } \ |
| for (parm = DECL_ARGUMENTS (DECL), i = 0; parm && i < 4; \ |
| parm = TREE_CHAIN (parm)) \ |
| { \ |
| if (TYPE_MODE (DECL_ARG_TYPE (parm)) == SFmode \ |
| && ! TARGET_SOFT_FLOAT) \ |
| fprintf (FILE, ",ARGW%d=FR", i++); \ |
| else if (TYPE_MODE (DECL_ARG_TYPE (parm)) == DFmode \ |
| && ! TARGET_SOFT_FLOAT) \ |
| { \ |
| if (i <= 2) \ |
| { \ |
| if (i == 1) i++; \ |
| ASM_DOUBLE_ARG_DESCRIPTORS (FILE, i++, i++); \ |
| } \ |
| else \ |
| break; \ |
| } \ |
| else \ |
| { \ |
| int arg_size = \ |
| FUNCTION_ARG_SIZE (TYPE_MODE (DECL_ARG_TYPE (parm)),\ |
| DECL_ARG_TYPE (parm)); \ |
| /* Passing structs by invisible reference uses \ |
| one general register. */ \ |
| if (arg_size > 2 \ |
| || TREE_ADDRESSABLE (DECL_ARG_TYPE (parm))) \ |
| arg_size = 1; \ |
| if (arg_size == 2 && i <= 2) \ |
| { \ |
| if (i == 1) i++; \ |
| fprintf (FILE, ",ARGW%d=GR", i++); \ |
| fprintf (FILE, ",ARGW%d=GR", i++); \ |
| } \ |
| else if (arg_size == 1) \ |
| fprintf (FILE, ",ARGW%d=GR", i++); \ |
| else \ |
| i += arg_size; \ |
| } \ |
| } \ |
| /* anonymous args */ \ |
| if ((TYPE_ARG_TYPES (tree_type) != 0 \ |
| && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (tree_type)))\ |
| != void_type_node)) \ |
| || current_function_varargs) \ |
| { \ |
| for (; i < 4; i++) \ |
| fprintf (FILE, ",ARGW%d=GR", i); \ |
| } \ |
| if (TYPE_MODE (fntype) == DFmode && ! TARGET_SOFT_FLOAT) \ |
| fputs (DFMODE_RETURN_STRING, FILE); \ |
| else if (TYPE_MODE (fntype) == SFmode && ! TARGET_SOFT_FLOAT) \ |
| fputs (SFMODE_RETURN_STRING, FILE); \ |
| else if (fntype != void_type_node) \ |
| fputs (",RTNVAL=GR", FILE); \ |
| fputs ("\n", FILE); \ |
| }} while (0) |
| |
| /* This macro generates the assembly code for function entry. |
| FILE is a stdio stream to output the code to. |
| SIZE is an int: how many units of temporary storage to allocate. |
| Refer to the array `regs_ever_live' to determine which registers |
| to save; `regs_ever_live[I]' is nonzero if register number I |
| is ever used in the function. This macro is responsible for |
| knowing which registers should not be saved even if used. */ |
| |
| /* On HP-PA, move-double insns between fpu and cpu need an 8-byte block |
| of memory. If any fpu reg is used in the function, we allocate |
| such a block here, at the bottom of the frame, just in case it's needed. |
| |
| If this function is a leaf procedure, then we may choose not |
| to do a "save" insn. The decision about whether or not |
| to do this is made in regclass.c. */ |
| |
| #define FUNCTION_PROLOGUE(FILE, SIZE) \ |
| output_function_prologue (FILE, SIZE) |
| |
| /* Output assembler code to FILE to increment profiler label # LABELNO |
| for profiling a function entry. |
| |
| Because HPUX _mcount is so different, we actually emit the |
| profiling code in function_prologue. This just stores LABELNO for |
| that. */ |
| |
| #define PROFILE_BEFORE_PROLOGUE |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| { extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);} |
| |
| /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
| the stack pointer does not matter. The value is tested only in |
| functions that have frame pointers. |
| No definition is equivalent to always zero. */ |
| |
| extern int may_call_alloca; |
| extern int current_function_pretend_args_size; |
| |
| #define EXIT_IGNORE_STACK \ |
| (get_frame_size () != 0 \ |
| || current_function_calls_alloca || current_function_outgoing_args_size) |
| |
| |
| /* This macro generates the assembly code for function exit, |
| on machines that need it. If FUNCTION_EPILOGUE is not defined |
| then individual return instructions are generated for each |
| return statement. Args are same as for FUNCTION_PROLOGUE. |
| |
| The function epilogue should not depend on the current stack pointer! |
| It should use the frame pointer only. This is mandatory because |
| of alloca; we also take advantage of it to omit stack adjustments |
| before returning. */ |
| |
| /* This declaration is needed due to traditional/ANSI |
| incompatibilities which cannot be #ifdefed away |
| because they occur inside of macros. Sigh. */ |
| extern union tree_node *current_function_decl; |
| |
| #define FUNCTION_EPILOGUE(FILE, SIZE) \ |
| output_function_epilogue (FILE, SIZE) |
| |
| /* Output assembler code for a block containing the constant parts |
| of a trampoline, leaving space for the variable parts.\ |
| |
| The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM |
| and then branches to the specified routine. |
| |
| This code template is copied from text segment to stack location |
| and then patched with INITIALIZE_TRAMPOLINE to contain |
| valid values, and then entered as a subroutine. |
| |
| It is best to keep this as small as possible to avoid having to |
| flush multiple lines in the cache. */ |
| |
| #define TRAMPOLINE_TEMPLATE(FILE) \ |
| { \ |
| fputs ("\tldw 36(0,%r22),%r21\n", FILE); \ |
| fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \ |
| fputs ("\tdepi 0,31,2,%r21\n", FILE); \ |
| fputs ("\tldw 4(0,%r21),%r19\n", FILE); \ |
| fputs ("\tldw 0(0,%r21),%r21\n", FILE); \ |
| fputs ("\tldsid (0,%r21),%r1\n", FILE); \ |
| fputs ("\tmtsp %r1,%sr0\n", FILE); \ |
| fputs ("\tbe 0(%sr0,%r21)\n", FILE); \ |
| fputs ("\tldw 40(0,%r22),%r29\n", FILE); \ |
| fputs ("\t.word 0\n", FILE); \ |
| fputs ("\t.word 0\n", FILE); \ |
| } |
| |
| /* Length in units of the trampoline for entering a nested function. |
| |
| Flush the cache entries corresponding to the first and last addresses |
| of the trampoline. This is necessary as the trampoline may cross two |
| cache lines. |
| |
| If the code part of the trampoline ever grows to > 32 bytes, then it |
| will become necessary to hack on the cacheflush pattern in pa.md. */ |
| |
| #define TRAMPOLINE_SIZE (11 * 4) |
| |
| /* Emit RTL insns to initialize the variable parts of a trampoline. |
| FNADDR is an RTX for the address of the function's pure code. |
| CXT is an RTX for the static chain value for the function. |
| |
| Move the function address to the trampoline template at offset 12. |
| Move the static chain value to trampoline template at offset 16. */ |
| |
| #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ |
| { \ |
| rtx start_addr, end_addr; \ |
| \ |
| start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \ |
| emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (FNADDR)); \ |
| start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \ |
| emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (CXT)); \ |
| /* fdc and fic only use registers for the address to flush, \ |
| they do not accept integer displacements. */ \ |
| start_addr = force_reg (SImode, (TRAMP)); \ |
| end_addr = force_reg (SImode, plus_constant ((TRAMP), 32)); \ |
| emit_insn (gen_dcacheflush (start_addr, end_addr)); \ |
| end_addr = force_reg (SImode, plus_constant (start_addr, 32)); \ |
| emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \ |
| gen_reg_rtx (SImode), gen_reg_rtx (SImode)));\ |
| } |
| |
| /* Emit code for a call to builtin_saveregs. We must emit USE insns which |
| reference the 4 integer arg registers and 4 fp arg registers. |
| Ordinarily they are not call used registers, but they are for |
| _builtin_saveregs, so we must make this explicit. */ |
| |
| extern struct rtx_def *hppa_builtin_saveregs (); |
| #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) hppa_builtin_saveregs (ARGLIST) |
| |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| #define HAVE_POST_INCREMENT |
| #define HAVE_POST_DECREMENT |
| |
| #define HAVE_PRE_DECREMENT |
| #define HAVE_PRE_INCREMENT |
| |
| /* Macros to check register numbers against specific register classes. */ |
| |
| /* These assume that REGNO is a hard or pseudo reg number. |
| They give nonzero only if REGNO is a hard reg of the suitable class |
| or a pseudo reg currently allocated to a suitable hard reg. |
| Since they use reg_renumber, they are safe only once reg_renumber |
| has been allocated, which happens in local-alloc.c. */ |
| |
| #define REGNO_OK_FOR_INDEX_P(REGNO) \ |
| ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)) |
| #define REGNO_OK_FOR_BASE_P(REGNO) \ |
| ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)) |
| #define REGNO_OK_FOR_FP_P(REGNO) \ |
| (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO])) |
| |
| /* Now macros that check whether X is a register and also, |
| strictly, whether it is in a specified class. |
| |
| These macros are specific to the the HP-PA, and may be used only |
| in code for printing assembler insns and in conditions for |
| define_optimization. */ |
| |
| /* 1 if X is an fp register. */ |
| |
| #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* Recognize any constant value that is a valid address except |
| for symbolic addresses. We get better CSE by rejecting them |
| here and allowing hppa_legitimize_address to break them up. We |
| use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */ |
| |
| #define CONSTANT_ADDRESS_P(X) \ |
| ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ |
| || GET_CODE (X) == HIGH) \ |
| && (reload_in_progress || reload_completed || ! symbolic_expression_p (X))) |
| |
| /* Include all constant integers and constant doubles, but not |
| floating-point, except for floating-point zero. */ |
| |
| #define LEGITIMATE_CONSTANT_P(X) \ |
| ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \ |
| || (X) == CONST0_RTX (GET_MODE (X))) \ |
| && !function_label_operand (X, VOIDmode)) |
| |
| /* Subroutine for EXTRA_CONSTRAINT. |
| |
| Return 1 iff OP is a pseudo which did not get a hard register and |
| we are running the reload pass. */ |
| |
| #define IS_RELOADING_PSEUDO_P(OP) \ |
| ((reload_in_progress \ |
| && GET_CODE (OP) == REG \ |
| && REGNO (OP) >= FIRST_PSEUDO_REGISTER \ |
| && reg_renumber [REGNO (OP)] < 0)) |
| |
| /* Optional extra constraints for this machine. Borrowed from sparc.h. |
| |
| For the HPPA, `Q' means that this is a memory operand but not a |
| symbolic memory operand. Note that an unassigned pseudo register |
| is such a memory operand. Needed because reload will generate |
| these things in insns and then not re-recognize the insns, causing |
| constrain_operands to fail. |
| |
| `R' is unused. |
| |
| `S' is unused. |
| |
| `T' is for fp loads and stores. */ |
| #define EXTRA_CONSTRAINT(OP, C) \ |
| ((C) == 'Q' ? \ |
| (IS_RELOADING_PSEUDO_P (OP) \ |
| || (GET_CODE (OP) == MEM \ |
| && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\ |
| || reload_in_progress) \ |
| && ! symbolic_memory_operand (OP, VOIDmode) \ |
| && !(GET_CODE (XEXP (OP, 0)) == PLUS \ |
| && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\ |
| || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\ |
| : ((C) == 'R' ? \ |
| (GET_CODE (OP) == MEM \ |
| && GET_CODE (XEXP (OP, 0)) == PLUS \ |
| && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \ |
| || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \ |
| && (move_operand (OP, GET_MODE (OP)) \ |
| || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\ |
| || reload_in_progress)) \ |
| : ((C) == 'T' ? \ |
| (GET_CODE (OP) == MEM \ |
| /* Using DFmode forces only short displacements \ |
| to be recognized as valid in reg+d addresses. */\ |
| && memory_address_p (DFmode, XEXP (OP, 0)) \ |
| && !(GET_CODE (XEXP (OP, 0)) == PLUS \ |
| && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\ |
| || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))) : 0))) |
| |
| /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx |
| and check its validity for a certain class. |
| We have two alternate definitions for each of them. |
| The usual definition accepts all pseudo regs; the other rejects |
| them unless they have been allocated suitable hard regs. |
| The symbol REG_OK_STRICT causes the latter definition to be used. |
| |
| Most source files want to accept pseudo regs in the hope that |
| they will get allocated to the class that the insn wants them to be in. |
| Source files for reload pass need to be strict. |
| After reload, it makes no difference, since pseudo regs have |
| been eliminated by then. */ |
| |
| #ifndef REG_OK_STRICT |
| |
| /* Nonzero if X is a hard reg that can be used as an index |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_INDEX_P(X) \ |
| (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) |
| /* Nonzero if X is a hard reg that can be used as a base reg |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_BASE_P(X) \ |
| (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) |
| |
| #else |
| |
| /* Nonzero if X is a hard reg that can be used as an index. */ |
| #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) |
| /* Nonzero if X is a hard reg that can be used as a base reg. */ |
| #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) |
| |
| #endif |
| |
| /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression |
| that is a valid memory address for an instruction. |
| The MODE argument is the machine mode for the MEM expression |
| that wants to use this address. |
| |
| On the HP-PA, the actual legitimate addresses must be |
| REG+REG, REG+(REG*SCALE) or REG+SMALLINT. |
| But we can treat a SYMBOL_REF as legitimate if it is part of this |
| function's constant-pool, because such addresses can actually |
| be output as REG+SMALLINT. |
| |
| Note we only allow 5 bit immediates for access to a constant address; |
| doing so avoids losing for loading/storing a FP register at an address |
| which will not fit in 5 bits. */ |
| |
| #define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20) |
| #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X)) |
| |
| #define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20) |
| #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X)) |
| |
| #define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800) |
| #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X)) |
| |
| #define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000) |
| #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X)) |
| |
| #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ |
| { \ |
| if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \ |
| || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \ |
| || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \ |
| && REG_P (XEXP (X, 0)) \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \ |
| goto ADDR; \ |
| else if (GET_CODE (X) == PLUS) \ |
| { \ |
| rtx base = 0, index; \ |
| if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\ |
| { \ |
| if (GET_CODE (XEXP (X, 1)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 1))) \ |
| goto ADDR; \ |
| else if (flag_pic == 1 \ |
| && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)\ |
| goto ADDR; \ |
| } \ |
| else if (REG_P (XEXP (X, 0)) \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ |
| base = XEXP (X, 0), index = XEXP (X, 1); \ |
| else if (REG_P (XEXP (X, 1)) \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 1))) \ |
| base = XEXP (X, 1), index = XEXP (X, 0); \ |
| if (base != 0) \ |
| if (GET_CODE (index) == CONST_INT \ |
| && ((INT_14_BITS (index) \ |
| && (TARGET_SOFT_FLOAT \ |
| || ((MODE) != SFmode && (MODE) != DFmode))) \ |
| || INT_5_BITS (index))) \ |
| goto ADDR; \ |
| if (! TARGET_SOFT_FLOAT \ |
| && base \ |
| && (mode == SFmode || mode == DFmode) \ |
| && GET_CODE (index) == MULT \ |
| && GET_CODE (XEXP (index, 0)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (index, 0)) \ |
| && GET_CODE (XEXP (index, 1)) == CONST_INT \ |
| && INTVAL (XEXP (index, 1)) == (mode == SFmode ? 4 : 8))\ |
| goto ADDR; \ |
| } \ |
| else if (GET_CODE (X) == LO_SUM \ |
| && GET_CODE (XEXP (X, 0)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ |
| && CONSTANT_P (XEXP (X, 1)) \ |
| && (TARGET_SOFT_FLOAT \ |
| || ((MODE) != SFmode \ |
| && (MODE) != DFmode))) \ |
| goto ADDR; \ |
| else if (GET_CODE (X) == LO_SUM \ |
| && GET_CODE (XEXP (X, 0)) == SUBREG \ |
| && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\ |
| && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\ |
| && CONSTANT_P (XEXP (X, 1)) \ |
| && (TARGET_SOFT_FLOAT \ |
| || ((MODE) != SFmode \ |
| && (MODE) != DFmode))) \ |
| goto ADDR; \ |
| else if (GET_CODE (X) == LABEL_REF \ |
| || (GET_CODE (X) == CONST_INT \ |
| && INT_5_BITS (X))) \ |
| goto ADDR; \ |
| /* Needed for -fPIC */ \ |
| else if (GET_CODE (X) == LO_SUM \ |
| && GET_CODE (XEXP (X, 0)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ |
| && GET_CODE (XEXP (X, 1)) == UNSPEC) \ |
| goto ADDR; \ |
| } |
| |
| /* Try machine-dependent ways of modifying an illegitimate address |
| to be legitimate. If we find one, return the new, valid address. |
| This macro is used in only one place: `memory_address' in explow.c. |
| |
| OLDX is the address as it was before break_out_memory_refs was called. |
| In some cases it is useful to look at this to decide what needs to be done. |
| |
| MODE and WIN are passed so that this macro can use |
| GO_IF_LEGITIMATE_ADDRESS. |
| |
| It is always safe for this macro to do nothing. It exists to recognize |
| opportunities to optimize the output. */ |
| |
| extern struct rtx_def *hppa_legitimize_address (); |
| #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ |
| { rtx orig_x = (X); \ |
| (X) = hppa_legitimize_address (X, OLDX, MODE); \ |
| if ((X) != orig_x && memory_address_p (MODE, X)) \ |
| goto WIN; } |
| |
| /* Go to LABEL if ADDR (a legitimate address expression) |
| has an effect that depends on the machine mode it is used for. */ |
| |
| #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ |
| if (GET_CODE (ADDR) == PRE_DEC \ |
| || GET_CODE (ADDR) == POST_DEC \ |
| || GET_CODE (ADDR) == PRE_INC \ |
| || GET_CODE (ADDR) == POST_INC) \ |
| goto LABEL |
| |
| /* Define this macro if references to a symbol must be treated |
| differently depending on something about the variable or |
| function named by the symbol (such as what section it is in). |
| |
| The macro definition, if any, is executed immediately after the |
| rtl for DECL or other node is created. |
| The value of the rtl will be a `mem' whose address is a |
| `symbol_ref'. |
| |
| The usual thing for this macro to do is to a flag in the |
| `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified |
| name string in the `symbol_ref' (if one bit is not enough |
| information). |
| |
| On the HP-PA we use this to indicate if a symbol is in text or |
| data space. Also, function labels need special treatment. */ |
| |
| #define TEXT_SPACE_P(DECL)\ |
| (TREE_CODE (DECL) == FUNCTION_DECL \ |
| || (TREE_CODE (DECL) == VAR_DECL \ |
| && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \ |
| && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \ |
| && !flag_pic) \ |
| || (*tree_code_type[(int) TREE_CODE (DECL)] == 'c' \ |
| && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings))) |
| |
| #define FUNCTION_NAME_P(NAME) \ |
| (*(NAME) == '@' || (*(NAME) == '*' && *((NAME) + 1) == '@')) |
| |
| #define ENCODE_SECTION_INFO(DECL)\ |
| do \ |
| { if (TEXT_SPACE_P (DECL)) \ |
| { rtx _rtl; \ |
| if (TREE_CODE (DECL) == FUNCTION_DECL \ |
| || TREE_CODE (DECL) == VAR_DECL) \ |
| _rtl = DECL_RTL (DECL); \ |
| else \ |
| _rtl = TREE_CST_RTL (DECL); \ |
| SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \ |
| if (TREE_CODE (DECL) == FUNCTION_DECL) \ |
| hppa_encode_label (XEXP (DECL_RTL (DECL), 0), 0);\ |
| } \ |
| } \ |
| while (0) |
| |
| /* Store the user-specified part of SYMBOL_NAME in VAR. |
| This is sort of inverse to ENCODE_SECTION_INFO. */ |
| |
| #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \ |
| (VAR) = ((SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' ? \ |
| 1 + (SYMBOL_NAME)[1] == '@'\ |
| : (SYMBOL_NAME)[0] == '@')) |
| |
| /* On hpux10, the linker will give an error if we have a reference |
| in the read-only data section to a symbol defined in a shared |
| library. Therefore, expressions that might require a reloc can |
| not be placed in the read-only data section. */ |
| #define SELECT_SECTION(EXP,RELOC) \ |
| if (TREE_CODE (EXP) == VAR_DECL \ |
| && TREE_READONLY (EXP) \ |
| && !TREE_THIS_VOLATILE (EXP) \ |
| && DECL_INITIAL (EXP) \ |
| && (DECL_INITIAL (EXP) == error_mark_node \ |
| || TREE_CONSTANT (DECL_INITIAL (EXP))) \ |
| && !reloc) \ |
| readonly_data_section (); \ |
| else if (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'c' \ |
| && !(TREE_CODE (EXP) == STRING_CST && flag_writable_strings) \ |
| && !reloc) \ |
| readonly_data_section (); \ |
| else \ |
| data_section (); |
| |
| /* Arghh. The hpux10 linker chokes if we have a reference to symbols |
| in a readonly data section when the symbol is defined in a shared |
| library. Since we can't know at compile time if a symbol will be |
| satisfied by a shared library or main program we put any symbolic |
| constant into the normal data section. */ |
| #define SELECT_RTX_SECTION(MODE,RTX) \ |
| if (symbolic_operand (RTX, MODE)) \ |
| data_section (); \ |
| else \ |
| readonly_data_section (); |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode) |
| |
| /* Specify the tree operation to be used to convert reals to integers. */ |
| #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR |
| |
| /* This is the kind of divide that is easiest to do in the general case. */ |
| #define EASY_DIV_EXPR TRUNC_DIV_EXPR |
| |
| /* Define this as 1 if `char' should by default be signed; else as 0. */ |
| #define DEFAULT_SIGNED_CHAR 1 |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX 8 |
| |
| /* Higher than the default as we prefer to use simple move insns |
| (better scheduling and delay slot filling) and because our |
| built-in block move is really a 2X unrolled loop. */ |
| #define MOVE_RATIO 4 |
| |
| /* Define if operations between registers always perform the operation |
| on the full register even if a narrower mode is specified. */ |
| #define WORD_REGISTER_OPERATIONS |
| |
| /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD |
| will either zero-extend or sign-extend. The value of this macro should |
| be the code that says which one of the two operations is implicitly |
| done, NIL if none. */ |
| #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND |
| |
| /* Nonzero if access to memory by bytes is slow and undesirable. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* Do not break .stabs pseudos into continuations. */ |
| #define DBX_CONTIN_LENGTH 4000 |
| |
| /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
| is done just by pretending it is already truncated. */ |
| #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 |
| |
| /* We assume that the store-condition-codes instructions store 0 for false |
| and some other value for true. This is the value stored for true. */ |
| |
| #define STORE_FLAG_VALUE 1 |
| |
| /* When a prototype says `char' or `short', really pass an `int'. */ |
| #define PROMOTE_PROTOTYPES |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode SImode |
| |
| /* Add any extra modes needed to represent the condition code. |
| |
| HPPA floating comparisons produce condition codes. */ |
| #define EXTRA_CC_MODES CCFPmode |
| |
| /* Define the names for the modes specified above. */ |
| #define EXTRA_CC_NAMES "CCFP" |
| |
| /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, |
| return the mode to be used for the comparison. For floating-point, CCFPmode |
| should be used. CC_NOOVmode should be used when the first operand is a |
| PLUS, MINUS, or NEG. CCmode should be used when no special processing is |
| needed. */ |
| #define SELECT_CC_MODE(OP,X,Y) \ |
| (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \ |
| |
| /* A function address in a call instruction |
| is a byte address (for indexing purposes) |
| so give the MEM rtx a byte's mode. */ |
| #define FUNCTION_MODE SImode |
| |
| /* Define this if addresses of constant functions |
| shouldn't be put through pseudo regs where they can be cse'd. |
| Desirable on machines where ordinary constants are expensive |
| but a CALL with constant address is cheap. */ |
| #define NO_FUNCTION_CSE |
| |
| /* Define this to be nonzero if shift instructions ignore all but the low-order |
| few bits. */ |
| #define SHIFT_COUNT_TRUNCATED 1 |
| |
| /* Use atexit for static constructors/destructors, instead of defining |
| our own exit function. */ |
| #define HAVE_ATEXIT |
| |
| /* Compute the cost of computing a constant rtl expression RTX |
| whose rtx-code is CODE. The body of this macro is a portion |
| of a switch statement. If the code is computed here, |
| return it with a return statement. Otherwise, break from the switch. */ |
| |
| #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
| case CONST_INT: \ |
| if (INTVAL (RTX) == 0) return 0; \ |
| if (INT_14_BITS (RTX)) return 1; \ |
| case HIGH: \ |
| return 2; \ |
| case CONST: \ |
| case LABEL_REF: \ |
| case SYMBOL_REF: \ |
| return 4; \ |
| case CONST_DOUBLE: \ |
| if (RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)\ |
| && OUTER_CODE != SET) \ |
| return 0; \ |
| else \ |
| return 8; |
| |
| #define ADDRESS_COST(RTX) \ |
| (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX)) |
| |
| /* Compute extra cost of moving data between one register class |
| and another. |
| |
| Make moves from SAR so expensive they should never happen. We used to |
| have 0xffff here, but that generates overflow in rare cases. |
| |
| Copies involving a FP register and a non-FP register are relatively |
| expensive because they must go through memory. |
| |
| Other copies are reasonably cheap. */ |
| #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ |
| (CLASS1 == SHIFT_REGS ? 0x100 \ |
| : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \ |
| : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \ |
| : 2) |
| |
| |
| /* Provide the costs of a rtl expression. This is in the body of a |
| switch on CODE. The purpose for the cost of MULT is to encourage |
| `synth_mult' to find a synthetic multiply when reasonable. */ |
| |
| #define RTX_COSTS(X,CODE,OUTER_CODE) \ |
| case MULT: \ |
| if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ |
| return COSTS_N_INSNS (3); \ |
| return (TARGET_SNAKE && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \ |
| ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \ |
| case DIV: \ |
| if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ |
| return COSTS_N_INSNS (14); \ |
| case UDIV: \ |
| case MOD: \ |
| case UMOD: \ |
| return COSTS_N_INSNS (60); \ |
| case PLUS: /* this includes shNadd insns */ \ |
| case MINUS: \ |
| if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ |
| return COSTS_N_INSNS (3); \ |
| return COSTS_N_INSNS (1); \ |
| case ASHIFT: \ |
| case ASHIFTRT: \ |
| case LSHIFTRT: \ |
| return COSTS_N_INSNS (1); |
| |
| /* Adjust the cost of dependencies. */ |
| |
| #define ADJUST_COST(INSN,LINK,DEP,COST) \ |
| (COST) = pa_adjust_cost (INSN, LINK, DEP, COST) |
| |
| /* Adjust scheduling priorities. We use this to try and keep addil |
| and the next use of %r1 close together. */ |
| #define ADJUST_PRIORITY(PREV) \ |
| { \ |
| rtx set = single_set (PREV); \ |
| rtx src, dest; \ |
| if (set) \ |
| { \ |
| src = SET_SRC (set); \ |
| dest = SET_DEST (set); \ |
| if (GET_CODE (src) == LO_SUM \ |
| && symbolic_operand (XEXP (src, 1), VOIDmode) \ |
| && ! read_only_operand (XEXP (src, 1), VOIDmode)) \ |
| INSN_PRIORITY (PREV) >>= 3; \ |
| else if (GET_CODE (src) == MEM \ |
| && GET_CODE (XEXP (src, 0)) == LO_SUM \ |
| && symbolic_operand (XEXP (XEXP (src, 0), 1), VOIDmode)\ |
| && ! read_only_operand (XEXP (XEXP (src, 0), 1), VOIDmode))\ |
| INSN_PRIORITY (PREV) >>= 1; \ |
| else if (GET_CODE (dest) == MEM \ |
| && GET_CODE (XEXP (dest, 0)) == LO_SUM \ |
| && symbolic_operand (XEXP (XEXP (dest, 0), 1), VOIDmode)\ |
| && ! read_only_operand (XEXP (XEXP (dest, 0), 1), VOIDmode))\ |
| INSN_PRIORITY (PREV) >>= 3; \ |
| } \ |
| } |
| |
| /* Handling the special cases is going to get too complicated for a macro, |
| just call `pa_adjust_insn_length' to do the real work. */ |
| #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ |
| LENGTH += pa_adjust_insn_length (INSN, LENGTH); |
| |
| /* Enable a bug fix. (This is for extra caution.) */ |
| #define SHORTEN_WITH_ADJUST_INSN_LENGTH |
| |
| /* Millicode insns are actually function calls with some special |
| constraints on arguments and register usage. |
| |
| Millicode calls always expect their arguments in the integer argument |
| registers, and always return their result in %r29 (ret1). They |
| are expected to clobber their arguments, %r1, %r29, and %r31 and |
| nothing else. |
| |
| These macros tell reorg that the references to arguments and |
| register clobbers for millicode calls do not appear to happen |
| until after the millicode call. This allows reorg to put insns |
| which set the argument registers into the delay slot of the millicode |
| call -- thus they act more like traditional CALL_INSNs. |
| |
| get_attr_type will try to recognize the given insn, so make sure to |
| filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns |
| in particular. */ |
| #define INSN_SETS_ARE_DELAYED(X) \ |
| ((GET_CODE (X) == INSN \ |
| && GET_CODE (PATTERN (X)) != SEQUENCE \ |
| && GET_CODE (PATTERN (X)) != USE \ |
| && GET_CODE (PATTERN (X)) != CLOBBER \ |
| && get_attr_type (X) == TYPE_MILLI)) |
| |
| #define INSN_REFERENCES_ARE_DELAYED(X) \ |
| ((GET_CODE (X) == INSN \ |
| && GET_CODE (PATTERN (X)) != SEQUENCE \ |
| && GET_CODE (PATTERN (X)) != USE \ |
| && GET_CODE (PATTERN (X)) != CLOBBER \ |
| && get_attr_type (X) == TYPE_MILLI)) |
| |
| |
| /* Control the assembler format that we output. */ |
| |
| /* Output at beginning of assembler file. */ |
| |
| #define ASM_FILE_START(FILE) \ |
| do { fputs ("\t.SPACE $PRIVATE$\n\ |
| \t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31\n\ |
| \t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82\n\ |
| \t.SPACE $TEXT$\n\ |
| \t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44\n\ |
| \t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n\ |
| \t.IMPORT $global$,DATA\n\ |
| \t.IMPORT $$dyncall,MILLICODE\n", FILE);\ |
| if (profile_flag)\ |
| fprintf (FILE, "\t.IMPORT _mcount, CODE\n");\ |
| if (write_symbols != NO_DEBUG) \ |
| output_file_directive ((FILE), main_input_filename); \ |
| } while (0) |
| |
| #define ASM_FILE_END(FILE) output_deferred_plabels (FILE) |
| |
| /* Output to assembler file text saying following lines |
| may contain character constants, extra white space, comments, etc. */ |
| |
| #define ASM_APP_ON "" |
| |
| /* Output to assembler file text saying following lines |
| no longer contain unusual constructs. */ |
| |
| #define ASM_APP_OFF "" |
| |
| /* We don't yet know how to identify GCC to HP-PA machines. */ |
| #define ASM_IDENTIFY_GCC(FILE) fputs ("; gcc_compiled.:\n", FILE) |
| |
| /* Output before code. */ |
| |
| /* Supposedly the assembler rejects the command if there is no tab! */ |
| #define TEXT_SECTION_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $CODE$\n" |
| |
| /* Output before read-only data. */ |
| |
| /* Supposedly the assembler rejects the command if there is no tab! */ |
| #define READONLY_DATA_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n" |
| |
| #define READONLY_DATA_SECTION readonly_data |
| |
| /* Output before writable data. */ |
| |
| /* Supposedly the assembler rejects the command if there is no tab! */ |
| #define DATA_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $DATA$\n" |
| |
| /* Output before uninitialized data. */ |
| |
| #define BSS_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $BSS$\n" |
| |
| /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */ |
| |
| #ifndef CTORS_SECTION_FUNCTION |
| #define EXTRA_SECTIONS in_readonly_data |
| #define CTORS_SECTION_FUNCTION |
| #define DTORS_SECTION_FUNCTION |
| #else |
| #define EXTRA_SECTIONS in_readonly_data, in_ctors, in_dtors |
| #endif |
| |
| /* Switch into a generic section. |
| This is currently only used to support section attributes. |
| |
| We make the section read-only and executable for a function decl, |
| read-only for a const data decl, and writable for a non-const data decl. */ |
| #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \ |
| if (DECL && TREE_CODE (DECL) == FUNCTION_DECL) \ |
| { \ |
| fputs ("\t.SPACE $TEXT$\n", FILE); \ |
| fprintf (FILE, \ |
| "\t.SUBSPA %s%s%s,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY,SORT=24\n",\ |
| TARGET_GAS ? "" : "$", NAME, TARGET_GAS ? "" : "$"); \ |
| } \ |
| else if (DECL && DECL_READONLY_SECTION (DECL, RELOC)) \ |
| { \ |
| fputs ("\t.SPACE $TEXT$\n", FILE); \ |
| fprintf (FILE, \ |
| "\t.SUBSPA %s%s%s,QUAD=0,ALIGN=8,ACCESS=44,SORT=16\n", \ |
| TARGET_GAS ? "" : "$", NAME, TARGET_GAS ? "" : "$"); \ |
| } \ |
| else \ |
| { \ |
| fputs ("\t.SPACE $PRIVATE$\n", FILE); \ |
| fprintf (FILE, \ |
| "\t.SUBSPA %s%s%s,QUAD=1,ALIGN=8,ACCESS=31,SORT=16\n", \ |
| TARGET_GAS ? "" : "$", NAME, TARGET_GAS ? "" : "$"); \ |
| } |
| |
| /* FIXME: HPUX ld generates incorrect GOT entries for "T" fixups |
| which reference data within the $TEXT$ space (for example constant |
| strings in the $LIT$ subspace). |
| |
| The assemblers (GAS and HP as) both have problems with handling |
| the difference of two symbols which is the other correct way to |
| reference constant data during PIC code generation. |
| |
| So, there's no way to reference constant data which is in the |
| $TEXT$ space during PIC generation. Instead place all constant |
| data into the $PRIVATE$ subspace (this reduces sharing, but it |
| works correctly). */ |
| |
| #define EXTRA_SECTION_FUNCTIONS \ |
| void \ |
| readonly_data () \ |
| { \ |
| if (in_section != in_readonly_data) \ |
| { \ |
| if (flag_pic) \ |
| fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP); \ |
| else \ |
| fprintf (asm_out_file, "%s\n", READONLY_DATA_ASM_OP); \ |
| in_section = in_readonly_data; \ |
| } \ |
| } \ |
| CTORS_SECTION_FUNCTION \ |
| DTORS_SECTION_FUNCTION |
| |
| |
| /* How to refer to registers in assembler output. |
| This sequence is indexed by compiler's hard-register-number (see above). */ |
| |
| #define REGISTER_NAMES \ |
| {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \ |
| "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \ |
| "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \ |
| "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \ |
| "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \ |
| "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \ |
| "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \ |
| "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \ |
| "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \ |
| "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \ |
| "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \ |
| "SAR"} |
| |
| #define ADDITIONAL_REGISTER_NAMES \ |
| {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \ |
| {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \ |
| {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \ |
| {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \ |
| {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \ |
| {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \ |
| {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \ |
| {"%cr11",88}} |
| |
| /* How to renumber registers for dbx and gdb. |
| |
| Registers 0 - 31 remain unchanged. |
| |
| Registers 32 - 87 are mapped to 72 - 127 |
| |
| Register 88 is mapped to 32. */ |
| |
| #define DBX_REGISTER_NUMBER(REGNO) \ |
| ((REGNO) <= 31 ? (REGNO) : \ |
| ((REGNO) > 31 && (REGNO) <= 87 ? (REGNO) + 40 : 32)) |
| |
| /* This is how to output the definition of a user-level label named NAME, |
| such as the label on a static function or variable NAME. */ |
| |
| #define ASM_OUTPUT_LABEL(FILE, NAME) \ |
| do { assemble_name (FILE, NAME); \ |
| fputc ('\n', FILE); } while (0) |
| |
| /* This is how to output a command to make the user-level label named NAME |
| defined for reference from other files. |
| |
| We call assemble_name, which in turn sets TREE_SYMBOL_REFERENCED. This |
| macro will restore the original value of TREE_SYMBOL_REFERENCED to avoid |
| placing useless function definitions in the output file. */ |
| |
| #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \ |
| do { int save_referenced; \ |
| save_referenced = TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (DECL)); \ |
| fputs ("\t.IMPORT ", FILE); \ |
| assemble_name (FILE, NAME); \ |
| if (FUNCTION_NAME_P (NAME)) \ |
| fputs (",CODE\n", FILE); \ |
| else \ |
| fputs (",DATA\n", FILE); \ |
| TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (DECL)) = save_referenced; \ |
| } while (0) |
| |
| /* The bogus HP assembler requires ALL external references to be |
| "imported", even library calls. They look a bit different, so |
| here's this macro. |
| |
| Also note not all libcall names are passed to ENCODE_SECTION_INFO |
| (__main for example). To make sure all libcall names have section |
| info recorded in them, we do it here. */ |
| |
| #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, RTL) \ |
| do { fputs ("\t.IMPORT ", FILE); \ |
| if (!function_label_operand (RTL, VOIDmode)) \ |
| hppa_encode_label (RTL, 1); \ |
| assemble_name (FILE, XSTR ((RTL), 0)); \ |
| fputs (",CODE\n", FILE); \ |
| } while (0) |
| |
| #define ASM_GLOBALIZE_LABEL(FILE, NAME) \ |
| do { \ |
| /* We only handle DATA objects here, functions are globalized in \ |
| ASM_DECLARE_FUNCTION_NAME. */ \ |
| if (! FUNCTION_NAME_P (NAME)) \ |
| { \ |
| fputs ("\t.EXPORT ", FILE); \ |
| assemble_name (FILE, NAME); \ |
| fputs (",DATA\n", FILE); \ |
| } \ |
| } while (0) |
| |
| /* This is how to output a reference to a user-level label named NAME. |
| `assemble_name' uses this. */ |
| |
| #define ASM_OUTPUT_LABELREF(FILE,NAME) \ |
| fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0)) |
| |
| /* This is how to output an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. */ |
| |
| #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ |
| {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);} |
| |
| /* This is how to store into the string LABEL |
| the symbol_ref name of an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. |
| This is suitable for output with `assemble_name'. */ |
| |
| #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ |
| sprintf (LABEL, "*%c$%s%04d", (PREFIX)[0], (PREFIX) + 1, NUM) |
| |
| /* This is how to output an assembler line defining a `double' constant. */ |
| |
| #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ |
| do { long l[2]; \ |
| REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \ |
| fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", l[0], l[1]); \ |
| } while (0) |
| |
| /* This is how to output an assembler line defining a `float' constant. */ |
| |
| #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ |
| do { long l; \ |
| REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \ |
| fprintf (FILE, "\t.word 0x%lx\n", l); \ |
| } while (0) |
| |
| /* This is how to output an assembler line defining an `int' constant. |
| |
| This is made more complicated by the fact that functions must be |
| prefixed by a P% as well as code label references for the exception |
| table -- otherwise the linker chokes. */ |
| |
| #define ASM_OUTPUT_INT(FILE,VALUE) \ |
| { fputs ("\t.word ", FILE); \ |
| if (function_label_operand (VALUE, VOIDmode) \ |
| && !TARGET_PORTABLE_RUNTIME) \ |
| fputs ("P%", FILE); \ |
| output_addr_const (FILE, (VALUE)); \ |
| fputs ("\n", FILE);} |
| |
| /* Likewise for `short' and `char' constants. */ |
| |
| #define ASM_OUTPUT_SHORT(FILE,VALUE) \ |
| ( fputs ("\t.half ", FILE), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fputs ("\n", FILE)) |
| |
| #define ASM_OUTPUT_CHAR(FILE,VALUE) \ |
| ( fputs ("\t.byte ", FILE), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fputs ("\n", FILE)) |
| |
| /* This is how to output an assembler line for a numeric constant byte. */ |
| |
| #define ASM_OUTPUT_BYTE(FILE,VALUE) \ |
| fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) |
| |
| #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \ |
| output_ascii ((FILE), (P), (SIZE)) |
| |
| #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) |
| #define ASM_OUTPUT_REG_POP(FILE,REGNO) |
| /* This is how to output an element of a case-vector that is absolute. |
| Note that this method makes filling these branch delay slots |
| impossible. */ |
| |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| if (TARGET_BIG_SWITCH) \ |
| fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \ |
| else \ |
| fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE) |
| |
| /* Jump tables are executable code and live in the TEXT section on the PA. */ |
| #define JUMP_TABLES_IN_TEXT_SECTION |
| |
| /* This is how to output an element of a case-vector that is relative. |
| This must be defined correctly as it is used when generating PIC code. |
| |
| I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT |
| on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions |
| rather than a table of absolute addresses. */ |
| |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ |
| if (TARGET_BIG_SWITCH) \ |
| fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv 0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \ |
| else \ |
| fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE) |
| |
| /* This is how to output an assembler line |
| that says to advance the location counter |
| to a multiple of 2**LOG bytes. */ |
| |
| #define ASM_OUTPUT_ALIGN(FILE,LOG) \ |
| fprintf (FILE, "\t.align %d\n", (1<<(LOG))) |
| |
| #define ASM_OUTPUT_SKIP(FILE,SIZE) \ |
| fprintf (FILE, "\t.blockz %d\n", (SIZE)) |
| |
| /* This says how to output an assembler line to define a global common symbol |
| with size SIZE (in bytes) and alignment ALIGN (in bits). */ |
| |
| #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \ |
| { bss_section (); \ |
| assemble_name ((FILE), (NAME)); \ |
| fputs ("\t.comm ", (FILE)); \ |
| fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));} |
| |
| /* This says how to output an assembler line to define a local common symbol |
| with size SIZE (in bytes) and alignment ALIGN (in bits). */ |
| |
| #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \ |
| { bss_section (); \ |
| fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \ |
| assemble_name ((FILE), (NAME)); \ |
| fprintf ((FILE), "\n\t.block %d\n", (SIZE));} |
| |
| /* Store in OUTPUT a string (made with alloca) containing |
| an assembler-name for a local static variable named NAME. |
| LABELNO is an integer which is different for each call. */ |
| |
| #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ |
| ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \ |
| sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO))) |
| |
| /* Define the parentheses used to group arithmetic operations |
| in assembler code. */ |
| |
| #define ASM_OPEN_PAREN "(" |
| #define ASM_CLOSE_PAREN ")" |
| |
| /* All HP assemblers use "!" to separate logical lines. */ |
| #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!') |
| |
| /* Define results of standard character escape sequences. */ |
| #define TARGET_BELL 007 |
| #define TARGET_BS 010 |
| #define TARGET_TAB 011 |
| #define TARGET_NEWLINE 012 |
| #define TARGET_VT 013 |
| #define TARGET_FF 014 |
| #define TARGET_CR 015 |
| |
| #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ |
| ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^') |
| |
| /* Print operand X (an rtx) in assembler syntax to file FILE. |
| CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. |
| For `%' followed by punctuation, CODE is the punctuation and X is null. |
| |
| On the HP-PA, the CODE can be `r', meaning this is a register-only operand |
| and an immediate zero should be represented as `r0'. |
| |
| Several % codes are defined: |
| O an operation |
| C compare conditions |
| N extract conditions |
| M modifier to handle preincrement addressing for memory refs. |
| F modifier to handle preincrement addressing for fp memory refs */ |
| |
| #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) |
| |
| |
| /* Print a memory address as an operand to reference that memory location. */ |
| |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ |
| { register rtx addr = ADDR; \ |
| register rtx base; \ |
| int offset; \ |
| switch (GET_CODE (addr)) \ |
| { \ |
| case REG: \ |
| fprintf (FILE, "0(0,%s)", reg_names [REGNO (addr)]); \ |
| break; \ |
| case PLUS: \ |
| if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \ |
| offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \ |
| else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \ |
| offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \ |
| else \ |
| abort (); \ |
| fprintf (FILE, "%d(0,%s)", offset, reg_names [REGNO (base)]); \ |
| break; \ |
| case LO_SUM: \ |
| if (!symbolic_operand (XEXP (addr, 1))) \ |
| fputs ("R'", FILE); \ |
| else if (flag_pic == 0) \ |
| fputs ("RR'", FILE); \ |
| else if (flag_pic == 1) \ |
| abort (); \ |
| else if (flag_pic == 2) \ |
| fputs ("RT'", FILE); \ |
| output_global_address (FILE, XEXP (addr, 1), 0); \ |
| fputs ("(", FILE); \ |
| output_operand (XEXP (addr, 0), 0); \ |
| fputs (")", FILE); \ |
| break; \ |
| case CONST_INT: \ |
| fprintf (FILE, "%d(0,0)", INTVAL (addr)); \ |
| break; \ |
| default: \ |
| output_addr_const (FILE, addr); \ |
| }} |
| |
| |
| /* Define functions in pa.c and used in insn-output.c. */ |
| |
| extern char *output_and (); |
| extern char *output_ior (); |
| extern char *output_move_double (); |
| extern char *output_fp_move_double (); |
| extern char *output_block_move (); |
| extern char *output_cbranch (); |
| extern char *output_bb (); |
| extern char *output_bvb (); |
| extern char *output_dbra (); |
| extern char *output_movb (); |
| extern char *output_parallel_movb (); |
| extern char *output_parallel_addb (); |
| extern char *output_return (); |
| extern char *output_call (); |
| extern char *output_millicode_call (); |
| extern char *output_mul_insn (); |
| extern char *output_div_insn (); |
| extern char *output_mod_insn (); |
| extern char *singlemove_string (); |
| extern void output_arg_descriptor (); |
| extern void output_global_address (); |
| extern struct rtx_def *legitimize_pic_address (); |
| extern struct rtx_def *gen_cmp_fp (); |
| extern void hppa_encode_label (); |
| |
| /* Declare functions defined in pa.c and used in templates. */ |
| |
| extern struct rtx_def *return_addr_rtx (); |
| |
| /* We want __gcc_plt_call to appear in every program built by |
| gcc, so we make a reference to it out of __main. |
| We use the asm statement to fool the optimizer into not |
| removing the dead (but important) initialization of |
| REFERENCE. */ |
| |
| #define DO_GLOBAL_DTORS_BODY \ |
| do { \ |
| extern void __gcc_plt_call (); \ |
| void (*reference)() = &__gcc_plt_call; \ |
| func_ptr *p; \ |
| __asm__ ("" : : "r" (reference)); \ |
| for (p = __DTOR_LIST__ + 1; *p; ) \ |
| (*p++) (); \ |
| } while (0) |
| |
| /* Find the return address associated with the frame given by |
| FRAMEADDR. */ |
| #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \ |
| (return_addr_rtx (COUNT, FRAMEADDR)) |
| |
| /* Used to mask out junk bits from the return address, such as |
| processor state, interrupt status, condition codes and the like. */ |
| #define MASK_RETURN_ADDR \ |
| /* The privilege level is in the two low order bits, mask em out \ |
| of the return address. */ \ |
| (GEN_INT (0xfffffffc)) |
| |
| /* The number of Pmode words for the setjmp buffer. */ |
| #define JMP_BUF_SIZE 50 |