| /* Definitions of target machine for GNU compiler, for IBM RS/6000. |
| Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc. |
| Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) |
| |
| This file is part of GNU CC. |
| |
| GNU CC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GNU CC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU CC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| |
| /* Note that some other tm.h files include this one and then override |
| many of the definitions that relate to assembler syntax. */ |
| |
| |
| /* Names to predefine in the preprocessor for this target machine. */ |
| |
| #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \ |
| -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)" |
| |
| /* Print subsidiary information on the compiler version in use. */ |
| #define TARGET_VERSION ; |
| |
| /* Default string to use for cpu if not specified. */ |
| #ifndef TARGET_CPU_DEFAULT |
| #define TARGET_CPU_DEFAULT ((char *)0) |
| #endif |
| |
| /* Tell the assembler to assume that all undefined names are external. |
| |
| Don't do this until the fixed IBM assembler is more generally available. |
| When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL, |
| ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no |
| longer be needed. Also, the extern declaration of mcount in ASM_FILE_START |
| will no longer be needed. */ |
| |
| /* #define ASM_SPEC "-u %(asm_cpu)" */ |
| |
| /* Define appropriate architecture macros for preprocessor depending on |
| target switches. */ |
| |
| #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)" |
| |
| /* Common CPP definitions used by CPP_SPEC amonst the various targets |
| for handling -mcpu=xxx switches. */ |
| #define CPP_CPU_SPEC \ |
| "%{!mcpu*: \ |
| %{mpower: %{!mpower2: -D_ARCH_PWR}} \ |
| %{mpower2: -D_ARCH_PWR2} \ |
| %{mpowerpc*: -D_ARCH_PPC} \ |
| %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \ |
| %{!mno-power: %{!mpower2: %(cpp_default)}}} \ |
| %{mcpu=common: -D_ARCH_COM} \ |
| %{mcpu=power: -D_ARCH_PWR} \ |
| %{mcpu=power2: -D_ARCH_PWR2} \ |
| %{mcpu=powerpc: -D_ARCH_PPC} \ |
| %{mcpu=rios: -D_ARCH_PWR} \ |
| %{mcpu=rios1: -D_ARCH_PWR} \ |
| %{mcpu=rios2: -D_ARCH_PWR2} \ |
| %{mcpu=rsc: -D_ARCH_PWR} \ |
| %{mcpu=rsc1: -D_ARCH_PWR} \ |
| %{mcpu=403: -D_ARCH_PPC} \ |
| %{mcpu=505: -D_ARCH_PPC} \ |
| %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \ |
| %{mcpu=602: -D_ARCH_PPC} \ |
| %{mcpu=603: -D_ARCH_PPC} \ |
| %{mcpu=603e: -D_ARCH_PPC} \ |
| %{mcpu=604: -D_ARCH_PPC} \ |
| %{mcpu=620: -D_ARCH_PPC} \ |
| %{mcpu=821: -D_ARCH_PPC} \ |
| %{mcpu=860: -D_ARCH_PPC}" |
| |
| #ifndef CPP_DEFAULT_SPEC |
| #define CPP_DEFAULT_SPEC "-D_ARCH_PWR" |
| #endif |
| |
| #ifndef CPP_SYSV_SPEC |
| #define CPP_SYSV_SPEC "" |
| #endif |
| |
| #ifndef CPP_ENDIAN_SPEC |
| #define CPP_ENDIAN_SPEC "" |
| #endif |
| |
| #ifndef CPP_ENDIAN_DEFAULT_SPEC |
| #define CPP_ENDIAN_DEFAULT_SPEC "" |
| #endif |
| |
| #ifndef CPP_SYSV_DEFAULT_SPEC |
| #define CPP_SYSV_DEFAULT_SPEC "" |
| #endif |
| |
| /* Common ASM definitions used by ASM_SPEC amonst the various targets |
| for handling -mcpu=xxx switches. */ |
| #define ASM_CPU_SPEC \ |
| "%{!mcpu*: \ |
| %{mpower: %{!mpower2: -mpwr}} \ |
| %{mpower2: -mpwrx} \ |
| %{mpowerpc*: -mppc} \ |
| %{mno-power: %{!mpowerpc*: -mcom}} \ |
| %{!mno-power: %{!mpower2: %(asm_default)}}} \ |
| %{mcpu=common: -mcom} \ |
| %{mcpu=power: -mpwr} \ |
| %{mcpu=power2: -mpwrx} \ |
| %{mcpu=powerpc: -mppc} \ |
| %{mcpu=rios: -mpwr} \ |
| %{mcpu=rios1: -mpwr} \ |
| %{mcpu=rios2: -mpwrx} \ |
| %{mcpu=rsc: -mpwr} \ |
| %{mcpu=rsc1: -mpwr} \ |
| %{mcpu=403: -mppc} \ |
| %{mcpu=505: -mppc} \ |
| %{mcpu=601: -m601} \ |
| %{mcpu=602: -mppc} \ |
| %{mcpu=603: -mppc} \ |
| %{mcpu=603e: -mppc} \ |
| %{mcpu=604: -mppc} \ |
| %{mcpu=620: -mppc} \ |
| %{mcpu=821: -mppc} \ |
| %{mcpu=860: -mppc}" |
| |
| #ifndef ASM_DEFAULT_SPEC |
| #define ASM_DEFAULT_SPEC "" |
| #endif |
| |
| /* This macro defines names of additional specifications to put in the specs |
| that can be used in various specifications like CC1_SPEC. Its definition |
| is an initializer with a subgrouping for each command option. |
| |
| Each subgrouping contains a string constant, that defines the |
| specification name, and a string constant that used by the GNU CC driver |
| program. |
| |
| Do not define this macro if it does not need to do anything. */ |
| |
| #ifndef SUBTARGET_EXTRA_SPECS |
| #define SUBTARGET_EXTRA_SPECS |
| #endif |
| |
| #define EXTRA_SPECS \ |
| { "cpp_cpu", CPP_CPU_SPEC }, \ |
| { "cpp_default", CPP_DEFAULT_SPEC }, \ |
| { "cpp_sysv", CPP_SYSV_SPEC }, \ |
| { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \ |
| { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \ |
| { "cpp_endian", CPP_ENDIAN_SPEC }, \ |
| { "asm_cpu", ASM_CPU_SPEC }, \ |
| { "asm_default", ASM_DEFAULT_SPEC }, \ |
| { "link_syscalls", LINK_SYSCALLS_SPEC }, \ |
| { "link_libg", LINK_LIBG_SPEC }, \ |
| SUBTARGET_EXTRA_SPECS |
| |
| /* Default location of syscalls.exp under AIX */ |
| #ifndef CROSS_COMPILE |
| #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp" |
| #else |
| #define LINK_SYSCALLS_SPEC "" |
| #endif |
| |
| /* Default location of libg.exp under AIX */ |
| #ifndef CROSS_COMPILE |
| #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp" |
| #else |
| #define LINK_LIBG_SPEC "" |
| #endif |
| |
| /* Define the options for the binder: Start text at 512, align all segments |
| to 512 bytes, and warn if there is text relocation. |
| |
| The -bhalt:4 option supposedly changes the level at which ld will abort, |
| but it also suppresses warnings about multiply defined symbols and is |
| used by the AIX cc command. So we use it here. |
| |
| -bnodelcsect undoes a poor choice of default relating to multiply-defined |
| csects. See AIX documentation for more information about this. |
| |
| -bM:SRE tells the linker that the output file is Shared REusable. Note |
| that to actually build a shared library you will also need to specify an |
| export list with the -Wl,-bE option. */ |
| |
| #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\ |
| %{static:-bnso %(link_syscalls) } \ |
| %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}" |
| |
| /* Profiled library versions are used by linking with special directories. */ |
| #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\ |
| %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc" |
| |
| /* gcc must do the search itself to find libgcc.a, not use -l. */ |
| #define LIBGCC_SPEC "libgcc.a%s" |
| |
| /* Don't turn -B into -L if the argument specifies a relative file name. */ |
| #define RELATIVE_PREFIX_NOT_LINKDIR |
| |
| /* Architecture type. */ |
| |
| extern int target_flags; |
| |
| /* Use POWER architecture instructions and MQ register. */ |
| #define MASK_POWER 0x00000001 |
| |
| /* Use POWER2 extensions to POWER architecture. */ |
| #define MASK_POWER2 0x00000002 |
| |
| /* Use PowerPC architecture instructions. */ |
| #define MASK_POWERPC 0x00000004 |
| |
| /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */ |
| #define MASK_PPC_GPOPT 0x00000008 |
| |
| /* Use PowerPC Graphics group optional instructions, e.g. fsel. */ |
| #define MASK_PPC_GFXOPT 0x00000010 |
| |
| /* Use PowerPC-64 architecture instructions. */ |
| #define MASK_POWERPC64 0x00000020 |
| |
| /* Use revised mnemonic names defined for PowerPC architecture. */ |
| #define MASK_NEW_MNEMONICS 0x00000040 |
| |
| /* Disable placing fp constants in the TOC; can be turned on when the |
| TOC overflows. */ |
| #define MASK_NO_FP_IN_TOC 0x00000080 |
| |
| /* Disable placing symbol+offset constants in the TOC; can be turned on when |
| the TOC overflows. */ |
| #define MASK_NO_SUM_IN_TOC 0x00000100 |
| |
| /* Output only one TOC entry per module. Normally linking fails if |
| there are more than 16K unique variables/constants in an executable. With |
| this option, linking fails only if there are more than 16K modules, or |
| if there are more than 16K unique variables/constant in a single module. |
| |
| This is at the cost of having 2 extra loads and one extra store per |
| function, and one less allocatable register. */ |
| #define MASK_MINIMAL_TOC 0x00000200 |
| |
| /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */ |
| #define MASK_64BIT 0x00000400 |
| |
| /* Disable use of FPRs. */ |
| #define MASK_SOFT_FLOAT 0x00000800 |
| |
| /* Enable load/store multiple, even on powerpc */ |
| #define MASK_MULTIPLE 0x00001000 |
| #define MASK_MULTIPLE_SET 0x00002000 |
| |
| /* Use string instructions for block moves */ |
| #define MASK_STRING 0x00004000 |
| #define MASK_STRING_SET 0x00008000 |
| |
| /* Disable update form of load/store */ |
| #define MASK_NO_UPDATE 0x00010000 |
| |
| /* Disable fused multiply/add operations */ |
| #define MASK_NO_FUSED_MADD 0x00020000 |
| |
| #define TARGET_POWER (target_flags & MASK_POWER) |
| #define TARGET_POWER2 (target_flags & MASK_POWER2) |
| #define TARGET_POWERPC (target_flags & MASK_POWERPC) |
| #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT) |
| #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT) |
| #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64) |
| #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS) |
| #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC) |
| #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC) |
| #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC) |
| #define TARGET_64BIT (target_flags & MASK_64BIT) |
| #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT) |
| #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE) |
| #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET) |
| #define TARGET_STRING (target_flags & MASK_STRING) |
| #define TARGET_STRING_SET (target_flags & MASK_STRING_SET) |
| #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE) |
| #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD) |
| |
| #define TARGET_32BIT (! TARGET_64BIT) |
| #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT) |
| #define TARGET_UPDATE (! TARGET_NO_UPDATE) |
| #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD) |
| |
| /* Pseudo target to indicate whether the object format is ELF |
| (to get around not having conditional compilation in the md file) */ |
| #ifndef TARGET_ELF |
| #define TARGET_ELF 0 |
| #endif |
| |
| /* If this isn't V.4, don't support -mno-toc. */ |
| #ifndef TARGET_NO_TOC |
| #define TARGET_NO_TOC 0 |
| #define TARGET_TOC 1 |
| #endif |
| |
| /* Pseudo target to say whether this is Windows NT */ |
| #ifndef TARGET_WINDOWS_NT |
| #define TARGET_WINDOWS_NT 0 |
| #endif |
| |
| /* Pseudo target to say whether this is MAC */ |
| #ifndef TARGET_MACOS |
| #define TARGET_MACOS 0 |
| #endif |
| |
| /* Pseudo target to say whether this is AIX */ |
| #ifndef TARGET_AIX |
| #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS) |
| #define TARGET_AIX 0 |
| #else |
| #define TARGET_AIX 1 |
| #endif |
| #endif |
| |
| #ifndef TARGET_XL_CALL |
| #define TARGET_XL_CALL 0 |
| #endif |
| |
| /* Run-time compilation parameters selecting different hardware subsets. |
| |
| Macro to define tables used to set the flags. |
| This is a list in braces of pairs in braces, |
| each pair being { "NAME", VALUE } |
| where VALUE is the bits to set or minus the bits to clear. |
| An empty string NAME is used to identify the default VALUE. */ |
| |
| /* This is meant to be redefined in the host dependent files */ |
| #ifndef SUBTARGET_SWITCHES |
| #define SUBTARGET_SWITCHES |
| #endif |
| |
| #define TARGET_SWITCHES \ |
| {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \ |
| {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \ |
| | MASK_POWER2)}, \ |
| {"no-power2", - MASK_POWER2}, \ |
| {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \ |
| | MASK_STRING)}, \ |
| {"powerpc", MASK_POWERPC}, \ |
| {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \ |
| | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \ |
| {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \ |
| {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \ |
| {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \ |
| {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \ |
| {"new-mnemonics", MASK_NEW_MNEMONICS}, \ |
| {"old-mnemonics", -MASK_NEW_MNEMONICS}, \ |
| {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \ |
| | MASK_MINIMAL_TOC)}, \ |
| {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \ |
| {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \ |
| {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \ |
| {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \ |
| {"minimal-toc", MASK_MINIMAL_TOC}, \ |
| {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \ |
| {"no-minimal-toc", - MASK_MINIMAL_TOC}, \ |
| {"hard-float", - MASK_SOFT_FLOAT}, \ |
| {"soft-float", MASK_SOFT_FLOAT}, \ |
| {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \ |
| {"no-multiple", - MASK_MULTIPLE}, \ |
| {"no-multiple", MASK_MULTIPLE_SET}, \ |
| {"string", MASK_STRING | MASK_STRING_SET}, \ |
| {"no-string", - MASK_STRING}, \ |
| {"no-string", MASK_STRING_SET}, \ |
| {"update", - MASK_NO_UPDATE}, \ |
| {"no-update", MASK_NO_UPDATE}, \ |
| {"fused-madd", - MASK_NO_FUSED_MADD}, \ |
| {"no-fused-madd", MASK_NO_FUSED_MADD}, \ |
| SUBTARGET_SWITCHES \ |
| {"", TARGET_DEFAULT}} |
| |
| #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING) |
| |
| /* Processor type. */ |
| enum processor_type |
| {PROCESSOR_RIOS1, |
| PROCESSOR_RIOS2, |
| PROCESSOR_MPCCORE, |
| PROCESSOR_PPC403, |
| PROCESSOR_PPC601, |
| PROCESSOR_PPC603, |
| PROCESSOR_PPC604, |
| PROCESSOR_PPC620}; |
| |
| extern enum processor_type rs6000_cpu; |
| |
| /* Recast the processor type to the cpu attribute. */ |
| #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu) |
| |
| /* Define generic processor types based upon current deployment. */ |
| #define PROCESSOR_COMMON PROCESSOR_PPC601 |
| #define PROCESSOR_POWER PROCESSOR_RIOS1 |
| #define PROCESSOR_POWERPC PROCESSOR_PPC604 |
| |
| /* Define the default processor. This is overridden by other tm.h files. */ |
| #define PROCESSOR_DEFAULT PROCESSOR_RIOS1 |
| |
| /* Specify the dialect of assembler to use. New mnemonics is dialect one |
| and the old mnemonics are dialect zero. */ |
| #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0 |
| |
| /* This macro is similar to `TARGET_SWITCHES' but defines names of |
| command options that have values. Its definition is an |
| initializer with a subgrouping for each command option. |
| |
| Each subgrouping contains a string constant, that defines the |
| fixed part of the option name, and the address of a variable. |
| The variable, type `char *', is set to the variable part of the |
| given option if the fixed part matches. The actual option name |
| is made by appending `-m' to the specified name. |
| |
| Here is an example which defines `-mshort-data-NUMBER'. If the |
| given option is `-mshort-data-512', the variable `m88k_short_data' |
| will be set to the string `"512"'. |
| |
| extern char *m88k_short_data; |
| #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */ |
| |
| /* This is meant to be overriden in target specific files. */ |
| #ifndef SUBTARGET_OPTIONS |
| #define SUBTARGET_OPTIONS |
| #endif |
| |
| #define TARGET_OPTIONS \ |
| { \ |
| {"cpu=", &rs6000_select[1].string}, \ |
| {"tune=", &rs6000_select[2].string}, \ |
| {"debug-", &rs6000_debug_name}, \ |
| {"debug=", &rs6000_debug_name}, \ |
| SUBTARGET_OPTIONS \ |
| } |
| |
| /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */ |
| struct rs6000_cpu_select |
| { |
| char *string; |
| char *name; |
| int set_tune_p; |
| int set_arch_p; |
| }; |
| |
| extern struct rs6000_cpu_select rs6000_select[]; |
| |
| /* Debug support */ |
| extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */ |
| extern int rs6000_debug_stack; /* debug stack applications */ |
| extern int rs6000_debug_arg; /* debug argument handling */ |
| |
| #define TARGET_DEBUG_STACK rs6000_debug_stack |
| #define TARGET_DEBUG_ARG rs6000_debug_arg |
| |
| /* Sometimes certain combinations of command options do not make sense |
| on a particular target machine. You can define a macro |
| `OVERRIDE_OPTIONS' to take account of this. This macro, if |
| defined, is executed once just after all the command options have |
| been parsed. |
| |
| On the RS/6000 this is used to define the target cpu type. */ |
| |
| #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT) |
| |
| /* Show we can debug even without a frame pointer. */ |
| #define CAN_DEBUG_WITHOUT_FP |
| |
| /* target machine storage layout */ |
| |
| /* Define to support cross compilation to an RS6000 target. */ |
| #define REAL_ARITHMETIC |
| |
| /* Define this macro if it is advisable to hold scalars in registers |
| in a wider mode than that declared by the program. In such cases, |
| the value is constrained to be within the bounds of the declared |
| type, but kept valid in the wider mode. The signedness of the |
| extension may differ from that of the type. */ |
| |
| #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ |
| if (GET_MODE_CLASS (MODE) == MODE_INT \ |
| && GET_MODE_SIZE (MODE) < 4) \ |
| (MODE) = SImode; |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. */ |
| /* That is true on RS/6000. */ |
| #define BITS_BIG_ENDIAN 1 |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| /* That is true on RS/6000. */ |
| #define BYTES_BIG_ENDIAN 1 |
| |
| /* Define this if most significant word of a multiword number is lowest |
| numbered. |
| |
| For RS/6000 we can decide arbitrarily since there are no machine |
| instructions for them. Might as well be consistent with bits and bytes. */ |
| #define WORDS_BIG_ENDIAN 1 |
| |
| /* number of bits in an addressable storage unit */ |
| #define BITS_PER_UNIT 8 |
| |
| /* Width in bits of a "word", which is the contents of a machine register. |
| Note that this is not necessarily the width of data type `int'; |
| if using 16-bit ints on a 68000, this would still be 32. |
| But on a machine with 16-bit registers, this would be 16. */ |
| #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64) |
| #define MAX_BITS_PER_WORD 64 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8) |
| #define MIN_UNITS_PER_WORD 4 |
| #define UNITS_PER_FP_WORD 8 |
| |
| /* Type used for ptrdiff_t, as a string used in a declaration. */ |
| #define PTRDIFF_TYPE "int" |
| |
| /* Type used for wchar_t, as a string used in a declaration. */ |
| #define WCHAR_TYPE "short unsigned int" |
| |
| /* Width of wchar_t in bits. */ |
| #define WCHAR_TYPE_SIZE 16 |
| |
| /* A C expression for the size in bits of the type `short' on the |
| target machine. If you don't define this, the default is half a |
| word. (If this would be less than one storage unit, it is |
| rounded up to one unit.) */ |
| #define SHORT_TYPE_SIZE 16 |
| |
| /* A C expression for the size in bits of the type `int' on the |
| target machine. If you don't define this, the default is one |
| word. */ |
| #define INT_TYPE_SIZE 32 |
| |
| /* A C expression for the size in bits of the type `long' on the |
| target machine. If you don't define this, the default is one |
| word. */ |
| #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64) |
| #define MAX_LONG_TYPE_SIZE 64 |
| |
| /* A C expression for the size in bits of the type `long long' on the |
| target machine. If you don't define this, the default is two |
| words. */ |
| #define LONG_LONG_TYPE_SIZE 64 |
| |
| /* A C expression for the size in bits of the type `char' on the |
| target machine. If you don't define this, the default is one |
| quarter of a word. (If this would be less than one storage unit, |
| it is rounded up to one unit.) */ |
| #define CHAR_TYPE_SIZE BITS_PER_UNIT |
| |
| /* A C expression for the size in bits of the type `float' on the |
| target machine. If you don't define this, the default is one |
| word. */ |
| #define FLOAT_TYPE_SIZE 32 |
| |
| /* A C expression for the size in bits of the type `double' on the |
| target machine. If you don't define this, the default is two |
| words. */ |
| #define DOUBLE_TYPE_SIZE 64 |
| |
| /* A C expression for the size in bits of the type `long double' on |
| the target machine. If you don't define this, the default is two |
| words. */ |
| #define LONG_DOUBLE_TYPE_SIZE 64 |
| |
| /* Width in bits of a pointer. |
| See also the macro `Pmode' defined below. */ |
| #define POINTER_SIZE (TARGET_32BIT ? 32 : 64) |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64) |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY 64 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 32 |
| |
| /* No data type wants to be aligned rounder than this. */ |
| #define BIGGEST_ALIGNMENT 64 |
| |
| /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */ |
| #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \ |
| (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32)) |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Every structure's size must be a multiple of this. */ |
| #define STRUCTURE_SIZE_BOUNDARY 8 |
| |
| /* A bitfield declared as `int' forces `int' alignment for the struct. */ |
| #define PCC_BITFIELD_TYPE_MATTERS 1 |
| |
| /* AIX increases natural record alignment to doubleword if the first |
| field is an FP double while the FP fields remain word aligned. */ |
| #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \ |
| ((TREE_CODE (STRUCT) == RECORD_TYPE \ |
| || TREE_CODE (STRUCT) == UNION_TYPE \ |
| || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \ |
| && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \ |
| ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \ |
| : MAX ((COMPUTED), (SPECIFIED))) |
| |
| /* Make strings word-aligned so strcpy from constants will be faster. */ |
| #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ |
| (TREE_CODE (EXP) == STRING_CST \ |
| && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) |
| |
| /* Make arrays of chars word-aligned for the same reasons. */ |
| #define DATA_ALIGNMENT(TYPE, ALIGN) \ |
| (TREE_CODE (TYPE) == ARRAY_TYPE \ |
| && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ |
| && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) |
| |
| /* Non-zero if move instructions will actually fail to work |
| when given unaligned data. */ |
| #define STRICT_ALIGNMENT 0 |
| |
| /* Standard register usage. */ |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. |
| |
| RS/6000 has 32 fixed-point registers, 32 floating-point registers, |
| an MQ register, a count register, a link register, and 8 condition |
| register fields, which we view here as separate registers. |
| |
| In addition, the difference between the frame and argument pointers is |
| a function of the number of registers saved, so we need to have a |
| register for AP that will later be eliminated in favor of SP or FP. |
| This is a normal register, but it is fixed. |
| |
| We also create a pseudo register for float/int conversions, that will |
| really represent the memory location used. It is represented here as |
| a register, in order to work around problems in allocating stack storage |
| in inline functions. */ |
| |
| #define FIRST_PSEUDO_REGISTER 77 |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. |
| |
| On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer. |
| |
| cr5 is not supposed to be used. |
| |
| On System V implementations, r13 is fixed and not available for use. */ |
| |
| #ifndef FIXED_R13 |
| #define FIXED_R13 0 |
| #endif |
| |
| #define FIXED_REGISTERS \ |
| {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1} |
| |
| /* 1 for registers not available across function calls. |
| These must include the FIXED_REGISTERS and also any |
| registers that can be used without being saved. |
| The latter must include the registers where values are returned |
| and the register where structure-value addresses are passed. |
| Aside from that, you can include as many other registers as you like. */ |
| |
| #define CALL_USED_REGISTERS \ |
| {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1} |
| |
| /* List the order in which to allocate registers. Each register must be |
| listed once, even those in FIXED_REGISTERS. |
| |
| We allocate in the following order: |
| fp0 (not saved or used for anything) |
| fp13 - fp2 (not saved; incoming fp arg registers) |
| fp1 (not saved; return value) |
| fp31 - fp14 (saved; order given to save least number) |
| cr1, cr6, cr7 (not saved or special) |
| cr0 (not saved, but used for arithmetic operations) |
| cr2, cr3, cr4 (saved) |
| r0 (not saved; cannot be base reg) |
| r9 (not saved; best for TImode) |
| r11, r10, r8-r4 (not saved; highest used first to make less conflict) |
| r3 (not saved; return value register) |
| r31 - r13 (saved; order given to save least number) |
| r12 (not saved; if used for DImode or DFmode would use r13) |
| mq (not saved; best to use it if we can) |
| ctr (not saved; when we have the choice ctr is better) |
| lr (saved) |
| cr5, r1, r2, ap (fixed) */ |
| |
| #define REG_ALLOC_ORDER \ |
| {32, \ |
| 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \ |
| 33, \ |
| 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ |
| 50, 49, 48, 47, 46, \ |
| 69, 74, 75, 68, 70, 71, 72, \ |
| 0, \ |
| 9, 11, 10, 8, 7, 6, 5, 4, \ |
| 3, \ |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ |
| 18, 17, 16, 15, 14, 13, 12, \ |
| 64, 66, 65, \ |
| 73, 1, 2, 67, 76} |
| |
| /* True if register is floating-point. */ |
| #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) |
| |
| /* True if register is a condition register. */ |
| #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75) |
| |
| /* True if register is an integer register. */ |
| #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67) |
| |
| /* True if register is the temporary memory location used for int/float |
| conversion. */ |
| #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM) |
| |
| /* Return number of consecutive hard regs needed starting at reg REGNO |
| to hold something of mode MODE. |
| This is ordinarily the length in words of a value of mode MODE |
| but can be less for certain modes in special long registers. |
| |
| On RS/6000, ordinary registers hold 32 bits worth; |
| a single floating point register holds 64 bits worth. */ |
| |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \ |
| ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \ |
| : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. |
| For POWER and PowerPC, the GPRs can hold any mode, but the float |
| registers only can hold floating modes and DImode, and CR register only |
| can hold CC modes. We cannot put TImode anywhere except general |
| register and it must be able to fit within the register set. */ |
| |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
| (FP_REGNO_P (REGNO) ? \ |
| (GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| || (GET_MODE_CLASS (MODE) == MODE_INT \ |
| && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \ |
| : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \ |
| : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \ |
| : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \ |
| && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \ |
| : 1) |
| |
| /* Value is 1 if it is a good idea to tie two pseudo registers |
| when one has mode MODE1 and one has mode MODE2. |
| If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, |
| for any hard reg, then this must be 0 for correct output. */ |
| #define MODES_TIEABLE_P(MODE1, MODE2) \ |
| (GET_MODE_CLASS (MODE1) == MODE_FLOAT \ |
| ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \ |
| : GET_MODE_CLASS (MODE2) == MODE_FLOAT \ |
| ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \ |
| : GET_MODE_CLASS (MODE1) == MODE_CC \ |
| ? GET_MODE_CLASS (MODE2) == MODE_CC \ |
| : GET_MODE_CLASS (MODE2) == MODE_CC \ |
| ? GET_MODE_CLASS (MODE1) == MODE_CC \ |
| : 1) |
| |
| /* A C expression returning the cost of moving data from a register of class |
| CLASS1 to one of CLASS2. |
| |
| On the RS/6000, copying between floating-point and fixed-point |
| registers is expensive. */ |
| |
| #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ |
| ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \ |
| : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \ |
| : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \ |
| : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \ |
| || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \ |
| || (CLASS1) == LINK_OR_CTR_REGS) \ |
| && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \ |
| || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \ |
| || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \ |
| : 2) |
| |
| /* A C expressions returning the cost of moving data of MODE from a register to |
| or from memory. |
| |
| On the RS/6000, bump this up a bit. */ |
| |
| #define MEMORY_MOVE_COST(MODE) \ |
| ((GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \ |
| ? 3 : 2) \ |
| + 4) |
| |
| /* Specify the cost of a branch insn; roughly the number of extra insns that |
| should be added to avoid a branch. |
| |
| Set this to 3 on the RS/6000 since that is roughly the average cost of an |
| unscheduled conditional branch. */ |
| |
| #define BRANCH_COST 3 |
| |
| /* A C statement (sans semicolon) to update the integer variable COST |
| based on the relationship between INSN that is dependent on |
| DEP_INSN through the dependence LINK. The default is to make no |
| adjustment to COST. On the RS/6000, ignore the cost of anti- and |
| output-dependencies. In fact, output dependencies on the CR do have |
| a cost, but it is probably not worthwhile to track it. */ |
| |
| #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \ |
| (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST) |
| |
| /* Define this macro to change register usage conditional on target flags. |
| Set MQ register fixed (already call_used) if not POWER architecture |
| (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated. |
| Conditionally disable FPRs. */ |
| |
| #define CONDITIONAL_REGISTER_USAGE \ |
| { \ |
| if (! TARGET_POWER) \ |
| fixed_regs[64] = 1; \ |
| if (TARGET_SOFT_FLOAT) \ |
| for (i = 32; i < 64; i++) \ |
| fixed_regs[i] = call_used_regs[i] = 1; \ |
| } |
| |
| /* Specify the registers used for certain standard purposes. |
| The values of these macros are register numbers. */ |
| |
| /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ |
| /* #define PC_REGNUM */ |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM 1 |
| |
| /* Base register for access to local variables of the function. */ |
| #define FRAME_POINTER_REGNUM 31 |
| |
| /* Value should be nonzero if functions must have frame pointers. |
| Zero means the frame pointer need not be set up (and parms |
| may be accessed via the stack pointer) in functions that seem suitable. |
| This is computed in `reload', in reload1.c. */ |
| #define FRAME_POINTER_REQUIRED 0 |
| |
| /* Base register for access to arguments of the function. */ |
| #define ARG_POINTER_REGNUM 67 |
| |
| /* Place to put static chain when calling a function that requires it. */ |
| #define STATIC_CHAIN_REGNUM 11 |
| |
| /* count register number for special purposes */ |
| #define COUNT_REGISTER_REGNUM 66 |
| |
| /* Special register that represents memory, used for float/int conversions. */ |
| #define FPMEM_REGNUM 76 |
| |
| /* Register to use as a placeholder for the GOT/allocated TOC register. |
| FINALIZE_PIC will change all uses of this register to a an appropriate |
| pseudo register when it adds the code to setup the GOT. We use r2 |
| because it is a reserved register in all of the ABI's. */ |
| #define GOT_TOC_REGNUM 2 |
| |
| /* Place that structure value return address is placed. |
| |
| On the RS/6000, it is passed as an extra parameter. */ |
| #define STRUCT_VALUE 0 |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. Also define ranges of constants. |
| |
| One of the classes must always be named ALL_REGS and include all hard regs. |
| If there is more than one class, another class must be named NO_REGS |
| and contain no registers. |
| |
| The name GENERAL_REGS must be the name of a class (or an alias for |
| another name such as ALL_REGS). This is the class of registers |
| that is allowed by "g" or "r" in a register constraint. |
| Also, registers outside this class are allocated only when |
| instructions express preferences for them. |
| |
| The classes must be numbered in nondecreasing order; that is, |
| a larger-numbered class must never be contained completely |
| in a smaller-numbered class. |
| |
| For any two classes, it is very desirable that there be another |
| class that represents their union. */ |
| |
| /* The RS/6000 has three types of registers, fixed-point, floating-point, |
| and condition registers, plus three special registers, MQ, CTR, and the |
| link register. |
| |
| However, r0 is special in that it cannot be used as a base register. |
| So make a class for registers valid as base registers. |
| |
| Also, cr0 is the only condition code register that can be used in |
| arithmetic insns, so make a separate class for it. |
| |
| There is a special 'registrer' (76), which is not a register, but a |
| placeholder for memory allocated to convert between floating point and |
| integral types. This works around a problem where if we allocate memory |
| with allocate_stack_{local,temp} and the function is an inline function, the |
| memory allocated will clobber memory in the caller. So we use a special |
| register, and if that is used, we allocate stack space for it. */ |
| |
| enum reg_class |
| { |
| NO_REGS, |
| BASE_REGS, |
| GENERAL_REGS, |
| FLOAT_REGS, |
| NON_SPECIAL_REGS, |
| MQ_REGS, |
| LINK_REGS, |
| CTR_REGS, |
| LINK_OR_CTR_REGS, |
| SPECIAL_REGS, |
| SPEC_OR_GEN_REGS, |
| CR0_REGS, |
| CR_REGS, |
| NON_FLOAT_REGS, |
| FPMEM_REGS, |
| FLOAT_OR_FPMEM_REGS, |
| ALL_REGS, |
| LIM_REG_CLASSES |
| }; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| /* Give names of register classes as strings for dump file. */ |
| |
| #define REG_CLASS_NAMES \ |
| { \ |
| "NO_REGS", \ |
| "BASE_REGS", \ |
| "GENERAL_REGS", \ |
| "FLOAT_REGS", \ |
| "NON_SPECIAL_REGS", \ |
| "MQ_REGS", \ |
| "LINK_REGS", \ |
| "CTR_REGS", \ |
| "LINK_OR_CTR_REGS", \ |
| "SPECIAL_REGS", \ |
| "SPEC_OR_GEN_REGS", \ |
| "CR0_REGS", \ |
| "CR_REGS", \ |
| "NON_FLOAT_REGS", \ |
| "FPMEM_REGS", \ |
| "FLOAT_OR_FPMEM_REGS", \ |
| "ALL_REGS" \ |
| } |
| |
| /* Define which registers fit in which classes. |
| This is an initializer for a vector of HARD_REG_SET |
| of length N_REG_CLASSES. */ |
| |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ |
| { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \ |
| { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \ |
| { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \ |
| { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \ |
| { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \ |
| { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \ |
| { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \ |
| { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \ |
| { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \ |
| } |
| |
| /* The same information, inverted: |
| Return the class number of the smallest class containing |
| reg number REGNO. This could be a conditional expression |
| or could index an array. */ |
| |
| #define REGNO_REG_CLASS(REGNO) \ |
| ((REGNO) == 0 ? GENERAL_REGS \ |
| : (REGNO) < 32 ? BASE_REGS \ |
| : FP_REGNO_P (REGNO) ? FLOAT_REGS \ |
| : (REGNO) == 68 ? CR0_REGS \ |
| : CR_REGNO_P (REGNO) ? CR_REGS \ |
| : (REGNO) == 64 ? MQ_REGS \ |
| : (REGNO) == 65 ? LINK_REGS \ |
| : (REGNO) == 66 ? CTR_REGS \ |
| : (REGNO) == 67 ? BASE_REGS \ |
| : (REGNO) == 76 ? FPMEM_REGS \ |
| : NO_REGS) |
| |
| /* The class value for index registers, and the one for base regs. */ |
| #define INDEX_REG_CLASS GENERAL_REGS |
| #define BASE_REG_CLASS BASE_REGS |
| |
| /* Get reg_class from a letter such as appears in the machine description. */ |
| |
| #define REG_CLASS_FROM_LETTER(C) \ |
| ((C) == 'f' ? FLOAT_REGS \ |
| : (C) == 'b' ? BASE_REGS \ |
| : (C) == 'h' ? SPECIAL_REGS \ |
| : (C) == 'q' ? MQ_REGS \ |
| : (C) == 'c' ? CTR_REGS \ |
| : (C) == 'l' ? LINK_REGS \ |
| : (C) == 'x' ? CR0_REGS \ |
| : (C) == 'y' ? CR_REGS \ |
| : (C) == 'z' ? FPMEM_REGS \ |
| : NO_REGS) |
| |
| /* The letters I, J, K, L, M, N, and P in a register constraint string |
| can be used to stand for particular ranges of immediate operands. |
| This macro defines what the ranges are. |
| C is the letter, and VALUE is a constant value. |
| Return 1 if VALUE is in the range specified by C. |
| |
| `I' is signed 16-bit constants |
| `J' is a constant with only the high-order 16 bits non-zero |
| `K' is a constant with only the low-order 16 bits non-zero |
| `L' is a constant that can be placed into a mask operand |
| `M' is a constant that is greater than 31 |
| `N' is a constant that is an exact power of two |
| `O' is the constant zero |
| `P' is a constant whose negation is a signed 16-bit constant */ |
| |
| #define CONST_OK_FOR_LETTER_P(VALUE, C) \ |
| ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \ |
| : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \ |
| : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \ |
| : (C) == 'L' ? mask_constant (VALUE) \ |
| : (C) == 'M' ? (VALUE) > 31 \ |
| : (C) == 'N' ? exact_log2 (VALUE) >= 0 \ |
| : (C) == 'O' ? (VALUE) == 0 \ |
| : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \ |
| : 0) |
| |
| /* Similar, but for floating constants, and defining letters G and H. |
| Here VALUE is the CONST_DOUBLE rtx itself. |
| |
| We flag for special constants when we can copy the constant into |
| a general register in two insns for DF/DI and one insn for SF. |
| |
| 'H' is used for DI/DF constants that take 3 insns. */ |
| |
| #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ |
| ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \ |
| == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \ |
| : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \ |
| : 0) |
| |
| /* Optional extra constraints for this machine. |
| |
| 'Q' means that is a memory operand that is just an offset from a reg. |
| 'R' is for AIX TOC entries. |
| 'S' is for Windows NT SYMBOL_REFs |
| 'T' is for Windows NT LABEL_REFs. |
| 'U' is for V.4 small data references. */ |
| |
| #define EXTRA_CONSTRAINT(OP, C) \ |
| ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \ |
| : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \ |
| : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\ |
| : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \ |
| : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \ |
| && small_data_operand (OP, GET_MODE (OP))) \ |
| : 0) |
| |
| /* Given an rtx X being reloaded into a reg required to be |
| in class CLASS, return the class of reg to actually use. |
| In general this is just CLASS; but on some machines |
| in some cases it is preferable to use a more restrictive class. |
| |
| On the RS/6000, we have to return NO_REGS when we want to reload a |
| floating-point CONST_DOUBLE to force it to be copied to memory. */ |
| |
| #define PREFERRED_RELOAD_CLASS(X,CLASS) \ |
| ((GET_CODE (X) == CONST_DOUBLE \ |
| && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ |
| ? NO_REGS : (CLASS)) |
| |
| /* Return the register class of a scratch register needed to copy IN into |
| or out of a register in CLASS in MODE. If it can be done directly, |
| NO_REGS is returned. */ |
| |
| #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ |
| secondary_reload_class (CLASS, MODE, IN) |
| |
| /* If we are copying between FP registers and anything else, we need a memory |
| location. */ |
| |
| #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ |
| ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS)) |
| |
| /* Return the maximum number of consecutive registers |
| needed to represent mode MODE in a register of class CLASS. |
| |
| On RS/6000, this is the size of MODE in words, |
| except in the FP regs, where a single reg is enough for two words. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) \ |
| (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \ |
| || (CLASS) == FLOAT_OR_FPMEM_REGS) \ |
| ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \ |
| : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* If defined, gives a class of registers that cannot be used as the |
| operand of a SUBREG that changes the size of the object. */ |
| |
| #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| /* Enumeration to give which calling sequence to use. */ |
| enum rs6000_abi { |
| ABI_NONE, |
| ABI_AIX, /* IBM's AIX */ |
| ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */ |
| ABI_V4, /* System V.4/eabi */ |
| ABI_NT, /* Windows/NT */ |
| ABI_SOLARIS /* Solaris */ |
| }; |
| |
| extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */ |
| |
| /* Default ABI to compile code for */ |
| #ifndef DEFAULT_ABI |
| #define DEFAULT_ABI ABI_AIX |
| /* The prefix to add to user-visible assembler symbols. */ |
| #define USER_LABEL_PREFIX "." |
| #endif |
| |
| /* Structure used to define the rs6000 stack */ |
| typedef struct rs6000_stack { |
| int first_gp_reg_save; /* first callee saved GP register used */ |
| int first_fp_reg_save; /* first callee saved FP register used */ |
| int lr_save_p; /* true if the link reg needs to be saved */ |
| int cr_save_p; /* true if the CR reg needs to be saved */ |
| int toc_save_p; /* true if the TOC needs to be saved */ |
| int push_p; /* true if we need to allocate stack space */ |
| int calls_p; /* true if the function makes any calls */ |
| int main_p; /* true if this is main */ |
| int main_save_p; /* true if this is main and we need to save args */ |
| int fpmem_p; /* true if float/int conversion temp needed */ |
| enum rs6000_abi abi; /* which ABI to use */ |
| int gp_save_offset; /* offset to save GP regs from initial SP */ |
| int fp_save_offset; /* offset to save FP regs from initial SP */ |
| int lr_save_offset; /* offset to save LR from initial SP */ |
| int cr_save_offset; /* offset to save CR from initial SP */ |
| int toc_save_offset; /* offset to save the TOC pointer */ |
| int varargs_save_offset; /* offset to save the varargs registers */ |
| int main_save_offset; /* offset to save main's args */ |
| int fpmem_offset; /* offset for float/int conversion temp */ |
| int reg_size; /* register size (4 or 8) */ |
| int varargs_size; /* size to hold V.4 args passed in regs */ |
| int vars_size; /* variable save area size */ |
| int parm_size; /* outgoing parameter size */ |
| int main_size; /* size to hold saving main's args */ |
| int save_size; /* save area size */ |
| int fixed_size; /* fixed size of stack frame */ |
| int gp_size; /* size of saved GP registers */ |
| int fp_size; /* size of saved FP registers */ |
| int cr_size; /* size to hold CR if not in save_size */ |
| int lr_size; /* size to hold LR if not in save_size */ |
| int fpmem_size; /* size to hold float/int conversion */ |
| int toc_size; /* size to hold TOC if not in save_size */ |
| int total_size; /* total bytes allocated for stack */ |
| } rs6000_stack_t; |
| |
| /* Define this if pushing a word on the stack |
| makes the stack pointer a smaller address. */ |
| #define STACK_GROWS_DOWNWARD |
| |
| /* Define this if the nominal address of the stack frame |
| is at the high-address end of the local variables; |
| that is, each additional local variable allocated |
| goes at a more negative offset in the frame. |
| |
| On the RS/6000, we grow upwards, from the area after the outgoing |
| arguments. */ |
| /* #define FRAME_GROWS_DOWNWARD */ |
| |
| /* Size of the outgoing register save area */ |
| #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64) |
| |
| /* Size of the fixed area on the stack */ |
| #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48) |
| |
| /* Address to save the TOC register */ |
| #define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20) |
| |
| /* Offset & size for fpmem stack locations used for converting between |
| float and integral types. */ |
| extern int rs6000_fpmem_offset; |
| extern int rs6000_fpmem_size; |
| |
| /* Size of the V.4 varargs area if needed */ |
| #define RS6000_VARARGS_AREA 0 |
| |
| /* Whether a V.4 varargs area is needed */ |
| extern int rs6000_sysv_varargs_p; |
| |
| /* Align an address */ |
| #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1)) |
| |
| /* Initialize data used by insn expanders. This is called from |
| init_emit, once for each function, before code is generated. */ |
| #define INIT_EXPANDERS rs6000_init_expanders () |
| |
| /* Size of V.4 varargs area in bytes */ |
| #define RS6000_VARARGS_SIZE \ |
| ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8) |
| |
| /* Offset of V.4 varargs area */ |
| #define RS6000_VARARGS_OFFSET \ |
| (RS6000_ALIGN (current_function_outgoing_args_size, 8) \ |
| + RS6000_SAVE_AREA) |
| |
| /* Offset within stack frame to start allocating local variables at. |
| If FRAME_GROWS_DOWNWARD, this is the offset to the END of the |
| first local allocated. Otherwise, it is the offset to the BEGINNING |
| of the first local allocated. |
| |
| On the RS/6000, the frame pointer is the same as the stack pointer, |
| except for dynamic allocations. So we start after the fixed area and |
| outgoing parameter area. */ |
| |
| #define STARTING_FRAME_OFFSET \ |
| (RS6000_ALIGN (current_function_outgoing_args_size, 8) \ |
| + RS6000_VARARGS_AREA \ |
| + RS6000_SAVE_AREA) |
| |
| /* Offset from the stack pointer register to an item dynamically |
| allocated on the stack, e.g., by `alloca'. |
| |
| The default value for this macro is `STACK_POINTER_OFFSET' plus the |
| length of the outgoing arguments. The default is correct for most |
| machines. See `function.c' for details. */ |
| #define STACK_DYNAMIC_OFFSET(FUNDECL) \ |
| (RS6000_ALIGN (current_function_outgoing_args_size, 8) \ |
| + (STACK_POINTER_OFFSET)) |
| |
| /* If we generate an insn to push BYTES bytes, |
| this says how many the stack pointer really advances by. |
| On RS/6000, don't define this because there are no push insns. */ |
| /* #define PUSH_ROUNDING(BYTES) */ |
| |
| /* Offset of first parameter from the argument pointer register value. |
| On the RS/6000, we define the argument pointer to the start of the fixed |
| area. */ |
| #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA |
| |
| /* Define this if stack space is still allocated for a parameter passed |
| in a register. The value is the number of bytes allocated to this |
| area. */ |
| #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE |
| |
| /* Define this if the above stack space is to be considered part of the |
| space allocated by the caller. */ |
| #define OUTGOING_REG_PARM_STACK_SPACE |
| |
| /* This is the difference between the logical top of stack and the actual sp. |
| |
| For the RS/6000, sp points past the fixed area. */ |
| #define STACK_POINTER_OFFSET RS6000_SAVE_AREA |
| |
| /* Define this if the maximum size of all the outgoing args is to be |
| accumulated and pushed during the prologue. The amount can be |
| found in the variable current_function_outgoing_args_size. */ |
| #define ACCUMULATE_OUTGOING_ARGS |
| |
| /* Value is the number of bytes of arguments automatically |
| popped when returning from a subroutine call. |
| FUNDECL is the declaration node of the function (as a tree), |
| FUNTYPE is the data type of the function (as a tree), |
| or for a library call it is an identifier node for the subroutine name. |
| SIZE is the number of bytes of arguments passed on the stack. */ |
| |
| #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 |
| |
| /* Define how to find the value returned by a function. |
| VALTYPE is the data type of the value (as a tree). |
| If the precise function being called is known, FUNC is its FUNCTION_DECL; |
| otherwise, FUNC is 0. |
| |
| On RS/6000 an integer value is in r3 and a floating-point value is in |
| fp1, unless -msoft-float. */ |
| |
| #define FUNCTION_VALUE(VALTYPE, FUNC) \ |
| gen_rtx (REG, TYPE_MODE (VALTYPE), \ |
| TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3) |
| |
| /* Define how to find the value returned by a library function |
| assuming the value has mode MODE. */ |
| |
| #define LIBCALL_VALUE(MODE) \ |
| gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3) |
| |
| /* The definition of this macro implies that there are cases where |
| a scalar value cannot be returned in registers. |
| |
| For the RS/6000, any structure or union type is returned in memory, except for |
| Solaris, which returns structures <= 8 bytes in registers. */ |
| |
| #define RETURN_IN_MEMORY(TYPE) \ |
| (TYPE_MODE (TYPE) == BLKmode \ |
| && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8)) |
| |
| /* Minimum and maximum general purpose registers used to hold arguments. */ |
| #define GP_ARG_MIN_REG 3 |
| #define GP_ARG_MAX_REG 10 |
| #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) |
| |
| /* Minimum and maximum floating point registers used to hold arguments. */ |
| #define FP_ARG_MIN_REG 33 |
| #define FP_ARG_AIX_MAX_REG 45 |
| #define FP_ARG_V4_MAX_REG 40 |
| #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG |
| #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1) |
| |
| /* Return registers */ |
| #define GP_ARG_RETURN GP_ARG_MIN_REG |
| #define FP_ARG_RETURN FP_ARG_MIN_REG |
| |
| /* Flags for the call/call_value rtl operations set up by function_arg */ |
| #define CALL_NORMAL 0x00000000 /* no special processing */ |
| #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */ |
| #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */ |
| #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */ |
| #define CALL_LONG 0x00000008 /* always call indirect */ |
| |
| /* Define cutoff for using external functions to save floating point */ |
| #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63) |
| |
| /* 1 if N is a possible register number for a function value |
| as seen by the caller. |
| |
| On RS/6000, this is r3 and fp1. */ |
| #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN)) |
| |
| /* 1 if N is a possible register number for function argument passing. |
| On RS/6000, these are r3-r10 and fp1-fp13. */ |
| #define FUNCTION_ARG_REGNO_P(N) \ |
| (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \ |
| || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG))) |
| |
| |
| /* Define a data type for recording info about an argument list |
| during the scan of that argument list. This data type should |
| hold all necessary information about the function itself |
| and about the args processed so far, enough to enable macros |
| such as FUNCTION_ARG to determine where the next arg should go. |
| |
| On the RS/6000, this is a structure. The first element is the number of |
| total argument words, the second is used to store the next |
| floating-point register number, and the third says how many more args we |
| have prototype types for. |
| |
| The System V.4 varargs/stdarg support requires that this structure's size |
| be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE, |
| ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */ |
| |
| typedef struct rs6000_args |
| { |
| int words; /* # words uses for passing GP registers */ |
| int fregno; /* next available FP register */ |
| int nargs_prototype; /* # args left in the current prototype */ |
| int orig_nargs; /* Original value of nargs_prototype */ |
| int varargs_offset; /* offset of the varargs save area */ |
| int prototype; /* Whether a prototype was defined */ |
| int call_cookie; /* Do special things for this call */ |
| } CUMULATIVE_ARGS; |
| |
| /* Define intermediate macro to compute the size (in registers) of an argument |
| for the RS/6000. */ |
| |
| #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \ |
| (! (NAMED) ? 0 \ |
| : (MODE) != BLKmode \ |
| ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ |
| : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) |
| |
| /* Initialize a variable CUM of type CUMULATIVE_ARGS |
| for a call to a function whose data type is FNTYPE. |
| For a library call, FNTYPE is 0. */ |
| |
| #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ |
| init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE) |
| |
| /* Similar, but when scanning the definition of a procedure. We always |
| set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ |
| |
| #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \ |
| init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE) |
| |
| /* Update the data in CUM to advance over an argument |
| of mode MODE and data type TYPE. |
| (TYPE is null for libcalls where that information may not be available.) */ |
| |
| #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ |
| function_arg_advance (&CUM, MODE, TYPE, NAMED) |
| |
| /* Non-zero if we can use a floating-point register to pass this arg. */ |
| #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \ |
| (GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| && (CUM).fregno <= FP_ARG_MAX_REG \ |
| && TARGET_HARD_FLOAT) |
| |
| /* Determine where to put an argument to a function. |
| Value is zero to push the argument on the stack, |
| or a hard register in which to store the argument. |
| |
| MODE is the argument's machine mode. |
| TYPE is the data type of the argument (as a tree). |
| This is null for libcalls where that information may |
| not be available. |
| CUM is a variable of type CUMULATIVE_ARGS which gives info about |
| the preceding args and about the function being called. |
| NAMED is nonzero if this argument is a named parameter |
| (otherwise it is an extra parameter matching an ellipsis). |
| |
| On RS/6000 the first eight words of non-FP are normally in registers |
| and the rest are pushed. The first 13 FP args are in registers. |
| |
| If this is floating-point and no prototype is specified, we use |
| both an FP and integer register (or possibly FP reg and stack). Library |
| functions (when TYPE is zero) always have the proper types for args, |
| so we can pass the FP value just in one register. emit_library_function |
| doesn't support EXPR_LIST anyway. */ |
| |
| #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ |
| function_arg (&CUM, MODE, TYPE, NAMED) |
| |
| /* For an arg passed partly in registers and partly in memory, |
| this is the number of registers used. |
| For args passed entirely in registers or entirely in memory, zero. */ |
| |
| #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ |
| function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) |
| |
| /* A C expression that indicates when an argument must be passed by |
| reference. If nonzero for an argument, a copy of that argument is |
| made in memory and a pointer to the argument is passed instead of |
| the argument itself. The pointer is passed in whatever way is |
| appropriate for passing a pointer to that type. */ |
| |
| #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ |
| function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED) |
| |
| /* If defined, a C expression that gives the alignment boundary, in bits, |
| of an argument with the specified mode and type. If it is not defined, |
| PARM_BOUNDARY is used for all arguments. */ |
| |
| #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ |
| function_arg_boundary (MODE, TYPE) |
| |
| /* Perform any needed actions needed for a function that is receiving a |
| variable number of arguments. |
| |
| CUM is as above. |
| |
| MODE and TYPE are the mode and type of the current parameter. |
| |
| PRETEND_SIZE is a variable that should be set to the amount of stack |
| that must be pushed by the prolog to pretend that our caller pushed |
| it. |
| |
| Normally, this macro will push all remaining incoming registers on the |
| stack and set PRETEND_SIZE to the length of the registers pushed. */ |
| |
| #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ |
| setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL) |
| |
| /* If defined, is a C expression that produces the machine-specific |
| code for a call to `__builtin_saveregs'. This code will be moved |
| to the very beginning of the function, before any parameter access |
| are made. The return value of this function should be an RTX that |
| contains the value to use as the return of `__builtin_saveregs'. |
| |
| The argument ARGS is a `tree_list' containing the arguments that |
| were passed to `__builtin_saveregs'. |
| |
| If this macro is not defined, the compiler will output an ordinary |
| call to the library function `__builtin_saveregs'. */ |
| |
| #define EXPAND_BUILTIN_SAVEREGS(ARGS) \ |
| expand_builtin_saveregs (ARGS) |
| |
| /* This macro generates the assembly code for function entry. |
| FILE is a stdio stream to output the code to. |
| SIZE is an int: how many units of temporary storage to allocate. |
| Refer to the array `regs_ever_live' to determine which registers |
| to save; `regs_ever_live[I]' is nonzero if register number I |
| is ever used in the function. This macro is responsible for |
| knowing which registers should not be saved even if used. */ |
| |
| #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE) |
| |
| /* Output assembler code to FILE to increment profiler label # LABELNO |
| for profiling a function entry. */ |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| output_function_profiler ((FILE), (LABELNO)); |
| |
| /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
| the stack pointer does not matter. No definition is equivalent to |
| always zero. |
| |
| On the RS/6000, this is non-zero because we can restore the stack from |
| its backpointer, which we maintain. */ |
| #define EXIT_IGNORE_STACK 1 |
| |
| /* This macro generates the assembly code for function exit, |
| on machines that need it. If FUNCTION_EPILOGUE is not defined |
| then individual return instructions are generated for each |
| return statement. Args are same as for FUNCTION_PROLOGUE. |
| |
| The function epilogue should not depend on the current stack pointer! |
| It should use the frame pointer only. This is mandatory because |
| of alloca; we also take advantage of it to omit stack adjustments |
| before returning. */ |
| |
| #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE) |
| |
| /* TRAMPOLINE_TEMPLATE deleted */ |
| |
| /* Length in units of the trampoline for entering a nested function. */ |
| |
| #define TRAMPOLINE_SIZE rs6000_trampoline_size () |
| |
| /* Emit RTL insns to initialize the variable parts of a trampoline. |
| FNADDR is an RTX for the address of the function's pure code. |
| CXT is an RTX for the static chain value for the function. */ |
| |
| #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ |
| rs6000_initialize_trampoline (ADDR, FNADDR, CXT) |
| |
| /* If defined, a C expression whose value is nonzero if IDENTIFIER |
| with arguments ARGS is a valid machine specific attribute for DECL. |
| The attributes in ATTRIBUTES have previously been assigned to DECL. */ |
| |
| #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \ |
| (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS)) |
| |
| /* If defined, a C expression whose value is nonzero if IDENTIFIER |
| with arguments ARGS is a valid machine specific attribute for TYPE. |
| The attributes in ATTRIBUTES have previously been assigned to TYPE. */ |
| |
| #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \ |
| (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS)) |
| |
| /* If defined, a C expression whose value is zero if the attributes on |
| TYPE1 and TYPE2 are incompatible, one if they are compatible, and |
| two if they are nearly compatible (which causes a warning to be |
| generated). */ |
| |
| #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \ |
| (rs6000_comp_type_attributes (TYPE1, TYPE2)) |
| |
| /* If defined, a C statement that assigns default attributes to newly |
| defined TYPE. */ |
| |
| #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \ |
| (rs6000_set_default_type_attributes (TYPE)) |
| |
| |
| /* Definitions for __builtin_return_address and __builtin_frame_address. |
| __builtin_return_address (0) should give link register (65), enable |
| this. */ |
| /* This should be uncommented, so that the link register is used, but |
| currently this would result in unmatched insns and spilling fixed |
| registers so we'll leave it for another day. When these problems are |
| taken care of one additional fetch will be necessary in RETURN_ADDR_RTX. |
| (mrs) */ |
| /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */ |
| |
| /* Number of bytes into the frame return addresses can be found. See |
| rs6000_stack_info in rs6000.c for more information on how the different |
| abi's store the return address. */ |
| #define RETURN_ADDRESS_OFFSET \ |
| ((DEFAULT_ABI == ABI_AIX \ |
| || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \ |
| (DEFAULT_ABI == ABI_V4 \ |
| || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \ |
| (DEFAULT_ABI == ABI_NT) ? -4 : \ |
| (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0)) |
| |
| /* The current return address is in link register (65). The return address |
| of anything farther back is accessed normally at an offset of 8 from the |
| frame pointer. */ |
| #define RETURN_ADDR_RTX(count, frame) \ |
| ((count == -1) \ |
| ? gen_rtx (REG, Pmode, 65) \ |
| : gen_rtx (MEM, Pmode, \ |
| memory_address (Pmode, \ |
| plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \ |
| memory_address (Pmode, frame))), \ |
| RETURN_ADDRESS_OFFSET)))) |
| |
| /* Definitions for register eliminations. |
| |
| We have two registers that can be eliminated on the RS/6000. First, the |
| frame pointer register can often be eliminated in favor of the stack |
| pointer register. Secondly, the argument pointer register can always be |
| eliminated; it is replaced with either the stack or frame pointer. |
| |
| In addition, we use the elimination mechanism to see if r30 is needed |
| Initially we assume that it isn't. If it is, we spill it. This is done |
| by making it an eliminable register. We replace it with itself so that |
| if it isn't needed, then existing uses won't be modified. */ |
| |
| /* This is an array of structures. Each structure initializes one pair |
| of eliminable registers. The "from" register number is given first, |
| followed by "to". Eliminations of the same "from" register are listed |
| in order of preference. */ |
| #define ELIMINABLE_REGS \ |
| {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ |
| { 30, 30} } |
| |
| /* Given FROM and TO register numbers, say whether this elimination is allowed. |
| Frame pointer elimination is automatically handled. |
| |
| For the RS/6000, if frame pointer elimination is being done, we would like |
| to convert ap into fp, not sp. |
| |
| We need r30 if -mminimal-toc was specified, and there are constant pool |
| references. */ |
| |
| #define CAN_ELIMINATE(FROM, TO) \ |
| ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ |
| ? ! frame_pointer_needed \ |
| : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \ |
| : 1) |
| |
| /* Define the offset between two registers, one to be eliminated, and the other |
| its replacement, at the start of a routine. */ |
| #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ |
| { \ |
| rs6000_stack_t *info = rs6000_stack_info (); \ |
| \ |
| if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ |
| (OFFSET) = (info->push_p) ? 0 : - info->total_size; \ |
| else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ |
| (OFFSET) = info->total_size; \ |
| else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ |
| (OFFSET) = (info->push_p) ? info->total_size : 0; \ |
| else if ((FROM) == 30) \ |
| (OFFSET) = 0; \ |
| else \ |
| abort (); \ |
| } |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| /* #define HAVE_POST_INCREMENT */ |
| /* #define HAVE_POST_DECREMENT */ |
| |
| #define HAVE_PRE_DECREMENT |
| #define HAVE_PRE_INCREMENT |
| |
| /* Macros to check register numbers against specific register classes. */ |
| |
| /* These assume that REGNO is a hard or pseudo reg number. |
| They give nonzero only if REGNO is a hard reg of the suitable class |
| or a pseudo reg currently allocated to a suitable hard reg. |
| Since they use reg_renumber, they are safe only once reg_renumber |
| has been allocated, which happens in local-alloc.c. */ |
| |
| #define REGNO_OK_FOR_INDEX_P(REGNO) \ |
| ((REGNO) < FIRST_PSEUDO_REGISTER \ |
| ? (REGNO) <= 31 || (REGNO) == 67 \ |
| : (reg_renumber[REGNO] >= 0 \ |
| && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67))) |
| |
| #define REGNO_OK_FOR_BASE_P(REGNO) \ |
| ((REGNO) < FIRST_PSEUDO_REGISTER \ |
| ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \ |
| : (reg_renumber[REGNO] > 0 \ |
| && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67))) |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* Recognize any constant value that is a valid address. */ |
| |
| #define CONSTANT_ADDRESS_P(X) \ |
| (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ |
| || GET_CODE (X) == HIGH) |
| |
| /* Nonzero if the constant value X is a legitimate general operand. |
| It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. |
| |
| On the RS/6000, all integer constants are acceptable, most won't be valid |
| for particular insns, though. Only easy FP constants are |
| acceptable. */ |
| |
| #define LEGITIMATE_CONSTANT_P(X) \ |
| (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \ |
| || easy_fp_constant (X, GET_MODE (X))) |
| |
| /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx |
| and check its validity for a certain class. |
| We have two alternate definitions for each of them. |
| The usual definition accepts all pseudo regs; the other rejects |
| them unless they have been allocated suitable hard regs. |
| The symbol REG_OK_STRICT causes the latter definition to be used. |
| |
| Most source files want to accept pseudo regs in the hope that |
| they will get allocated to the class that the insn wants them to be in. |
| Source files for reload pass need to be strict. |
| After reload, it makes no difference, since pseudo regs have |
| been eliminated by then. */ |
| |
| #ifndef REG_OK_STRICT |
| |
| /* Nonzero if X is a hard reg that can be used as an index |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_INDEX_P(X) \ |
| (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER) |
| |
| /* Nonzero if X is a hard reg that can be used as a base reg |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_BASE_P(X) \ |
| (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X)) |
| |
| #else |
| |
| /* Nonzero if X is a hard reg that can be used as an index. */ |
| #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) |
| /* Nonzero if X is a hard reg that can be used as a base reg. */ |
| #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) |
| |
| #endif |
| |
| /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression |
| that is a valid memory address for an instruction. |
| The MODE argument is the machine mode for the MEM expression |
| that wants to use this address. |
| |
| On the RS/6000, there are four valid address: a SYMBOL_REF that |
| refers to a constant pool entry of an address (or the sum of it |
| plus a constant), a short (16-bit signed) constant plus a register, |
| the sum of two registers, or a register indirect, possibly with an |
| auto-increment. For DFmode and DImode with an constant plus register, |
| we must ensure that both words are addressable or PowerPC64 with offset |
| word aligned. */ |
| |
| #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \ |
| (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \ |
| && CONSTANT_POOL_ADDRESS_P (X) \ |
| && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X))) |
| |
| /* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */ |
| #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \ |
| (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \ |
| || (TARGET_TOC \ |
| && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \ |
| && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ |
| && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0)))) |
| |
| #define LEGITIMATE_SMALL_DATA_P(MODE, X) \ |
| ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \ |
| && !flag_pic && !TARGET_TOC \ |
| && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \ |
| && small_data_operand (X, MODE)) |
| |
| #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \ |
| (GET_CODE (X) == CONST_INT \ |
| && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000) |
| |
| #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \ |
| (GET_CODE (X) == PLUS \ |
| && GET_CODE (XEXP (X, 0)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ |
| && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \ |
| && (((MODE) != DFmode && (MODE) != DImode) \ |
| || (TARGET_32BIT \ |
| ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \ |
| : ! (INTVAL (XEXP (X, 1)) & 3))) \ |
| && ((MODE) != TImode \ |
| || (TARGET_32BIT \ |
| ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \ |
| : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \ |
| && ! (INTVAL (XEXP (X, 1)) & 3))))) |
| |
| #define LEGITIMATE_INDEXED_ADDRESS_P(X) \ |
| (GET_CODE (X) == PLUS \ |
| && GET_CODE (XEXP (X, 0)) == REG \ |
| && GET_CODE (XEXP (X, 1)) == REG \ |
| && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \ |
| && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \ |
| || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \ |
| && REG_OK_FOR_INDEX_P (XEXP (X, 0))))) |
| |
| #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \ |
| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) |
| |
| #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \ |
| (TARGET_ELF \ |
| && !flag_pic && !TARGET_TOC \ |
| && (MODE) != DImode \ |
| && (MODE) != TImode \ |
| && (TARGET_HARD_FLOAT || (MODE) != DFmode) \ |
| && GET_CODE (X) == LO_SUM \ |
| && GET_CODE (XEXP (X, 0)) == REG \ |
| && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ |
| && CONSTANT_P (XEXP (X, 1))) |
| |
| #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ |
| { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \ |
| goto ADDR; \ |
| if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \ |
| && TARGET_UPDATE \ |
| && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \ |
| goto ADDR; \ |
| if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \ |
| goto ADDR; \ |
| if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \ |
| goto ADDR; \ |
| if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \ |
| goto ADDR; \ |
| if ((MODE) != TImode \ |
| && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \ |
| && (TARGET_64BIT || (MODE) != DImode) \ |
| && LEGITIMATE_INDEXED_ADDRESS_P (X)) \ |
| goto ADDR; \ |
| if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \ |
| goto ADDR; \ |
| } |
| |
| /* Try machine-dependent ways of modifying an illegitimate address |
| to be legitimate. If we find one, return the new, valid address. |
| This macro is used in only one place: `memory_address' in explow.c. |
| |
| OLDX is the address as it was before break_out_memory_refs was called. |
| In some cases it is useful to look at this to decide what needs to be done. |
| |
| MODE and WIN are passed so that this macro can use |
| GO_IF_LEGITIMATE_ADDRESS. |
| |
| It is always safe for this macro to do nothing. It exists to recognize |
| opportunities to optimize the output. |
| |
| On RS/6000, first check for the sum of a register with a constant |
| integer that is out of range. If so, generate code to add the |
| constant with the low-order 16 bits masked to the register and force |
| this result into another register (this can be done with `cau'). |
| Then generate an address of REG+(CONST&0xffff), allowing for the |
| possibility of bit 16 being a one. |
| |
| Then check for the sum of a register and something not constant, try to |
| load the other things into a register and return the sum. */ |
| |
| #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ |
| { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ |
| && GET_CODE (XEXP (X, 1)) == CONST_INT \ |
| && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \ |
| { HOST_WIDE_INT high_int, low_int; \ |
| rtx sum; \ |
| high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \ |
| low_int = INTVAL (XEXP (X, 1)) & 0xffff; \ |
| if (low_int & 0x8000) \ |
| high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \ |
| sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \ |
| GEN_INT (high_int)), 0); \ |
| (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \ |
| goto WIN; \ |
| } \ |
| else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ |
| && GET_CODE (XEXP (X, 1)) != CONST_INT \ |
| && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \ |
| && (TARGET_64BIT || (MODE) != DImode) \ |
| && (MODE) != TImode) \ |
| { \ |
| (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \ |
| force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \ |
| goto WIN; \ |
| } \ |
| else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \ |
| && !flag_pic \ |
| && GET_CODE (X) != CONST_INT \ |
| && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \ |
| && (TARGET_HARD_FLOAT || (MODE) != DFmode) \ |
| && (MODE) != DImode && (MODE) != TImode) \ |
| { \ |
| rtx reg = gen_reg_rtx (Pmode); \ |
| emit_insn (gen_elf_high (reg, (X))); \ |
| (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \ |
| } \ |
| } |
| |
| /* Go to LABEL if ADDR (a legitimate address expression) |
| has an effect that depends on the machine mode it is used for. |
| |
| On the RS/6000 this is true if the address is valid with a zero offset |
| but not with an offset of four (this means it cannot be used as an |
| address for DImode or DFmode) or is a pre-increment or decrement. Since |
| we know it is valid, we just check for an address that is not valid with |
| an offset of four. */ |
| |
| #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ |
| { if (GET_CODE (ADDR) == PLUS \ |
| && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \ |
| && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \ |
| (TARGET_32BIT ? 4 : 8))) \ |
| goto LABEL; \ |
| if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \ |
| goto LABEL; \ |
| if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \ |
| goto LABEL; \ |
| if (GET_CODE (ADDR) == LO_SUM) \ |
| goto LABEL; \ |
| } |
| |
| /* The register number of the register used to address a table of |
| static data addresses in memory. In some cases this register is |
| defined by a processor's "application binary interface" (ABI). |
| When this macro is defined, RTL is generated for this register |
| once, as with the stack pointer and frame pointer registers. If |
| this macro is not defined, it is up to the machine-dependent files |
| to allocate such a register (if necessary). */ |
| |
| /* #define PIC_OFFSET_TABLE_REGNUM */ |
| |
| /* Define this macro if the register defined by |
| `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define |
| this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */ |
| |
| /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */ |
| |
| /* By generating position-independent code, when two different |
| programs (A and B) share a common library (libC.a), the text of |
| the library can be shared whether or not the library is linked at |
| the same address for both programs. In some of these |
| environments, position-independent code requires not only the use |
| of different addressing modes, but also special code to enable the |
| use of these addressing modes. |
| |
| The `FINALIZE_PIC' macro serves as a hook to emit these special |
| codes once the function is being compiled into assembly code, but |
| not before. (It is not done before, because in the case of |
| compiling an inline function, it would lead to multiple PIC |
| prologues being included in functions which used inline functions |
| and were compiled to assembly language.) */ |
| |
| #define FINALIZE_PIC rs6000_finalize_pic () |
| |
| /* A C expression that is nonzero if X is a legitimate immediate |
| operand on the target machine when generating position independent |
| code. You can assume that X satisfies `CONSTANT_P', so you need |
| not check this. You can also assume FLAG_PIC is true, so you need |
| not check it either. You need not define this macro if all |
| constants (including `SYMBOL_REF') can be immediate operands when |
| generating position independent code. */ |
| |
| /* #define LEGITIMATE_PIC_OPERAND_P (X) */ |
| |
| /* In rare cases, correct code generation requires extra machine |
| dependent processing between the second jump optimization pass and |
| delayed branch scheduling. On those machines, define this macro |
| as a C statement to act on the code starting at INSN. |
| |
| On the RS/6000, we use it to make sure the GOT_TOC register marker |
| that FINALIZE_PIC is supposed to remove actually got removed. */ |
| |
| #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN) |
| |
| |
| /* Define this if some processing needs to be done immediately before |
| emitting code for an insn. */ |
| |
| /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */ |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode) |
| |
| /* Define this if the tablejump instruction expects the table |
| to contain offsets from the address of the table. |
| Do not define this if the table should contain absolute addresses. */ |
| #define CASE_VECTOR_PC_RELATIVE |
| |
| /* Specify the tree operation to be used to convert reals to integers. */ |
| #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR |
| |
| /* This is the kind of divide that is easiest to do in the general case. */ |
| #define EASY_DIV_EXPR TRUNC_DIV_EXPR |
| |
| /* Define this as 1 if `char' should by default be signed; else as 0. */ |
| #define DEFAULT_SIGNED_CHAR 0 |
| |
| /* This flag, if defined, says the same insns that convert to a signed fixnum |
| also convert validly to an unsigned one. */ |
| |
| /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */ |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8) |
| #define MAX_MOVE_MAX 8 |
| |
| /* Nonzero if access to memory by bytes is no faster than for words. |
| Also non-zero if doing byte operations (specifically shifts) in registers |
| is undesirable. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* Define if operations between registers always perform the operation |
| on the full register even if a narrower mode is specified. */ |
| #define WORD_REGISTER_OPERATIONS |
| |
| /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD |
| will either zero-extend or sign-extend. The value of this macro should |
| be the code that says which one of the two operations is implicitly |
| done, NIL if none. */ |
| #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND |
| |
| /* Define if loading short immediate values into registers sign extends. */ |
| #define SHORT_IMMEDIATES_SIGN_EXTEND |
| |
| /* The RS/6000 uses the XCOFF format. */ |
| |
| #define XCOFF_DEBUGGING_INFO |
| |
| /* Define if the object format being used is COFF or a superset. */ |
| #define OBJECT_FORMAT_COFF |
| |
| /* Define the magic numbers that we recognize as COFF. */ |
| |
| #define MY_ISCOFF(magic) \ |
| ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC) |
| |
| /* This is the only version of nm that collect2 can work with. */ |
| #define REAL_NM_FILE_NAME "/usr/ucb/nm" |
| |
| /* We don't have GAS for the RS/6000 yet, so don't write out special |
| .stabs in cc1plus. */ |
| |
| #define FASCIST_ASSEMBLER |
| |
| #ifndef ASM_OUTPUT_CONSTRUCTOR |
| #define ASM_OUTPUT_CONSTRUCTOR(file, name) |
| #endif |
| #ifndef ASM_OUTPUT_DESTRUCTOR |
| #define ASM_OUTPUT_DESTRUCTOR(file, name) |
| #endif |
| |
| /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
| is done just by pretending it is already truncated. */ |
| #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode (TARGET_32BIT ? SImode : DImode) |
| |
| /* Mode of a function address in a call instruction (for indexing purposes). |
| |
| Doesn't matter on RS/6000. */ |
| #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode) |
| |
| /* Define this if addresses of constant functions |
| shouldn't be put through pseudo regs where they can be cse'd. |
| Desirable on machines where ordinary constants are expensive |
| but a CALL with constant address is cheap. */ |
| #define NO_FUNCTION_CSE |
| |
| /* Define this to be nonzero if shift instructions ignore all but the low-order |
| few bits. |
| |
| The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED |
| have been dropped from the PowerPC architecture. */ |
| |
| #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0) |
| |
| /* Use atexit for static constructors/destructors, instead of defining |
| our own exit function. */ |
| #define HAVE_ATEXIT |
| |
| /* Compute the cost of computing a constant rtl expression RTX |
| whose rtx-code is CODE. The body of this macro is a portion |
| of a switch statement. If the code is computed here, |
| return it with a return statement. Otherwise, break from the switch. |
| |
| On the RS/6000, if it is valid in the insn, it is free. So this |
| always returns 0. */ |
| |
| #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
| case CONST_INT: \ |
| case CONST: \ |
| case LABEL_REF: \ |
| case SYMBOL_REF: \ |
| case CONST_DOUBLE: \ |
| case HIGH: \ |
| return 0; |
| |
| /* Provide the costs of a rtl expression. This is in the body of a |
| switch on CODE. */ |
| |
| #define RTX_COSTS(X,CODE,OUTER_CODE) \ |
| case PLUS: \ |
| return ((GET_CODE (XEXP (X, 1)) == CONST_INT \ |
| && (unsigned HOST_WIDE_INT) ((INTVAL (XEXP (X, 1)) \ |
| + 0x8000) >= 0x10000)) \ |
| ? COSTS_N_INSNS (2) \ |
| : COSTS_N_INSNS (1)); \ |
| case AND: \ |
| return ((non_and_cint_operand (XEXP (X, 1), SImode)) \ |
| ? COSTS_N_INSNS (2) \ |
| : COSTS_N_INSNS (1)); \ |
| case IOR: \ |
| case XOR: \ |
| return ((non_logical_cint_operand (XEXP (X, 1), SImode)) \ |
| ? COSTS_N_INSNS (2) \ |
| : COSTS_N_INSNS (1)); \ |
| case MULT: \ |
| switch (rs6000_cpu) \ |
| { \ |
| case PROCESSOR_RIOS1: \ |
| return (GET_CODE (XEXP (X, 1)) != CONST_INT \ |
| ? COSTS_N_INSNS (5) \ |
| : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \ |
| ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \ |
| case PROCESSOR_RIOS2: \ |
| case PROCESSOR_MPCCORE: \ |
| return COSTS_N_INSNS (2); \ |
| case PROCESSOR_PPC601: \ |
| return COSTS_N_INSNS (5); \ |
| case PROCESSOR_PPC603: \ |
| return (GET_CODE (XEXP (X, 1)) != CONST_INT \ |
| ? COSTS_N_INSNS (5) \ |
| : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \ |
| ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \ |
| case PROCESSOR_PPC403: \ |
| case PROCESSOR_PPC604: \ |
| case PROCESSOR_PPC620: \ |
| return COSTS_N_INSNS (4); \ |
| } \ |
| case DIV: \ |
| case MOD: \ |
| if (GET_CODE (XEXP (X, 1)) == CONST_INT \ |
| && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \ |
| return COSTS_N_INSNS (2); \ |
| /* otherwise fall through to normal divide. */ \ |
| case UDIV: \ |
| case UMOD: \ |
| switch (rs6000_cpu) \ |
| { \ |
| case PROCESSOR_RIOS1: \ |
| return COSTS_N_INSNS (19); \ |
| case PROCESSOR_RIOS2: \ |
| return COSTS_N_INSNS (13); \ |
| case PROCESSOR_MPCCORE: \ |
| return COSTS_N_INSNS (6); \ |
| case PROCESSOR_PPC403: \ |
| return COSTS_N_INSNS (33); \ |
| case PROCESSOR_PPC601: \ |
| return COSTS_N_INSNS (36); \ |
| case PROCESSOR_PPC603: \ |
| return COSTS_N_INSNS (37); \ |
| case PROCESSOR_PPC604: \ |
| case PROCESSOR_PPC620: \ |
| return COSTS_N_INSNS (20); \ |
| } \ |
| case FFS: \ |
| return COSTS_N_INSNS (4); \ |
| case MEM: \ |
| /* MEM should be slightly more expensive than (plus (reg) (const)) */ \ |
| return 5; |
| |
| /* Compute the cost of an address. This is meant to approximate the size |
| and/or execution delay of an insn using that address. If the cost is |
| approximated by the RTL complexity, including CONST_COSTS above, as |
| is usually the case for CISC machines, this macro should not be defined. |
| For aggressively RISCy machines, only one insn format is allowed, so |
| this macro should be a constant. The value of this macro only matters |
| for valid addresses. |
| |
| For the RS/6000, everything is cost 0. */ |
| |
| #define ADDRESS_COST(RTX) 0 |
| |
| /* Adjust the length of an INSN. LENGTH is the currently-computed length and |
| should be adjusted to reflect any required changes. This macro is used when |
| there is some systematic length adjustment required that would be difficult |
| to express in the length attribute. */ |
| |
| /* #define ADJUST_INSN_LENGTH(X,LENGTH) */ |
| |
| /* Add any extra modes needed to represent the condition code. |
| |
| For the RS/6000, we need separate modes when unsigned (logical) comparisons |
| are being done and we need a separate mode for floating-point. We also |
| use a mode for the case when we are comparing the results of two |
| comparisons. */ |
| |
| #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode |
| |
| /* Define the names for the modes specified above. */ |
| #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ" |
| |
| /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, |
| return the mode to be used for the comparison. For floating-point, CCFPmode |
| should be used. CCUNSmode should be used for unsigned comparisons. |
| CCEQmode should be used when we are doing an inequality comparison on |
| the result of a comparison. CCmode should be used in all other cases. */ |
| |
| #define SELECT_CC_MODE(OP,X,Y) \ |
| (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \ |
| : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ |
| : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \ |
| ? CCEQmode : CCmode)) |
| |
| /* Define the information needed to generate branch and scc insns. This is |
| stored from the compare operation. Note that we can't use "rtx" here |
| since it hasn't been defined! */ |
| |
| extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1; |
| extern int rs6000_compare_fp_p; |
| |
| /* Set to non-zero by "fix" operation to indicate that itrunc and |
| uitrunc must be defined. */ |
| |
| extern int rs6000_trunc_used; |
| |
| /* Function names to call to do floating point truncation. */ |
| |
| #define RS6000_ITRUNC "__itrunc" |
| #define RS6000_UITRUNC "__uitrunc" |
| |
| /* Prefix and suffix to use to saving floating point */ |
| #ifndef SAVE_FP_PREFIX |
| #define SAVE_FP_PREFIX "._savef" |
| #define SAVE_FP_SUFFIX "" |
| #endif |
| |
| /* Prefix and suffix to use to restoring floating point */ |
| #ifndef RESTORE_FP_PREFIX |
| #define RESTORE_FP_PREFIX "._restf" |
| #define RESTORE_FP_SUFFIX "" |
| #endif |
| |
| /* Function name to call to do profiling. */ |
| #define RS6000_MCOUNT ".__mcount" |
| |
| |
| /* Control the assembler format that we output. */ |
| |
| /* A C string constant describing how to begin a comment in the target |
| assembler language. The compiler assumes that the comment will end at |
| the end of the line. */ |
| #define ASM_COMMENT_START " #" |
| |
| /* Output at beginning of assembler file. |
| |
| Initialize the section names for the RS/6000 at this point. |
| |
| Specify filename to assembler. |
| |
| We want to go into the TOC section so at least one .toc will be emitted. |
| Also, in order to output proper .bs/.es pairs, we need at least one static |
| [RW] section emitted. |
| |
| We then switch back to text to force the gcc2_compiled. label and the space |
| allocated after it (when profiling) into the text section. |
| |
| Finally, declare mcount when profiling to make the assembler happy. */ |
| |
| #define ASM_FILE_START(FILE) \ |
| { \ |
| rs6000_gen_section_name (&xcoff_bss_section_name, \ |
| main_input_filename, ".bss_"); \ |
| rs6000_gen_section_name (&xcoff_private_data_section_name, \ |
| main_input_filename, ".rw_"); \ |
| rs6000_gen_section_name (&xcoff_read_only_section_name, \ |
| main_input_filename, ".ro_"); \ |
| \ |
| output_file_directive (FILE, main_input_filename); \ |
| toc_section (); \ |
| if (write_symbols != NO_DEBUG) \ |
| private_data_section (); \ |
| text_section (); \ |
| if (profile_flag) \ |
| fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \ |
| rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \ |
| } |
| |
| /* Output at end of assembler file. |
| |
| On the RS/6000, referencing data should automatically pull in text. */ |
| |
| #define ASM_FILE_END(FILE) \ |
| { \ |
| text_section (); \ |
| fputs ("_section_.text:\n", FILE); \ |
| data_section (); \ |
| fputs ("\t.long _section_.text\n", FILE); \ |
| } |
| |
| /* We define this to prevent the name mangler from putting dollar signs into |
| function names. */ |
| |
| #define NO_DOLLAR_IN_LABEL |
| |
| /* We define this to 0 so that gcc will never accept a dollar sign in a |
| variable name. This is needed because the AIX assembler will not accept |
| dollar signs. */ |
| |
| #define DOLLARS_IN_IDENTIFIERS 0 |
| |
| /* Implicit library calls should use memcpy, not bcopy, etc. */ |
| |
| #define TARGET_MEM_FUNCTIONS |
| |
| /* Define the extra sections we need. We define three: one is the read-only |
| data section which is used for constants. This is a csect whose name is |
| derived from the name of the input file. The second is for initialized |
| global variables. This is a csect whose name is that of the variable. |
| The third is the TOC. */ |
| |
| #define EXTRA_SECTIONS \ |
| read_only_data, private_data, read_only_private_data, toc, bss |
| |
| /* Define the name of our readonly data section. */ |
| |
| #define READONLY_DATA_SECTION read_only_data_section |
| |
| |
| /* Define the name of the section to use for the exception tables. |
| TODO: test and see if we can use read_only_data_section, if so, |
| remove this. */ |
| |
| #define EXCEPTION_SECTION data_section |
| |
| /* If we are referencing a function that is static or is known to be |
| in this file, make the SYMBOL_REF special. We can use this to indicate |
| that we can branch to this function without emitting a no-op after the |
| call. */ |
| |
| #define ENCODE_SECTION_INFO(DECL) \ |
| if (TREE_CODE (DECL) == FUNCTION_DECL \ |
| && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \ |
| SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; |
| |
| /* Indicate that jump tables go in the text section. */ |
| |
| #define JUMP_TABLES_IN_TEXT_SECTION |
| |
| /* Define the routines to implement these extra sections. */ |
| |
| #define EXTRA_SECTION_FUNCTIONS \ |
| \ |
| void \ |
| read_only_data_section () \ |
| { \ |
| if (in_section != read_only_data) \ |
| { \ |
| fprintf (asm_out_file, ".csect %s[RO]\n", \ |
| xcoff_read_only_section_name); \ |
| in_section = read_only_data; \ |
| } \ |
| } \ |
| \ |
| void \ |
| private_data_section () \ |
| { \ |
| if (in_section != private_data) \ |
| { \ |
| fprintf (asm_out_file, ".csect %s[RW]\n", \ |
| xcoff_private_data_section_name); \ |
| \ |
| in_section = private_data; \ |
| } \ |
| } \ |
| \ |
| void \ |
| read_only_private_data_section () \ |
| { \ |
| if (in_section != read_only_private_data) \ |
| { \ |
| fprintf (asm_out_file, ".csect %s[RO]\n", \ |
| xcoff_private_data_section_name); \ |
| in_section = read_only_private_data; \ |
| } \ |
| } \ |
| \ |
| void \ |
| toc_section () \ |
| { \ |
| if (TARGET_MINIMAL_TOC) \ |
| { \ |
| /* toc_section is always called at least once from ASM_FILE_START, \ |
| so this is guaranteed to always be defined once and only once \ |
| in each file. */ \ |
| if (! toc_initialized) \ |
| { \ |
| fputs (".toc\nLCTOC..0:\n", asm_out_file); \ |
| fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \ |
| toc_initialized = 1; \ |
| } \ |
| \ |
| if (in_section != toc) \ |
| fputs (".csect toc_table[RW]\n", asm_out_file); \ |
| } \ |
| else \ |
| { \ |
| if (in_section != toc) \ |
| fputs (".toc\n", asm_out_file); \ |
| } \ |
| in_section = toc; \ |
| } |
| |
| /* Flag to say the TOC is initialized */ |
| extern int toc_initialized; |
| |
| /* This macro produces the initial definition of a function name. |
| On the RS/6000, we need to place an extra '.' in the function name and |
| output the function descriptor. |
| |
| The csect for the function will have already been created by the |
| `text_section' call previously done. We do have to go back to that |
| csect, however. */ |
| |
| /* ??? What do the 16 and 044 in the .function line really mean? */ |
| |
| #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ |
| { if (TREE_PUBLIC (DECL)) \ |
| { \ |
| fputs ("\t.globl .", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
| putc ('\n', FILE); \ |
| } \ |
| else \ |
| { \ |
| fputs ("\t.lglobl .", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
| putc ('\n', FILE); \ |
| } \ |
| fputs (".csect ", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
| fputs ("[DS]\n", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
| fputs (":\n", FILE); \ |
| fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
| fputs (", TOC[tc0], 0\n", FILE); \ |
| fputs (".csect .text[PR]\n.", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
| fputs (":\n", FILE); \ |
| if (write_symbols == XCOFF_DEBUG) \ |
| xcoffout_declare_function (FILE, DECL, NAME); \ |
| } |
| |
| /* Return non-zero if this entry is to be written into the constant pool |
| in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST |
| containing one of them. If -mfp-in-toc (the default), we also do |
| this for floating-point constants. We actually can only do this |
| if the FP formats of the target and host machines are the same, but |
| we can't check that since not every file that uses |
| GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */ |
| |
| #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \ |
| (TARGET_TOC \ |
| && (GET_CODE (X) == SYMBOL_REF \ |
| || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \ |
| && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \ |
| || GET_CODE (X) == LABEL_REF \ |
| || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \ |
| && GET_CODE (X) == CONST_DOUBLE \ |
| && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ |
| && BITS_PER_WORD == HOST_BITS_PER_INT))) |
| |
| /* Select section for constant in constant pool. |
| |
| On RS/6000, all constants are in the private read-only data area. |
| However, if this is being placed in the TOC it must be output as a |
| toc entry. */ |
| |
| #define SELECT_RTX_SECTION(MODE, X) \ |
| { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \ |
| toc_section (); \ |
| else \ |
| read_only_private_data_section (); \ |
| } |
| |
| /* Macro to output a special constant pool entry. Go to WIN if we output |
| it. Otherwise, it is written the usual way. |
| |
| On the RS/6000, toc entries are handled this way. */ |
| |
| #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ |
| { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \ |
| { \ |
| output_toc (FILE, X, LABELNO); \ |
| goto WIN; \ |
| } \ |
| } |
| |
| /* Select the section for an initialized data object. |
| |
| On the RS/6000, we have a special section for all variables except those |
| that are static. */ |
| |
| #define SELECT_SECTION(EXP,RELOC) \ |
| { \ |
| if ((TREE_CODE (EXP) == STRING_CST \ |
| && !flag_writable_strings) \ |
| || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \ |
| && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \ |
| && DECL_INITIAL (EXP) \ |
| && (DECL_INITIAL (EXP) == error_mark_node \ |
| || TREE_CONSTANT (DECL_INITIAL (EXP))) \ |
| && ! (RELOC))) \ |
| { \ |
| if (TREE_PUBLIC (EXP)) \ |
| read_only_data_section (); \ |
| else \ |
| read_only_private_data_section (); \ |
| } \ |
| else \ |
| { \ |
| if (TREE_PUBLIC (EXP)) \ |
| data_section (); \ |
| else \ |
| private_data_section (); \ |
| } \ |
| } |
| |
| /* This outputs NAME to FILE up to the first null or '['. */ |
| |
| #define RS6000_OUTPUT_BASENAME(FILE, NAME) \ |
| { \ |
| char *_p; \ |
| \ |
| STRIP_NAME_ENCODING (_p, (NAME)); \ |
| assemble_name ((FILE), _p); \ |
| } |
| |
| /* Remove any trailing [DS] or the like from the symbol name. */ |
| |
| #define STRIP_NAME_ENCODING(VAR,NAME) \ |
| do \ |
| { \ |
| char *_name = (NAME); \ |
| int _len; \ |
| if (_name[0] == '*') \ |
| _name++; \ |
| _len = strlen (_name); \ |
| if (_name[_len - 1] != ']') \ |
| (VAR) = _name; \ |
| else \ |
| { \ |
| (VAR) = (char *) alloca (_len + 1); \ |
| strcpy ((VAR), _name); \ |
| (VAR)[_len - 4] = '\0'; \ |
| } \ |
| } \ |
| while (0) |
| |
| /* Output something to declare an external symbol to the assembler. Most |
| assemblers don't need this. |
| |
| If we haven't already, add "[RW]" (or "[DS]" for a function) to the |
| name. Normally we write this out along with the name. In the few cases |
| where we can't, it gets stripped off. */ |
| |
| #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \ |
| { rtx _symref = XEXP (DECL_RTL (DECL), 0); \ |
| if ((TREE_CODE (DECL) == VAR_DECL \ |
| || TREE_CODE (DECL) == FUNCTION_DECL) \ |
| && (NAME)[strlen (NAME) - 1] != ']') \ |
| { \ |
| char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \ |
| strcpy (_name, XSTR (_symref, 0)); \ |
| strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \ |
| XSTR (_symref, 0) = _name; \ |
| } \ |
| fputs ("\t.extern ", FILE); \ |
| assemble_name (FILE, XSTR (_symref, 0)); \ |
| if (TREE_CODE (DECL) == FUNCTION_DECL) \ |
| { \ |
| fputs ("\n\t.extern .", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \ |
| } \ |
| putc ('\n', FILE); \ |
| } |
| |
| /* Similar, but for libcall. We only have to worry about the function name, |
| not that of the descriptor. */ |
| |
| #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \ |
| { fputs ("\t.extern .", FILE); \ |
| assemble_name (FILE, XSTR (FUN, 0)); \ |
| putc ('\n', FILE); \ |
| } |
| |
| /* Output to assembler file text saying following lines |
| may contain character constants, extra white space, comments, etc. */ |
| |
| #define ASM_APP_ON "" |
| |
| /* Output to assembler file text saying following lines |
| no longer contain unusual constructs. */ |
| |
| #define ASM_APP_OFF "" |
| |
| /* Output before instructions. */ |
| |
| #define TEXT_SECTION_ASM_OP ".csect .text[PR]" |
| |
| /* Output before writable data. */ |
| |
| #define DATA_SECTION_ASM_OP ".csect .data[RW]" |
| |
| /* How to refer to registers in assembler output. |
| This sequence is indexed by compiler's hard-register-number (see above). */ |
| |
| extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */ |
| |
| #define REGISTER_NAMES \ |
| { \ |
| &rs6000_reg_names[ 0][0], /* r0 */ \ |
| &rs6000_reg_names[ 1][0], /* r1 */ \ |
| &rs6000_reg_names[ 2][0], /* r2 */ \ |
| &rs6000_reg_names[ 3][0], /* r3 */ \ |
| &rs6000_reg_names[ 4][0], /* r4 */ \ |
| &rs6000_reg_names[ 5][0], /* r5 */ \ |
| &rs6000_reg_names[ 6][0], /* r6 */ \ |
| &rs6000_reg_names[ 7][0], /* r7 */ \ |
| &rs6000_reg_names[ 8][0], /* r8 */ \ |
| &rs6000_reg_names[ 9][0], /* r9 */ \ |
| &rs6000_reg_names[10][0], /* r10 */ \ |
| &rs6000_reg_names[11][0], /* r11 */ \ |
| &rs6000_reg_names[12][0], /* r12 */ \ |
| &rs6000_reg_names[13][0], /* r13 */ \ |
| &rs6000_reg_names[14][0], /* r14 */ \ |
| &rs6000_reg_names[15][0], /* r15 */ \ |
| &rs6000_reg_names[16][0], /* r16 */ \ |
| &rs6000_reg_names[17][0], /* r17 */ \ |
| &rs6000_reg_names[18][0], /* r18 */ \ |
| &rs6000_reg_names[19][0], /* r19 */ \ |
| &rs6000_reg_names[20][0], /* r20 */ \ |
| &rs6000_reg_names[21][0], /* r21 */ \ |
| &rs6000_reg_names[22][0], /* r22 */ \ |
| &rs6000_reg_names[23][0], /* r23 */ \ |
| &rs6000_reg_names[24][0], /* r24 */ \ |
| &rs6000_reg_names[25][0], /* r25 */ \ |
| &rs6000_reg_names[26][0], /* r26 */ \ |
| &rs6000_reg_names[27][0], /* r27 */ \ |
| &rs6000_reg_names[28][0], /* r28 */ \ |
| &rs6000_reg_names[29][0], /* r29 */ \ |
| &rs6000_reg_names[30][0], /* r30 */ \ |
| &rs6000_reg_names[31][0], /* r31 */ \ |
| \ |
| &rs6000_reg_names[32][0], /* fr0 */ \ |
| &rs6000_reg_names[33][0], /* fr1 */ \ |
| &rs6000_reg_names[34][0], /* fr2 */ \ |
| &rs6000_reg_names[35][0], /* fr3 */ \ |
| &rs6000_reg_names[36][0], /* fr4 */ \ |
| &rs6000_reg_names[37][0], /* fr5 */ \ |
| &rs6000_reg_names[38][0], /* fr6 */ \ |
| &rs6000_reg_names[39][0], /* fr7 */ \ |
| &rs6000_reg_names[40][0], /* fr8 */ \ |
| &rs6000_reg_names[41][0], /* fr9 */ \ |
| &rs6000_reg_names[42][0], /* fr10 */ \ |
| &rs6000_reg_names[43][0], /* fr11 */ \ |
| &rs6000_reg_names[44][0], /* fr12 */ \ |
| &rs6000_reg_names[45][0], /* fr13 */ \ |
| &rs6000_reg_names[46][0], /* fr14 */ \ |
| &rs6000_reg_names[47][0], /* fr15 */ \ |
| &rs6000_reg_names[48][0], /* fr16 */ \ |
| &rs6000_reg_names[49][0], /* fr17 */ \ |
| &rs6000_reg_names[50][0], /* fr18 */ \ |
| &rs6000_reg_names[51][0], /* fr19 */ \ |
| &rs6000_reg_names[52][0], /* fr20 */ \ |
| &rs6000_reg_names[53][0], /* fr21 */ \ |
| &rs6000_reg_names[54][0], /* fr22 */ \ |
| &rs6000_reg_names[55][0], /* fr23 */ \ |
| &rs6000_reg_names[56][0], /* fr24 */ \ |
| &rs6000_reg_names[57][0], /* fr25 */ \ |
| &rs6000_reg_names[58][0], /* fr26 */ \ |
| &rs6000_reg_names[59][0], /* fr27 */ \ |
| &rs6000_reg_names[60][0], /* fr28 */ \ |
| &rs6000_reg_names[61][0], /* fr29 */ \ |
| &rs6000_reg_names[62][0], /* fr30 */ \ |
| &rs6000_reg_names[63][0], /* fr31 */ \ |
| \ |
| &rs6000_reg_names[64][0], /* mq */ \ |
| &rs6000_reg_names[65][0], /* lr */ \ |
| &rs6000_reg_names[66][0], /* ctr */ \ |
| &rs6000_reg_names[67][0], /* ap */ \ |
| \ |
| &rs6000_reg_names[68][0], /* cr0 */ \ |
| &rs6000_reg_names[69][0], /* cr1 */ \ |
| &rs6000_reg_names[70][0], /* cr2 */ \ |
| &rs6000_reg_names[71][0], /* cr3 */ \ |
| &rs6000_reg_names[72][0], /* cr4 */ \ |
| &rs6000_reg_names[73][0], /* cr5 */ \ |
| &rs6000_reg_names[74][0], /* cr6 */ \ |
| &rs6000_reg_names[75][0], /* cr7 */ \ |
| \ |
| &rs6000_reg_names[76][0], /* fpmem */ \ |
| } |
| |
| /* print-rtl can't handle the above REGISTER_NAMES, so define the |
| following for it. Switch to use the alternate names since |
| they are more mnemonic. */ |
| |
| #define DEBUG_REGISTER_NAMES \ |
| { \ |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \ |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \ |
| "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \ |
| "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \ |
| "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \ |
| "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \ |
| "mq", "lr", "ctr", "ap", \ |
| "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \ |
| "fpmem" \ |
| } |
| |
| /* Table of additional register names to use in user input. */ |
| |
| #define ADDITIONAL_REGISTER_NAMES \ |
| {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \ |
| "r4", 4, "r5", 5, "r6", 6, "r7", 7, \ |
| "r8", 8, "r9", 9, "r10", 10, "r11", 11, \ |
| "r12", 12, "r13", 13, "r14", 14, "r15", 15, \ |
| "r16", 16, "r17", 17, "r18", 18, "r19", 19, \ |
| "r20", 20, "r21", 21, "r22", 22, "r23", 23, \ |
| "r24", 24, "r25", 25, "r26", 26, "r27", 27, \ |
| "r28", 28, "r29", 29, "r30", 30, "r31", 31, \ |
| "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \ |
| "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \ |
| "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \ |
| "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \ |
| "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \ |
| "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \ |
| "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \ |
| "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \ |
| /* no additional names for: mq, lr, ctr, ap */ \ |
| "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \ |
| "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \ |
| "cc", 68, "sp", 1, "toc", 2 } |
| |
| /* How to renumber registers for dbx and gdb. */ |
| |
| #define DBX_REGISTER_NUMBER(REGNO) (REGNO) |
| |
| /* Text to write out after a CALL that may be replaced by glue code by |
| the loader. This depends on the AIX version. */ |
| #define RS6000_CALL_GLUE "cror 31,31,31" |
| |
| /* This is how to output the definition of a user-level label named NAME, |
| such as the label on a static function or variable NAME. */ |
| |
| #define ASM_OUTPUT_LABEL(FILE,NAME) \ |
| do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0) |
| |
| /* This is how to output a command to make the user-level label named NAME |
| defined for reference from other files. */ |
| |
| #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ |
| do { fputs ("\t.globl ", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0) |
| |
| /* This is how to output a reference to a user-level label named NAME. |
| `assemble_name' uses this. */ |
| |
| #define ASM_OUTPUT_LABELREF(FILE,NAME) \ |
| fputs (NAME, FILE) |
| |
| /* This is how to output an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. */ |
| |
| #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ |
| fprintf (FILE, "%s..%d:\n", PREFIX, NUM) |
| |
| /* This is how to output an internal label prefix. rs6000.c uses this |
| when generating traceback tables. */ |
| |
| #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \ |
| fprintf (FILE, "%s..", PREFIX) |
| |
| /* This is how to output a label for a jump table. Arguments are the same as |
| for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is |
| passed. */ |
| |
| #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ |
| { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } |
| |
| /* This is how to store into the string LABEL |
| the symbol_ref name of an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. |
| This is suitable for output with `assemble_name'. */ |
| |
| #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ |
| sprintf (LABEL, "*%s..%d", PREFIX, NUM) |
| |
| /* This is how to output an assembler line defining a `double' constant. */ |
| |
| #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \ |
| { \ |
| if (REAL_VALUE_ISINF (VALUE) \ |
| || REAL_VALUE_ISNAN (VALUE) \ |
| || REAL_VALUE_MINUS_ZERO (VALUE)) \ |
| { \ |
| long t[2]; \ |
| REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \ |
| fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \ |
| t[0] & 0xffffffff, t[1] & 0xffffffff); \ |
| } \ |
| else \ |
| { \ |
| char str[30]; \ |
| REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \ |
| fprintf (FILE, "\t.double 0d%s\n", str); \ |
| } \ |
| } |
| |
| /* This is how to output an assembler line defining a `float' constant. */ |
| |
| #define ASM_OUTPUT_FLOAT(FILE, VALUE) \ |
| { \ |
| if (REAL_VALUE_ISINF (VALUE) \ |
| || REAL_VALUE_ISNAN (VALUE) \ |
| || REAL_VALUE_MINUS_ZERO (VALUE)) \ |
| { \ |
| long t; \ |
| REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \ |
| fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \ |
| } \ |
| else \ |
| { \ |
| char str[30]; \ |
| REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \ |
| fprintf (FILE, "\t.float 0d%s\n", str); \ |
| } \ |
| } |
| |
| /* This is how to output an assembler line defining an `int' constant. */ |
| |
| #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \ |
| do { \ |
| if (TARGET_32BIT) \ |
| { \ |
| assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \ |
| UNITS_PER_WORD, 1); \ |
| assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \ |
| UNITS_PER_WORD, 1); \ |
| } \ |
| else \ |
| { \ |
| fputs ("\t.llong ", FILE); \ |
| output_addr_const (FILE, (VALUE)); \ |
| putc ('\n', FILE); \ |
| } \ |
| } while (0) |
| |
| #define ASM_OUTPUT_INT(FILE,VALUE) \ |
| ( fputs ("\t.long ", FILE), \ |
| output_addr_const (FILE, (VALUE)), \ |
| putc ('\n', FILE)) |
| |
| /* Likewise for `char' and `short' constants. */ |
| |
| #define ASM_OUTPUT_SHORT(FILE,VALUE) \ |
| ( fputs ("\t.short ", FILE), \ |
| output_addr_const (FILE, (VALUE)), \ |
| putc ('\n', FILE)) |
| |
| #define ASM_OUTPUT_CHAR(FILE,VALUE) \ |
| ( fputs ("\t.byte ", FILE), \ |
| output_addr_const (FILE, (VALUE)), \ |
| putc ('\n', FILE)) |
| |
| /* This is how to output an assembler line for a numeric constant byte. */ |
| |
| #define ASM_OUTPUT_BYTE(FILE,VALUE) \ |
| fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) |
| |
| /* This is how to output an assembler line to define N characters starting |
| at P to FILE. */ |
| |
| #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N)) |
| |
| /* This is how to output code to push a register on the stack. |
| It need not be very fast code. */ |
| |
| #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ |
| do { \ |
| extern char *reg_names[]; \ |
| asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \ |
| reg_names[1]); \ |
| } while (0) |
| |
| /* This is how to output an insn to pop a register from the stack. |
| It need not be very fast code. */ |
| |
| #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ |
| do { \ |
| extern char *reg_names[]; \ |
| asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \ |
| reg_names[REGNO], reg_names[1], reg_names[1], \ |
| reg_names[1]); \ |
| } while (0) |
| |
| /* This is how to output an element of a case-vector that is absolute. |
| (RS/6000 does not use such vectors, but we must define this macro |
| anyway.) */ |
| |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| do { char buf[100]; \ |
| fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ |
| assemble_name (FILE, buf); \ |
| putc ('\n', FILE); \ |
| } while (0) |
| |
| /* This is how to output an element of a case-vector that is relative. */ |
| |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ |
| do { char buf[100]; \ |
| fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ |
| assemble_name (FILE, buf); \ |
| putc ('-', FILE); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ |
| assemble_name (FILE, buf); \ |
| putc ('\n', FILE); \ |
| } while (0) |
| |
| /* This is how to output an assembler line |
| that says to advance the location counter |
| to a multiple of 2**LOG bytes. */ |
| |
| #define ASM_OUTPUT_ALIGN(FILE,LOG) \ |
| if ((LOG) != 0) \ |
| fprintf (FILE, "\t.align %d\n", (LOG)) |
| |
| #define ASM_OUTPUT_SKIP(FILE,SIZE) \ |
| fprintf (FILE, "\t.space %d\n", (SIZE)) |
| |
| /* This says how to output an assembler line |
| to define a global common symbol. */ |
| |
| #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \ |
| do { fputs (".comm ", (FILE)); \ |
| RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
| if ( (SIZE) > 4) \ |
| fprintf ((FILE), ",%d,3\n", (SIZE)); \ |
| else \ |
| fprintf( (FILE), ",%d\n", (SIZE)); \ |
| } while (0) |
| |
| /* This says how to output an assembler line |
| to define a local common symbol. */ |
| |
| #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ |
| do { fputs (".lcomm ", (FILE)); \ |
| RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
| fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \ |
| } while (0) |
| |
| /* Store in OUTPUT a string (made with alloca) containing |
| an assembler-name for a local static variable named NAME. |
| LABELNO is an integer which is different for each call. */ |
| |
| #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ |
| ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ |
| sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) |
| |
| /* Define the parentheses used to group arithmetic operations |
| in assembler code. */ |
| |
| #define ASM_OPEN_PAREN "(" |
| #define ASM_CLOSE_PAREN ")" |
| |
| /* Define results of standard character escape sequences. */ |
| #define TARGET_BELL 007 |
| #define TARGET_BS 010 |
| #define TARGET_TAB 011 |
| #define TARGET_NEWLINE 012 |
| #define TARGET_VT 013 |
| #define TARGET_FF 014 |
| #define TARGET_CR 015 |
| |
| /* Print operand X (an rtx) in assembler syntax to file FILE. |
| CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. |
| For `%' followed by punctuation, CODE is the punctuation and X is null. */ |
| |
| #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) |
| |
| /* Define which CODE values are valid. */ |
| |
| #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ |
| ((CODE) == '.' || (CODE) == '*' || (CODE) == '$') |
| |
| /* Print a memory address as an operand to reference that memory location. */ |
| |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) |
| |
| /* Define the codes that are matched by predicates in rs6000.c. */ |
| |
| #define PREDICATE_CODES \ |
| {"short_cint_operand", {CONST_INT}}, \ |
| {"u_short_cint_operand", {CONST_INT}}, \ |
| {"non_short_cint_operand", {CONST_INT}}, \ |
| {"gpc_reg_operand", {SUBREG, REG}}, \ |
| {"cc_reg_operand", {SUBREG, REG}}, \ |
| {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \ |
| {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \ |
| {"easy_fp_constant", {CONST_DOUBLE}}, \ |
| {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \ |
| {"lwa_operand", {SUBREG, MEM, REG}}, \ |
| {"volatile_mem_operand", {MEM}}, \ |
| {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \ |
| {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \ |
| {"add_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"non_add_cint_operand", {CONST_INT}}, \ |
| {"and_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"non_and_cint_operand", {CONST_INT}}, \ |
| {"logical_operand", {SUBREG, REG, CONST_INT}}, \ |
| {"non_logical_cint_operand", {CONST_INT}}, \ |
| {"mask_operand", {CONST_INT}}, \ |
| {"count_register_operand", {REG}}, \ |
| {"fpmem_operand", {REG}}, \ |
| {"call_operand", {SYMBOL_REF, REG}}, \ |
| {"current_file_function_operand", {SYMBOL_REF}}, \ |
| {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \ |
| {"load_multiple_operation", {PARALLEL}}, \ |
| {"store_multiple_operation", {PARALLEL}}, \ |
| {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \ |
| GT, LEU, LTU, GEU, GTU}}, \ |
| {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \ |
| GT, LEU, LTU, GEU, GTU}}, |
| |
| |
| /* uncomment for disabling the corresponding default options */ |
| /* #define MACHINE_no_sched_interblock */ |
| /* #define MACHINE_no_sched_speculative */ |
| /* #define MACHINE_no_sched_speculative_load */ |
| |
| /* indicate that issue rate is defined for this machine |
| (no need to use the default) */ |
| #define MACHINE_issue_rate |
| |
| /* General flags. */ |
| extern int flag_pic; |
| extern int optimize; |
| extern int flag_expensive_optimizations; |
| extern int frame_pointer_needed; |
| |
| /* Declare functions in rs6000.c */ |
| extern void output_options (); |
| extern void rs6000_override_options (); |
| extern void rs6000_file_start (); |
| extern struct rtx_def *rs6000_float_const (); |
| extern struct rtx_def *rs6000_immed_double_const (); |
| extern struct rtx_def *rs6000_got_register (); |