| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT LIBRARY COMPONENTS -- |
| -- -- |
| -- ADA.CONTAINERS.BOUNDED_DOUBLY_LINKED_LISTS -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 2004-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- This unit was originally developed by Matthew J Heaney. -- |
| ------------------------------------------------------------------------------ |
| |
| with System; use type System.Address; |
| |
| package body Ada.Containers.Bounded_Doubly_Linked_Lists is |
| |
| pragma Annotate (CodePeer, Skip_Analysis); |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Allocate |
| (Container : in out List; |
| New_Item : Element_Type; |
| New_Node : out Count_Type); |
| |
| procedure Allocate |
| (Container : in out List; |
| Stream : not null access Root_Stream_Type'Class; |
| New_Node : out Count_Type); |
| |
| procedure Free |
| (Container : in out List; |
| X : Count_Type); |
| |
| procedure Insert_Internal |
| (Container : in out List; |
| Before : Count_Type; |
| New_Node : Count_Type); |
| |
| procedure Splice_Internal |
| (Target : in out List; |
| Before : Count_Type; |
| Source : in out List); |
| |
| procedure Splice_Internal |
| (Target : in out List; |
| Before : Count_Type; |
| Source : in out List; |
| Src_Pos : Count_Type; |
| Tgt_Pos : out Count_Type); |
| |
| function Vet (Position : Cursor) return Boolean; |
| -- Checks invariants of the cursor and its designated container, as a |
| -- simple way of detecting dangling references (see operation Free for a |
| -- description of the detection mechanism), returning True if all checks |
| -- pass. Invocations of Vet are used here as the argument of pragma Assert, |
| -- so the checks are performed only when assertions are enabled. |
| |
| --------- |
| -- "=" -- |
| --------- |
| |
| function "=" (Left, Right : List) return Boolean is |
| BL : Natural renames Left'Unrestricted_Access.Busy; |
| LL : Natural renames Left'Unrestricted_Access.Lock; |
| |
| BR : Natural renames Right'Unrestricted_Access.Busy; |
| LR : Natural renames Right'Unrestricted_Access.Lock; |
| |
| LN : Node_Array renames Left.Nodes; |
| RN : Node_Array renames Right.Nodes; |
| |
| LI : Count_Type; |
| RI : Count_Type; |
| |
| Result : Boolean; |
| |
| begin |
| if Left'Address = Right'Address then |
| return True; |
| end if; |
| |
| if Left.Length /= Right.Length then |
| return False; |
| end if; |
| |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| BL := BL + 1; |
| LL := LL + 1; |
| |
| BR := BR + 1; |
| LR := LR + 1; |
| |
| LI := Left.First; |
| RI := Right.First; |
| Result := True; |
| for J in 1 .. Left.Length loop |
| if LN (LI).Element /= RN (RI).Element then |
| Result := False; |
| exit; |
| end if; |
| |
| LI := LN (LI).Next; |
| RI := RN (RI).Next; |
| end loop; |
| |
| BL := BL - 1; |
| LL := LL - 1; |
| |
| BR := BR - 1; |
| LR := LR - 1; |
| |
| return Result; |
| |
| exception |
| when others => |
| BL := BL - 1; |
| LL := LL - 1; |
| |
| BR := BR - 1; |
| LR := LR - 1; |
| |
| raise; |
| end "="; |
| |
| -------------- |
| -- Allocate -- |
| -------------- |
| |
| procedure Allocate |
| (Container : in out List; |
| New_Item : Element_Type; |
| New_Node : out Count_Type) |
| is |
| N : Node_Array renames Container.Nodes; |
| |
| begin |
| if Container.Free >= 0 then |
| New_Node := Container.Free; |
| |
| -- We always perform the assignment first, before we change container |
| -- state, in order to defend against exceptions duration assignment. |
| |
| N (New_Node).Element := New_Item; |
| Container.Free := N (New_Node).Next; |
| |
| else |
| -- A negative free store value means that the links of the nodes in |
| -- the free store have not been initialized. In this case, the nodes |
| -- are physically contiguous in the array, starting at the index that |
| -- is the absolute value of the Container.Free, and continuing until |
| -- the end of the array (Nodes'Last). |
| |
| New_Node := abs Container.Free; |
| |
| -- As above, we perform this assignment first, before modifying any |
| -- container state. |
| |
| N (New_Node).Element := New_Item; |
| Container.Free := Container.Free - 1; |
| end if; |
| end Allocate; |
| |
| procedure Allocate |
| (Container : in out List; |
| Stream : not null access Root_Stream_Type'Class; |
| New_Node : out Count_Type) |
| is |
| N : Node_Array renames Container.Nodes; |
| |
| begin |
| if Container.Free >= 0 then |
| New_Node := Container.Free; |
| |
| -- We always perform the assignment first, before we change container |
| -- state, in order to defend against exceptions duration assignment. |
| |
| Element_Type'Read (Stream, N (New_Node).Element); |
| Container.Free := N (New_Node).Next; |
| |
| else |
| -- A negative free store value means that the links of the nodes in |
| -- the free store have not been initialized. In this case, the nodes |
| -- are physically contiguous in the array, starting at the index that |
| -- is the absolute value of the Container.Free, and continuing until |
| -- the end of the array (Nodes'Last). |
| |
| New_Node := abs Container.Free; |
| |
| -- As above, we perform this assignment first, before modifying any |
| -- container state. |
| |
| Element_Type'Read (Stream, N (New_Node).Element); |
| Container.Free := Container.Free - 1; |
| end if; |
| end Allocate; |
| |
| ------------ |
| -- Append -- |
| ------------ |
| |
| procedure Append |
| (Container : in out List; |
| New_Item : Element_Type; |
| Count : Count_Type := 1) |
| is |
| begin |
| Insert (Container, No_Element, New_Item, Count); |
| end Append; |
| |
| ------------ |
| -- Adjust -- |
| ------------ |
| |
| procedure Adjust (Control : in out Reference_Control_Type) is |
| begin |
| if Control.Container /= null then |
| declare |
| C : List renames Control.Container.all; |
| B : Natural renames C.Busy; |
| L : Natural renames C.Lock; |
| begin |
| B := B + 1; |
| L := L + 1; |
| end; |
| end if; |
| end Adjust; |
| |
| ------------ |
| -- Assign -- |
| ------------ |
| |
| procedure Assign (Target : in out List; Source : List) is |
| SN : Node_Array renames Source.Nodes; |
| J : Count_Type; |
| |
| begin |
| if Target'Address = Source'Address then |
| return; |
| end if; |
| |
| if Target.Capacity < Source.Length then |
| raise Capacity_Error -- ??? |
| with "Target capacity is less than Source length"; |
| end if; |
| |
| Target.Clear; |
| |
| J := Source.First; |
| while J /= 0 loop |
| Target.Append (SN (J).Element); |
| J := SN (J).Next; |
| end loop; |
| end Assign; |
| |
| ----------- |
| -- Clear -- |
| ----------- |
| |
| procedure Clear (Container : in out List) is |
| N : Node_Array renames Container.Nodes; |
| X : Count_Type; |
| |
| begin |
| if Container.Length = 0 then |
| pragma Assert (Container.First = 0); |
| pragma Assert (Container.Last = 0); |
| pragma Assert (Container.Busy = 0); |
| pragma Assert (Container.Lock = 0); |
| return; |
| end if; |
| |
| pragma Assert (Container.First >= 1); |
| pragma Assert (Container.Last >= 1); |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| while Container.Length > 1 loop |
| X := Container.First; |
| pragma Assert (N (N (X).Next).Prev = Container.First); |
| |
| Container.First := N (X).Next; |
| N (Container.First).Prev := 0; |
| |
| Container.Length := Container.Length - 1; |
| |
| Free (Container, X); |
| end loop; |
| |
| X := Container.First; |
| pragma Assert (X = Container.Last); |
| |
| Container.First := 0; |
| Container.Last := 0; |
| Container.Length := 0; |
| |
| Free (Container, X); |
| end Clear; |
| |
| ------------------------ |
| -- Constant_Reference -- |
| ------------------------ |
| |
| function Constant_Reference |
| (Container : aliased List; |
| Position : Cursor) return Constant_Reference_Type |
| is |
| begin |
| if Position.Container = null then |
| raise Constraint_Error with "Position cursor has no element"; |
| |
| elsif Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| |
| else |
| pragma Assert (Vet (Position), "bad cursor in Constant_Reference"); |
| |
| declare |
| N : Node_Type renames Container.Nodes (Position.Node); |
| B : Natural renames Position.Container.Busy; |
| L : Natural renames Position.Container.Lock; |
| begin |
| return R : constant Constant_Reference_Type := |
| (Element => N.Element'Access, |
| Control => (Controlled with Container'Unrestricted_Access)) |
| do |
| B := B + 1; |
| L := L + 1; |
| end return; |
| end; |
| end if; |
| end Constant_Reference; |
| |
| -------------- |
| -- Contains -- |
| -------------- |
| |
| function Contains |
| (Container : List; |
| Item : Element_Type) return Boolean |
| is |
| begin |
| return Find (Container, Item) /= No_Element; |
| end Contains; |
| |
| ---------- |
| -- Copy -- |
| ---------- |
| |
| function Copy (Source : List; Capacity : Count_Type := 0) return List is |
| C : Count_Type; |
| |
| begin |
| if Capacity = 0 then |
| C := Source.Length; |
| elsif Capacity >= Source.Length then |
| C := Capacity; |
| else |
| raise Capacity_Error with "Capacity value too small"; |
| end if; |
| |
| return Target : List (Capacity => C) do |
| Assign (Target => Target, Source => Source); |
| end return; |
| end Copy; |
| |
| ------------ |
| -- Delete -- |
| ------------ |
| |
| procedure Delete |
| (Container : in out List; |
| Position : in out Cursor; |
| Count : Count_Type := 1) |
| is |
| N : Node_Array renames Container.Nodes; |
| X : Count_Type; |
| |
| begin |
| if Position.Node = 0 then |
| raise Constraint_Error with |
| "Position cursor has no element"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Delete"); |
| pragma Assert (Container.First >= 1); |
| pragma Assert (Container.Last >= 1); |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| |
| if Position.Node = Container.First then |
| Delete_First (Container, Count); |
| Position := No_Element; |
| return; |
| end if; |
| |
| if Count = 0 then |
| Position := No_Element; |
| return; |
| end if; |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| for Index in 1 .. Count loop |
| pragma Assert (Container.Length >= 2); |
| |
| X := Position.Node; |
| Container.Length := Container.Length - 1; |
| |
| if X = Container.Last then |
| Position := No_Element; |
| |
| Container.Last := N (X).Prev; |
| N (Container.Last).Next := 0; |
| |
| Free (Container, X); |
| return; |
| end if; |
| |
| Position.Node := N (X).Next; |
| |
| N (N (X).Next).Prev := N (X).Prev; |
| N (N (X).Prev).Next := N (X).Next; |
| |
| Free (Container, X); |
| end loop; |
| |
| Position := No_Element; |
| end Delete; |
| |
| ------------------ |
| -- Delete_First -- |
| ------------------ |
| |
| procedure Delete_First |
| (Container : in out List; |
| Count : Count_Type := 1) |
| is |
| N : Node_Array renames Container.Nodes; |
| X : Count_Type; |
| |
| begin |
| if Count >= Container.Length then |
| Clear (Container); |
| return; |
| end if; |
| |
| if Count = 0 then |
| return; |
| end if; |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| for J in 1 .. Count loop |
| X := Container.First; |
| pragma Assert (N (N (X).Next).Prev = Container.First); |
| |
| Container.First := N (X).Next; |
| N (Container.First).Prev := 0; |
| |
| Container.Length := Container.Length - 1; |
| |
| Free (Container, X); |
| end loop; |
| end Delete_First; |
| |
| ----------------- |
| -- Delete_Last -- |
| ----------------- |
| |
| procedure Delete_Last |
| (Container : in out List; |
| Count : Count_Type := 1) |
| is |
| N : Node_Array renames Container.Nodes; |
| X : Count_Type; |
| |
| begin |
| if Count >= Container.Length then |
| Clear (Container); |
| return; |
| end if; |
| |
| if Count = 0 then |
| return; |
| end if; |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| for J in 1 .. Count loop |
| X := Container.Last; |
| pragma Assert (N (N (X).Prev).Next = Container.Last); |
| |
| Container.Last := N (X).Prev; |
| N (Container.Last).Next := 0; |
| |
| Container.Length := Container.Length - 1; |
| |
| Free (Container, X); |
| end loop; |
| end Delete_Last; |
| |
| ------------- |
| -- Element -- |
| ------------- |
| |
| function Element (Position : Cursor) return Element_Type is |
| begin |
| if Position.Node = 0 then |
| raise Constraint_Error with |
| "Position cursor has no element"; |
| |
| else |
| pragma Assert (Vet (Position), "bad cursor in Element"); |
| |
| return Position.Container.Nodes (Position.Node).Element; |
| end if; |
| end Element; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (Object : in out Iterator) is |
| begin |
| if Object.Container /= null then |
| declare |
| B : Natural renames Object.Container.all.Busy; |
| begin |
| B := B - 1; |
| end; |
| end if; |
| end Finalize; |
| |
| procedure Finalize (Control : in out Reference_Control_Type) is |
| begin |
| if Control.Container /= null then |
| declare |
| C : List renames Control.Container.all; |
| B : Natural renames C.Busy; |
| L : Natural renames C.Lock; |
| begin |
| B := B - 1; |
| L := L - 1; |
| end; |
| |
| Control.Container := null; |
| end if; |
| end Finalize; |
| |
| ---------- |
| -- Find -- |
| ---------- |
| |
| function Find |
| (Container : List; |
| Item : Element_Type; |
| Position : Cursor := No_Element) return Cursor |
| is |
| Nodes : Node_Array renames Container.Nodes; |
| Node : Count_Type := Position.Node; |
| |
| begin |
| if Node = 0 then |
| Node := Container.First; |
| |
| else |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Find"); |
| end if; |
| |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| declare |
| B : Natural renames Container'Unrestricted_Access.Busy; |
| L : Natural renames Container'Unrestricted_Access.Lock; |
| |
| Result : Count_Type; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| Result := 0; |
| while Node /= 0 loop |
| if Nodes (Node).Element = Item then |
| Result := Node; |
| exit; |
| end if; |
| |
| Node := Nodes (Node).Next; |
| end loop; |
| |
| B := B - 1; |
| L := L - 1; |
| |
| if Result = 0 then |
| return No_Element; |
| else |
| return Cursor'(Container'Unrestricted_Access, Result); |
| end if; |
| |
| exception |
| when others => |
| B := B - 1; |
| L := L - 1; |
| raise; |
| end; |
| end Find; |
| |
| ----------- |
| -- First -- |
| ----------- |
| |
| function First (Container : List) return Cursor is |
| begin |
| if Container.First = 0 then |
| return No_Element; |
| else |
| return Cursor'(Container'Unrestricted_Access, Container.First); |
| end if; |
| end First; |
| |
| function First (Object : Iterator) return Cursor is |
| begin |
| -- The value of the iterator object's Node component influences the |
| -- behavior of the First (and Last) selector function. |
| |
| -- When the Node component is 0, this means the iterator object was |
| -- constructed without a start expression, in which case the (forward) |
| -- iteration starts from the (logical) beginning of the entire sequence |
| -- of items (corresponding to Container.First, for a forward iterator). |
| |
| -- Otherwise, this is iteration over a partial sequence of items. When |
| -- the Node component is positive, the iterator object was constructed |
| -- with a start expression, that specifies the position from which the |
| -- (forward) partial iteration begins. |
| |
| if Object.Node = 0 then |
| return Bounded_Doubly_Linked_Lists.First (Object.Container.all); |
| else |
| return Cursor'(Object.Container, Object.Node); |
| end if; |
| end First; |
| |
| ------------------- |
| -- First_Element -- |
| ------------------- |
| |
| function First_Element (Container : List) return Element_Type is |
| begin |
| if Container.First = 0 then |
| raise Constraint_Error with "list is empty"; |
| else |
| return Container.Nodes (Container.First).Element; |
| end if; |
| end First_Element; |
| |
| ---------- |
| -- Free -- |
| ---------- |
| |
| procedure Free |
| (Container : in out List; |
| X : Count_Type) |
| is |
| pragma Assert (X > 0); |
| pragma Assert (X <= Container.Capacity); |
| |
| N : Node_Array renames Container.Nodes; |
| pragma Assert (N (X).Prev >= 0); -- node is active |
| |
| begin |
| -- The list container actually contains two lists: one for the "active" |
| -- nodes that contain elements that have been inserted onto the list, |
| -- and another for the "inactive" nodes for the free store. |
| |
| -- We desire that merely declaring an object should have only minimal |
| -- cost; specially, we want to avoid having to initialize the free |
| -- store (to fill in the links), especially if the capacity is large. |
| |
| -- The head of the free list is indicated by Container.Free. If its |
| -- value is non-negative, then the free store has been initialized in |
| -- the "normal" way: Container.Free points to the head of the list of |
| -- free (inactive) nodes, and the value 0 means the free list is empty. |
| -- Each node on the free list has been initialized to point to the next |
| -- free node (via its Next component), and the value 0 means that this |
| -- is the last free node. |
| |
| -- If Container.Free is negative, then the links on the free store have |
| -- not been initialized. In this case the link values are implied: the |
| -- free store comprises the components of the node array started with |
| -- the absolute value of Container.Free, and continuing until the end of |
| -- the array (Nodes'Last). |
| |
| -- If the list container is manipulated on one end only (for example if |
| -- the container were being used as a stack), then there is no need to |
| -- initialize the free store, since the inactive nodes are physically |
| -- contiguous (in fact, they lie immediately beyond the logical end |
| -- being manipulated). The only time we need to actually initialize the |
| -- nodes in the free store is if the node that becomes inactive is not |
| -- at the end of the list. The free store would then be discontiguous |
| -- and so its nodes would need to be linked in the traditional way. |
| |
| -- ??? |
| -- It might be possible to perform an optimization here. Suppose that |
| -- the free store can be represented as having two parts: one comprising |
| -- the non-contiguous inactive nodes linked together in the normal way, |
| -- and the other comprising the contiguous inactive nodes (that are not |
| -- linked together, at the end of the nodes array). This would allow us |
| -- to never have to initialize the free store, except in a lazy way as |
| -- nodes become inactive. |
| |
| -- When an element is deleted from the list container, its node becomes |
| -- inactive, and so we set its Prev component to a negative value, to |
| -- indicate that it is now inactive. This provides a useful way to |
| -- detect a dangling cursor reference (and which is used in Vet). |
| |
| N (X).Prev := -1; -- Node is deallocated (not on active list) |
| |
| if Container.Free >= 0 then |
| |
| -- The free store has previously been initialized. All we need to |
| -- do here is link the newly-free'd node onto the free list. |
| |
| N (X).Next := Container.Free; |
| Container.Free := X; |
| |
| elsif X + 1 = abs Container.Free then |
| |
| -- The free store has not been initialized, and the node becoming |
| -- inactive immediately precedes the start of the free store. All |
| -- we need to do is move the start of the free store back by one. |
| |
| -- Note: initializing Next to zero is not strictly necessary but |
| -- seems cleaner and marginally safer. |
| |
| N (X).Next := 0; |
| Container.Free := Container.Free + 1; |
| |
| else |
| -- The free store has not been initialized, and the node becoming |
| -- inactive does not immediately precede the free store. Here we |
| -- first initialize the free store (meaning the links are given |
| -- values in the traditional way), and then link the newly-free'd |
| -- node onto the head of the free store. |
| |
| -- ??? |
| -- See the comments above for an optimization opportunity. If the |
| -- next link for a node on the free store is negative, then this |
| -- means the remaining nodes on the free store are physically |
| -- contiguous, starting as the absolute value of that index value. |
| |
| Container.Free := abs Container.Free; |
| |
| if Container.Free > Container.Capacity then |
| Container.Free := 0; |
| |
| else |
| for I in Container.Free .. Container.Capacity - 1 loop |
| N (I).Next := I + 1; |
| end loop; |
| |
| N (Container.Capacity).Next := 0; |
| end if; |
| |
| N (X).Next := Container.Free; |
| Container.Free := X; |
| end if; |
| end Free; |
| |
| --------------------- |
| -- Generic_Sorting -- |
| --------------------- |
| |
| package body Generic_Sorting is |
| |
| --------------- |
| -- Is_Sorted -- |
| --------------- |
| |
| function Is_Sorted (Container : List) return Boolean is |
| B : Natural renames Container'Unrestricted_Access.Busy; |
| L : Natural renames Container'Unrestricted_Access.Lock; |
| |
| Nodes : Node_Array renames Container.Nodes; |
| Node : Count_Type; |
| |
| Result : Boolean; |
| |
| begin |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| B := B + 1; |
| L := L + 1; |
| |
| Node := Container.First; |
| Result := True; |
| for J in 2 .. Container.Length loop |
| if Nodes (Nodes (Node).Next).Element < Nodes (Node).Element then |
| Result := False; |
| exit; |
| end if; |
| |
| Node := Nodes (Node).Next; |
| end loop; |
| |
| B := B - 1; |
| L := L - 1; |
| |
| return Result; |
| |
| exception |
| when others => |
| B := B - 1; |
| L := L - 1; |
| raise; |
| end Is_Sorted; |
| |
| ----------- |
| -- Merge -- |
| ----------- |
| |
| procedure Merge |
| (Target : in out List; |
| Source : in out List) |
| is |
| begin |
| -- The semantics of Merge changed slightly per AI05-0021. It was |
| -- originally the case that if Target and Source denoted the same |
| -- container object, then the GNAT implementation of Merge did |
| -- nothing. However, it was argued that RM05 did not precisely |
| -- specify the semantics for this corner case. The decision of the |
| -- ARG was that if Target and Source denote the same non-empty |
| -- container object, then Program_Error is raised. |
| |
| if Source.Is_Empty then |
| return; |
| end if; |
| |
| if Target'Address = Source'Address then |
| raise Program_Error with |
| "Target and Source denote same non-empty container"; |
| end if; |
| |
| if Target.Length > Count_Type'Last - Source.Length then |
| raise Constraint_Error with "new length exceeds maximum"; |
| end if; |
| |
| if Target.Length + Source.Length > Target.Capacity then |
| raise Capacity_Error with "new length exceeds target capacity"; |
| end if; |
| |
| if Target.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Target (list is busy)"; |
| end if; |
| |
| if Source.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Source (list is busy)"; |
| end if; |
| |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| declare |
| TB : Natural renames Target.Busy; |
| TL : Natural renames Target.Lock; |
| |
| SB : Natural renames Source.Busy; |
| SL : Natural renames Source.Lock; |
| |
| LN : Node_Array renames Target.Nodes; |
| RN : Node_Array renames Source.Nodes; |
| |
| LI, LJ, RI, RJ : Count_Type; |
| |
| begin |
| TB := TB + 1; |
| TL := TL + 1; |
| |
| SB := SB + 1; |
| SL := SL + 1; |
| |
| LI := Target.First; |
| RI := Source.First; |
| while RI /= 0 loop |
| pragma Assert (RN (RI).Next = 0 |
| or else not (RN (RN (RI).Next).Element < |
| RN (RI).Element)); |
| |
| if LI = 0 then |
| Splice_Internal (Target, 0, Source); |
| exit; |
| end if; |
| |
| pragma Assert (LN (LI).Next = 0 |
| or else not (LN (LN (LI).Next).Element < |
| LN (LI).Element)); |
| |
| if RN (RI).Element < LN (LI).Element then |
| RJ := RI; |
| RI := RN (RI).Next; |
| Splice_Internal (Target, LI, Source, RJ, LJ); |
| |
| else |
| LI := LN (LI).Next; |
| end if; |
| end loop; |
| |
| TB := TB - 1; |
| TL := TL - 1; |
| |
| SB := SB - 1; |
| SL := SL - 1; |
| |
| exception |
| when others => |
| TB := TB - 1; |
| TL := TL - 1; |
| |
| SB := SB - 1; |
| SL := SL - 1; |
| |
| raise; |
| end; |
| end Merge; |
| |
| ---------- |
| -- Sort -- |
| ---------- |
| |
| procedure Sort (Container : in out List) is |
| N : Node_Array renames Container.Nodes; |
| |
| procedure Partition (Pivot, Back : Count_Type); |
| -- What does this do ??? |
| |
| procedure Sort (Front, Back : Count_Type); |
| -- Internal procedure, what does it do??? rename it??? |
| |
| --------------- |
| -- Partition -- |
| --------------- |
| |
| procedure Partition (Pivot, Back : Count_Type) is |
| Node : Count_Type; |
| |
| begin |
| Node := N (Pivot).Next; |
| while Node /= Back loop |
| if N (Node).Element < N (Pivot).Element then |
| declare |
| Prev : constant Count_Type := N (Node).Prev; |
| Next : constant Count_Type := N (Node).Next; |
| |
| begin |
| N (Prev).Next := Next; |
| |
| if Next = 0 then |
| Container.Last := Prev; |
| else |
| N (Next).Prev := Prev; |
| end if; |
| |
| N (Node).Next := Pivot; |
| N (Node).Prev := N (Pivot).Prev; |
| |
| N (Pivot).Prev := Node; |
| |
| if N (Node).Prev = 0 then |
| Container.First := Node; |
| else |
| N (N (Node).Prev).Next := Node; |
| end if; |
| |
| Node := Next; |
| end; |
| |
| else |
| Node := N (Node).Next; |
| end if; |
| end loop; |
| end Partition; |
| |
| ---------- |
| -- Sort -- |
| ---------- |
| |
| procedure Sort (Front, Back : Count_Type) is |
| Pivot : constant Count_Type := |
| (if Front = 0 then Container.First else N (Front).Next); |
| begin |
| if Pivot /= Back then |
| Partition (Pivot, Back); |
| Sort (Front, Pivot); |
| Sort (Pivot, Back); |
| end if; |
| end Sort; |
| |
| -- Start of processing for Sort |
| |
| begin |
| if Container.Length <= 1 then |
| return; |
| end if; |
| |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| declare |
| B : Natural renames Container.Busy; |
| L : Natural renames Container.Lock; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| Sort (Front => 0, Back => 0); |
| |
| B := B - 1; |
| L := L - 1; |
| |
| exception |
| when others => |
| B := B - 1; |
| L := L - 1; |
| raise; |
| end; |
| |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| end Sort; |
| |
| end Generic_Sorting; |
| |
| ----------------- |
| -- Has_Element -- |
| ----------------- |
| |
| function Has_Element (Position : Cursor) return Boolean is |
| begin |
| pragma Assert (Vet (Position), "bad cursor in Has_Element"); |
| return Position.Node /= 0; |
| end Has_Element; |
| |
| ------------ |
| -- Insert -- |
| ------------ |
| |
| procedure Insert |
| (Container : in out List; |
| Before : Cursor; |
| New_Item : Element_Type; |
| Position : out Cursor; |
| Count : Count_Type := 1) |
| is |
| First_Node : Count_Type; |
| New_Node : Count_Type; |
| |
| begin |
| if Before.Container /= null then |
| if Before.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Before cursor designates wrong list"; |
| end if; |
| |
| pragma Assert (Vet (Before), "bad cursor in Insert"); |
| end if; |
| |
| if Count = 0 then |
| Position := Before; |
| return; |
| end if; |
| |
| if Container.Length > Container.Capacity - Count then |
| raise Capacity_Error with "capacity exceeded"; |
| end if; |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| Allocate (Container, New_Item, New_Node); |
| First_Node := New_Node; |
| Insert_Internal (Container, Before.Node, New_Node); |
| |
| for Index in Count_Type'(2) .. Count loop |
| Allocate (Container, New_Item, New_Node); |
| Insert_Internal (Container, Before.Node, New_Node); |
| end loop; |
| |
| Position := Cursor'(Container'Unchecked_Access, First_Node); |
| end Insert; |
| |
| procedure Insert |
| (Container : in out List; |
| Before : Cursor; |
| New_Item : Element_Type; |
| Count : Count_Type := 1) |
| is |
| Position : Cursor; |
| pragma Unreferenced (Position); |
| begin |
| Insert (Container, Before, New_Item, Position, Count); |
| end Insert; |
| |
| procedure Insert |
| (Container : in out List; |
| Before : Cursor; |
| Position : out Cursor; |
| Count : Count_Type := 1) |
| is |
| New_Item : Element_Type; |
| pragma Unmodified (New_Item); |
| -- OK to reference, see below |
| |
| begin |
| -- There is no explicit element provided, but in an instance the element |
| -- type may be a scalar with a Default_Value aspect, or a composite |
| -- type with such a scalar component, or components with default |
| -- initialization, so insert the specified number of possibly |
| -- initialized elements at the given position. |
| |
| Insert (Container, Before, New_Item, Position, Count); |
| end Insert; |
| |
| --------------------- |
| -- Insert_Internal -- |
| --------------------- |
| |
| procedure Insert_Internal |
| (Container : in out List; |
| Before : Count_Type; |
| New_Node : Count_Type) |
| is |
| N : Node_Array renames Container.Nodes; |
| |
| begin |
| if Container.Length = 0 then |
| pragma Assert (Before = 0); |
| pragma Assert (Container.First = 0); |
| pragma Assert (Container.Last = 0); |
| |
| Container.First := New_Node; |
| N (Container.First).Prev := 0; |
| |
| Container.Last := New_Node; |
| N (Container.Last).Next := 0; |
| |
| -- Before = zero means append |
| |
| elsif Before = 0 then |
| pragma Assert (N (Container.Last).Next = 0); |
| |
| N (Container.Last).Next := New_Node; |
| N (New_Node).Prev := Container.Last; |
| |
| Container.Last := New_Node; |
| N (Container.Last).Next := 0; |
| |
| -- Before = Container.First means prepend |
| |
| elsif Before = Container.First then |
| pragma Assert (N (Container.First).Prev = 0); |
| |
| N (Container.First).Prev := New_Node; |
| N (New_Node).Next := Container.First; |
| |
| Container.First := New_Node; |
| N (Container.First).Prev := 0; |
| |
| else |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| |
| N (New_Node).Next := Before; |
| N (New_Node).Prev := N (Before).Prev; |
| |
| N (N (Before).Prev).Next := New_Node; |
| N (Before).Prev := New_Node; |
| end if; |
| |
| Container.Length := Container.Length + 1; |
| end Insert_Internal; |
| |
| -------------- |
| -- Is_Empty -- |
| -------------- |
| |
| function Is_Empty (Container : List) return Boolean is |
| begin |
| return Container.Length = 0; |
| end Is_Empty; |
| |
| ------------- |
| -- Iterate -- |
| ------------- |
| |
| procedure Iterate |
| (Container : List; |
| Process : not null access procedure (Position : Cursor)) |
| is |
| B : Natural renames Container'Unrestricted_Access.all.Busy; |
| Node : Count_Type := Container.First; |
| |
| begin |
| B := B + 1; |
| |
| begin |
| while Node /= 0 loop |
| Process (Cursor'(Container'Unrestricted_Access, Node)); |
| Node := Container.Nodes (Node).Next; |
| end loop; |
| exception |
| when others => |
| B := B - 1; |
| raise; |
| end; |
| |
| B := B - 1; |
| end Iterate; |
| |
| function Iterate |
| (Container : List) |
| return List_Iterator_Interfaces.Reversible_Iterator'Class |
| is |
| B : Natural renames Container'Unrestricted_Access.all.Busy; |
| |
| begin |
| -- The value of the Node component influences the behavior of the First |
| -- and Last selector functions of the iterator object. When the Node |
| -- component is 0 (as is the case here), this means the iterator |
| -- object was constructed without a start expression. This is a |
| -- complete iterator, meaning that the iteration starts from the |
| -- (logical) beginning of the sequence of items. |
| |
| -- Note: For a forward iterator, Container.First is the beginning, and |
| -- for a reverse iterator, Container.Last is the beginning. |
| |
| return It : constant Iterator := |
| Iterator'(Limited_Controlled with |
| Container => Container'Unrestricted_Access, |
| Node => 0) |
| do |
| B := B + 1; |
| end return; |
| end Iterate; |
| |
| function Iterate |
| (Container : List; |
| Start : Cursor) |
| return List_Iterator_Interfaces.Reversible_Iterator'class |
| is |
| B : Natural renames Container'Unrestricted_Access.all.Busy; |
| |
| begin |
| -- It was formerly the case that when Start = No_Element, the partial |
| -- iterator was defined to behave the same as for a complete iterator, |
| -- and iterate over the entire sequence of items. However, those |
| -- semantics were unintuitive and arguably error-prone (it is too easy |
| -- to accidentally create an endless loop), and so they were changed, |
| -- per the ARG meeting in Denver on 2011/11. However, there was no |
| -- consensus about what positive meaning this corner case should have, |
| -- and so it was decided to simply raise an exception. This does imply, |
| -- however, that it is not possible to use a partial iterator to specify |
| -- an empty sequence of items. |
| |
| if Start = No_Element then |
| raise Constraint_Error with |
| "Start position for iterator equals No_Element"; |
| end if; |
| |
| if Start.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Start cursor of Iterate designates wrong list"; |
| end if; |
| |
| pragma Assert (Vet (Start), "Start cursor of Iterate is bad"); |
| |
| -- The value of the Node component influences the behavior of the First |
| -- and Last selector functions of the iterator object. When the Node |
| -- component is positive (as is the case here), it means that this |
| -- is a partial iteration, over a subset of the complete sequence of |
| -- items. The iterator object was constructed with a start expression, |
| -- indicating the position from which the iteration begins. Note that |
| -- the start position has the same value irrespective of whether this |
| -- is a forward or reverse iteration. |
| |
| return It : constant Iterator := |
| Iterator'(Limited_Controlled with |
| Container => Container'Unrestricted_Access, |
| Node => Start.Node) |
| do |
| B := B + 1; |
| end return; |
| end Iterate; |
| |
| ---------- |
| -- Last -- |
| ---------- |
| |
| function Last (Container : List) return Cursor is |
| begin |
| if Container.Last = 0 then |
| return No_Element; |
| else |
| return Cursor'(Container'Unrestricted_Access, Container.Last); |
| end if; |
| end Last; |
| |
| function Last (Object : Iterator) return Cursor is |
| begin |
| -- The value of the iterator object's Node component influences the |
| -- behavior of the Last (and First) selector function. |
| |
| -- When the Node component is 0, this means the iterator object was |
| -- constructed without a start expression, in which case the (reverse) |
| -- iteration starts from the (logical) beginning of the entire sequence |
| -- (corresponding to Container.Last, for a reverse iterator). |
| |
| -- Otherwise, this is iteration over a partial sequence of items. When |
| -- the Node component is positive, the iterator object was constructed |
| -- with a start expression, that specifies the position from which the |
| -- (reverse) partial iteration begins. |
| |
| if Object.Node = 0 then |
| return Bounded_Doubly_Linked_Lists.Last (Object.Container.all); |
| else |
| return Cursor'(Object.Container, Object.Node); |
| end if; |
| end Last; |
| |
| ------------------ |
| -- Last_Element -- |
| ------------------ |
| |
| function Last_Element (Container : List) return Element_Type is |
| begin |
| if Container.Last = 0 then |
| raise Constraint_Error with "list is empty"; |
| else |
| return Container.Nodes (Container.Last).Element; |
| end if; |
| end Last_Element; |
| |
| ------------ |
| -- Length -- |
| ------------ |
| |
| function Length (Container : List) return Count_Type is |
| begin |
| return Container.Length; |
| end Length; |
| |
| ---------- |
| -- Move -- |
| ---------- |
| |
| procedure Move |
| (Target : in out List; |
| Source : in out List) |
| is |
| N : Node_Array renames Source.Nodes; |
| X : Count_Type; |
| |
| begin |
| if Target'Address = Source'Address then |
| return; |
| end if; |
| |
| if Target.Capacity < Source.Length then |
| raise Capacity_Error with "Source length exceeds Target capacity"; |
| end if; |
| |
| if Source.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Source (list is busy)"; |
| end if; |
| |
| -- Clear target, note that this checks busy bits of Target |
| |
| Clear (Target); |
| |
| while Source.Length > 1 loop |
| pragma Assert (Source.First in 1 .. Source.Capacity); |
| pragma Assert (Source.Last /= Source.First); |
| pragma Assert (N (Source.First).Prev = 0); |
| pragma Assert (N (Source.Last).Next = 0); |
| |
| -- Copy first element from Source to Target |
| |
| X := Source.First; |
| Append (Target, N (X).Element); |
| |
| -- Unlink first node of Source |
| |
| Source.First := N (X).Next; |
| N (Source.First).Prev := 0; |
| |
| Source.Length := Source.Length - 1; |
| |
| -- The representation invariants for Source have been restored. It is |
| -- now safe to free the unlinked node, without fear of corrupting the |
| -- active links of Source. |
| |
| -- Note that the algorithm we use here models similar algorithms used |
| -- in the unbounded form of the doubly-linked list container. In that |
| -- case, Free is an instantation of Unchecked_Deallocation, which can |
| -- fail (because PE will be raised if controlled Finalize fails), so |
| -- we must defer the call until the last step. Here in the bounded |
| -- form, Free merely links the node we have just "deallocated" onto a |
| -- list of inactive nodes, so technically Free cannot fail. However, |
| -- for consistency, we handle Free the same way here as we do for the |
| -- unbounded form, with the pessimistic assumption that it can fail. |
| |
| Free (Source, X); |
| end loop; |
| |
| if Source.Length = 1 then |
| pragma Assert (Source.First in 1 .. Source.Capacity); |
| pragma Assert (Source.Last = Source.First); |
| pragma Assert (N (Source.First).Prev = 0); |
| pragma Assert (N (Source.Last).Next = 0); |
| |
| -- Copy element from Source to Target |
| |
| X := Source.First; |
| Append (Target, N (X).Element); |
| |
| -- Unlink node of Source |
| |
| Source.First := 0; |
| Source.Last := 0; |
| Source.Length := 0; |
| |
| -- Return the unlinked node to the free store |
| |
| Free (Source, X); |
| end if; |
| end Move; |
| |
| ---------- |
| -- Next -- |
| ---------- |
| |
| procedure Next (Position : in out Cursor) is |
| begin |
| Position := Next (Position); |
| end Next; |
| |
| function Next (Position : Cursor) return Cursor is |
| begin |
| if Position.Node = 0 then |
| return No_Element; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Next"); |
| |
| declare |
| Nodes : Node_Array renames Position.Container.Nodes; |
| Node : constant Count_Type := Nodes (Position.Node).Next; |
| begin |
| if Node = 0 then |
| return No_Element; |
| else |
| return Cursor'(Position.Container, Node); |
| end if; |
| end; |
| end Next; |
| |
| function Next |
| (Object : Iterator; |
| Position : Cursor) return Cursor |
| is |
| begin |
| if Position.Container = null then |
| return No_Element; |
| elsif Position.Container /= Object.Container then |
| raise Program_Error with |
| "Position cursor of Next designates wrong list"; |
| else |
| return Next (Position); |
| end if; |
| end Next; |
| |
| ------------- |
| -- Prepend -- |
| ------------- |
| |
| procedure Prepend |
| (Container : in out List; |
| New_Item : Element_Type; |
| Count : Count_Type := 1) |
| is |
| begin |
| Insert (Container, First (Container), New_Item, Count); |
| end Prepend; |
| |
| -------------- |
| -- Previous -- |
| -------------- |
| |
| procedure Previous (Position : in out Cursor) is |
| begin |
| Position := Previous (Position); |
| end Previous; |
| |
| function Previous (Position : Cursor) return Cursor is |
| begin |
| if Position.Node = 0 then |
| return No_Element; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Previous"); |
| |
| declare |
| Nodes : Node_Array renames Position.Container.Nodes; |
| Node : constant Count_Type := Nodes (Position.Node).Prev; |
| begin |
| if Node = 0 then |
| return No_Element; |
| else |
| return Cursor'(Position.Container, Node); |
| end if; |
| end; |
| end Previous; |
| |
| function Previous |
| (Object : Iterator; |
| Position : Cursor) return Cursor |
| is |
| begin |
| if Position.Container = null then |
| return No_Element; |
| elsif Position.Container /= Object.Container then |
| raise Program_Error with |
| "Position cursor of Previous designates wrong list"; |
| else |
| return Previous (Position); |
| end if; |
| end Previous; |
| |
| ------------------- |
| -- Query_Element -- |
| ------------------- |
| |
| procedure Query_Element |
| (Position : Cursor; |
| Process : not null access procedure (Element : Element_Type)) |
| is |
| begin |
| if Position.Node = 0 then |
| raise Constraint_Error with |
| "Position cursor has no element"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Query_Element"); |
| |
| declare |
| C : List renames Position.Container.all'Unrestricted_Access.all; |
| B : Natural renames C.Busy; |
| L : Natural renames C.Lock; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| declare |
| N : Node_Type renames C.Nodes (Position.Node); |
| begin |
| Process (N.Element); |
| exception |
| when others => |
| L := L - 1; |
| B := B - 1; |
| raise; |
| end; |
| |
| L := L - 1; |
| B := B - 1; |
| end; |
| end Query_Element; |
| |
| ---------- |
| -- Read -- |
| ---------- |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out List) |
| is |
| N : Count_Type'Base; |
| X : Count_Type; |
| |
| begin |
| Clear (Item); |
| Count_Type'Base'Read (Stream, N); |
| |
| if N < 0 then |
| raise Program_Error with "bad list length (corrupt stream)"; |
| |
| elsif N = 0 then |
| return; |
| |
| elsif N > Item.Capacity then |
| raise Constraint_Error with "length exceeds capacity"; |
| |
| else |
| for Idx in 1 .. N loop |
| Allocate (Item, Stream, New_Node => X); |
| Insert_Internal (Item, Before => 0, New_Node => X); |
| end loop; |
| end if; |
| end Read; |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out Cursor) |
| is |
| begin |
| raise Program_Error with "attempt to stream list cursor"; |
| end Read; |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Read; |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out Constant_Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Read; |
| |
| --------------- |
| -- Reference -- |
| --------------- |
| |
| function Reference |
| (Container : aliased in out List; |
| Position : Cursor) return Reference_Type |
| is |
| begin |
| if Position.Container = null then |
| raise Constraint_Error with "Position cursor has no element"; |
| |
| elsif Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| |
| else |
| pragma Assert (Vet (Position), "bad cursor in function Reference"); |
| |
| declare |
| N : Node_Type renames Container.Nodes (Position.Node); |
| B : Natural renames Container.Busy; |
| L : Natural renames Container.Lock; |
| begin |
| return R : constant Reference_Type := |
| (Element => N.Element'Access, |
| Control => (Controlled with Container'Unrestricted_Access)) |
| do |
| B := B + 1; |
| L := L + 1; |
| end return; |
| end; |
| end if; |
| end Reference; |
| |
| --------------------- |
| -- Replace_Element -- |
| --------------------- |
| |
| procedure Replace_Element |
| (Container : in out List; |
| Position : Cursor; |
| New_Item : Element_Type) |
| is |
| begin |
| if Position.Container = null then |
| raise Constraint_Error with "Position cursor has no element"; |
| |
| elsif Position.Container /= Container'Unchecked_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| |
| elsif Container.Lock > 0 then |
| raise Program_Error with |
| "attempt to tamper with elements (list is locked)"; |
| |
| else |
| pragma Assert (Vet (Position), "bad cursor in Replace_Element"); |
| |
| Container.Nodes (Position.Node).Element := New_Item; |
| end if; |
| end Replace_Element; |
| |
| ---------------------- |
| -- Reverse_Elements -- |
| ---------------------- |
| |
| procedure Reverse_Elements (Container : in out List) is |
| N : Node_Array renames Container.Nodes; |
| I : Count_Type := Container.First; |
| J : Count_Type := Container.Last; |
| |
| procedure Swap (L, R : Count_Type); |
| |
| ---------- |
| -- Swap -- |
| ---------- |
| |
| procedure Swap (L, R : Count_Type) is |
| LN : constant Count_Type := N (L).Next; |
| LP : constant Count_Type := N (L).Prev; |
| |
| RN : constant Count_Type := N (R).Next; |
| RP : constant Count_Type := N (R).Prev; |
| |
| begin |
| if LP /= 0 then |
| N (LP).Next := R; |
| end if; |
| |
| if RN /= 0 then |
| N (RN).Prev := L; |
| end if; |
| |
| N (L).Next := RN; |
| N (R).Prev := LP; |
| |
| if LN = R then |
| pragma Assert (RP = L); |
| |
| N (L).Prev := R; |
| N (R).Next := L; |
| |
| else |
| N (L).Prev := RP; |
| N (RP).Next := L; |
| |
| N (R).Next := LN; |
| N (LN).Prev := R; |
| end if; |
| end Swap; |
| |
| -- Start of processing for Reverse_Elements |
| |
| begin |
| if Container.Length <= 1 then |
| return; |
| end if; |
| |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| Container.First := J; |
| Container.Last := I; |
| loop |
| Swap (L => I, R => J); |
| |
| J := N (J).Next; |
| exit when I = J; |
| |
| I := N (I).Prev; |
| exit when I = J; |
| |
| Swap (L => J, R => I); |
| |
| I := N (I).Next; |
| exit when I = J; |
| |
| J := N (J).Prev; |
| exit when I = J; |
| end loop; |
| |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| end Reverse_Elements; |
| |
| ------------------ |
| -- Reverse_Find -- |
| ------------------ |
| |
| function Reverse_Find |
| (Container : List; |
| Item : Element_Type; |
| Position : Cursor := No_Element) return Cursor |
| is |
| Node : Count_Type := Position.Node; |
| |
| begin |
| if Node = 0 then |
| Node := Container.Last; |
| |
| else |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Reverse_Find"); |
| end if; |
| |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| declare |
| B : Natural renames Container'Unrestricted_Access.Busy; |
| L : Natural renames Container'Unrestricted_Access.Lock; |
| |
| Result : Count_Type; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| Result := 0; |
| while Node /= 0 loop |
| if Container.Nodes (Node).Element = Item then |
| Result := Node; |
| exit; |
| end if; |
| |
| Node := Container.Nodes (Node).Prev; |
| end loop; |
| |
| B := B - 1; |
| L := L - 1; |
| |
| if Result = 0 then |
| return No_Element; |
| else |
| return Cursor'(Container'Unrestricted_Access, Result); |
| end if; |
| |
| exception |
| when others => |
| B := B - 1; |
| L := L - 1; |
| raise; |
| end; |
| end Reverse_Find; |
| |
| --------------------- |
| -- Reverse_Iterate -- |
| --------------------- |
| |
| procedure Reverse_Iterate |
| (Container : List; |
| Process : not null access procedure (Position : Cursor)) |
| is |
| C : List renames Container'Unrestricted_Access.all; |
| B : Natural renames C.Busy; |
| |
| Node : Count_Type := Container.Last; |
| |
| begin |
| B := B + 1; |
| |
| begin |
| while Node /= 0 loop |
| Process (Cursor'(Container'Unrestricted_Access, Node)); |
| Node := Container.Nodes (Node).Prev; |
| end loop; |
| exception |
| when others => |
| B := B - 1; |
| raise; |
| end; |
| |
| B := B - 1; |
| end Reverse_Iterate; |
| |
| ------------ |
| -- Splice -- |
| ------------ |
| |
| procedure Splice |
| (Target : in out List; |
| Before : Cursor; |
| Source : in out List) |
| is |
| begin |
| if Before.Container /= null then |
| if Before.Container /= Target'Unrestricted_Access then |
| raise Program_Error with |
| "Before cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Before), "bad cursor in Splice"); |
| end if; |
| |
| if Target'Address = Source'Address or else Source.Length = 0 then |
| return; |
| |
| elsif Target.Length > Count_Type'Last - Source.Length then |
| raise Constraint_Error with "new length exceeds maximum"; |
| |
| elsif Target.Length + Source.Length > Target.Capacity then |
| raise Capacity_Error with "new length exceeds target capacity"; |
| |
| elsif Target.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Target (list is busy)"; |
| |
| elsif Source.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Source (list is busy)"; |
| |
| else |
| Splice_Internal (Target, Before.Node, Source); |
| end if; |
| end Splice; |
| |
| procedure Splice |
| (Container : in out List; |
| Before : Cursor; |
| Position : Cursor) |
| is |
| N : Node_Array renames Container.Nodes; |
| |
| begin |
| if Before.Container /= null then |
| if Before.Container /= Container'Unchecked_Access then |
| raise Program_Error with |
| "Before cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Before), "bad Before cursor in Splice"); |
| end if; |
| |
| if Position.Node = 0 then |
| raise Constraint_Error with "Position cursor has no element"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad Position cursor in Splice"); |
| |
| if Position.Node = Before.Node |
| or else N (Position.Node).Next = Before.Node |
| then |
| return; |
| end if; |
| |
| pragma Assert (Container.Length >= 2); |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| if Before.Node = 0 then |
| pragma Assert (Position.Node /= Container.Last); |
| |
| if Position.Node = Container.First then |
| Container.First := N (Position.Node).Next; |
| N (Container.First).Prev := 0; |
| else |
| N (N (Position.Node).Prev).Next := N (Position.Node).Next; |
| N (N (Position.Node).Next).Prev := N (Position.Node).Prev; |
| end if; |
| |
| N (Container.Last).Next := Position.Node; |
| N (Position.Node).Prev := Container.Last; |
| |
| Container.Last := Position.Node; |
| N (Container.Last).Next := 0; |
| |
| return; |
| end if; |
| |
| if Before.Node = Container.First then |
| pragma Assert (Position.Node /= Container.First); |
| |
| if Position.Node = Container.Last then |
| Container.Last := N (Position.Node).Prev; |
| N (Container.Last).Next := 0; |
| else |
| N (N (Position.Node).Prev).Next := N (Position.Node).Next; |
| N (N (Position.Node).Next).Prev := N (Position.Node).Prev; |
| end if; |
| |
| N (Container.First).Prev := Position.Node; |
| N (Position.Node).Next := Container.First; |
| |
| Container.First := Position.Node; |
| N (Container.First).Prev := 0; |
| |
| return; |
| end if; |
| |
| if Position.Node = Container.First then |
| Container.First := N (Position.Node).Next; |
| N (Container.First).Prev := 0; |
| |
| elsif Position.Node = Container.Last then |
| Container.Last := N (Position.Node).Prev; |
| N (Container.Last).Next := 0; |
| |
| else |
| N (N (Position.Node).Prev).Next := N (Position.Node).Next; |
| N (N (Position.Node).Next).Prev := N (Position.Node).Prev; |
| end if; |
| |
| N (N (Before.Node).Prev).Next := Position.Node; |
| N (Position.Node).Prev := N (Before.Node).Prev; |
| |
| N (Before.Node).Prev := Position.Node; |
| N (Position.Node).Next := Before.Node; |
| |
| pragma Assert (N (Container.First).Prev = 0); |
| pragma Assert (N (Container.Last).Next = 0); |
| end Splice; |
| |
| procedure Splice |
| (Target : in out List; |
| Before : Cursor; |
| Source : in out List; |
| Position : in out Cursor) |
| is |
| Target_Position : Count_Type; |
| |
| begin |
| if Target'Address = Source'Address then |
| Splice (Target, Before, Position); |
| return; |
| end if; |
| |
| if Before.Container /= null then |
| if Before.Container /= Target'Unrestricted_Access then |
| raise Program_Error with |
| "Before cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Before), "bad Before cursor in Splice"); |
| end if; |
| |
| if Position.Node = 0 then |
| raise Constraint_Error with "Position cursor has no element"; |
| end if; |
| |
| if Position.Container /= Source'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad Position cursor in Splice"); |
| |
| if Target.Length >= Target.Capacity then |
| raise Capacity_Error with "Target is full"; |
| end if; |
| |
| if Target.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Target (list is busy)"; |
| end if; |
| |
| if Source.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors of Source (list is busy)"; |
| end if; |
| |
| Splice_Internal |
| (Target => Target, |
| Before => Before.Node, |
| Source => Source, |
| Src_Pos => Position.Node, |
| Tgt_Pos => Target_Position); |
| |
| Position := Cursor'(Target'Unrestricted_Access, Target_Position); |
| end Splice; |
| |
| --------------------- |
| -- Splice_Internal -- |
| --------------------- |
| |
| procedure Splice_Internal |
| (Target : in out List; |
| Before : Count_Type; |
| Source : in out List) |
| is |
| N : Node_Array renames Source.Nodes; |
| X : Count_Type; |
| |
| begin |
| -- This implements the corresponding Splice operation, after the |
| -- parameters have been vetted, and corner-cases disposed of. |
| |
| pragma Assert (Target'Address /= Source'Address); |
| pragma Assert (Source.Length > 0); |
| pragma Assert (Source.First /= 0); |
| pragma Assert (N (Source.First).Prev = 0); |
| pragma Assert (Source.Last /= 0); |
| pragma Assert (N (Source.Last).Next = 0); |
| pragma Assert (Target.Length <= Count_Type'Last - Source.Length); |
| pragma Assert (Target.Length + Source.Length <= Target.Capacity); |
| |
| while Source.Length > 1 loop |
| -- Copy first element of Source onto Target |
| |
| Allocate (Target, N (Source.First).Element, New_Node => X); |
| Insert_Internal (Target, Before => Before, New_Node => X); |
| |
| -- Unlink the first node from Source |
| |
| X := Source.First; |
| pragma Assert (N (N (X).Next).Prev = X); |
| |
| Source.First := N (X).Next; |
| N (Source.First).Prev := 0; |
| |
| Source.Length := Source.Length - 1; |
| |
| -- Return the Source node to its free store |
| |
| Free (Source, X); |
| end loop; |
| |
| -- Copy first (and only remaining) element of Source onto Target |
| |
| Allocate (Target, N (Source.First).Element, New_Node => X); |
| Insert_Internal (Target, Before => Before, New_Node => X); |
| |
| -- Unlink the node from Source |
| |
| X := Source.First; |
| pragma Assert (X = Source.Last); |
| |
| Source.First := 0; |
| Source.Last := 0; |
| |
| Source.Length := 0; |
| |
| -- Return the Source node to its free store |
| |
| Free (Source, X); |
| end Splice_Internal; |
| |
| procedure Splice_Internal |
| (Target : in out List; |
| Before : Count_Type; -- node of Target |
| Source : in out List; |
| Src_Pos : Count_Type; -- node of Source |
| Tgt_Pos : out Count_Type) |
| is |
| N : Node_Array renames Source.Nodes; |
| |
| begin |
| -- This implements the corresponding Splice operation, after the |
| -- parameters have been vetted, and corner-cases handled. |
| |
| pragma Assert (Target'Address /= Source'Address); |
| pragma Assert (Target.Length < Target.Capacity); |
| pragma Assert (Source.Length > 0); |
| pragma Assert (Source.First /= 0); |
| pragma Assert (N (Source.First).Prev = 0); |
| pragma Assert (Source.Last /= 0); |
| pragma Assert (N (Source.Last).Next = 0); |
| pragma Assert (Src_Pos /= 0); |
| |
| Allocate (Target, N (Src_Pos).Element, New_Node => Tgt_Pos); |
| Insert_Internal (Target, Before => Before, New_Node => Tgt_Pos); |
| |
| if Source.Length = 1 then |
| pragma Assert (Source.First = Source.Last); |
| pragma Assert (Src_Pos = Source.First); |
| |
| Source.First := 0; |
| Source.Last := 0; |
| |
| elsif Src_Pos = Source.First then |
| pragma Assert (N (N (Src_Pos).Next).Prev = Src_Pos); |
| |
| Source.First := N (Src_Pos).Next; |
| N (Source.First).Prev := 0; |
| |
| elsif Src_Pos = Source.Last then |
| pragma Assert (N (N (Src_Pos).Prev).Next = Src_Pos); |
| |
| Source.Last := N (Src_Pos).Prev; |
| N (Source.Last).Next := 0; |
| |
| else |
| pragma Assert (Source.Length >= 3); |
| pragma Assert (N (N (Src_Pos).Next).Prev = Src_Pos); |
| pragma Assert (N (N (Src_Pos).Prev).Next = Src_Pos); |
| |
| N (N (Src_Pos).Next).Prev := N (Src_Pos).Prev; |
| N (N (Src_Pos).Prev).Next := N (Src_Pos).Next; |
| end if; |
| |
| Source.Length := Source.Length - 1; |
| Free (Source, Src_Pos); |
| end Splice_Internal; |
| |
| ---------- |
| -- Swap -- |
| ---------- |
| |
| procedure Swap |
| (Container : in out List; |
| I, J : Cursor) |
| is |
| begin |
| if I.Node = 0 then |
| raise Constraint_Error with "I cursor has no element"; |
| end if; |
| |
| if J.Node = 0 then |
| raise Constraint_Error with "J cursor has no element"; |
| end if; |
| |
| if I.Container /= Container'Unchecked_Access then |
| raise Program_Error with "I cursor designates wrong container"; |
| end if; |
| |
| if J.Container /= Container'Unchecked_Access then |
| raise Program_Error with "J cursor designates wrong container"; |
| end if; |
| |
| if I.Node = J.Node then |
| return; |
| end if; |
| |
| if Container.Lock > 0 then |
| raise Program_Error with |
| "attempt to tamper with elements (list is locked)"; |
| end if; |
| |
| pragma Assert (Vet (I), "bad I cursor in Swap"); |
| pragma Assert (Vet (J), "bad J cursor in Swap"); |
| |
| declare |
| EI : Element_Type renames Container.Nodes (I.Node).Element; |
| EJ : Element_Type renames Container.Nodes (J.Node).Element; |
| |
| EI_Copy : constant Element_Type := EI; |
| |
| begin |
| EI := EJ; |
| EJ := EI_Copy; |
| end; |
| end Swap; |
| |
| ---------------- |
| -- Swap_Links -- |
| ---------------- |
| |
| procedure Swap_Links |
| (Container : in out List; |
| I, J : Cursor) |
| is |
| begin |
| if I.Node = 0 then |
| raise Constraint_Error with "I cursor has no element"; |
| end if; |
| |
| if J.Node = 0 then |
| raise Constraint_Error with "J cursor has no element"; |
| end if; |
| |
| if I.Container /= Container'Unrestricted_Access then |
| raise Program_Error with "I cursor designates wrong container"; |
| end if; |
| |
| if J.Container /= Container'Unrestricted_Access then |
| raise Program_Error with "J cursor designates wrong container"; |
| end if; |
| |
| if I.Node = J.Node then |
| return; |
| end if; |
| |
| if Container.Busy > 0 then |
| raise Program_Error with |
| "attempt to tamper with cursors (list is busy)"; |
| end if; |
| |
| pragma Assert (Vet (I), "bad I cursor in Swap_Links"); |
| pragma Assert (Vet (J), "bad J cursor in Swap_Links"); |
| |
| declare |
| I_Next : constant Cursor := Next (I); |
| |
| begin |
| if I_Next = J then |
| Splice (Container, Before => I, Position => J); |
| |
| else |
| declare |
| J_Next : constant Cursor := Next (J); |
| |
| begin |
| if J_Next = I then |
| Splice (Container, Before => J, Position => I); |
| |
| else |
| pragma Assert (Container.Length >= 3); |
| |
| Splice (Container, Before => I_Next, Position => J); |
| Splice (Container, Before => J_Next, Position => I); |
| end if; |
| end; |
| end if; |
| end; |
| end Swap_Links; |
| |
| -------------------- |
| -- Update_Element -- |
| -------------------- |
| |
| procedure Update_Element |
| (Container : in out List; |
| Position : Cursor; |
| Process : not null access procedure (Element : in out Element_Type)) |
| is |
| begin |
| if Position.Node = 0 then |
| raise Constraint_Error with "Position cursor has no element"; |
| end if; |
| |
| if Position.Container /= Container'Unchecked_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| pragma Assert (Vet (Position), "bad cursor in Update_Element"); |
| |
| declare |
| B : Natural renames Container.Busy; |
| L : Natural renames Container.Lock; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| declare |
| N : Node_Type renames Container.Nodes (Position.Node); |
| begin |
| Process (N.Element); |
| exception |
| when others => |
| L := L - 1; |
| B := B - 1; |
| raise; |
| end; |
| |
| L := L - 1; |
| B := B - 1; |
| end; |
| end Update_Element; |
| |
| --------- |
| -- Vet -- |
| --------- |
| |
| function Vet (Position : Cursor) return Boolean is |
| begin |
| if Position.Node = 0 then |
| return Position.Container = null; |
| end if; |
| |
| if Position.Container = null then |
| return False; |
| end if; |
| |
| declare |
| L : List renames Position.Container.all; |
| N : Node_Array renames L.Nodes; |
| |
| begin |
| if L.Length = 0 then |
| return False; |
| end if; |
| |
| if L.First = 0 or L.First > L.Capacity then |
| return False; |
| end if; |
| |
| if L.Last = 0 or L.Last > L.Capacity then |
| return False; |
| end if; |
| |
| if N (L.First).Prev /= 0 then |
| return False; |
| end if; |
| |
| if N (L.Last).Next /= 0 then |
| return False; |
| end if; |
| |
| if Position.Node > L.Capacity then |
| return False; |
| end if; |
| |
| -- An invariant of an active node is that its Previous and Next |
| -- components are non-negative. Operation Free sets the Previous |
| -- component of the node to the value -1 before actually deallocating |
| -- the node, to mark the node as inactive. (By "dellocating" we mean |
| -- only that the node is linked onto a list of inactive nodes used |
| -- for storage.) This marker gives us a simple way to detect a |
| -- dangling reference to a node. |
| |
| if N (Position.Node).Prev < 0 then -- see Free |
| return False; |
| end if; |
| |
| if N (Position.Node).Prev > L.Capacity then |
| return False; |
| end if; |
| |
| if N (Position.Node).Next = Position.Node then |
| return False; |
| end if; |
| |
| if N (Position.Node).Prev = Position.Node then |
| return False; |
| end if; |
| |
| if N (Position.Node).Prev = 0 |
| and then Position.Node /= L.First |
| then |
| return False; |
| end if; |
| |
| pragma Assert (N (Position.Node).Prev /= 0 |
| or else Position.Node = L.First); |
| |
| if N (Position.Node).Next = 0 |
| and then Position.Node /= L.Last |
| then |
| return False; |
| end if; |
| |
| pragma Assert (N (Position.Node).Next /= 0 |
| or else Position.Node = L.Last); |
| |
| if L.Length = 1 then |
| return L.First = L.Last; |
| end if; |
| |
| if L.First = L.Last then |
| return False; |
| end if; |
| |
| if N (L.First).Next = 0 then |
| return False; |
| end if; |
| |
| if N (L.Last).Prev = 0 then |
| return False; |
| end if; |
| |
| if N (N (L.First).Next).Prev /= L.First then |
| return False; |
| end if; |
| |
| if N (N (L.Last).Prev).Next /= L.Last then |
| return False; |
| end if; |
| |
| if L.Length = 2 then |
| if N (L.First).Next /= L.Last then |
| return False; |
| end if; |
| |
| if N (L.Last).Prev /= L.First then |
| return False; |
| end if; |
| |
| return True; |
| end if; |
| |
| if N (L.First).Next = L.Last then |
| return False; |
| end if; |
| |
| if N (L.Last).Prev = L.First then |
| return False; |
| end if; |
| |
| -- Eliminate earlier possibility |
| |
| if Position.Node = L.First then |
| return True; |
| end if; |
| |
| pragma Assert (N (Position.Node).Prev /= 0); |
| |
| -- Eliminate another possibility |
| |
| if Position.Node = L.Last then |
| return True; |
| end if; |
| |
| pragma Assert (N (Position.Node).Next /= 0); |
| |
| if N (N (Position.Node).Next).Prev /= Position.Node then |
| return False; |
| end if; |
| |
| if N (N (Position.Node).Prev).Next /= Position.Node then |
| return False; |
| end if; |
| |
| if L.Length = 3 then |
| if N (L.First).Next /= Position.Node then |
| return False; |
| end if; |
| |
| if N (L.Last).Prev /= Position.Node then |
| return False; |
| end if; |
| end if; |
| |
| return True; |
| end; |
| end Vet; |
| |
| ----------- |
| -- Write -- |
| ----------- |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : List) |
| is |
| Node : Count_Type; |
| |
| begin |
| Count_Type'Base'Write (Stream, Item.Length); |
| |
| Node := Item.First; |
| while Node /= 0 loop |
| Element_Type'Write (Stream, Item.Nodes (Node).Element); |
| Node := Item.Nodes (Node).Next; |
| end loop; |
| end Write; |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : Cursor) |
| is |
| begin |
| raise Program_Error with "attempt to stream list cursor"; |
| end Write; |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Write; |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : Constant_Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Write; |
| |
| end Ada.Containers.Bounded_Doubly_Linked_Lists; |