blob: c4e4945d702ab74626628a2bbfe983171dceb5a3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.BOUNDED_DOUBLY_LINKED_LISTS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
with System; use type System.Address;
package body Ada.Containers.Bounded_Doubly_Linked_Lists is
pragma Annotate (CodePeer, Skip_Analysis);
-----------------------
-- Local Subprograms --
-----------------------
procedure Allocate
(Container : in out List;
New_Item : Element_Type;
New_Node : out Count_Type);
procedure Allocate
(Container : in out List;
Stream : not null access Root_Stream_Type'Class;
New_Node : out Count_Type);
procedure Free
(Container : in out List;
X : Count_Type);
procedure Insert_Internal
(Container : in out List;
Before : Count_Type;
New_Node : Count_Type);
procedure Splice_Internal
(Target : in out List;
Before : Count_Type;
Source : in out List);
procedure Splice_Internal
(Target : in out List;
Before : Count_Type;
Source : in out List;
Src_Pos : Count_Type;
Tgt_Pos : out Count_Type);
function Vet (Position : Cursor) return Boolean;
-- Checks invariants of the cursor and its designated container, as a
-- simple way of detecting dangling references (see operation Free for a
-- description of the detection mechanism), returning True if all checks
-- pass. Invocations of Vet are used here as the argument of pragma Assert,
-- so the checks are performed only when assertions are enabled.
---------
-- "=" --
---------
function "=" (Left, Right : List) return Boolean is
BL : Natural renames Left'Unrestricted_Access.Busy;
LL : Natural renames Left'Unrestricted_Access.Lock;
BR : Natural renames Right'Unrestricted_Access.Busy;
LR : Natural renames Right'Unrestricted_Access.Lock;
LN : Node_Array renames Left.Nodes;
RN : Node_Array renames Right.Nodes;
LI : Count_Type;
RI : Count_Type;
Result : Boolean;
begin
if Left'Address = Right'Address then
return True;
end if;
if Left.Length /= Right.Length then
return False;
end if;
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
BL := BL + 1;
LL := LL + 1;
BR := BR + 1;
LR := LR + 1;
LI := Left.First;
RI := Right.First;
Result := True;
for J in 1 .. Left.Length loop
if LN (LI).Element /= RN (RI).Element then
Result := False;
exit;
end if;
LI := LN (LI).Next;
RI := RN (RI).Next;
end loop;
BL := BL - 1;
LL := LL - 1;
BR := BR - 1;
LR := LR - 1;
return Result;
exception
when others =>
BL := BL - 1;
LL := LL - 1;
BR := BR - 1;
LR := LR - 1;
raise;
end "=";
--------------
-- Allocate --
--------------
procedure Allocate
(Container : in out List;
New_Item : Element_Type;
New_Node : out Count_Type)
is
N : Node_Array renames Container.Nodes;
begin
if Container.Free >= 0 then
New_Node := Container.Free;
-- We always perform the assignment first, before we change container
-- state, in order to defend against exceptions duration assignment.
N (New_Node).Element := New_Item;
Container.Free := N (New_Node).Next;
else
-- A negative free store value means that the links of the nodes in
-- the free store have not been initialized. In this case, the nodes
-- are physically contiguous in the array, starting at the index that
-- is the absolute value of the Container.Free, and continuing until
-- the end of the array (Nodes'Last).
New_Node := abs Container.Free;
-- As above, we perform this assignment first, before modifying any
-- container state.
N (New_Node).Element := New_Item;
Container.Free := Container.Free - 1;
end if;
end Allocate;
procedure Allocate
(Container : in out List;
Stream : not null access Root_Stream_Type'Class;
New_Node : out Count_Type)
is
N : Node_Array renames Container.Nodes;
begin
if Container.Free >= 0 then
New_Node := Container.Free;
-- We always perform the assignment first, before we change container
-- state, in order to defend against exceptions duration assignment.
Element_Type'Read (Stream, N (New_Node).Element);
Container.Free := N (New_Node).Next;
else
-- A negative free store value means that the links of the nodes in
-- the free store have not been initialized. In this case, the nodes
-- are physically contiguous in the array, starting at the index that
-- is the absolute value of the Container.Free, and continuing until
-- the end of the array (Nodes'Last).
New_Node := abs Container.Free;
-- As above, we perform this assignment first, before modifying any
-- container state.
Element_Type'Read (Stream, N (New_Node).Element);
Container.Free := Container.Free - 1;
end if;
end Allocate;
------------
-- Append --
------------
procedure Append
(Container : in out List;
New_Item : Element_Type;
Count : Count_Type := 1)
is
begin
Insert (Container, No_Element, New_Item, Count);
end Append;
------------
-- Adjust --
------------
procedure Adjust (Control : in out Reference_Control_Type) is
begin
if Control.Container /= null then
declare
C : List renames Control.Container.all;
B : Natural renames C.Busy;
L : Natural renames C.Lock;
begin
B := B + 1;
L := L + 1;
end;
end if;
end Adjust;
------------
-- Assign --
------------
procedure Assign (Target : in out List; Source : List) is
SN : Node_Array renames Source.Nodes;
J : Count_Type;
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Source.Length then
raise Capacity_Error -- ???
with "Target capacity is less than Source length";
end if;
Target.Clear;
J := Source.First;
while J /= 0 loop
Target.Append (SN (J).Element);
J := SN (J).Next;
end loop;
end Assign;
-----------
-- Clear --
-----------
procedure Clear (Container : in out List) is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Container.Length = 0 then
pragma Assert (Container.First = 0);
pragma Assert (Container.Last = 0);
pragma Assert (Container.Busy = 0);
pragma Assert (Container.Lock = 0);
return;
end if;
pragma Assert (Container.First >= 1);
pragma Assert (Container.Last >= 1);
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
while Container.Length > 1 loop
X := Container.First;
pragma Assert (N (N (X).Next).Prev = Container.First);
Container.First := N (X).Next;
N (Container.First).Prev := 0;
Container.Length := Container.Length - 1;
Free (Container, X);
end loop;
X := Container.First;
pragma Assert (X = Container.Last);
Container.First := 0;
Container.Last := 0;
Container.Length := 0;
Free (Container, X);
end Clear;
------------------------
-- Constant_Reference --
------------------------
function Constant_Reference
(Container : aliased List;
Position : Cursor) return Constant_Reference_Type
is
begin
if Position.Container = null then
raise Constraint_Error with "Position cursor has no element";
elsif Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
else
pragma Assert (Vet (Position), "bad cursor in Constant_Reference");
declare
N : Node_Type renames Container.Nodes (Position.Node);
B : Natural renames Position.Container.Busy;
L : Natural renames Position.Container.Lock;
begin
return R : constant Constant_Reference_Type :=
(Element => N.Element'Access,
Control => (Controlled with Container'Unrestricted_Access))
do
B := B + 1;
L := L + 1;
end return;
end;
end if;
end Constant_Reference;
--------------
-- Contains --
--------------
function Contains
(Container : List;
Item : Element_Type) return Boolean
is
begin
return Find (Container, Item) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy (Source : List; Capacity : Count_Type := 0) return List is
C : Count_Type;
begin
if Capacity = 0 then
C := Source.Length;
elsif Capacity >= Source.Length then
C := Capacity;
else
raise Capacity_Error with "Capacity value too small";
end if;
return Target : List (Capacity => C) do
Assign (Target => Target, Source => Source);
end return;
end Copy;
------------
-- Delete --
------------
procedure Delete
(Container : in out List;
Position : in out Cursor;
Count : Count_Type := 1)
is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Position.Node = 0 then
raise Constraint_Error with
"Position cursor has no element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position), "bad cursor in Delete");
pragma Assert (Container.First >= 1);
pragma Assert (Container.Last >= 1);
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
if Position.Node = Container.First then
Delete_First (Container, Count);
Position := No_Element;
return;
end if;
if Count = 0 then
Position := No_Element;
return;
end if;
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
for Index in 1 .. Count loop
pragma Assert (Container.Length >= 2);
X := Position.Node;
Container.Length := Container.Length - 1;
if X = Container.Last then
Position := No_Element;
Container.Last := N (X).Prev;
N (Container.Last).Next := 0;
Free (Container, X);
return;
end if;
Position.Node := N (X).Next;
N (N (X).Next).Prev := N (X).Prev;
N (N (X).Prev).Next := N (X).Next;
Free (Container, X);
end loop;
Position := No_Element;
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First
(Container : in out List;
Count : Count_Type := 1)
is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Count >= Container.Length then
Clear (Container);
return;
end if;
if Count = 0 then
return;
end if;
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
for J in 1 .. Count loop
X := Container.First;
pragma Assert (N (N (X).Next).Prev = Container.First);
Container.First := N (X).Next;
N (Container.First).Prev := 0;
Container.Length := Container.Length - 1;
Free (Container, X);
end loop;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last
(Container : in out List;
Count : Count_Type := 1)
is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Count >= Container.Length then
Clear (Container);
return;
end if;
if Count = 0 then
return;
end if;
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
for J in 1 .. Count loop
X := Container.Last;
pragma Assert (N (N (X).Prev).Next = Container.Last);
Container.Last := N (X).Prev;
N (Container.Last).Next := 0;
Container.Length := Container.Length - 1;
Free (Container, X);
end loop;
end Delete_Last;
-------------
-- Element --
-------------
function Element (Position : Cursor) return Element_Type is
begin
if Position.Node = 0 then
raise Constraint_Error with
"Position cursor has no element";
else
pragma Assert (Vet (Position), "bad cursor in Element");
return Position.Container.Nodes (Position.Node).Element;
end if;
end Element;
--------------
-- Finalize --
--------------
procedure Finalize (Object : in out Iterator) is
begin
if Object.Container /= null then
declare
B : Natural renames Object.Container.all.Busy;
begin
B := B - 1;
end;
end if;
end Finalize;
procedure Finalize (Control : in out Reference_Control_Type) is
begin
if Control.Container /= null then
declare
C : List renames Control.Container.all;
B : Natural renames C.Busy;
L : Natural renames C.Lock;
begin
B := B - 1;
L := L - 1;
end;
Control.Container := null;
end if;
end Finalize;
----------
-- Find --
----------
function Find
(Container : List;
Item : Element_Type;
Position : Cursor := No_Element) return Cursor
is
Nodes : Node_Array renames Container.Nodes;
Node : Count_Type := Position.Node;
begin
if Node = 0 then
Node := Container.First;
else
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position), "bad cursor in Find");
end if;
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
declare
B : Natural renames Container'Unrestricted_Access.Busy;
L : Natural renames Container'Unrestricted_Access.Lock;
Result : Count_Type;
begin
B := B + 1;
L := L + 1;
Result := 0;
while Node /= 0 loop
if Nodes (Node).Element = Item then
Result := Node;
exit;
end if;
Node := Nodes (Node).Next;
end loop;
B := B - 1;
L := L - 1;
if Result = 0 then
return No_Element;
else
return Cursor'(Container'Unrestricted_Access, Result);
end if;
exception
when others =>
B := B - 1;
L := L - 1;
raise;
end;
end Find;
-----------
-- First --
-----------
function First (Container : List) return Cursor is
begin
if Container.First = 0 then
return No_Element;
else
return Cursor'(Container'Unrestricted_Access, Container.First);
end if;
end First;
function First (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the First (and Last) selector function.
-- When the Node component is 0, this means the iterator object was
-- constructed without a start expression, in which case the (forward)
-- iteration starts from the (logical) beginning of the entire sequence
-- of items (corresponding to Container.First, for a forward iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is positive, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (forward) partial iteration begins.
if Object.Node = 0 then
return Bounded_Doubly_Linked_Lists.First (Object.Container.all);
else
return Cursor'(Object.Container, Object.Node);
end if;
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : List) return Element_Type is
begin
if Container.First = 0 then
raise Constraint_Error with "list is empty";
else
return Container.Nodes (Container.First).Element;
end if;
end First_Element;
----------
-- Free --
----------
procedure Free
(Container : in out List;
X : Count_Type)
is
pragma Assert (X > 0);
pragma Assert (X <= Container.Capacity);
N : Node_Array renames Container.Nodes;
pragma Assert (N (X).Prev >= 0); -- node is active
begin
-- The list container actually contains two lists: one for the "active"
-- nodes that contain elements that have been inserted onto the list,
-- and another for the "inactive" nodes for the free store.
-- We desire that merely declaring an object should have only minimal
-- cost; specially, we want to avoid having to initialize the free
-- store (to fill in the links), especially if the capacity is large.
-- The head of the free list is indicated by Container.Free. If its
-- value is non-negative, then the free store has been initialized in
-- the "normal" way: Container.Free points to the head of the list of
-- free (inactive) nodes, and the value 0 means the free list is empty.
-- Each node on the free list has been initialized to point to the next
-- free node (via its Next component), and the value 0 means that this
-- is the last free node.
-- If Container.Free is negative, then the links on the free store have
-- not been initialized. In this case the link values are implied: the
-- free store comprises the components of the node array started with
-- the absolute value of Container.Free, and continuing until the end of
-- the array (Nodes'Last).
-- If the list container is manipulated on one end only (for example if
-- the container were being used as a stack), then there is no need to
-- initialize the free store, since the inactive nodes are physically
-- contiguous (in fact, they lie immediately beyond the logical end
-- being manipulated). The only time we need to actually initialize the
-- nodes in the free store is if the node that becomes inactive is not
-- at the end of the list. The free store would then be discontiguous
-- and so its nodes would need to be linked in the traditional way.
-- ???
-- It might be possible to perform an optimization here. Suppose that
-- the free store can be represented as having two parts: one comprising
-- the non-contiguous inactive nodes linked together in the normal way,
-- and the other comprising the contiguous inactive nodes (that are not
-- linked together, at the end of the nodes array). This would allow us
-- to never have to initialize the free store, except in a lazy way as
-- nodes become inactive.
-- When an element is deleted from the list container, its node becomes
-- inactive, and so we set its Prev component to a negative value, to
-- indicate that it is now inactive. This provides a useful way to
-- detect a dangling cursor reference (and which is used in Vet).
N (X).Prev := -1; -- Node is deallocated (not on active list)
if Container.Free >= 0 then
-- The free store has previously been initialized. All we need to
-- do here is link the newly-free'd node onto the free list.
N (X).Next := Container.Free;
Container.Free := X;
elsif X + 1 = abs Container.Free then
-- The free store has not been initialized, and the node becoming
-- inactive immediately precedes the start of the free store. All
-- we need to do is move the start of the free store back by one.
-- Note: initializing Next to zero is not strictly necessary but
-- seems cleaner and marginally safer.
N (X).Next := 0;
Container.Free := Container.Free + 1;
else
-- The free store has not been initialized, and the node becoming
-- inactive does not immediately precede the free store. Here we
-- first initialize the free store (meaning the links are given
-- values in the traditional way), and then link the newly-free'd
-- node onto the head of the free store.
-- ???
-- See the comments above for an optimization opportunity. If the
-- next link for a node on the free store is negative, then this
-- means the remaining nodes on the free store are physically
-- contiguous, starting as the absolute value of that index value.
Container.Free := abs Container.Free;
if Container.Free > Container.Capacity then
Container.Free := 0;
else
for I in Container.Free .. Container.Capacity - 1 loop
N (I).Next := I + 1;
end loop;
N (Container.Capacity).Next := 0;
end if;
N (X).Next := Container.Free;
Container.Free := X;
end if;
end Free;
---------------------
-- Generic_Sorting --
---------------------
package body Generic_Sorting is
---------------
-- Is_Sorted --
---------------
function Is_Sorted (Container : List) return Boolean is
B : Natural renames Container'Unrestricted_Access.Busy;
L : Natural renames Container'Unrestricted_Access.Lock;
Nodes : Node_Array renames Container.Nodes;
Node : Count_Type;
Result : Boolean;
begin
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
B := B + 1;
L := L + 1;
Node := Container.First;
Result := True;
for J in 2 .. Container.Length loop
if Nodes (Nodes (Node).Next).Element < Nodes (Node).Element then
Result := False;
exit;
end if;
Node := Nodes (Node).Next;
end loop;
B := B - 1;
L := L - 1;
return Result;
exception
when others =>
B := B - 1;
L := L - 1;
raise;
end Is_Sorted;
-----------
-- Merge --
-----------
procedure Merge
(Target : in out List;
Source : in out List)
is
begin
-- The semantics of Merge changed slightly per AI05-0021. It was
-- originally the case that if Target and Source denoted the same
-- container object, then the GNAT implementation of Merge did
-- nothing. However, it was argued that RM05 did not precisely
-- specify the semantics for this corner case. The decision of the
-- ARG was that if Target and Source denote the same non-empty
-- container object, then Program_Error is raised.
if Source.Is_Empty then
return;
end if;
if Target'Address = Source'Address then
raise Program_Error with
"Target and Source denote same non-empty container";
end if;
if Target.Length > Count_Type'Last - Source.Length then
raise Constraint_Error with "new length exceeds maximum";
end if;
if Target.Length + Source.Length > Target.Capacity then
raise Capacity_Error with "new length exceeds target capacity";
end if;
if Target.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Target (list is busy)";
end if;
if Source.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Source (list is busy)";
end if;
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
declare
TB : Natural renames Target.Busy;
TL : Natural renames Target.Lock;
SB : Natural renames Source.Busy;
SL : Natural renames Source.Lock;
LN : Node_Array renames Target.Nodes;
RN : Node_Array renames Source.Nodes;
LI, LJ, RI, RJ : Count_Type;
begin
TB := TB + 1;
TL := TL + 1;
SB := SB + 1;
SL := SL + 1;
LI := Target.First;
RI := Source.First;
while RI /= 0 loop
pragma Assert (RN (RI).Next = 0
or else not (RN (RN (RI).Next).Element <
RN (RI).Element));
if LI = 0 then
Splice_Internal (Target, 0, Source);
exit;
end if;
pragma Assert (LN (LI).Next = 0
or else not (LN (LN (LI).Next).Element <
LN (LI).Element));
if RN (RI).Element < LN (LI).Element then
RJ := RI;
RI := RN (RI).Next;
Splice_Internal (Target, LI, Source, RJ, LJ);
else
LI := LN (LI).Next;
end if;
end loop;
TB := TB - 1;
TL := TL - 1;
SB := SB - 1;
SL := SL - 1;
exception
when others =>
TB := TB - 1;
TL := TL - 1;
SB := SB - 1;
SL := SL - 1;
raise;
end;
end Merge;
----------
-- Sort --
----------
procedure Sort (Container : in out List) is
N : Node_Array renames Container.Nodes;
procedure Partition (Pivot, Back : Count_Type);
-- What does this do ???
procedure Sort (Front, Back : Count_Type);
-- Internal procedure, what does it do??? rename it???
---------------
-- Partition --
---------------
procedure Partition (Pivot, Back : Count_Type) is
Node : Count_Type;
begin
Node := N (Pivot).Next;
while Node /= Back loop
if N (Node).Element < N (Pivot).Element then
declare
Prev : constant Count_Type := N (Node).Prev;
Next : constant Count_Type := N (Node).Next;
begin
N (Prev).Next := Next;
if Next = 0 then
Container.Last := Prev;
else
N (Next).Prev := Prev;
end if;
N (Node).Next := Pivot;
N (Node).Prev := N (Pivot).Prev;
N (Pivot).Prev := Node;
if N (Node).Prev = 0 then
Container.First := Node;
else
N (N (Node).Prev).Next := Node;
end if;
Node := Next;
end;
else
Node := N (Node).Next;
end if;
end loop;
end Partition;
----------
-- Sort --
----------
procedure Sort (Front, Back : Count_Type) is
Pivot : constant Count_Type :=
(if Front = 0 then Container.First else N (Front).Next);
begin
if Pivot /= Back then
Partition (Pivot, Back);
Sort (Front, Pivot);
Sort (Pivot, Back);
end if;
end Sort;
-- Start of processing for Sort
begin
if Container.Length <= 1 then
return;
end if;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
declare
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
begin
B := B + 1;
L := L + 1;
Sort (Front => 0, Back => 0);
B := B - 1;
L := L - 1;
exception
when others =>
B := B - 1;
L := L - 1;
raise;
end;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
end Sort;
end Generic_Sorting;
-----------------
-- Has_Element --
-----------------
function Has_Element (Position : Cursor) return Boolean is
begin
pragma Assert (Vet (Position), "bad cursor in Has_Element");
return Position.Node /= 0;
end Has_Element;
------------
-- Insert --
------------
procedure Insert
(Container : in out List;
Before : Cursor;
New_Item : Element_Type;
Position : out Cursor;
Count : Count_Type := 1)
is
First_Node : Count_Type;
New_Node : Count_Type;
begin
if Before.Container /= null then
if Before.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Before cursor designates wrong list";
end if;
pragma Assert (Vet (Before), "bad cursor in Insert");
end if;
if Count = 0 then
Position := Before;
return;
end if;
if Container.Length > Container.Capacity - Count then
raise Capacity_Error with "capacity exceeded";
end if;
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
Allocate (Container, New_Item, New_Node);
First_Node := New_Node;
Insert_Internal (Container, Before.Node, New_Node);
for Index in Count_Type'(2) .. Count loop
Allocate (Container, New_Item, New_Node);
Insert_Internal (Container, Before.Node, New_Node);
end loop;
Position := Cursor'(Container'Unchecked_Access, First_Node);
end Insert;
procedure Insert
(Container : in out List;
Before : Cursor;
New_Item : Element_Type;
Count : Count_Type := 1)
is
Position : Cursor;
pragma Unreferenced (Position);
begin
Insert (Container, Before, New_Item, Position, Count);
end Insert;
procedure Insert
(Container : in out List;
Before : Cursor;
Position : out Cursor;
Count : Count_Type := 1)
is
New_Item : Element_Type;
pragma Unmodified (New_Item);
-- OK to reference, see below
begin
-- There is no explicit element provided, but in an instance the element
-- type may be a scalar with a Default_Value aspect, or a composite
-- type with such a scalar component, or components with default
-- initialization, so insert the specified number of possibly
-- initialized elements at the given position.
Insert (Container, Before, New_Item, Position, Count);
end Insert;
---------------------
-- Insert_Internal --
---------------------
procedure Insert_Internal
(Container : in out List;
Before : Count_Type;
New_Node : Count_Type)
is
N : Node_Array renames Container.Nodes;
begin
if Container.Length = 0 then
pragma Assert (Before = 0);
pragma Assert (Container.First = 0);
pragma Assert (Container.Last = 0);
Container.First := New_Node;
N (Container.First).Prev := 0;
Container.Last := New_Node;
N (Container.Last).Next := 0;
-- Before = zero means append
elsif Before = 0 then
pragma Assert (N (Container.Last).Next = 0);
N (Container.Last).Next := New_Node;
N (New_Node).Prev := Container.Last;
Container.Last := New_Node;
N (Container.Last).Next := 0;
-- Before = Container.First means prepend
elsif Before = Container.First then
pragma Assert (N (Container.First).Prev = 0);
N (Container.First).Prev := New_Node;
N (New_Node).Next := Container.First;
Container.First := New_Node;
N (Container.First).Prev := 0;
else
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
N (New_Node).Next := Before;
N (New_Node).Prev := N (Before).Prev;
N (N (Before).Prev).Next := New_Node;
N (Before).Prev := New_Node;
end if;
Container.Length := Container.Length + 1;
end Insert_Internal;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : List) return Boolean is
begin
return Container.Length = 0;
end Is_Empty;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : List;
Process : not null access procedure (Position : Cursor))
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
Node : Count_Type := Container.First;
begin
B := B + 1;
begin
while Node /= 0 loop
Process (Cursor'(Container'Unrestricted_Access, Node));
Node := Container.Nodes (Node).Next;
end loop;
exception
when others =>
B := B - 1;
raise;
end;
B := B - 1;
end Iterate;
function Iterate
(Container : List)
return List_Iterator_Interfaces.Reversible_Iterator'Class
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
begin
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is 0 (as is the case here), this means the iterator
-- object was constructed without a start expression. This is a
-- complete iterator, meaning that the iteration starts from the
-- (logical) beginning of the sequence of items.
-- Note: For a forward iterator, Container.First is the beginning, and
-- for a reverse iterator, Container.Last is the beginning.
return It : constant Iterator :=
Iterator'(Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => 0)
do
B := B + 1;
end return;
end Iterate;
function Iterate
(Container : List;
Start : Cursor)
return List_Iterator_Interfaces.Reversible_Iterator'class
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
begin
-- It was formerly the case that when Start = No_Element, the partial
-- iterator was defined to behave the same as for a complete iterator,
-- and iterate over the entire sequence of items. However, those
-- semantics were unintuitive and arguably error-prone (it is too easy
-- to accidentally create an endless loop), and so they were changed,
-- per the ARG meeting in Denver on 2011/11. However, there was no
-- consensus about what positive meaning this corner case should have,
-- and so it was decided to simply raise an exception. This does imply,
-- however, that it is not possible to use a partial iterator to specify
-- an empty sequence of items.
if Start = No_Element then
raise Constraint_Error with
"Start position for iterator equals No_Element";
end if;
if Start.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Start cursor of Iterate designates wrong list";
end if;
pragma Assert (Vet (Start), "Start cursor of Iterate is bad");
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is positive (as is the case here), it means that this
-- is a partial iteration, over a subset of the complete sequence of
-- items. The iterator object was constructed with a start expression,
-- indicating the position from which the iteration begins. Note that
-- the start position has the same value irrespective of whether this
-- is a forward or reverse iteration.
return It : constant Iterator :=
Iterator'(Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => Start.Node)
do
B := B + 1;
end return;
end Iterate;
----------
-- Last --
----------
function Last (Container : List) return Cursor is
begin
if Container.Last = 0 then
return No_Element;
else
return Cursor'(Container'Unrestricted_Access, Container.Last);
end if;
end Last;
function Last (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the Last (and First) selector function.
-- When the Node component is 0, this means the iterator object was
-- constructed without a start expression, in which case the (reverse)
-- iteration starts from the (logical) beginning of the entire sequence
-- (corresponding to Container.Last, for a reverse iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is positive, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (reverse) partial iteration begins.
if Object.Node = 0 then
return Bounded_Doubly_Linked_Lists.Last (Object.Container.all);
else
return Cursor'(Object.Container, Object.Node);
end if;
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : List) return Element_Type is
begin
if Container.Last = 0 then
raise Constraint_Error with "list is empty";
else
return Container.Nodes (Container.Last).Element;
end if;
end Last_Element;
------------
-- Length --
------------
function Length (Container : List) return Count_Type is
begin
return Container.Length;
end Length;
----------
-- Move --
----------
procedure Move
(Target : in out List;
Source : in out List)
is
N : Node_Array renames Source.Nodes;
X : Count_Type;
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Source.Length then
raise Capacity_Error with "Source length exceeds Target capacity";
end if;
if Source.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Source (list is busy)";
end if;
-- Clear target, note that this checks busy bits of Target
Clear (Target);
while Source.Length > 1 loop
pragma Assert (Source.First in 1 .. Source.Capacity);
pragma Assert (Source.Last /= Source.First);
pragma Assert (N (Source.First).Prev = 0);
pragma Assert (N (Source.Last).Next = 0);
-- Copy first element from Source to Target
X := Source.First;
Append (Target, N (X).Element);
-- Unlink first node of Source
Source.First := N (X).Next;
N (Source.First).Prev := 0;
Source.Length := Source.Length - 1;
-- The representation invariants for Source have been restored. It is
-- now safe to free the unlinked node, without fear of corrupting the
-- active links of Source.
-- Note that the algorithm we use here models similar algorithms used
-- in the unbounded form of the doubly-linked list container. In that
-- case, Free is an instantation of Unchecked_Deallocation, which can
-- fail (because PE will be raised if controlled Finalize fails), so
-- we must defer the call until the last step. Here in the bounded
-- form, Free merely links the node we have just "deallocated" onto a
-- list of inactive nodes, so technically Free cannot fail. However,
-- for consistency, we handle Free the same way here as we do for the
-- unbounded form, with the pessimistic assumption that it can fail.
Free (Source, X);
end loop;
if Source.Length = 1 then
pragma Assert (Source.First in 1 .. Source.Capacity);
pragma Assert (Source.Last = Source.First);
pragma Assert (N (Source.First).Prev = 0);
pragma Assert (N (Source.Last).Next = 0);
-- Copy element from Source to Target
X := Source.First;
Append (Target, N (X).Element);
-- Unlink node of Source
Source.First := 0;
Source.Last := 0;
Source.Length := 0;
-- Return the unlinked node to the free store
Free (Source, X);
end if;
end Move;
----------
-- Next --
----------
procedure Next (Position : in out Cursor) is
begin
Position := Next (Position);
end Next;
function Next (Position : Cursor) return Cursor is
begin
if Position.Node = 0 then
return No_Element;
end if;
pragma Assert (Vet (Position), "bad cursor in Next");
declare
Nodes : Node_Array renames Position.Container.Nodes;
Node : constant Count_Type := Nodes (Position.Node).Next;
begin
if Node = 0 then
return No_Element;
else
return Cursor'(Position.Container, Node);
end if;
end;
end Next;
function Next
(Object : Iterator;
Position : Cursor) return Cursor
is
begin
if Position.Container = null then
return No_Element;
elsif Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Next designates wrong list";
else
return Next (Position);
end if;
end Next;
-------------
-- Prepend --
-------------
procedure Prepend
(Container : in out List;
New_Item : Element_Type;
Count : Count_Type := 1)
is
begin
Insert (Container, First (Container), New_Item, Count);
end Prepend;
--------------
-- Previous --
--------------
procedure Previous (Position : in out Cursor) is
begin
Position := Previous (Position);
end Previous;
function Previous (Position : Cursor) return Cursor is
begin
if Position.Node = 0 then
return No_Element;
end if;
pragma Assert (Vet (Position), "bad cursor in Previous");
declare
Nodes : Node_Array renames Position.Container.Nodes;
Node : constant Count_Type := Nodes (Position.Node).Prev;
begin
if Node = 0 then
return No_Element;
else
return Cursor'(Position.Container, Node);
end if;
end;
end Previous;
function Previous
(Object : Iterator;
Position : Cursor) return Cursor
is
begin
if Position.Container = null then
return No_Element;
elsif Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Previous designates wrong list";
else
return Previous (Position);
end if;
end Previous;
-------------------
-- Query_Element --
-------------------
procedure Query_Element
(Position : Cursor;
Process : not null access procedure (Element : Element_Type))
is
begin
if Position.Node = 0 then
raise Constraint_Error with
"Position cursor has no element";
end if;
pragma Assert (Vet (Position), "bad cursor in Query_Element");
declare
C : List renames Position.Container.all'Unrestricted_Access.all;
B : Natural renames C.Busy;
L : Natural renames C.Lock;
begin
B := B + 1;
L := L + 1;
declare
N : Node_Type renames C.Nodes (Position.Node);
begin
Process (N.Element);
exception
when others =>
L := L - 1;
B := B - 1;
raise;
end;
L := L - 1;
B := B - 1;
end;
end Query_Element;
----------
-- Read --
----------
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out List)
is
N : Count_Type'Base;
X : Count_Type;
begin
Clear (Item);
Count_Type'Base'Read (Stream, N);
if N < 0 then
raise Program_Error with "bad list length (corrupt stream)";
elsif N = 0 then
return;
elsif N > Item.Capacity then
raise Constraint_Error with "length exceeds capacity";
else
for Idx in 1 .. N loop
Allocate (Item, Stream, New_Node => X);
Insert_Internal (Item, Before => 0, New_Node => X);
end loop;
end if;
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Cursor)
is
begin
raise Program_Error with "attempt to stream list cursor";
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
---------------
-- Reference --
---------------
function Reference
(Container : aliased in out List;
Position : Cursor) return Reference_Type
is
begin
if Position.Container = null then
raise Constraint_Error with "Position cursor has no element";
elsif Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
else
pragma Assert (Vet (Position), "bad cursor in function Reference");
declare
N : Node_Type renames Container.Nodes (Position.Node);
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
begin
return R : constant Reference_Type :=
(Element => N.Element'Access,
Control => (Controlled with Container'Unrestricted_Access))
do
B := B + 1;
L := L + 1;
end return;
end;
end if;
end Reference;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Container : in out List;
Position : Cursor;
New_Item : Element_Type)
is
begin
if Position.Container = null then
raise Constraint_Error with "Position cursor has no element";
elsif Position.Container /= Container'Unchecked_Access then
raise Program_Error with
"Position cursor designates wrong container";
elsif Container.Lock > 0 then
raise Program_Error with
"attempt to tamper with elements (list is locked)";
else
pragma Assert (Vet (Position), "bad cursor in Replace_Element");
Container.Nodes (Position.Node).Element := New_Item;
end if;
end Replace_Element;
----------------------
-- Reverse_Elements --
----------------------
procedure Reverse_Elements (Container : in out List) is
N : Node_Array renames Container.Nodes;
I : Count_Type := Container.First;
J : Count_Type := Container.Last;
procedure Swap (L, R : Count_Type);
----------
-- Swap --
----------
procedure Swap (L, R : Count_Type) is
LN : constant Count_Type := N (L).Next;
LP : constant Count_Type := N (L).Prev;
RN : constant Count_Type := N (R).Next;
RP : constant Count_Type := N (R).Prev;
begin
if LP /= 0 then
N (LP).Next := R;
end if;
if RN /= 0 then
N (RN).Prev := L;
end if;
N (L).Next := RN;
N (R).Prev := LP;
if LN = R then
pragma Assert (RP = L);
N (L).Prev := R;
N (R).Next := L;
else
N (L).Prev := RP;
N (RP).Next := L;
N (R).Next := LN;
N (LN).Prev := R;
end if;
end Swap;
-- Start of processing for Reverse_Elements
begin
if Container.Length <= 1 then
return;
end if;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
Container.First := J;
Container.Last := I;
loop
Swap (L => I, R => J);
J := N (J).Next;
exit when I = J;
I := N (I).Prev;
exit when I = J;
Swap (L => J, R => I);
I := N (I).Next;
exit when I = J;
J := N (J).Prev;
exit when I = J;
end loop;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
end Reverse_Elements;
------------------
-- Reverse_Find --
------------------
function Reverse_Find
(Container : List;
Item : Element_Type;
Position : Cursor := No_Element) return Cursor
is
Node : Count_Type := Position.Node;
begin
if Node = 0 then
Node := Container.Last;
else
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position), "bad cursor in Reverse_Find");
end if;
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
declare
B : Natural renames Container'Unrestricted_Access.Busy;
L : Natural renames Container'Unrestricted_Access.Lock;
Result : Count_Type;
begin
B := B + 1;
L := L + 1;
Result := 0;
while Node /= 0 loop
if Container.Nodes (Node).Element = Item then
Result := Node;
exit;
end if;
Node := Container.Nodes (Node).Prev;
end loop;
B := B - 1;
L := L - 1;
if Result = 0 then
return No_Element;
else
return Cursor'(Container'Unrestricted_Access, Result);
end if;
exception
when others =>
B := B - 1;
L := L - 1;
raise;
end;
end Reverse_Find;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : List;
Process : not null access procedure (Position : Cursor))
is
C : List renames Container'Unrestricted_Access.all;
B : Natural renames C.Busy;
Node : Count_Type := Container.Last;
begin
B := B + 1;
begin
while Node /= 0 loop
Process (Cursor'(Container'Unrestricted_Access, Node));
Node := Container.Nodes (Node).Prev;
end loop;
exception
when others =>
B := B - 1;
raise;
end;
B := B - 1;
end Reverse_Iterate;
------------
-- Splice --
------------
procedure Splice
(Target : in out List;
Before : Cursor;
Source : in out List)
is
begin
if Before.Container /= null then
if Before.Container /= Target'Unrestricted_Access then
raise Program_Error with
"Before cursor designates wrong container";
end if;
pragma Assert (Vet (Before), "bad cursor in Splice");
end if;
if Target'Address = Source'Address or else Source.Length = 0 then
return;
elsif Target.Length > Count_Type'Last - Source.Length then
raise Constraint_Error with "new length exceeds maximum";
elsif Target.Length + Source.Length > Target.Capacity then
raise Capacity_Error with "new length exceeds target capacity";
elsif Target.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Target (list is busy)";
elsif Source.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Source (list is busy)";
else
Splice_Internal (Target, Before.Node, Source);
end if;
end Splice;
procedure Splice
(Container : in out List;
Before : Cursor;
Position : Cursor)
is
N : Node_Array renames Container.Nodes;
begin
if Before.Container /= null then
if Before.Container /= Container'Unchecked_Access then
raise Program_Error with
"Before cursor designates wrong container";
end if;
pragma Assert (Vet (Before), "bad Before cursor in Splice");
end if;
if Position.Node = 0 then
raise Constraint_Error with "Position cursor has no element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position), "bad Position cursor in Splice");
if Position.Node = Before.Node
or else N (Position.Node).Next = Before.Node
then
return;
end if;
pragma Assert (Container.Length >= 2);
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
if Before.Node = 0 then
pragma Assert (Position.Node /= Container.Last);
if Position.Node = Container.First then
Container.First := N (Position.Node).Next;
N (Container.First).Prev := 0;
else
N (N (Position.Node).Prev).Next := N (Position.Node).Next;
N (N (Position.Node).Next).Prev := N (Position.Node).Prev;
end if;
N (Container.Last).Next := Position.Node;
N (Position.Node).Prev := Container.Last;
Container.Last := Position.Node;
N (Container.Last).Next := 0;
return;
end if;
if Before.Node = Container.First then
pragma Assert (Position.Node /= Container.First);
if Position.Node = Container.Last then
Container.Last := N (Position.Node).Prev;
N (Container.Last).Next := 0;
else
N (N (Position.Node).Prev).Next := N (Position.Node).Next;
N (N (Position.Node).Next).Prev := N (Position.Node).Prev;
end if;
N (Container.First).Prev := Position.Node;
N (Position.Node).Next := Container.First;
Container.First := Position.Node;
N (Container.First).Prev := 0;
return;
end if;
if Position.Node = Container.First then
Container.First := N (Position.Node).Next;
N (Container.First).Prev := 0;
elsif Position.Node = Container.Last then
Container.Last := N (Position.Node).Prev;
N (Container.Last).Next := 0;
else
N (N (Position.Node).Prev).Next := N (Position.Node).Next;
N (N (Position.Node).Next).Prev := N (Position.Node).Prev;
end if;
N (N (Before.Node).Prev).Next := Position.Node;
N (Position.Node).Prev := N (Before.Node).Prev;
N (Before.Node).Prev := Position.Node;
N (Position.Node).Next := Before.Node;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
end Splice;
procedure Splice
(Target : in out List;
Before : Cursor;
Source : in out List;
Position : in out Cursor)
is
Target_Position : Count_Type;
begin
if Target'Address = Source'Address then
Splice (Target, Before, Position);
return;
end if;
if Before.Container /= null then
if Before.Container /= Target'Unrestricted_Access then
raise Program_Error with
"Before cursor designates wrong container";
end if;
pragma Assert (Vet (Before), "bad Before cursor in Splice");
end if;
if Position.Node = 0 then
raise Constraint_Error with "Position cursor has no element";
end if;
if Position.Container /= Source'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position), "bad Position cursor in Splice");
if Target.Length >= Target.Capacity then
raise Capacity_Error with "Target is full";
end if;
if Target.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Target (list is busy)";
end if;
if Source.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors of Source (list is busy)";
end if;
Splice_Internal
(Target => Target,
Before => Before.Node,
Source => Source,
Src_Pos => Position.Node,
Tgt_Pos => Target_Position);
Position := Cursor'(Target'Unrestricted_Access, Target_Position);
end Splice;
---------------------
-- Splice_Internal --
---------------------
procedure Splice_Internal
(Target : in out List;
Before : Count_Type;
Source : in out List)
is
N : Node_Array renames Source.Nodes;
X : Count_Type;
begin
-- This implements the corresponding Splice operation, after the
-- parameters have been vetted, and corner-cases disposed of.
pragma Assert (Target'Address /= Source'Address);
pragma Assert (Source.Length > 0);
pragma Assert (Source.First /= 0);
pragma Assert (N (Source.First).Prev = 0);
pragma Assert (Source.Last /= 0);
pragma Assert (N (Source.Last).Next = 0);
pragma Assert (Target.Length <= Count_Type'Last - Source.Length);
pragma Assert (Target.Length + Source.Length <= Target.Capacity);
while Source.Length > 1 loop
-- Copy first element of Source onto Target
Allocate (Target, N (Source.First).Element, New_Node => X);
Insert_Internal (Target, Before => Before, New_Node => X);
-- Unlink the first node from Source
X := Source.First;
pragma Assert (N (N (X).Next).Prev = X);
Source.First := N (X).Next;
N (Source.First).Prev := 0;
Source.Length := Source.Length - 1;
-- Return the Source node to its free store
Free (Source, X);
end loop;
-- Copy first (and only remaining) element of Source onto Target
Allocate (Target, N (Source.First).Element, New_Node => X);
Insert_Internal (Target, Before => Before, New_Node => X);
-- Unlink the node from Source
X := Source.First;
pragma Assert (X = Source.Last);
Source.First := 0;
Source.Last := 0;
Source.Length := 0;
-- Return the Source node to its free store
Free (Source, X);
end Splice_Internal;
procedure Splice_Internal
(Target : in out List;
Before : Count_Type; -- node of Target
Source : in out List;
Src_Pos : Count_Type; -- node of Source
Tgt_Pos : out Count_Type)
is
N : Node_Array renames Source.Nodes;
begin
-- This implements the corresponding Splice operation, after the
-- parameters have been vetted, and corner-cases handled.
pragma Assert (Target'Address /= Source'Address);
pragma Assert (Target.Length < Target.Capacity);
pragma Assert (Source.Length > 0);
pragma Assert (Source.First /= 0);
pragma Assert (N (Source.First).Prev = 0);
pragma Assert (Source.Last /= 0);
pragma Assert (N (Source.Last).Next = 0);
pragma Assert (Src_Pos /= 0);
Allocate (Target, N (Src_Pos).Element, New_Node => Tgt_Pos);
Insert_Internal (Target, Before => Before, New_Node => Tgt_Pos);
if Source.Length = 1 then
pragma Assert (Source.First = Source.Last);
pragma Assert (Src_Pos = Source.First);
Source.First := 0;
Source.Last := 0;
elsif Src_Pos = Source.First then
pragma Assert (N (N (Src_Pos).Next).Prev = Src_Pos);
Source.First := N (Src_Pos).Next;
N (Source.First).Prev := 0;
elsif Src_Pos = Source.Last then
pragma Assert (N (N (Src_Pos).Prev).Next = Src_Pos);
Source.Last := N (Src_Pos).Prev;
N (Source.Last).Next := 0;
else
pragma Assert (Source.Length >= 3);
pragma Assert (N (N (Src_Pos).Next).Prev = Src_Pos);
pragma Assert (N (N (Src_Pos).Prev).Next = Src_Pos);
N (N (Src_Pos).Next).Prev := N (Src_Pos).Prev;
N (N (Src_Pos).Prev).Next := N (Src_Pos).Next;
end if;
Source.Length := Source.Length - 1;
Free (Source, Src_Pos);
end Splice_Internal;
----------
-- Swap --
----------
procedure Swap
(Container : in out List;
I, J : Cursor)
is
begin
if I.Node = 0 then
raise Constraint_Error with "I cursor has no element";
end if;
if J.Node = 0 then
raise Constraint_Error with "J cursor has no element";
end if;
if I.Container /= Container'Unchecked_Access then
raise Program_Error with "I cursor designates wrong container";
end if;
if J.Container /= Container'Unchecked_Access then
raise Program_Error with "J cursor designates wrong container";
end if;
if I.Node = J.Node then
return;
end if;
if Container.Lock > 0 then
raise Program_Error with
"attempt to tamper with elements (list is locked)";
end if;
pragma Assert (Vet (I), "bad I cursor in Swap");
pragma Assert (Vet (J), "bad J cursor in Swap");
declare
EI : Element_Type renames Container.Nodes (I.Node).Element;
EJ : Element_Type renames Container.Nodes (J.Node).Element;
EI_Copy : constant Element_Type := EI;
begin
EI := EJ;
EJ := EI_Copy;
end;
end Swap;
----------------
-- Swap_Links --
----------------
procedure Swap_Links
(Container : in out List;
I, J : Cursor)
is
begin
if I.Node = 0 then
raise Constraint_Error with "I cursor has no element";
end if;
if J.Node = 0 then
raise Constraint_Error with "J cursor has no element";
end if;
if I.Container /= Container'Unrestricted_Access then
raise Program_Error with "I cursor designates wrong container";
end if;
if J.Container /= Container'Unrestricted_Access then
raise Program_Error with "J cursor designates wrong container";
end if;
if I.Node = J.Node then
return;
end if;
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (list is busy)";
end if;
pragma Assert (Vet (I), "bad I cursor in Swap_Links");
pragma Assert (Vet (J), "bad J cursor in Swap_Links");
declare
I_Next : constant Cursor := Next (I);
begin
if I_Next = J then
Splice (Container, Before => I, Position => J);
else
declare
J_Next : constant Cursor := Next (J);
begin
if J_Next = I then
Splice (Container, Before => J, Position => I);
else
pragma Assert (Container.Length >= 3);
Splice (Container, Before => I_Next, Position => J);
Splice (Container, Before => J_Next, Position => I);
end if;
end;
end if;
end;
end Swap_Links;
--------------------
-- Update_Element --
--------------------
procedure Update_Element
(Container : in out List;
Position : Cursor;
Process : not null access procedure (Element : in out Element_Type))
is
begin
if Position.Node = 0 then
raise Constraint_Error with "Position cursor has no element";
end if;
if Position.Container /= Container'Unchecked_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position), "bad cursor in Update_Element");
declare
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
begin
B := B + 1;
L := L + 1;
declare
N : Node_Type renames Container.Nodes (Position.Node);
begin
Process (N.Element);
exception
when others =>
L := L - 1;
B := B - 1;
raise;
end;
L := L - 1;
B := B - 1;
end;
end Update_Element;
---------
-- Vet --
---------
function Vet (Position : Cursor) return Boolean is
begin
if Position.Node = 0 then
return Position.Container = null;
end if;
if Position.Container = null then
return False;
end if;
declare
L : List renames Position.Container.all;
N : Node_Array renames L.Nodes;
begin
if L.Length = 0 then
return False;
end if;
if L.First = 0 or L.First > L.Capacity then
return False;
end if;
if L.Last = 0 or L.Last > L.Capacity then
return False;
end if;
if N (L.First).Prev /= 0 then
return False;
end if;
if N (L.Last).Next /= 0 then
return False;
end if;
if Position.Node > L.Capacity then
return False;
end if;
-- An invariant of an active node is that its Previous and Next
-- components are non-negative. Operation Free sets the Previous
-- component of the node to the value -1 before actually deallocating
-- the node, to mark the node as inactive. (By "dellocating" we mean
-- only that the node is linked onto a list of inactive nodes used
-- for storage.) This marker gives us a simple way to detect a
-- dangling reference to a node.
if N (Position.Node).Prev < 0 then -- see Free
return False;
end if;
if N (Position.Node).Prev > L.Capacity then
return False;
end if;
if N (Position.Node).Next = Position.Node then
return False;
end if;
if N (Position.Node).Prev = Position.Node then
return False;
end if;
if N (Position.Node).Prev = 0
and then Position.Node /= L.First
then
return False;
end if;
pragma Assert (N (Position.Node).Prev /= 0
or else Position.Node = L.First);
if N (Position.Node).Next = 0
and then Position.Node /= L.Last
then
return False;
end if;
pragma Assert (N (Position.Node).Next /= 0
or else Position.Node = L.Last);
if L.Length = 1 then
return L.First = L.Last;
end if;
if L.First = L.Last then
return False;
end if;
if N (L.First).Next = 0 then
return False;
end if;
if N (L.Last).Prev = 0 then
return False;
end if;
if N (N (L.First).Next).Prev /= L.First then
return False;
end if;
if N (N (L.Last).Prev).Next /= L.Last then
return False;
end if;
if L.Length = 2 then
if N (L.First).Next /= L.Last then
return False;
end if;
if N (L.Last).Prev /= L.First then
return False;
end if;
return True;
end if;
if N (L.First).Next = L.Last then
return False;
end if;
if N (L.Last).Prev = L.First then
return False;
end if;
-- Eliminate earlier possibility
if Position.Node = L.First then
return True;
end if;
pragma Assert (N (Position.Node).Prev /= 0);
-- Eliminate another possibility
if Position.Node = L.Last then
return True;
end if;
pragma Assert (N (Position.Node).Next /= 0);
if N (N (Position.Node).Next).Prev /= Position.Node then
return False;
end if;
if N (N (Position.Node).Prev).Next /= Position.Node then
return False;
end if;
if L.Length = 3 then
if N (L.First).Next /= Position.Node then
return False;
end if;
if N (L.Last).Prev /= Position.Node then
return False;
end if;
end if;
return True;
end;
end Vet;
-----------
-- Write --
-----------
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : List)
is
Node : Count_Type;
begin
Count_Type'Base'Write (Stream, Item.Length);
Node := Item.First;
while Node /= 0 loop
Element_Type'Write (Stream, Item.Nodes (Node).Element);
Node := Item.Nodes (Node).Next;
end loop;
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Cursor)
is
begin
raise Program_Error with "attempt to stream list cursor";
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
end Ada.Containers.Bounded_Doubly_Linked_Lists;