blob: af894ee11fb430a00c6511f5116de7d9d053bb55 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
pragma Elaborate_All
(Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
pragma Elaborate_All
(Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
with System; use type System.Address;
package body Ada.Containers.Bounded_Ordered_Sets is
pragma Annotate (CodePeer, Skip_Analysis);
------------------------------
-- Access to Fields of Node --
------------------------------
-- These subprograms provide functional notation for access to fields
-- of a node, and procedural notation for modifying these fields.
function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
pragma Inline (Color);
function Left (Node : Node_Type) return Count_Type;
pragma Inline (Left);
function Parent (Node : Node_Type) return Count_Type;
pragma Inline (Parent);
function Right (Node : Node_Type) return Count_Type;
pragma Inline (Right);
procedure Set_Color
(Node : in out Node_Type;
Color : Red_Black_Trees.Color_Type);
pragma Inline (Set_Color);
procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
pragma Inline (Set_Left);
procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
pragma Inline (Set_Right);
procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
pragma Inline (Set_Parent);
-----------------------
-- Local Subprograms --
-----------------------
procedure Insert_Sans_Hint
(Container : in out Set;
New_Item : Element_Type;
Node : out Count_Type;
Inserted : out Boolean);
procedure Insert_With_Hint
(Dst_Set : in out Set;
Dst_Hint : Count_Type;
Src_Node : Node_Type;
Dst_Node : out Count_Type);
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Greater_Element_Node);
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Less_Element_Node);
function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
pragma Inline (Is_Less_Node_Node);
procedure Replace_Element
(Container : in out Set;
Index : Count_Type;
Item : Element_Type);
--------------------------
-- Local Instantiations --
--------------------------
package Tree_Operations is
new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types);
use Tree_Operations;
package Element_Keys is
new Red_Black_Trees.Generic_Bounded_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Element_Type,
Is_Less_Key_Node => Is_Less_Element_Node,
Is_Greater_Key_Node => Is_Greater_Element_Node);
package Set_Ops is
new Red_Black_Trees.Generic_Bounded_Set_Operations
(Tree_Operations => Tree_Operations,
Set_Type => Set,
Assign => Assign,
Insert_With_Hint => Insert_With_Hint,
Is_Less => Is_Less_Node_Node);
---------
-- "<" --
---------
function "<" (Left, Right : Cursor) return Boolean is
begin
if Left.Node = 0 then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
if Right.Node = 0 then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
pragma Assert (Vet (Left.Container.all, Left.Node),
"bad Left cursor in ""<""");
pragma Assert (Vet (Right.Container.all, Right.Node),
"bad Right cursor in ""<""");
declare
LN : Nodes_Type renames Left.Container.Nodes;
RN : Nodes_Type renames Right.Container.Nodes;
begin
return LN (Left.Node).Element < RN (Right.Node).Element;
end;
end "<";
function "<" (Left : Cursor; Right : Element_Type) return Boolean is
begin
if Left.Node = 0 then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
pragma Assert (Vet (Left.Container.all, Left.Node),
"bad Left cursor in ""<""");
return Left.Container.Nodes (Left.Node).Element < Right;
end "<";
function "<" (Left : Element_Type; Right : Cursor) return Boolean is
begin
if Right.Node = 0 then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
pragma Assert (Vet (Right.Container.all, Right.Node),
"bad Right cursor in ""<""");
return Left < Right.Container.Nodes (Right.Node).Element;
end "<";
---------
-- "=" --
---------
function "=" (Left, Right : Set) return Boolean is
function Is_Equal_Node_Node (L, R : Node_Type) return Boolean;
pragma Inline (Is_Equal_Node_Node);
function Is_Equal is
new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
------------------------
-- Is_Equal_Node_Node --
------------------------
function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is
begin
return L.Element = R.Element;
end Is_Equal_Node_Node;
-- Start of processing for Is_Equal
begin
return Is_Equal (Left, Right);
end "=";
---------
-- ">" --
---------
function ">" (Left, Right : Cursor) return Boolean is
begin
if Left.Node = 0 then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
if Right.Node = 0 then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
pragma Assert (Vet (Left.Container.all, Left.Node),
"bad Left cursor in "">""");
pragma Assert (Vet (Right.Container.all, Right.Node),
"bad Right cursor in "">""");
-- L > R same as R < L
declare
LN : Nodes_Type renames Left.Container.Nodes;
RN : Nodes_Type renames Right.Container.Nodes;
begin
return RN (Right.Node).Element < LN (Left.Node).Element;
end;
end ">";
function ">" (Left : Element_Type; Right : Cursor) return Boolean is
begin
if Right.Node = 0 then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
pragma Assert (Vet (Right.Container.all, Right.Node),
"bad Right cursor in "">""");
return Right.Container.Nodes (Right.Node).Element < Left;
end ">";
function ">" (Left : Cursor; Right : Element_Type) return Boolean is
begin
if Left.Node = 0 then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
pragma Assert (Vet (Left.Container.all, Left.Node),
"bad Left cursor in "">""");
return Right < Left.Container.Nodes (Left.Node).Element;
end ">";
------------
-- Adjust --
------------
procedure Adjust (Control : in out Reference_Control_Type) is
begin
if Control.Container /= null then
declare
C : Set renames Control.Container.all;
B : Natural renames C.Busy;
L : Natural renames C.Lock;
begin
B := B + 1;
L := L + 1;
end;
end if;
end Adjust;
------------
-- Assign --
------------
procedure Assign (Target : in out Set; Source : Set) is
procedure Append_Element (Source_Node : Count_Type);
procedure Append_Elements is
new Tree_Operations.Generic_Iteration (Append_Element);
--------------------
-- Append_Element --
--------------------
procedure Append_Element (Source_Node : Count_Type) is
SN : Node_Type renames Source.Nodes (Source_Node);
procedure Set_Element (Node : in out Node_Type);
pragma Inline (Set_Element);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert_Sans_Hint is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
procedure Unconditional_Insert_Avec_Hint is
new Element_Keys.Generic_Unconditional_Insert_With_Hint
(Insert_Post,
Unconditional_Insert_Sans_Hint);
procedure Allocate is
new Tree_Operations.Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Target, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Element := SN.Element;
end Set_Element;
Target_Node : Count_Type;
-- Start of processing for Append_Element
begin
Unconditional_Insert_Avec_Hint
(Tree => Target,
Hint => 0,
Key => SN.Element,
Node => Target_Node);
end Append_Element;
-- Start of processing for Assign
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Source.Length then
raise Capacity_Error
with "Target capacity is less than Source length";
end if;
Target.Clear;
Append_Elements (Source);
end Assign;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Item : Element_Type) return Cursor is
Node : constant Count_Type :=
Element_Keys.Ceiling (Container, Item);
begin
return (if Node = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Ceiling;
-----------
-- Clear --
-----------
procedure Clear (Container : in out Set) is
begin
Tree_Operations.Clear_Tree (Container);
end Clear;
-----------
-- Color --
-----------
function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
begin
return Node.Color;
end Color;
------------------------
-- Constant_Reference --
------------------------
function Constant_Reference
(Container : aliased Set;
Position : Cursor) return Constant_Reference_Type
is
begin
if Position.Container = null then
raise Constraint_Error with "Position cursor has no element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert
(Vet (Container, Position.Node),
"bad cursor in Constant_Reference");
declare
N : Node_Type renames Container.Nodes (Position.Node);
B : Natural renames Position.Container.Busy;
L : Natural renames Position.Container.Lock;
begin
return R : constant Constant_Reference_Type :=
(Element => N.Element'Access,
Control => (Controlled with Container'Unrestricted_Access))
do
B := B + 1;
L := L + 1;
end return;
end;
end Constant_Reference;
--------------
-- Contains --
--------------
function Contains
(Container : Set;
Item : Element_Type) return Boolean
is
begin
return Find (Container, Item) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
C : Count_Type;
begin
if Capacity = 0 then
C := Source.Length;
elsif Capacity >= Source.Length then
C := Capacity;
else
raise Capacity_Error with "Capacity value too small";
end if;
return Target : Set (Capacity => C) do
Assign (Target => Target, Source => Source);
end return;
end Copy;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Position : in out Cursor) is
begin
if Position.Node = 0 then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with "Position cursor designates wrong set";
end if;
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (set is busy)";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Delete");
Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
Tree_Operations.Free (Container, Position.Node);
Position := No_Element;
end Delete;
procedure Delete (Container : in out Set; Item : Element_Type) is
X : constant Count_Type := Element_Keys.Find (Container, Item);
begin
Tree_Operations.Delete_Node_Sans_Free (Container, X);
if X = 0 then
raise Constraint_Error with "attempt to delete element not in set";
end if;
Tree_Operations.Free (Container, X);
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out Set) is
X : constant Count_Type := Container.First;
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Tree_Operations.Free (Container, X);
end if;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out Set) is
X : constant Count_Type := Container.Last;
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Tree_Operations.Free (Container, X);
end if;
end Delete_Last;
----------------
-- Difference --
----------------
procedure Difference (Target : in out Set; Source : Set)
renames Set_Ops.Set_Difference;
function Difference (Left, Right : Set) return Set
renames Set_Ops.Set_Difference;
-------------
-- Element --
-------------
function Element (Position : Cursor) return Element_Type is
begin
if Position.Node = 0 then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
pragma Assert (Vet (Position.Container.all, Position.Node),
"bad cursor in Element");
return Position.Container.Nodes (Position.Node).Element;
end Element;
-------------------------
-- Equivalent_Elements --
-------------------------
function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
begin
return (if Left < Right or else Right < Left then False else True);
end Equivalent_Elements;
---------------------
-- Equivalent_Sets --
---------------------
function Equivalent_Sets (Left, Right : Set) return Boolean is
function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
pragma Inline (Is_Equivalent_Node_Node);
function Is_Equivalent is
new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
-----------------------------
-- Is_Equivalent_Node_Node --
-----------------------------
function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
begin
return (if L.Element < R.Element then False
elsif R.Element < L.Element then False
else True);
end Is_Equivalent_Node_Node;
-- Start of processing for Equivalent_Sets
begin
return Is_Equivalent (Left, Right);
end Equivalent_Sets;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Item : Element_Type) is
X : constant Count_Type := Element_Keys.Find (Container, Item);
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Tree_Operations.Free (Container, X);
end if;
end Exclude;
--------------
-- Finalize --
--------------
procedure Finalize (Object : in out Iterator) is
begin
if Object.Container /= null then
declare
B : Natural renames Object.Container.all.Busy;
begin
B := B - 1;
end;
end if;
end Finalize;
procedure Finalize (Control : in out Reference_Control_Type) is
begin
if Control.Container /= null then
declare
C : Set renames Control.Container.all;
B : Natural renames C.Busy;
L : Natural renames C.Lock;
begin
B := B - 1;
L := L - 1;
end;
Control.Container := null;
end if;
end Finalize;
----------
-- Find --
----------
function Find (Container : Set; Item : Element_Type) return Cursor is
Node : constant Count_Type := Element_Keys.Find (Container, Item);
begin
return (if Node = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Find;
-----------
-- First --
-----------
function First (Container : Set) return Cursor is
begin
return (if Container.First = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Container.First));
end First;
function First (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the First (and Last) selector function.
-- When the Node component is 0, this means the iterator object was
-- constructed without a start expression, in which case the (forward)
-- iteration starts from the (logical) beginning of the entire sequence
-- of items (corresponding to Container.First, for a forward iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is positive, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (forward) partial iteration begins.
if Object.Node = 0 then
return Bounded_Ordered_Sets.First (Object.Container.all);
else
return Cursor'(Object.Container, Object.Node);
end if;
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Set) return Element_Type is
begin
if Container.First = 0 then
raise Constraint_Error with "set is empty";
end if;
return Container.Nodes (Container.First).Element;
end First_Element;
-----------
-- Floor --
-----------
function Floor (Container : Set; Item : Element_Type) return Cursor is
Node : constant Count_Type := Element_Keys.Floor (Container, Item);
begin
return (if Node = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Floor;
------------------
-- Generic_Keys --
------------------
package body Generic_Keys is
-----------------------
-- Local Subprograms --
-----------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Greater_Key_Node);
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Less_Key_Node);
--------------------------
-- Local Instantiations --
--------------------------
package Key_Keys is
new Red_Black_Trees.Generic_Bounded_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Key_Type,
Is_Less_Key_Node => Is_Less_Key_Node,
Is_Greater_Key_Node => Is_Greater_Key_Node);
------------
-- Adjust --
------------
procedure Adjust (Control : in out Reference_Control_Type) is
begin
if Control.Container /= null then
declare
B : Natural renames Control.Container.Busy;
L : Natural renames Control.Container.Lock;
begin
B := B + 1;
L := L + 1;
end;
end if;
end Adjust;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Key : Key_Type) return Cursor is
Node : constant Count_Type :=
Key_Keys.Ceiling (Container, Key);
begin
return (if Node = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Ceiling;
------------------------
-- Constant_Reference --
------------------------
function Constant_Reference
(Container : aliased Set;
Key : Key_Type) return Constant_Reference_Type
is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if Node = 0 then
raise Constraint_Error with "key not in set";
end if;
declare
Cur : Cursor := Find (Container, Key);
pragma Unmodified (Cur);
N : Node_Type renames Container.Nodes (Node);
B : Natural renames Cur.Container.Busy;
L : Natural renames Cur.Container.Lock;
begin
return R : constant Constant_Reference_Type :=
(Element => N.Element'Access,
Control => (Controlled with Container'Unrestricted_Access))
do
B := B + 1;
L := L + 1;
end return;
end;
end Constant_Reference;
--------------
-- Contains --
--------------
function Contains (Container : Set; Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Key : Key_Type) is
X : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if X = 0 then
raise Constraint_Error with "attempt to delete key not in set";
end if;
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Tree_Operations.Free (Container, X);
end Delete;
-------------
-- Element --
-------------
function Element (Container : Set; Key : Key_Type) return Element_Type is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if Node = 0 then
raise Constraint_Error with "key not in set";
end if;
return Container.Nodes (Node).Element;
end Element;
---------------------
-- Equivalent_Keys --
---------------------
function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
begin
return (if Left < Right or else Right < Left then False else True);
end Equivalent_Keys;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Key : Key_Type) is
X : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Tree_Operations.Free (Container, X);
end if;
end Exclude;
--------------
-- Finalize --
--------------
procedure Finalize (Control : in out Reference_Control_Type) is
begin
if Control.Container /= null then
declare
B : Natural renames Control.Container.Busy;
L : Natural renames Control.Container.Lock;
begin
B := B - 1;
L := L - 1;
end;
if not (Key (Control.Pos) = Control.Old_Key.all) then
Delete (Control.Container.all, Key (Control.Pos));
raise Program_Error;
end if;
Control.Container := null;
end if;
end Finalize;
----------
-- Find --
----------
function Find (Container : Set; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
return (if Node = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Find;
-----------
-- Floor --
-----------
function Floor (Container : Set; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Keys.Floor (Container, Key);
begin
return (if Node = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Floor;
-------------------------
-- Is_Greater_Key_Node --
-------------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean
is
begin
return Key (Right.Element) < Left;
end Is_Greater_Key_Node;
----------------------
-- Is_Less_Key_Node --
----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean
is
begin
return Left < Key (Right.Element);
end Is_Less_Key_Node;
---------
-- Key --
---------
function Key (Position : Cursor) return Key_Type is
begin
if Position.Node = 0 then
raise Constraint_Error with
"Position cursor equals No_Element";
end if;
pragma Assert (Vet (Position.Container.all, Position.Node),
"bad cursor in Key");
return Key (Position.Container.Nodes (Position.Node).Element);
end Key;
----------
-- Read --
----------
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
------------------------------
-- Reference_Preserving_Key --
------------------------------
function Reference_Preserving_Key
(Container : aliased in out Set;
Position : Cursor) return Reference_Type
is
begin
if Position.Container = null then
raise Constraint_Error with "Position cursor has no element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert
(Vet (Container, Position.Node),
"bad cursor in function Reference_Preserving_Key");
declare
N : Node_Type renames Container.Nodes (Position.Node);
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
begin
return R : constant Reference_Type :=
(Element => N.Element'Access,
Control =>
(Controlled with
Container => Container'Access,
Pos => Position,
Old_Key => new Key_Type'(Key (Position))))
do
B := B + 1;
L := L + 1;
end return;
end;
end Reference_Preserving_Key;
function Reference_Preserving_Key
(Container : aliased in out Set;
Key : Key_Type) return Reference_Type
is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if Node = 0 then
raise Constraint_Error with "key not in set";
end if;
declare
N : Node_Type renames Container.Nodes (Node);
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
begin
return R : constant Reference_Type :=
(Element => N.Element'Access,
Control =>
(Controlled with
Container => Container'Access,
Pos => Find (Container, Key),
Old_Key => new Key_Type'(Key)))
do
B := B + 1;
L := L + 1;
end return;
end;
end Reference_Preserving_Key;
-------------
-- Replace --
-------------
procedure Replace
(Container : in out Set;
Key : Key_Type;
New_Item : Element_Type)
is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if Node = 0 then
raise Constraint_Error with
"attempt to replace key not in set";
end if;
Replace_Element (Container, Node, New_Item);
end Replace;
-----------------------------------
-- Update_Element_Preserving_Key --
-----------------------------------
procedure Update_Element_Preserving_Key
(Container : in out Set;
Position : Cursor;
Process : not null access procedure (Element : in out Element_Type))
is
begin
if Position.Node = 0 then
raise Constraint_Error with
"Position cursor equals No_Element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong set";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Update_Element_Preserving_Key");
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
declare
N : Node_Type renames Container.Nodes (Position.Node);
E : Element_Type renames N.Element;
K : constant Key_Type := Key (E);
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
Eq : Boolean;
begin
B := B + 1;
L := L + 1;
begin
Process (E);
Eq := Equivalent_Keys (K, Key (E));
exception
when others =>
L := L - 1;
B := B - 1;
raise;
end;
L := L - 1;
B := B - 1;
if Eq then
return;
end if;
end;
Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
Tree_Operations.Free (Container, Position.Node);
raise Program_Error with "key was modified";
end Update_Element_Preserving_Key;
-----------
-- Write --
-----------
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
end Generic_Keys;
-----------------
-- Has_Element --
-----------------
function Has_Element (Position : Cursor) return Boolean is
begin
return Position /= No_Element;
end Has_Element;
-------------
-- Include --
-------------
procedure Include (Container : in out Set; New_Item : Element_Type) is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, New_Item, Position, Inserted);
if not Inserted then
if Container.Lock > 0 then
raise Program_Error with
"attempt to tamper with elements (set is locked)";
end if;
Container.Nodes (Position.Node).Element := New_Item;
end if;
end Include;
------------
-- Insert --
------------
procedure Insert
(Container : in out Set;
New_Item : Element_Type;
Position : out Cursor;
Inserted : out Boolean)
is
begin
Insert_Sans_Hint
(Container,
New_Item,
Position.Node,
Inserted);
Position.Container := Container'Unrestricted_Access;
end Insert;
procedure Insert
(Container : in out Set;
New_Item : Element_Type)
is
Position : Cursor;
pragma Unreferenced (Position);
Inserted : Boolean;
begin
Insert (Container, New_Item, Position, Inserted);
if not Inserted then
raise Constraint_Error with
"attempt to insert element already in set";
end if;
end Insert;
----------------------
-- Insert_Sans_Hint --
----------------------
procedure Insert_Sans_Hint
(Container : in out Set;
New_Item : Element_Type;
Node : out Count_Type;
Inserted : out Boolean)
is
procedure Set_Element (Node : in out Node_Type);
pragma Inline (Set_Element);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Conditional_Insert_Sans_Hint is
new Element_Keys.Generic_Conditional_Insert (Insert_Post);
procedure Allocate is
new Tree_Operations.Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Container, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Element := New_Item;
end Set_Element;
-- Start of processing for Insert_Sans_Hint
begin
if Container.Busy > 0 then
raise Program_Error with
"attemot to tamper with cursors (set is busy)";
end if;
Conditional_Insert_Sans_Hint
(Container,
New_Item,
Node,
Inserted);
end Insert_Sans_Hint;
----------------------
-- Insert_With_Hint --
----------------------
procedure Insert_With_Hint
(Dst_Set : in out Set;
Dst_Hint : Count_Type;
Src_Node : Node_Type;
Dst_Node : out Count_Type)
is
Success : Boolean;
pragma Unreferenced (Success);
procedure Set_Element (Node : in out Node_Type);
pragma Inline (Set_Element);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Insert_Sans_Hint is
new Element_Keys.Generic_Conditional_Insert (Insert_Post);
procedure Local_Insert_With_Hint is
new Element_Keys.Generic_Conditional_Insert_With_Hint
(Insert_Post,
Insert_Sans_Hint);
procedure Allocate is
new Tree_Operations.Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Dst_Set, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Element := Src_Node.Element;
end Set_Element;
-- Start of processing for Insert_With_Hint
begin
Local_Insert_With_Hint
(Dst_Set,
Dst_Hint,
Src_Node.Element,
Dst_Node,
Success);
end Insert_With_Hint;
------------------
-- Intersection --
------------------
procedure Intersection (Target : in out Set; Source : Set)
renames Set_Ops.Set_Intersection;
function Intersection (Left, Right : Set) return Set
renames Set_Ops.Set_Intersection;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Set) return Boolean is
begin
return Container.Length = 0;
end Is_Empty;
-----------------------------
-- Is_Greater_Element_Node --
-----------------------------
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean
is
begin
-- Compute e > node same as node < e
return Right.Element < Left;
end Is_Greater_Element_Node;
--------------------------
-- Is_Less_Element_Node --
--------------------------
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean
is
begin
return Left < Right.Element;
end Is_Less_Element_Node;
-----------------------
-- Is_Less_Node_Node --
-----------------------
function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
begin
return L.Element < R.Element;
end Is_Less_Node_Node;
---------------
-- Is_Subset --
---------------
function Is_Subset (Subset : Set; Of_Set : Set) return Boolean
renames Set_Ops.Set_Subset;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : Set;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Count_Type);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Tree_Operations.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Count_Type) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
S : Set renames Container'Unrestricted_Access.all;
B : Natural renames S.Busy;
-- Start of processing for Iterate
begin
B := B + 1;
begin
Local_Iterate (S);
exception
when others =>
B := B - 1;
raise;
end;
B := B - 1;
end Iterate;
function Iterate (Container : Set)
return Set_Iterator_Interfaces.Reversible_Iterator'class
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
begin
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is 0 (as is the case here), this means the iterator object
-- was constructed without a start expression. This is a complete
-- iterator, meaning that the iteration starts from the (logical)
-- beginning of the sequence of items.
-- Note: For a forward iterator, Container.First is the beginning, and
-- for a reverse iterator, Container.Last is the beginning.
return It : constant Iterator :=
Iterator'(Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => 0)
do
B := B + 1;
end return;
end Iterate;
function Iterate (Container : Set; Start : Cursor)
return Set_Iterator_Interfaces.Reversible_Iterator'class
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
begin
-- It was formerly the case that when Start = No_Element, the partial
-- iterator was defined to behave the same as for a complete iterator,
-- and iterate over the entire sequence of items. However, those
-- semantics were unintuitive and arguably error-prone (it is too easy
-- to accidentally create an endless loop), and so they were changed,
-- per the ARG meeting in Denver on 2011/11. However, there was no
-- consensus about what positive meaning this corner case should have,
-- and so it was decided to simply raise an exception. This does imply,
-- however, that it is not possible to use a partial iterator to specify
-- an empty sequence of items.
if Start = No_Element then
raise Constraint_Error with
"Start position for iterator equals No_Element";
end if;
if Start.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Start cursor of Iterate designates wrong set";
end if;
pragma Assert (Vet (Container, Start.Node),
"Start cursor of Iterate is bad");
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is positive (as is the case here), it means that this
-- is a partial iteration, over a subset of the complete sequence of
-- items. The iterator object was constructed with a start expression,
-- indicating the position from which the iteration begins. (Note that
-- the start position has the same value irrespective of whether this
-- is a forward or reverse iteration.)
return It : constant Iterator :=
Iterator'(Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => Start.Node)
do
B := B + 1;
end return;
end Iterate;
----------
-- Last --
----------
function Last (Container : Set) return Cursor is
begin
return (if Container.Last = 0 then No_Element
else Cursor'(Container'Unrestricted_Access, Container.Last));
end Last;
function Last (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the Last (and First) selector function.
-- When the Node component is 0, this means the iterator object was
-- constructed without a start expression, in which case the (reverse)
-- iteration starts from the (logical) beginning of the entire sequence
-- (corresponding to Container.Last, for a reverse iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is positive, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (reverse) partial iteration begins.
if Object.Node = 0 then
return Bounded_Ordered_Sets.Last (Object.Container.all);
else
return Cursor'(Object.Container, Object.Node);
end if;
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Set) return Element_Type is
begin
if Container.Last = 0 then
raise Constraint_Error with "set is empty";
end if;
return Container.Nodes (Container.Last).Element;
end Last_Element;
----------
-- Left --
----------
function Left (Node : Node_Type) return Count_Type is
begin
return Node.Left;
end Left;
------------
-- Length --
------------
function Length (Container : Set) return Count_Type is
begin
return Container.Length;
end Length;
----------
-- Move --
----------
procedure Move (Target : in out Set; Source : in out Set) is
begin
if Target'Address = Source'Address then
return;
end if;
if Source.Busy > 0 then
raise Program_Error with
"attempt to tamper with cursors (container is busy)";
end if;
Target.Assign (Source);
Source.Clear;
end Move;
----------
-- Next --
----------
function Next (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
pragma Assert (Vet (Position.Container.all, Position.Node),
"bad cursor in Next");
declare
Node : constant Count_Type :=
Tree_Operations.Next (Position.Container.all, Position.Node);
begin
if Node = 0 then
return No_Element;
end if;
return Cursor'(Position.Container, Node);
end;
end Next;
procedure Next (Position : in out Cursor) is
begin
Position := Next (Position);
end Next;
function Next (Object : Iterator; Position : Cursor) return Cursor is
begin
if Position.Container = null then
return No_Element;
end if;
if Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Next designates wrong set";
end if;
return Next (Position);
end Next;
-------------
-- Overlap --
-------------
function Overlap (Left, Right : Set) return Boolean
renames Set_Ops.Set_Overlap;
------------
-- Parent --
------------
function Parent (Node : Node_Type) return Count_Type is
begin
return Node.Parent;
end Parent;
--------------
-- Previous --
--------------
function Previous (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
pragma Assert (Vet (Position.Container.all, Position.Node),
"bad cursor in Previous");
declare
Node : constant Count_Type :=
Tree_Operations.Previous (Position.Container.all, Position.Node);
begin
return (if Node = 0 then No_Element
else Cursor'(Position.Container, Node));
end;
end Previous;
procedure Previous (Position : in out Cursor) is
begin
Position := Previous (Position);
end Previous;
function Previous (Object : Iterator; Position : Cursor) return Cursor is
begin
if Position.Container = null then
return No_Element;
end if;
if Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Previous designates wrong set";
end if;
return Previous (Position);
end Previous;
-------------------
-- Query_Element --
-------------------
procedure Query_Element
(Position : Cursor;
Process : not null access procedure (Element : Element_Type))
is
begin
if Position.Node = 0 then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
pragma Assert (Vet (Position.Container.all, Position.Node),
"bad cursor in Query_Element");
declare
S : Set renames Position.Container.all;
B : Natural renames S.Busy;
L : Natural renames S.Lock;
begin
B := B + 1;
L := L + 1;
begin
Process (S.Nodes (Position.Node).Element);
exception
when others =>
L := L - 1;
B := B - 1;
raise;
end;
L := L - 1;
B := B - 1;
end;
end Query_Element;
----------
-- Read --
----------
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Container : out Set)
is
procedure Read_Element (Node : in out Node_Type);
pragma Inline (Read_Element);
procedure Allocate is
new Tree_Operations.Generic_Allocate (Read_Element);
procedure Read_Elements is
new Tree_Operations.Generic_Read (Allocate);
------------------
-- Read_Element --
------------------
procedure Read_Element (Node : in out Node_Type) is
begin
Element_Type'Read (Stream, Node.Element);
end Read_Element;
-- Start of processing for Read
begin
Read_Elements (Stream, Container);
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Cursor)
is
begin
raise Program_Error with "attempt to stream set cursor";
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
-------------
-- Replace --
-------------
procedure Replace (Container : in out Set; New_Item : Element_Type) is
Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
begin
if Node = 0 then
raise Constraint_Error with
"attempt to replace element not in set";
end if;
if Container.Lock > 0 then
raise Program_Error with
"attempt to tamper with elements (set is locked)";
end if;
Container.Nodes (Node).Element := New_Item;
end Replace;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Container : in out Set;
Index : Count_Type;
Item : Element_Type)
is
pragma Assert (Index /= 0);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Local_Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Local_Insert_Sans_Hint is
new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
procedure Local_Insert_With_Hint is
new Element_Keys.Generic_Conditional_Insert_With_Hint
(Local_Insert_Post,
Local_Insert_Sans_Hint);
Nodes : Nodes_Type renames Container.Nodes;
Node : Node_Type renames Nodes (Index);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
begin
Node.Element := Item;
Node.Color := Red_Black_Trees.Red;
Node.Parent := 0;
Node.Right := 0;
Node.Left := 0;
return Index;
end New_Node;
Hint : Count_Type;
Result : Count_Type;
Inserted : Boolean;
Compare : Boolean;
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
B : Natural renames Container.Busy;
L : Natural renames Container.Lock;
-- Start of processing for Replace_Element
begin
-- Replace_Element assigns value Item to the element designated by Node,
-- per certain semantic constraints, described as follows.
-- If Item is equivalent to the element, then element is replaced and
-- there's nothing else to do. This is the easy case.
-- If Item is not equivalent, then the node will (possibly) have to move
-- to some other place in the tree. This is slighly more complicated,
-- because we must ensure that Item is not equivalent to some other
-- element in the tree (in which case, the replacement is not allowed).
-- Determine whether Item is equivalent to element on the specified
-- node.
begin
B := B + 1;
L := L + 1;
Compare := (if Item < Node.Element then False
elsif Node.Element < Item then False
else True);
L := L - 1;
B := B - 1;
exception
when others =>
L := L - 1;
B := B - 1;
raise;
end;
if Compare then
-- Item is equivalent to the node's element, so we will not have to
-- move the node.
if Container.Lock > 0 then
raise Program_Error with
"attempt to tamper with elements (set is locked)";
end if;
Node.Element := Item;
return;
end if;
-- The replacement Item is not equivalent to the element on the
-- specified node, which means that it will need to be re-inserted in a
-- different position in the tree. We must now determine whether Item is
-- equivalent to some other element in the tree (which would prohibit
-- the assignment and hence the move).
-- Ceiling returns the smallest element equivalent or greater than the
-- specified Item; if there is no such element, then it returns 0.
Hint := Element_Keys.Ceiling (Container, Item);
if Hint /= 0 then -- Item <= Nodes (Hint).Element
begin
B := B + 1;
L := L + 1;
Compare := Item < Nodes (Hint).Element;
L := L - 1;
B := B - 1;
exception
when others =>
L := L - 1;
B := B - 1;
raise;
end;
-- Item is equivalent to Nodes (Hint).Element
if not Compare then
-- Ceiling returns an element that is equivalent or greater than
-- Item. If Item is "not less than" the element, then by
-- elimination we know that Item is equivalent to the element.
-- But this means that it is not possible to assign the value of
-- Item to the specified element (on Node), because a different
-- element (on Hint) equivalent to Item already exsits. (Were we
-- to change Node's element value, we would have to move Node, but
-- we would be unable to move the Node, because its new position
-- in the tree is already occupied by an equivalent element.)
raise Program_Error with "attempt to replace existing element";
end if;
-- Item is not equivalent to any other element in the tree
-- (specifically, it is less than Nodes (Hint).Element), so it is
-- safe to assign the value of Item to Node.Element. This means that
-- the node will have to move to a different position in the tree
-- (because its element will have a different value).
-- The nearest (greater) neighbor of Item is Hint. This will be the
-- insertion position of Node (because its element will have Item as
-- its new value).
-- If Node equals Hint, the relative position of Node does not
-- change. This allows us to perform an optimization: we need not
-- remove Node from the tree and then reinsert it with its new value,
-- because it would only be placed in the exact same position.
if Hint = Index then
if Container.Lock > 0 then
raise Program_Error with
"attempt to tamper with elements (set is locked)";
end if;
Node.Element := Item;
return;
end if;
end if;
-- If we get here, it is because Item was greater than all elements in
-- the tree (Hint = 0), or because Item was less than some element at a
-- different place in the tree (Item < Nodes (Hint).Element and Hint /=
-- Index). In either case, we remove Node from the tree and then insert
-- Item into the tree, onto the same Node.
Tree_Operations.Delete_Node_Sans_Free (Container, Index);
Local_Insert_With_Hint
(Tree => Container,
Position => Hint,
Key => Item,
Node => Result,
Inserted => Inserted);
pragma Assert (Inserted);
pragma Assert (Result = Index);
end Replace_Element;
procedure Replace_Element
(Container : in out Set;
Position : Cursor;
New_Item : Element_Type)
is
begin
if Position.Node = 0 then
raise Constraint_Error with
"Position cursor equals No_Element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong set";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Replace_Element");
Replace_Element (Container, Position.Node, New_Item);
end Replace_Element;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : Set;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Count_Type);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Count_Type) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
S : Set renames Container'Unrestricted_Access.all;
B : Natural renames S.Busy;
-- Start of processing for Reverse_Iterate
begin
B := B + 1;
begin
Local_Reverse_Iterate (S);
exception
when others =>
B := B - 1;
raise;
end;
B := B - 1;
end Reverse_Iterate;
-----------
-- Right --
-----------
function Right (Node : Node_Type) return Count_Type is
begin
return Node.Right;
end Right;
---------------
-- Set_Color --
---------------
procedure Set_Color
(Node : in out Node_Type;
Color : Red_Black_Trees.Color_Type)
is
begin
Node.Color := Color;
end Set_Color;
--------------
-- Set_Left --
--------------
procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
begin
Node.Left := Left;
end Set_Left;
----------------
-- Set_Parent --
----------------
procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
begin
Node.Parent := Parent;
end Set_Parent;
---------------
-- Set_Right --
---------------
procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
begin
Node.Right := Right;
end Set_Right;
--------------------------
-- Symmetric_Difference --
--------------------------
procedure Symmetric_Difference (Target : in out Set; Source : Set)
renames Set_Ops.Set_Symmetric_Difference;
function Symmetric_Difference (Left, Right : Set) return Set
renames Set_Ops.Set_Symmetric_Difference;
------------
-- To_Set --
------------
function To_Set (New_Item : Element_Type) return Set is
Node : Count_Type;
Inserted : Boolean;
begin
return S : Set (1) do
Insert_Sans_Hint (S, New_Item, Node, Inserted);
pragma Assert (Inserted);
end return;
end To_Set;
-----------
-- Union --
-----------
procedure Union (Target : in out Set; Source : Set)
renames Set_Ops.Set_Union;
function Union (Left, Right : Set) return Set
renames Set_Ops.Set_Union;
-----------
-- Write --
-----------
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Container : Set)
is
procedure Write_Element
(Stream : not null access Root_Stream_Type'Class;
Node : Node_Type);
pragma Inline (Write_Element);
procedure Write_Elements is
new Tree_Operations.Generic_Write (Write_Element);
-------------------
-- Write_Element --
-------------------
procedure Write_Element
(Stream : not null access Root_Stream_Type'Class;
Node : Node_Type)
is
begin
Element_Type'Write (Stream, Node.Element);
end Write_Element;
-- Start of processing for Write
begin
Write_Elements (Stream, Container);
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Cursor)
is
begin
raise Program_Error with "attempt to stream set cursor";
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
end Ada.Containers.Bounded_Ordered_Sets;