| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT LIBRARY COMPONENTS -- |
| -- -- |
| -- ADA.CONTAINERS.INDEFINITE_ORDERED_SETS -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 2004-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- This unit was originally developed by Matthew J Heaney. -- |
| ------------------------------------------------------------------------------ |
| |
| with Ada.Containers.Red_Black_Trees.Generic_Operations; |
| pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations); |
| |
| with Ada.Containers.Red_Black_Trees.Generic_Keys; |
| pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys); |
| |
| with Ada.Containers.Red_Black_Trees.Generic_Set_Operations; |
| pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations); |
| |
| with Ada.Unchecked_Deallocation; |
| |
| with System; use type System.Address; |
| |
| package body Ada.Containers.Indefinite_Ordered_Sets is |
| |
| pragma Annotate (CodePeer, Skip_Analysis); |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| function Color (Node : Node_Access) return Color_Type; |
| pragma Inline (Color); |
| |
| function Copy_Node (Source : Node_Access) return Node_Access; |
| pragma Inline (Copy_Node); |
| |
| procedure Free (X : in out Node_Access); |
| |
| procedure Insert_Sans_Hint |
| (Tree : in out Tree_Type; |
| New_Item : Element_Type; |
| Node : out Node_Access; |
| Inserted : out Boolean); |
| |
| procedure Insert_With_Hint |
| (Dst_Tree : in out Tree_Type; |
| Dst_Hint : Node_Access; |
| Src_Node : Node_Access; |
| Dst_Node : out Node_Access); |
| |
| function Is_Greater_Element_Node |
| (Left : Element_Type; |
| Right : Node_Access) return Boolean; |
| pragma Inline (Is_Greater_Element_Node); |
| |
| function Is_Less_Element_Node |
| (Left : Element_Type; |
| Right : Node_Access) return Boolean; |
| pragma Inline (Is_Less_Element_Node); |
| |
| function Is_Less_Node_Node (L, R : Node_Access) return Boolean; |
| pragma Inline (Is_Less_Node_Node); |
| |
| function Left (Node : Node_Access) return Node_Access; |
| pragma Inline (Left); |
| |
| function Parent (Node : Node_Access) return Node_Access; |
| pragma Inline (Parent); |
| |
| procedure Replace_Element |
| (Tree : in out Tree_Type; |
| Node : Node_Access; |
| Item : Element_Type); |
| |
| function Right (Node : Node_Access) return Node_Access; |
| pragma Inline (Right); |
| |
| procedure Set_Color (Node : Node_Access; Color : Color_Type); |
| pragma Inline (Set_Color); |
| |
| procedure Set_Left (Node : Node_Access; Left : Node_Access); |
| pragma Inline (Set_Left); |
| |
| procedure Set_Parent (Node : Node_Access; Parent : Node_Access); |
| pragma Inline (Set_Parent); |
| |
| procedure Set_Right (Node : Node_Access; Right : Node_Access); |
| pragma Inline (Set_Right); |
| |
| -------------------------- |
| -- Local Instantiations -- |
| -------------------------- |
| |
| procedure Free_Element is |
| new Ada.Unchecked_Deallocation (Element_Type, Element_Access); |
| |
| package Tree_Operations is |
| new Red_Black_Trees.Generic_Operations (Tree_Types); |
| |
| procedure Delete_Tree is |
| new Tree_Operations.Generic_Delete_Tree (Free); |
| |
| function Copy_Tree is |
| new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree); |
| |
| use Tree_Operations; |
| |
| package Element_Keys is |
| new Red_Black_Trees.Generic_Keys |
| (Tree_Operations => Tree_Operations, |
| Key_Type => Element_Type, |
| Is_Less_Key_Node => Is_Less_Element_Node, |
| Is_Greater_Key_Node => Is_Greater_Element_Node); |
| |
| package Set_Ops is |
| new Generic_Set_Operations |
| (Tree_Operations => Tree_Operations, |
| Insert_With_Hint => Insert_With_Hint, |
| Copy_Tree => Copy_Tree, |
| Delete_Tree => Delete_Tree, |
| Is_Less => Is_Less_Node_Node, |
| Free => Free); |
| |
| --------- |
| -- "<" -- |
| --------- |
| |
| function "<" (Left, Right : Cursor) return Boolean is |
| begin |
| if Left.Node = null then |
| raise Constraint_Error with "Left cursor equals No_Element"; |
| end if; |
| |
| if Right.Node = null then |
| raise Constraint_Error with "Right cursor equals No_Element"; |
| end if; |
| |
| if Left.Node.Element = null then |
| raise Program_Error with "Left cursor is bad"; |
| end if; |
| |
| if Right.Node.Element = null then |
| raise Program_Error with "Right cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Left.Container.Tree, Left.Node), |
| "bad Left cursor in ""<"""); |
| |
| pragma Assert (Vet (Right.Container.Tree, Right.Node), |
| "bad Right cursor in ""<"""); |
| |
| return Left.Node.Element.all < Right.Node.Element.all; |
| end "<"; |
| |
| function "<" (Left : Cursor; Right : Element_Type) return Boolean is |
| begin |
| if Left.Node = null then |
| raise Constraint_Error with "Left cursor equals No_Element"; |
| end if; |
| |
| if Left.Node.Element = null then |
| raise Program_Error with "Left cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Left.Container.Tree, Left.Node), |
| "bad Left cursor in ""<"""); |
| |
| return Left.Node.Element.all < Right; |
| end "<"; |
| |
| function "<" (Left : Element_Type; Right : Cursor) return Boolean is |
| begin |
| if Right.Node = null then |
| raise Constraint_Error with "Right cursor equals No_Element"; |
| end if; |
| |
| if Right.Node.Element = null then |
| raise Program_Error with "Right cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Right.Container.Tree, Right.Node), |
| "bad Right cursor in ""<"""); |
| |
| return Left < Right.Node.Element.all; |
| end "<"; |
| |
| --------- |
| -- "=" -- |
| --------- |
| |
| function "=" (Left, Right : Set) return Boolean is |
| |
| function Is_Equal_Node_Node (L, R : Node_Access) return Boolean; |
| pragma Inline (Is_Equal_Node_Node); |
| |
| function Is_Equal is |
| new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); |
| |
| ------------------------ |
| -- Is_Equal_Node_Node -- |
| ------------------------ |
| |
| function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is |
| begin |
| return L.Element.all = R.Element.all; |
| end Is_Equal_Node_Node; |
| |
| -- Start of processing for "=" |
| |
| begin |
| return Is_Equal (Left.Tree, Right.Tree); |
| end "="; |
| |
| --------- |
| -- ">" -- |
| --------- |
| |
| function ">" (Left, Right : Cursor) return Boolean is |
| begin |
| if Left.Node = null then |
| raise Constraint_Error with "Left cursor equals No_Element"; |
| end if; |
| |
| if Right.Node = null then |
| raise Constraint_Error with "Right cursor equals No_Element"; |
| end if; |
| |
| if Left.Node.Element = null then |
| raise Program_Error with "Left cursor is bad"; |
| end if; |
| |
| if Right.Node.Element = null then |
| raise Program_Error with "Right cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Left.Container.Tree, Left.Node), |
| "bad Left cursor in "">"""); |
| |
| pragma Assert (Vet (Right.Container.Tree, Right.Node), |
| "bad Right cursor in "">"""); |
| |
| -- L > R same as R < L |
| |
| return Right.Node.Element.all < Left.Node.Element.all; |
| end ">"; |
| |
| function ">" (Left : Cursor; Right : Element_Type) return Boolean is |
| begin |
| if Left.Node = null then |
| raise Constraint_Error with "Left cursor equals No_Element"; |
| end if; |
| |
| if Left.Node.Element = null then |
| raise Program_Error with "Left cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Left.Container.Tree, Left.Node), |
| "bad Left cursor in "">"""); |
| |
| return Right < Left.Node.Element.all; |
| end ">"; |
| |
| function ">" (Left : Element_Type; Right : Cursor) return Boolean is |
| begin |
| if Right.Node = null then |
| raise Constraint_Error with "Right cursor equals No_Element"; |
| end if; |
| |
| if Right.Node.Element = null then |
| raise Program_Error with "Right cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Right.Container.Tree, Right.Node), |
| "bad Right cursor in "">"""); |
| |
| return Right.Node.Element.all < Left; |
| end ">"; |
| |
| ------------ |
| -- Adjust -- |
| ------------ |
| |
| procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree); |
| |
| procedure Adjust (Container : in out Set) is |
| begin |
| Adjust (Container.Tree); |
| end Adjust; |
| |
| procedure Adjust (Control : in out Reference_Control_Type) is |
| begin |
| if Control.Container /= null then |
| declare |
| Tree : Tree_Type renames Control.Container.all.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| B := B + 1; |
| L := L + 1; |
| end; |
| end if; |
| end Adjust; |
| |
| ------------ |
| -- Assign -- |
| ------------ |
| |
| procedure Assign (Target : in out Set; Source : Set) is |
| begin |
| if Target'Address = Source'Address then |
| return; |
| end if; |
| |
| Target.Clear; |
| Target.Union (Source); |
| end Assign; |
| |
| ------------- |
| -- Ceiling -- |
| ------------- |
| |
| function Ceiling (Container : Set; Item : Element_Type) return Cursor is |
| Node : constant Node_Access := |
| Element_Keys.Ceiling (Container.Tree, Item); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Node)); |
| end Ceiling; |
| |
| ----------- |
| -- Clear -- |
| ----------- |
| |
| procedure Clear is |
| new Tree_Operations.Generic_Clear (Delete_Tree); |
| |
| procedure Clear (Container : in out Set) is |
| begin |
| Clear (Container.Tree); |
| end Clear; |
| |
| ----------- |
| -- Color -- |
| ----------- |
| |
| function Color (Node : Node_Access) return Color_Type is |
| begin |
| return Node.Color; |
| end Color; |
| |
| ------------------------ |
| -- Constant_Reference -- |
| ------------------------ |
| |
| function Constant_Reference |
| (Container : aliased Set; |
| Position : Cursor) return Constant_Reference_Type |
| is |
| begin |
| if Position.Container = null then |
| raise Constraint_Error with "Position cursor has no element"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Node has no element"; |
| end if; |
| |
| pragma Assert |
| (Vet (Container.Tree, Position.Node), |
| "bad cursor in Constant_Reference"); |
| |
| declare |
| Tree : Tree_Type renames Position.Container.all.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| return R : constant Constant_Reference_Type := |
| (Element => Position.Node.Element.all'Access, |
| Control => (Controlled with Container'Unrestricted_Access)) |
| do |
| B := B + 1; |
| L := L + 1; |
| end return; |
| end; |
| end Constant_Reference; |
| |
| -------------- |
| -- Contains -- |
| -------------- |
| |
| function Contains (Container : Set; Item : Element_Type) return Boolean is |
| begin |
| return Find (Container, Item) /= No_Element; |
| end Contains; |
| |
| ---------- |
| -- Copy -- |
| ---------- |
| |
| function Copy (Source : Set) return Set is |
| begin |
| return Target : Set do |
| Target.Assign (Source); |
| end return; |
| end Copy; |
| |
| --------------- |
| -- Copy_Node -- |
| --------------- |
| |
| function Copy_Node (Source : Node_Access) return Node_Access is |
| Element : Element_Access := new Element_Type'(Source.Element.all); |
| |
| begin |
| return new Node_Type'(Parent => null, |
| Left => null, |
| Right => null, |
| Color => Source.Color, |
| Element => Element); |
| |
| exception |
| when others => |
| Free_Element (Element); |
| raise; |
| end Copy_Node; |
| |
| ------------ |
| -- Delete -- |
| ------------ |
| |
| procedure Delete (Container : in out Set; Position : in out Cursor) is |
| begin |
| if Position.Node = null then |
| raise Constraint_Error with "Position cursor equals No_Element"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with "Position cursor designates wrong set"; |
| end if; |
| |
| pragma Assert (Vet (Container.Tree, Position.Node), |
| "bad cursor in Delete"); |
| |
| Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node); |
| Free (Position.Node); |
| Position.Container := null; |
| end Delete; |
| |
| procedure Delete (Container : in out Set; Item : Element_Type) is |
| X : Node_Access := Element_Keys.Find (Container.Tree, Item); |
| begin |
| if X = null then |
| raise Constraint_Error with "attempt to delete element not in set"; |
| else |
| Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); |
| Free (X); |
| end if; |
| end Delete; |
| |
| ------------------ |
| -- Delete_First -- |
| ------------------ |
| |
| procedure Delete_First (Container : in out Set) is |
| Tree : Tree_Type renames Container.Tree; |
| X : Node_Access := Tree.First; |
| begin |
| if X /= null then |
| Tree_Operations.Delete_Node_Sans_Free (Tree, X); |
| Free (X); |
| end if; |
| end Delete_First; |
| |
| ----------------- |
| -- Delete_Last -- |
| ----------------- |
| |
| procedure Delete_Last (Container : in out Set) is |
| Tree : Tree_Type renames Container.Tree; |
| X : Node_Access := Tree.Last; |
| begin |
| if X /= null then |
| Tree_Operations.Delete_Node_Sans_Free (Tree, X); |
| Free (X); |
| end if; |
| end Delete_Last; |
| |
| ---------------- |
| -- Difference -- |
| ---------------- |
| |
| procedure Difference (Target : in out Set; Source : Set) is |
| begin |
| Set_Ops.Difference (Target.Tree, Source.Tree); |
| end Difference; |
| |
| function Difference (Left, Right : Set) return Set is |
| Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree); |
| begin |
| return Set'(Controlled with Tree); |
| end Difference; |
| |
| ------------- |
| -- Element -- |
| ------------- |
| |
| function Element (Position : Cursor) return Element_Type is |
| begin |
| if Position.Node = null then |
| raise Constraint_Error with "Position cursor equals No_Element"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Position.Container.Tree, Position.Node), |
| "bad cursor in Element"); |
| |
| return Position.Node.Element.all; |
| end Element; |
| |
| ------------------------- |
| -- Equivalent_Elements -- |
| ------------------------- |
| |
| function Equivalent_Elements (Left, Right : Element_Type) return Boolean is |
| begin |
| if Left < Right or else Right < Left then |
| return False; |
| else |
| return True; |
| end if; |
| end Equivalent_Elements; |
| |
| --------------------- |
| -- Equivalent_Sets -- |
| --------------------- |
| |
| function Equivalent_Sets (Left, Right : Set) return Boolean is |
| |
| function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean; |
| pragma Inline (Is_Equivalent_Node_Node); |
| |
| function Is_Equivalent is |
| new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); |
| |
| ----------------------------- |
| -- Is_Equivalent_Node_Node -- |
| ----------------------------- |
| |
| function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is |
| begin |
| if L.Element.all < R.Element.all then |
| return False; |
| elsif R.Element.all < L.Element.all then |
| return False; |
| else |
| return True; |
| end if; |
| end Is_Equivalent_Node_Node; |
| |
| -- Start of processing for Equivalent_Sets |
| |
| begin |
| return Is_Equivalent (Left.Tree, Right.Tree); |
| end Equivalent_Sets; |
| |
| ------------- |
| -- Exclude -- |
| ------------- |
| |
| procedure Exclude (Container : in out Set; Item : Element_Type) is |
| X : Node_Access := Element_Keys.Find (Container.Tree, Item); |
| begin |
| if X /= null then |
| Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); |
| Free (X); |
| end if; |
| end Exclude; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (Object : in out Iterator) is |
| begin |
| if Object.Container /= null then |
| declare |
| B : Natural renames Object.Container.all.Tree.Busy; |
| begin |
| B := B - 1; |
| end; |
| end if; |
| end Finalize; |
| |
| procedure Finalize (Control : in out Reference_Control_Type) is |
| begin |
| if Control.Container /= null then |
| declare |
| Tree : Tree_Type renames Control.Container.all.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| B := B - 1; |
| L := L - 1; |
| end; |
| |
| Control.Container := null; |
| end if; |
| end Finalize; |
| |
| ---------- |
| -- Find -- |
| ---------- |
| |
| function Find (Container : Set; Item : Element_Type) return Cursor is |
| Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item); |
| begin |
| if Node = null then |
| return No_Element; |
| else |
| return Cursor'(Container'Unrestricted_Access, Node); |
| end if; |
| end Find; |
| |
| ----------- |
| -- First -- |
| ----------- |
| |
| function First (Container : Set) return Cursor is |
| begin |
| return |
| (if Container.Tree.First = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Container.Tree.First)); |
| end First; |
| |
| function First (Object : Iterator) return Cursor is |
| begin |
| -- The value of the iterator object's Node component influences the |
| -- behavior of the First (and Last) selector function. |
| |
| -- When the Node component is null, this means the iterator object was |
| -- constructed without a start expression, in which case the (forward) |
| -- iteration starts from the (logical) beginning of the entire sequence |
| -- of items (corresponding to Container.First, for a forward iterator). |
| |
| -- Otherwise, this is iteration over a partial sequence of items. When |
| -- the Node component is non-null, the iterator object was constructed |
| -- with a start expression, that specifies the position from which the |
| -- (forward) partial iteration begins. |
| |
| if Object.Node = null then |
| return Object.Container.First; |
| else |
| return Cursor'(Object.Container, Object.Node); |
| end if; |
| end First; |
| |
| ------------------- |
| -- First_Element -- |
| ------------------- |
| |
| function First_Element (Container : Set) return Element_Type is |
| begin |
| if Container.Tree.First = null then |
| raise Constraint_Error with "set is empty"; |
| else |
| return Container.Tree.First.Element.all; |
| end if; |
| end First_Element; |
| |
| ----------- |
| -- Floor -- |
| ----------- |
| |
| function Floor (Container : Set; Item : Element_Type) return Cursor is |
| Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Node)); |
| end Floor; |
| |
| ---------- |
| -- Free -- |
| ---------- |
| |
| procedure Free (X : in out Node_Access) is |
| procedure Deallocate is |
| new Ada.Unchecked_Deallocation (Node_Type, Node_Access); |
| |
| begin |
| if X = null then |
| return; |
| end if; |
| |
| X.Parent := X; |
| X.Left := X; |
| X.Right := X; |
| |
| begin |
| Free_Element (X.Element); |
| exception |
| when others => |
| X.Element := null; |
| Deallocate (X); |
| raise; |
| end; |
| |
| Deallocate (X); |
| end Free; |
| |
| ------------------ |
| -- Generic_Keys -- |
| ------------------ |
| |
| package body Generic_Keys is |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| function Is_Greater_Key_Node |
| (Left : Key_Type; |
| Right : Node_Access) return Boolean; |
| pragma Inline (Is_Greater_Key_Node); |
| |
| function Is_Less_Key_Node |
| (Left : Key_Type; |
| Right : Node_Access) return Boolean; |
| pragma Inline (Is_Less_Key_Node); |
| |
| -------------------------- |
| -- Local Instantiations -- |
| -------------------------- |
| |
| package Key_Keys is |
| new Red_Black_Trees.Generic_Keys |
| (Tree_Operations => Tree_Operations, |
| Key_Type => Key_Type, |
| Is_Less_Key_Node => Is_Less_Key_Node, |
| Is_Greater_Key_Node => Is_Greater_Key_Node); |
| |
| ------------ |
| -- Adjust -- |
| ------------ |
| |
| procedure Adjust (Control : in out Reference_Control_Type) is |
| begin |
| if Control.Container /= null then |
| declare |
| Tree : Tree_Type renames Control.Container.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| B := B + 1; |
| L := L + 1; |
| end; |
| end if; |
| end Adjust; |
| |
| ------------- |
| -- Ceiling -- |
| ------------- |
| |
| function Ceiling (Container : Set; Key : Key_Type) return Cursor is |
| Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Node)); |
| end Ceiling; |
| |
| ------------------------ |
| -- Constant_Reference -- |
| ------------------------ |
| |
| function Constant_Reference |
| (Container : aliased Set; |
| Key : Key_Type) return Constant_Reference_Type |
| is |
| Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); |
| |
| begin |
| if Node = null then |
| raise Constraint_Error with "Key not in set"; |
| end if; |
| |
| if Node.Element = null then |
| raise Program_Error with "Node has no element"; |
| end if; |
| |
| declare |
| Tree : Tree_Type renames Container'Unrestricted_Access.all.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| return R : constant Constant_Reference_Type := |
| (Element => Node.Element.all'Access, |
| Control => (Controlled with Container'Unrestricted_Access)) |
| do |
| B := B + 1; |
| L := L + 1; |
| end return; |
| end; |
| end Constant_Reference; |
| |
| -------------- |
| -- Contains -- |
| -------------- |
| |
| function Contains (Container : Set; Key : Key_Type) return Boolean is |
| begin |
| return Find (Container, Key) /= No_Element; |
| end Contains; |
| |
| ------------ |
| -- Delete -- |
| ------------ |
| |
| procedure Delete (Container : in out Set; Key : Key_Type) is |
| X : Node_Access := Key_Keys.Find (Container.Tree, Key); |
| |
| begin |
| if X = null then |
| raise Constraint_Error with "attempt to delete key not in set"; |
| end if; |
| |
| Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); |
| Free (X); |
| end Delete; |
| |
| ------------- |
| -- Element -- |
| ------------- |
| |
| function Element (Container : Set; Key : Key_Type) return Element_Type is |
| Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); |
| begin |
| if Node = null then |
| raise Constraint_Error with "key not in set"; |
| else |
| return Node.Element.all; |
| end if; |
| end Element; |
| |
| --------------------- |
| -- Equivalent_Keys -- |
| --------------------- |
| |
| function Equivalent_Keys (Left, Right : Key_Type) return Boolean is |
| begin |
| if Left < Right or else Right < Left then |
| return False; |
| else |
| return True; |
| end if; |
| end Equivalent_Keys; |
| |
| ------------- |
| -- Exclude -- |
| ------------- |
| |
| procedure Exclude (Container : in out Set; Key : Key_Type) is |
| X : Node_Access := Key_Keys.Find (Container.Tree, Key); |
| begin |
| if X /= null then |
| Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); |
| Free (X); |
| end if; |
| end Exclude; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (Control : in out Reference_Control_Type) is |
| begin |
| if Control.Container /= null then |
| declare |
| Tree : Tree_Type renames Control.Container.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| B := B - 1; |
| L := L - 1; |
| end; |
| |
| if not (Key (Control.Pos) = Control.Old_Key.all) then |
| Delete (Control.Container.all, Key (Control.Pos)); |
| raise Program_Error; |
| end if; |
| |
| Control.Container := null; |
| Control.Old_Key := null; |
| end if; |
| end Finalize; |
| |
| ---------- |
| -- Find -- |
| ---------- |
| |
| function Find (Container : Set; Key : Key_Type) return Cursor is |
| Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Node)); |
| end Find; |
| |
| ----------- |
| -- Floor -- |
| ----------- |
| |
| function Floor (Container : Set; Key : Key_Type) return Cursor is |
| Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Node)); |
| end Floor; |
| |
| ------------------------- |
| -- Is_Greater_Key_Node -- |
| ------------------------- |
| |
| function Is_Greater_Key_Node |
| (Left : Key_Type; |
| Right : Node_Access) return Boolean |
| is |
| begin |
| return Key (Right.Element.all) < Left; |
| end Is_Greater_Key_Node; |
| |
| ---------------------- |
| -- Is_Less_Key_Node -- |
| ---------------------- |
| |
| function Is_Less_Key_Node |
| (Left : Key_Type; |
| Right : Node_Access) return Boolean |
| is |
| begin |
| return Left < Key (Right.Element.all); |
| end Is_Less_Key_Node; |
| |
| --------- |
| -- Key -- |
| --------- |
| |
| function Key (Position : Cursor) return Key_Type is |
| begin |
| if Position.Node = null then |
| raise Constraint_Error with |
| "Position cursor equals No_Element"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with |
| "Position cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Position.Container.Tree, Position.Node), |
| "bad cursor in Key"); |
| |
| return Key (Position.Node.Element.all); |
| end Key; |
| |
| ------------- |
| -- Replace -- |
| ------------- |
| |
| procedure Replace |
| (Container : in out Set; |
| Key : Key_Type; |
| New_Item : Element_Type) |
| is |
| Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); |
| |
| begin |
| if Node = null then |
| raise Constraint_Error with |
| "attempt to replace key not in set"; |
| end if; |
| |
| Replace_Element (Container.Tree, Node, New_Item); |
| end Replace; |
| |
| ---------- |
| -- Read -- |
| ---------- |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Read; |
| |
| ------------------------------ |
| -- Reference_Preserving_Key -- |
| ------------------------------ |
| |
| function Reference_Preserving_Key |
| (Container : aliased in out Set; |
| Position : Cursor) return Reference_Type |
| is |
| begin |
| if Position.Container = null then |
| raise Constraint_Error with "Position cursor has no element"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Position cursor designates wrong container"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Node has no element"; |
| end if; |
| |
| pragma Assert |
| (Vet (Container.Tree, Position.Node), |
| "bad cursor in function Reference_Preserving_Key"); |
| |
| declare |
| Tree : Tree_Type renames Container.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| return R : constant Reference_Type := |
| (Element => Position.Node.Element.all'Unchecked_Access, |
| Control => |
| (Controlled with |
| Container => Container'Access, |
| Pos => Position, |
| Old_Key => new Key_Type'(Key (Position)))) |
| do |
| B := B + 1; |
| L := L + 1; |
| end return; |
| end; |
| end Reference_Preserving_Key; |
| |
| function Reference_Preserving_Key |
| (Container : aliased in out Set; |
| Key : Key_Type) return Reference_Type |
| is |
| Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); |
| |
| begin |
| if Node = null then |
| raise Constraint_Error with "Key not in set"; |
| end if; |
| |
| if Node.Element = null then |
| raise Program_Error with "Node has no element"; |
| end if; |
| |
| declare |
| Tree : Tree_Type renames Container.Tree; |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| begin |
| return R : constant Reference_Type := |
| (Element => Node.Element.all'Unchecked_Access, |
| Control => |
| (Controlled with |
| Container => Container'Access, |
| Pos => Find (Container, Key), |
| Old_Key => new Key_Type'(Key))) |
| do |
| B := B + 1; |
| L := L + 1; |
| end return; |
| end; |
| end Reference_Preserving_Key; |
| |
| ----------------------------------- |
| -- Update_Element_Preserving_Key -- |
| ----------------------------------- |
| |
| procedure Update_Element_Preserving_Key |
| (Container : in out Set; |
| Position : Cursor; |
| Process : not null access |
| procedure (Element : in out Element_Type)) |
| is |
| Tree : Tree_Type renames Container.Tree; |
| |
| begin |
| if Position.Node = null then |
| raise Constraint_Error with "Position cursor equals No_Element"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with "Position cursor designates wrong set"; |
| end if; |
| |
| pragma Assert (Vet (Container.Tree, Position.Node), |
| "bad cursor in Update_Element_Preserving_Key"); |
| |
| declare |
| E : Element_Type renames Position.Node.Element.all; |
| K : constant Key_Type := Key (E); |
| |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| |
| Eq : Boolean; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| begin |
| Process (E); |
| Eq := Equivalent_Keys (K, Key (E)); |
| exception |
| when others => |
| L := L - 1; |
| B := B - 1; |
| raise; |
| end; |
| |
| L := L - 1; |
| B := B - 1; |
| |
| if Eq then |
| return; |
| end if; |
| end; |
| |
| declare |
| X : Node_Access := Position.Node; |
| begin |
| Tree_Operations.Delete_Node_Sans_Free (Tree, X); |
| Free (X); |
| end; |
| |
| raise Program_Error with "key was modified"; |
| end Update_Element_Preserving_Key; |
| |
| ----------- |
| -- Write -- |
| ----------- |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Write; |
| |
| end Generic_Keys; |
| |
| ----------------- |
| -- Has_Element -- |
| ----------------- |
| |
| function Has_Element (Position : Cursor) return Boolean is |
| begin |
| return Position /= No_Element; |
| end Has_Element; |
| |
| ------------- |
| -- Include -- |
| ------------- |
| |
| procedure Include (Container : in out Set; New_Item : Element_Type) is |
| Position : Cursor; |
| Inserted : Boolean; |
| |
| X : Element_Access; |
| |
| begin |
| Insert (Container, New_Item, Position, Inserted); |
| |
| if not Inserted then |
| if Container.Tree.Lock > 0 then |
| raise Program_Error with |
| "attempt to tamper with elements (set is locked)"; |
| end if; |
| |
| declare |
| -- The element allocator may need an accessibility check in the |
| -- case the actual type is class-wide or has access discriminants |
| -- (see RM 4.8(10.1) and AI12-0035). |
| |
| pragma Unsuppress (Accessibility_Check); |
| |
| begin |
| X := Position.Node.Element; |
| Position.Node.Element := new Element_Type'(New_Item); |
| Free_Element (X); |
| end; |
| end if; |
| end Include; |
| |
| ------------ |
| -- Insert -- |
| ------------ |
| |
| procedure Insert |
| (Container : in out Set; |
| New_Item : Element_Type; |
| Position : out Cursor; |
| Inserted : out Boolean) |
| is |
| begin |
| Insert_Sans_Hint |
| (Container.Tree, |
| New_Item, |
| Position.Node, |
| Inserted); |
| |
| Position.Container := Container'Unrestricted_Access; |
| end Insert; |
| |
| procedure Insert (Container : in out Set; New_Item : Element_Type) is |
| Position : Cursor; |
| pragma Unreferenced (Position); |
| |
| Inserted : Boolean; |
| |
| begin |
| Insert (Container, New_Item, Position, Inserted); |
| |
| if not Inserted then |
| raise Constraint_Error with |
| "attempt to insert element already in set"; |
| end if; |
| end Insert; |
| |
| ---------------------- |
| -- Insert_Sans_Hint -- |
| ---------------------- |
| |
| procedure Insert_Sans_Hint |
| (Tree : in out Tree_Type; |
| New_Item : Element_Type; |
| Node : out Node_Access; |
| Inserted : out Boolean) |
| is |
| function New_Node return Node_Access; |
| pragma Inline (New_Node); |
| |
| procedure Insert_Post is |
| new Element_Keys.Generic_Insert_Post (New_Node); |
| |
| procedure Conditional_Insert_Sans_Hint is |
| new Element_Keys.Generic_Conditional_Insert (Insert_Post); |
| |
| -------------- |
| -- New_Node -- |
| -------------- |
| |
| function New_Node return Node_Access is |
| -- The element allocator may need an accessibility check in the case |
| -- the actual type is class-wide or has access discriminants (see |
| -- RM 4.8(10.1) and AI12-0035). |
| |
| pragma Unsuppress (Accessibility_Check); |
| |
| Element : Element_Access := new Element_Type'(New_Item); |
| |
| begin |
| return new Node_Type'(Parent => null, |
| Left => null, |
| Right => null, |
| Color => Red_Black_Trees.Red, |
| Element => Element); |
| |
| exception |
| when others => |
| Free_Element (Element); |
| raise; |
| end New_Node; |
| |
| -- Start of processing for Insert_Sans_Hint |
| |
| begin |
| Conditional_Insert_Sans_Hint |
| (Tree, |
| New_Item, |
| Node, |
| Inserted); |
| end Insert_Sans_Hint; |
| |
| ---------------------- |
| -- Insert_With_Hint -- |
| ---------------------- |
| |
| procedure Insert_With_Hint |
| (Dst_Tree : in out Tree_Type; |
| Dst_Hint : Node_Access; |
| Src_Node : Node_Access; |
| Dst_Node : out Node_Access) |
| is |
| Success : Boolean; |
| pragma Unreferenced (Success); |
| |
| function New_Node return Node_Access; |
| |
| procedure Insert_Post is |
| new Element_Keys.Generic_Insert_Post (New_Node); |
| |
| procedure Insert_Sans_Hint is |
| new Element_Keys.Generic_Conditional_Insert (Insert_Post); |
| |
| procedure Insert_With_Hint is |
| new Element_Keys.Generic_Conditional_Insert_With_Hint |
| (Insert_Post, |
| Insert_Sans_Hint); |
| |
| -------------- |
| -- New_Node -- |
| -------------- |
| |
| function New_Node return Node_Access is |
| Element : Element_Access := new Element_Type'(Src_Node.Element.all); |
| Node : Node_Access; |
| |
| begin |
| begin |
| Node := new Node_Type; |
| exception |
| when others => |
| Free_Element (Element); |
| raise; |
| end; |
| |
| Node.Element := Element; |
| return Node; |
| end New_Node; |
| |
| -- Start of processing for Insert_With_Hint |
| |
| begin |
| Insert_With_Hint |
| (Dst_Tree, |
| Dst_Hint, |
| Src_Node.Element.all, |
| Dst_Node, |
| Success); |
| end Insert_With_Hint; |
| |
| ------------------ |
| -- Intersection -- |
| ------------------ |
| |
| procedure Intersection (Target : in out Set; Source : Set) is |
| begin |
| Set_Ops.Intersection (Target.Tree, Source.Tree); |
| end Intersection; |
| |
| function Intersection (Left, Right : Set) return Set is |
| Tree : constant Tree_Type := |
| Set_Ops.Intersection (Left.Tree, Right.Tree); |
| begin |
| return Set'(Controlled with Tree); |
| end Intersection; |
| |
| -------------- |
| -- Is_Empty -- |
| -------------- |
| |
| function Is_Empty (Container : Set) return Boolean is |
| begin |
| return Container.Tree.Length = 0; |
| end Is_Empty; |
| |
| ----------------------------- |
| -- Is_Greater_Element_Node -- |
| ----------------------------- |
| |
| function Is_Greater_Element_Node |
| (Left : Element_Type; |
| Right : Node_Access) return Boolean |
| is |
| begin |
| -- e > node same as node < e |
| |
| return Right.Element.all < Left; |
| end Is_Greater_Element_Node; |
| |
| -------------------------- |
| -- Is_Less_Element_Node -- |
| -------------------------- |
| |
| function Is_Less_Element_Node |
| (Left : Element_Type; |
| Right : Node_Access) return Boolean |
| is |
| begin |
| return Left < Right.Element.all; |
| end Is_Less_Element_Node; |
| |
| ----------------------- |
| -- Is_Less_Node_Node -- |
| ----------------------- |
| |
| function Is_Less_Node_Node (L, R : Node_Access) return Boolean is |
| begin |
| return L.Element.all < R.Element.all; |
| end Is_Less_Node_Node; |
| |
| --------------- |
| -- Is_Subset -- |
| --------------- |
| |
| function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is |
| begin |
| return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree); |
| end Is_Subset; |
| |
| ------------- |
| -- Iterate -- |
| ------------- |
| |
| procedure Iterate |
| (Container : Set; |
| Process : not null access procedure (Position : Cursor)) |
| is |
| procedure Process_Node (Node : Node_Access); |
| pragma Inline (Process_Node); |
| |
| procedure Local_Iterate is |
| new Tree_Operations.Generic_Iteration (Process_Node); |
| |
| ------------------ |
| -- Process_Node -- |
| ------------------ |
| |
| procedure Process_Node (Node : Node_Access) is |
| begin |
| Process (Cursor'(Container'Unrestricted_Access, Node)); |
| end Process_Node; |
| |
| T : Tree_Type renames Container'Unrestricted_Access.all.Tree; |
| B : Natural renames T.Busy; |
| |
| -- Start of processing for Iterate |
| |
| begin |
| B := B + 1; |
| |
| begin |
| Local_Iterate (T); |
| exception |
| when others => |
| B := B - 1; |
| raise; |
| end; |
| |
| B := B - 1; |
| end Iterate; |
| |
| function Iterate |
| (Container : Set) |
| return Set_Iterator_Interfaces.Reversible_Iterator'class |
| is |
| B : Natural renames Container'Unrestricted_Access.all.Tree.Busy; |
| |
| begin |
| -- The value of the Node component influences the behavior of the First |
| -- and Last selector functions of the iterator object. When the Node |
| -- component is null (as is the case here), this means the iterator |
| -- object was constructed without a start expression. This is a complete |
| -- iterator, meaning that the iteration starts from the (logical) |
| -- beginning of the sequence of items. |
| |
| -- Note: For a forward iterator, Container.First is the beginning, and |
| -- for a reverse iterator, Container.Last is the beginning. |
| |
| return It : constant Iterator := |
| Iterator'(Limited_Controlled with |
| Container => Container'Unrestricted_Access, |
| Node => null) |
| do |
| B := B + 1; |
| end return; |
| end Iterate; |
| |
| function Iterate |
| (Container : Set; |
| Start : Cursor) |
| return Set_Iterator_Interfaces.Reversible_Iterator'class |
| is |
| B : Natural renames Container'Unrestricted_Access.all.Tree.Busy; |
| |
| begin |
| -- It was formerly the case that when Start = No_Element, the partial |
| -- iterator was defined to behave the same as for a complete iterator, |
| -- and iterate over the entire sequence of items. However, those |
| -- semantics were unintuitive and arguably error-prone (it is too easy |
| -- to accidentally create an endless loop), and so they were changed, |
| -- per the ARG meeting in Denver on 2011/11. However, there was no |
| -- consensus about what positive meaning this corner case should have, |
| -- and so it was decided to simply raise an exception. This does imply, |
| -- however, that it is not possible to use a partial iterator to specify |
| -- an empty sequence of items. |
| |
| if Start = No_Element then |
| raise Constraint_Error with |
| "Start position for iterator equals No_Element"; |
| end if; |
| |
| if Start.Container /= Container'Unrestricted_Access then |
| raise Program_Error with |
| "Start cursor of Iterate designates wrong set"; |
| end if; |
| |
| pragma Assert (Vet (Container.Tree, Start.Node), |
| "Start cursor of Iterate is bad"); |
| |
| -- The value of the Node component influences the behavior of the First |
| -- and Last selector functions of the iterator object. When the Node |
| -- component is non-null (as is the case here), it means that this is a |
| -- partial iteration, over a subset of the complete sequence of |
| -- items. The iterator object was constructed with a start expression, |
| -- indicating the position from which the iteration begins. Note that |
| -- the start position has the same value irrespective of whether this is |
| -- a forward or reverse iteration. |
| |
| return It : constant Iterator := |
| (Limited_Controlled with |
| Container => Container'Unrestricted_Access, |
| Node => Start.Node) |
| do |
| B := B + 1; |
| end return; |
| end Iterate; |
| |
| ---------- |
| -- Last -- |
| ---------- |
| |
| function Last (Container : Set) return Cursor is |
| begin |
| return |
| (if Container.Tree.Last = null then No_Element |
| else Cursor'(Container'Unrestricted_Access, Container.Tree.Last)); |
| end Last; |
| |
| function Last (Object : Iterator) return Cursor is |
| begin |
| -- The value of the iterator object's Node component influences the |
| -- behavior of the Last (and First) selector function. |
| |
| -- When the Node component is null, this means the iterator object was |
| -- constructed without a start expression, in which case the (reverse) |
| -- iteration starts from the (logical) beginning of the entire sequence |
| -- (corresponding to Container.Last, for a reverse iterator). |
| |
| -- Otherwise, this is iteration over a partial sequence of items. When |
| -- the Node component is non-null, the iterator object was constructed |
| -- with a start expression, that specifies the position from which the |
| -- (reverse) partial iteration begins. |
| |
| if Object.Node = null then |
| return Object.Container.Last; |
| else |
| return Cursor'(Object.Container, Object.Node); |
| end if; |
| end Last; |
| |
| ------------------ |
| -- Last_Element -- |
| ------------------ |
| |
| function Last_Element (Container : Set) return Element_Type is |
| begin |
| if Container.Tree.Last = null then |
| raise Constraint_Error with "set is empty"; |
| else |
| return Container.Tree.Last.Element.all; |
| end if; |
| end Last_Element; |
| |
| ---------- |
| -- Left -- |
| ---------- |
| |
| function Left (Node : Node_Access) return Node_Access is |
| begin |
| return Node.Left; |
| end Left; |
| |
| ------------ |
| -- Length -- |
| ------------ |
| |
| function Length (Container : Set) return Count_Type is |
| begin |
| return Container.Tree.Length; |
| end Length; |
| |
| ---------- |
| -- Move -- |
| ---------- |
| |
| procedure Move is new Tree_Operations.Generic_Move (Clear); |
| |
| procedure Move (Target : in out Set; Source : in out Set) is |
| begin |
| Move (Target => Target.Tree, Source => Source.Tree); |
| end Move; |
| |
| ---------- |
| -- Next -- |
| ---------- |
| |
| procedure Next (Position : in out Cursor) is |
| begin |
| Position := Next (Position); |
| end Next; |
| |
| function Next (Position : Cursor) return Cursor is |
| begin |
| if Position = No_Element then |
| return No_Element; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Position.Container.Tree, Position.Node), |
| "bad cursor in Next"); |
| |
| declare |
| Node : constant Node_Access := Tree_Operations.Next (Position.Node); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Position.Container, Node)); |
| end; |
| end Next; |
| |
| function Next |
| (Object : Iterator; |
| Position : Cursor) return Cursor |
| is |
| begin |
| if Position.Container = null then |
| return No_Element; |
| end if; |
| |
| if Position.Container /= Object.Container then |
| raise Program_Error with |
| "Position cursor of Next designates wrong set"; |
| end if; |
| |
| return Next (Position); |
| end Next; |
| |
| ------------- |
| -- Overlap -- |
| ------------- |
| |
| function Overlap (Left, Right : Set) return Boolean is |
| begin |
| return Set_Ops.Overlap (Left.Tree, Right.Tree); |
| end Overlap; |
| |
| ------------ |
| -- Parent -- |
| ------------ |
| |
| function Parent (Node : Node_Access) return Node_Access is |
| begin |
| return Node.Parent; |
| end Parent; |
| |
| -------------- |
| -- Previous -- |
| -------------- |
| |
| procedure Previous (Position : in out Cursor) is |
| begin |
| Position := Previous (Position); |
| end Previous; |
| |
| function Previous (Position : Cursor) return Cursor is |
| begin |
| if Position = No_Element then |
| return No_Element; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Position.Container.Tree, Position.Node), |
| "bad cursor in Previous"); |
| |
| declare |
| Node : constant Node_Access := |
| Tree_Operations.Previous (Position.Node); |
| begin |
| return (if Node = null then No_Element |
| else Cursor'(Position.Container, Node)); |
| end; |
| end Previous; |
| |
| function Previous |
| (Object : Iterator; |
| Position : Cursor) return Cursor |
| is |
| begin |
| if Position.Container = null then |
| return No_Element; |
| end if; |
| |
| if Position.Container /= Object.Container then |
| raise Program_Error with |
| "Position cursor of Previous designates wrong set"; |
| end if; |
| |
| return Previous (Position); |
| end Previous; |
| |
| ------------------- |
| -- Query_Element -- |
| ------------------- |
| |
| procedure Query_Element |
| (Position : Cursor; |
| Process : not null access procedure (Element : Element_Type)) |
| is |
| begin |
| if Position.Node = null then |
| raise Constraint_Error with "Position cursor equals No_Element"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| pragma Assert (Vet (Position.Container.Tree, Position.Node), |
| "bad cursor in Query_Element"); |
| |
| declare |
| T : Tree_Type renames Position.Container.Tree; |
| |
| B : Natural renames T.Busy; |
| L : Natural renames T.Lock; |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| begin |
| Process (Position.Node.Element.all); |
| exception |
| when others => |
| L := L - 1; |
| B := B - 1; |
| raise; |
| end; |
| |
| L := L - 1; |
| B := B - 1; |
| end; |
| end Query_Element; |
| |
| ---------- |
| -- Read -- |
| ---------- |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Container : out Set) |
| is |
| function Read_Node |
| (Stream : not null access Root_Stream_Type'Class) return Node_Access; |
| pragma Inline (Read_Node); |
| |
| procedure Read is |
| new Tree_Operations.Generic_Read (Clear, Read_Node); |
| |
| --------------- |
| -- Read_Node -- |
| --------------- |
| |
| function Read_Node |
| (Stream : not null access Root_Stream_Type'Class) return Node_Access |
| is |
| Node : Node_Access := new Node_Type; |
| |
| begin |
| Node.Element := new Element_Type'(Element_Type'Input (Stream)); |
| return Node; |
| |
| exception |
| when others => |
| Free (Node); -- Note that Free deallocates elem too |
| raise; |
| end Read_Node; |
| |
| -- Start of processing for Read |
| |
| begin |
| Read (Stream, Container.Tree); |
| end Read; |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out Cursor) |
| is |
| begin |
| raise Program_Error with "attempt to stream set cursor"; |
| end Read; |
| |
| procedure Read |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : out Constant_Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Read; |
| |
| ------------- |
| -- Replace -- |
| ------------- |
| |
| procedure Replace (Container : in out Set; New_Item : Element_Type) is |
| Node : constant Node_Access := |
| Element_Keys.Find (Container.Tree, New_Item); |
| |
| X : Element_Access; |
| pragma Warnings (Off, X); |
| |
| begin |
| if Node = null then |
| raise Constraint_Error with "attempt to replace element not in set"; |
| end if; |
| |
| if Container.Tree.Lock > 0 then |
| raise Program_Error with |
| "attempt to tamper with elements (set is locked)"; |
| end if; |
| |
| declare |
| -- The element allocator may need an accessibility check in the case |
| -- the actual type is class-wide or has access discriminants (see |
| -- RM 4.8(10.1) and AI12-0035). |
| |
| pragma Unsuppress (Accessibility_Check); |
| |
| begin |
| X := Node.Element; |
| Node.Element := new Element_Type'(New_Item); |
| Free_Element (X); |
| end; |
| end Replace; |
| |
| --------------------- |
| -- Replace_Element -- |
| --------------------- |
| |
| procedure Replace_Element |
| (Tree : in out Tree_Type; |
| Node : Node_Access; |
| Item : Element_Type) |
| is |
| pragma Assert (Node /= null); |
| pragma Assert (Node.Element /= null); |
| |
| function New_Node return Node_Access; |
| pragma Inline (New_Node); |
| |
| procedure Local_Insert_Post is |
| new Element_Keys.Generic_Insert_Post (New_Node); |
| |
| procedure Local_Insert_Sans_Hint is |
| new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post); |
| |
| procedure Local_Insert_With_Hint is |
| new Element_Keys.Generic_Conditional_Insert_With_Hint |
| (Local_Insert_Post, |
| Local_Insert_Sans_Hint); |
| |
| -------------- |
| -- New_Node -- |
| -------------- |
| |
| function New_Node return Node_Access is |
| |
| -- The element allocator may need an accessibility check in the case |
| -- the actual type is class-wide or has access discriminants (see |
| -- RM 4.8(10.1) and AI12-0035). |
| |
| pragma Unsuppress (Accessibility_Check); |
| |
| begin |
| Node.Element := new Element_Type'(Item); -- OK if fails |
| Node.Color := Red; |
| Node.Parent := null; |
| Node.Right := null; |
| Node.Left := null; |
| return Node; |
| end New_Node; |
| |
| Hint : Node_Access; |
| Result : Node_Access; |
| Inserted : Boolean; |
| Compare : Boolean; |
| |
| X : Element_Access := Node.Element; |
| |
| -- Per AI05-0022, the container implementation is required to detect |
| -- element tampering by a generic actual subprogram. |
| |
| B : Natural renames Tree.Busy; |
| L : Natural renames Tree.Lock; |
| |
| -- Start of processing for Replace_Element |
| |
| begin |
| -- Replace_Element assigns value Item to the element designated by Node, |
| -- per certain semantic constraints, described as follows. |
| |
| -- If Item is equivalent to the element, then element is replaced and |
| -- there's nothing else to do. This is the easy case. |
| |
| -- If Item is not equivalent, then the node will (possibly) have to move |
| -- to some other place in the tree. This is slighly more complicated, |
| -- because we must ensure that Item is not equivalent to some other |
| -- element in the tree (in which case, the replacement is not allowed). |
| |
| -- Determine whether Item is equivalent to element on the specified |
| -- node. |
| |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| Compare := (if Item < Node.Element.all then False |
| elsif Node.Element.all < Item then False |
| else True); |
| |
| L := L - 1; |
| B := B - 1; |
| |
| exception |
| when others => |
| L := L - 1; |
| B := B - 1; |
| |
| raise; |
| end; |
| |
| if Compare then |
| -- Item is equivalent to the node's element, so we will not have to |
| -- move the node. |
| |
| if Tree.Lock > 0 then |
| raise Program_Error with |
| "attempt to tamper with elements (set is locked)"; |
| end if; |
| |
| declare |
| -- The element allocator may need an accessibility check in the |
| -- case the actual type is class-wide or has access discriminants |
| -- (see RM 4.8(10.1) and AI12-0035). |
| |
| pragma Unsuppress (Accessibility_Check); |
| |
| begin |
| Node.Element := new Element_Type'(Item); |
| Free_Element (X); |
| end; |
| |
| return; |
| end if; |
| |
| -- The replacement Item is not equivalent to the element on the |
| -- specified node, which means that it will need to be re-inserted in a |
| -- different position in the tree. We must now determine whether Item is |
| -- equivalent to some other element in the tree (which would prohibit |
| -- the assignment and hence the move). |
| |
| -- Ceiling returns the smallest element equivalent or greater than the |
| -- specified Item; if there is no such element, then it returns null. |
| |
| Hint := Element_Keys.Ceiling (Tree, Item); |
| |
| if Hint /= null then |
| begin |
| B := B + 1; |
| L := L + 1; |
| |
| Compare := Item < Hint.Element.all; |
| |
| L := L - 1; |
| B := B - 1; |
| |
| exception |
| when others => |
| L := L - 1; |
| B := B - 1; |
| |
| raise; |
| end; |
| |
| -- Item >= Hint.Element |
| |
| if not Compare then |
| |
| -- Ceiling returns an element that is equivalent or greater |
| -- than Item. If Item is "not less than" the element, then |
| -- by elimination we know that Item is equivalent to the element. |
| |
| -- But this means that it is not possible to assign the value of |
| -- Item to the specified element (on Node), because a different |
| -- element (on Hint) equivalent to Item already exsits. (Were we |
| -- to change Node's element value, we would have to move Node, but |
| -- we would be unable to move the Node, because its new position |
| -- in the tree is already occupied by an equivalent element.) |
| |
| raise Program_Error with "attempt to replace existing element"; |
| end if; |
| |
| -- Item is not equivalent to any other element in the tree, so it is |
| -- safe to assign the value of Item to Node.Element. This means that |
| -- the node will have to move to a different position in the tree |
| -- (because its element will have a different value). |
| |
| -- The nearest (greater) neighbor of Item is Hint. This will be the |
| -- insertion position of Node (because its element will have Item as |
| -- its new value). |
| |
| -- If Node equals Hint, the relative position of Node does not |
| -- change. This allows us to perform an optimization: we need not |
| -- remove Node from the tree and then reinsert it with its new value, |
| -- because it would only be placed in the exact same position. |
| |
| if Hint = Node then |
| if Tree.Lock > 0 then |
| raise Program_Error with |
| "attempt to tamper with elements (set is locked)"; |
| end if; |
| |
| declare |
| -- The element allocator may need an accessibility check in the |
| -- case actual type is class-wide or has access discriminants |
| -- (see RM 4.8(10.1) and AI12-0035). |
| |
| pragma Unsuppress (Accessibility_Check); |
| |
| begin |
| Node.Element := new Element_Type'(Item); |
| Free_Element (X); |
| end; |
| |
| return; |
| end if; |
| end if; |
| |
| -- If we get here, it is because Item was greater than all elements in |
| -- the tree (Hint = null), or because Item was less than some element at |
| -- a different place in the tree (Item < Hint.Element.all). In either |
| -- case, we remove Node from the tree (without actually deallocating |
| -- it), and then insert Item into the tree, onto the same Node (so no |
| -- new node is actually allocated). |
| |
| Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit |
| |
| Local_Insert_With_Hint |
| (Tree => Tree, |
| Position => Hint, |
| Key => Item, |
| Node => Result, |
| Inserted => Inserted); |
| |
| pragma Assert (Inserted); |
| pragma Assert (Result = Node); |
| |
| Free_Element (X); |
| end Replace_Element; |
| |
| procedure Replace_Element |
| (Container : in out Set; |
| Position : Cursor; |
| New_Item : Element_Type) |
| is |
| begin |
| if Position.Node = null then |
| raise Constraint_Error with "Position cursor equals No_Element"; |
| end if; |
| |
| if Position.Node.Element = null then |
| raise Program_Error with "Position cursor is bad"; |
| end if; |
| |
| if Position.Container /= Container'Unrestricted_Access then |
| raise Program_Error with "Position cursor designates wrong set"; |
| end if; |
| |
| pragma Assert (Vet (Container.Tree, Position.Node), |
| "bad cursor in Replace_Element"); |
| |
| Replace_Element (Container.Tree, Position.Node, New_Item); |
| end Replace_Element; |
| |
| --------------------- |
| -- Reverse_Iterate -- |
| --------------------- |
| |
| procedure Reverse_Iterate |
| (Container : Set; |
| Process : not null access procedure (Position : Cursor)) |
| is |
| procedure Process_Node (Node : Node_Access); |
| pragma Inline (Process_Node); |
| |
| procedure Local_Reverse_Iterate is |
| new Tree_Operations.Generic_Reverse_Iteration (Process_Node); |
| |
| ------------------ |
| -- Process_Node -- |
| ------------------ |
| |
| procedure Process_Node (Node : Node_Access) is |
| begin |
| Process (Cursor'(Container'Unrestricted_Access, Node)); |
| end Process_Node; |
| |
| T : Tree_Type renames Container.Tree'Unrestricted_Access.all; |
| B : Natural renames T.Busy; |
| |
| -- Start of processing for Reverse_Iterate |
| |
| begin |
| B := B + 1; |
| |
| begin |
| Local_Reverse_Iterate (T); |
| exception |
| when others => |
| B := B - 1; |
| raise; |
| end; |
| |
| B := B - 1; |
| end Reverse_Iterate; |
| |
| ----------- |
| -- Right -- |
| ----------- |
| |
| function Right (Node : Node_Access) return Node_Access is |
| begin |
| return Node.Right; |
| end Right; |
| |
| --------------- |
| -- Set_Color -- |
| --------------- |
| |
| procedure Set_Color (Node : Node_Access; Color : Color_Type) is |
| begin |
| Node.Color := Color; |
| end Set_Color; |
| |
| -------------- |
| -- Set_Left -- |
| -------------- |
| |
| procedure Set_Left (Node : Node_Access; Left : Node_Access) is |
| begin |
| Node.Left := Left; |
| end Set_Left; |
| |
| ---------------- |
| -- Set_Parent -- |
| ---------------- |
| |
| procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is |
| begin |
| Node.Parent := Parent; |
| end Set_Parent; |
| |
| --------------- |
| -- Set_Right -- |
| --------------- |
| |
| procedure Set_Right (Node : Node_Access; Right : Node_Access) is |
| begin |
| Node.Right := Right; |
| end Set_Right; |
| |
| -------------------------- |
| -- Symmetric_Difference -- |
| -------------------------- |
| |
| procedure Symmetric_Difference (Target : in out Set; Source : Set) is |
| begin |
| Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree); |
| end Symmetric_Difference; |
| |
| function Symmetric_Difference (Left, Right : Set) return Set is |
| Tree : constant Tree_Type := |
| Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree); |
| begin |
| return Set'(Controlled with Tree); |
| end Symmetric_Difference; |
| |
| ------------ |
| -- To_Set -- |
| ------------ |
| |
| function To_Set (New_Item : Element_Type) return Set is |
| Tree : Tree_Type; |
| Node : Node_Access; |
| Inserted : Boolean; |
| pragma Unreferenced (Node, Inserted); |
| begin |
| Insert_Sans_Hint (Tree, New_Item, Node, Inserted); |
| return Set'(Controlled with Tree); |
| end To_Set; |
| |
| ----------- |
| -- Union -- |
| ----------- |
| |
| procedure Union (Target : in out Set; Source : Set) is |
| begin |
| Set_Ops.Union (Target.Tree, Source.Tree); |
| end Union; |
| |
| function Union (Left, Right : Set) return Set is |
| Tree : constant Tree_Type := Set_Ops.Union (Left.Tree, Right.Tree); |
| begin |
| return Set'(Controlled with Tree); |
| end Union; |
| |
| ----------- |
| -- Write -- |
| ----------- |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Container : Set) |
| is |
| procedure Write_Node |
| (Stream : not null access Root_Stream_Type'Class; |
| Node : Node_Access); |
| pragma Inline (Write_Node); |
| |
| procedure Write is |
| new Tree_Operations.Generic_Write (Write_Node); |
| |
| ---------------- |
| -- Write_Node -- |
| ---------------- |
| |
| procedure Write_Node |
| (Stream : not null access Root_Stream_Type'Class; |
| Node : Node_Access) |
| is |
| begin |
| Element_Type'Output (Stream, Node.Element.all); |
| end Write_Node; |
| |
| -- Start of processing for Write |
| |
| begin |
| Write (Stream, Container.Tree); |
| end Write; |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : Cursor) |
| is |
| begin |
| raise Program_Error with "attempt to stream set cursor"; |
| end Write; |
| |
| procedure Write |
| (Stream : not null access Root_Stream_Type'Class; |
| Item : Constant_Reference_Type) |
| is |
| begin |
| raise Program_Error with "attempt to stream reference"; |
| end Write; |
| |
| end Ada.Containers.Indefinite_Ordered_Sets; |