| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME COMPONENTS -- |
| -- -- |
| -- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2010, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Ada.Numerics.Aux; use Ada.Numerics.Aux; |
| |
| package body Ada.Numerics.Generic_Complex_Types is |
| |
| subtype R is Real'Base; |
| |
| Two_Pi : constant R := R (2.0) * Pi; |
| Half_Pi : constant R := Pi / R (2.0); |
| |
| --------- |
| -- "*" -- |
| --------- |
| |
| function "*" (Left, Right : Complex) return Complex is |
| |
| Scale : constant R := R (R'Machine_Radix) ** ((R'Machine_Emax - 1) / 2); |
| -- In case of overflow, scale the operands by the largest power of the |
| -- radix (to avoid rounding error), so that the square of the scale does |
| -- not overflow itself. |
| |
| X : R; |
| Y : R; |
| |
| begin |
| X := Left.Re * Right.Re - Left.Im * Right.Im; |
| Y := Left.Re * Right.Im + Left.Im * Right.Re; |
| |
| -- If either component overflows, try to scale (skip in fast math mode) |
| |
| if not Standard'Fast_Math then |
| |
| -- Note that the test below is written as a negation. This is to |
| -- account for the fact that X and Y may be NaNs, because both of |
| -- their operands could overflow. Given that all operations on NaNs |
| -- return false, the test can only be written thus. |
| |
| if not (abs (X) <= R'Last) then |
| X := Scale**2 * ((Left.Re / Scale) * (Right.Re / Scale) - |
| (Left.Im / Scale) * (Right.Im / Scale)); |
| end if; |
| |
| if not (abs (Y) <= R'Last) then |
| Y := Scale**2 * ((Left.Re / Scale) * (Right.Im / Scale) |
| + (Left.Im / Scale) * (Right.Re / Scale)); |
| end if; |
| end if; |
| |
| return (X, Y); |
| end "*"; |
| |
| function "*" (Left, Right : Imaginary) return Real'Base is |
| begin |
| return -(R (Left) * R (Right)); |
| end "*"; |
| |
| function "*" (Left : Complex; Right : Real'Base) return Complex is |
| begin |
| return Complex'(Left.Re * Right, Left.Im * Right); |
| end "*"; |
| |
| function "*" (Left : Real'Base; Right : Complex) return Complex is |
| begin |
| return (Left * Right.Re, Left * Right.Im); |
| end "*"; |
| |
| function "*" (Left : Complex; Right : Imaginary) return Complex is |
| begin |
| return Complex'(-(Left.Im * R (Right)), Left.Re * R (Right)); |
| end "*"; |
| |
| function "*" (Left : Imaginary; Right : Complex) return Complex is |
| begin |
| return Complex'(-(R (Left) * Right.Im), R (Left) * Right.Re); |
| end "*"; |
| |
| function "*" (Left : Imaginary; Right : Real'Base) return Imaginary is |
| begin |
| return Left * Imaginary (Right); |
| end "*"; |
| |
| function "*" (Left : Real'Base; Right : Imaginary) return Imaginary is |
| begin |
| return Imaginary (Left * R (Right)); |
| end "*"; |
| |
| ---------- |
| -- "**" -- |
| ---------- |
| |
| function "**" (Left : Complex; Right : Integer) return Complex is |
| Result : Complex := (1.0, 0.0); |
| Factor : Complex := Left; |
| Exp : Integer := Right; |
| |
| begin |
| -- We use the standard logarithmic approach, Exp gets shifted right |
| -- testing successive low order bits and Factor is the value of the |
| -- base raised to the next power of 2. For positive exponents we |
| -- multiply the result by this factor, for negative exponents, we |
| -- divide by this factor. |
| |
| if Exp >= 0 then |
| |
| -- For a positive exponent, if we get a constraint error during |
| -- this loop, it is an overflow, and the constraint error will |
| -- simply be passed on to the caller. |
| |
| while Exp /= 0 loop |
| if Exp rem 2 /= 0 then |
| Result := Result * Factor; |
| end if; |
| |
| Factor := Factor * Factor; |
| Exp := Exp / 2; |
| end loop; |
| |
| return Result; |
| |
| else -- Exp < 0 then |
| |
| -- For the negative exponent case, a constraint error during this |
| -- calculation happens if Factor gets too large, and the proper |
| -- response is to return 0.0, since what we essentially have is |
| -- 1.0 / infinity, and the closest model number will be zero. |
| |
| begin |
| while Exp /= 0 loop |
| if Exp rem 2 /= 0 then |
| Result := Result * Factor; |
| end if; |
| |
| Factor := Factor * Factor; |
| Exp := Exp / 2; |
| end loop; |
| |
| return R'(1.0) / Result; |
| |
| exception |
| when Constraint_Error => |
| return (0.0, 0.0); |
| end; |
| end if; |
| end "**"; |
| |
| function "**" (Left : Imaginary; Right : Integer) return Complex is |
| M : constant R := R (Left) ** Right; |
| begin |
| case Right mod 4 is |
| when 0 => return (M, 0.0); |
| when 1 => return (0.0, M); |
| when 2 => return (-M, 0.0); |
| when 3 => return (0.0, -M); |
| when others => raise Program_Error; |
| end case; |
| end "**"; |
| |
| --------- |
| -- "+" -- |
| --------- |
| |
| function "+" (Right : Complex) return Complex is |
| begin |
| return Right; |
| end "+"; |
| |
| function "+" (Left, Right : Complex) return Complex is |
| begin |
| return Complex'(Left.Re + Right.Re, Left.Im + Right.Im); |
| end "+"; |
| |
| function "+" (Right : Imaginary) return Imaginary is |
| begin |
| return Right; |
| end "+"; |
| |
| function "+" (Left, Right : Imaginary) return Imaginary is |
| begin |
| return Imaginary (R (Left) + R (Right)); |
| end "+"; |
| |
| function "+" (Left : Complex; Right : Real'Base) return Complex is |
| begin |
| return Complex'(Left.Re + Right, Left.Im); |
| end "+"; |
| |
| function "+" (Left : Real'Base; Right : Complex) return Complex is |
| begin |
| return Complex'(Left + Right.Re, Right.Im); |
| end "+"; |
| |
| function "+" (Left : Complex; Right : Imaginary) return Complex is |
| begin |
| return Complex'(Left.Re, Left.Im + R (Right)); |
| end "+"; |
| |
| function "+" (Left : Imaginary; Right : Complex) return Complex is |
| begin |
| return Complex'(Right.Re, R (Left) + Right.Im); |
| end "+"; |
| |
| function "+" (Left : Imaginary; Right : Real'Base) return Complex is |
| begin |
| return Complex'(Right, R (Left)); |
| end "+"; |
| |
| function "+" (Left : Real'Base; Right : Imaginary) return Complex is |
| begin |
| return Complex'(Left, R (Right)); |
| end "+"; |
| |
| --------- |
| -- "-" -- |
| --------- |
| |
| function "-" (Right : Complex) return Complex is |
| begin |
| return (-Right.Re, -Right.Im); |
| end "-"; |
| |
| function "-" (Left, Right : Complex) return Complex is |
| begin |
| return (Left.Re - Right.Re, Left.Im - Right.Im); |
| end "-"; |
| |
| function "-" (Right : Imaginary) return Imaginary is |
| begin |
| return Imaginary (-R (Right)); |
| end "-"; |
| |
| function "-" (Left, Right : Imaginary) return Imaginary is |
| begin |
| return Imaginary (R (Left) - R (Right)); |
| end "-"; |
| |
| function "-" (Left : Complex; Right : Real'Base) return Complex is |
| begin |
| return Complex'(Left.Re - Right, Left.Im); |
| end "-"; |
| |
| function "-" (Left : Real'Base; Right : Complex) return Complex is |
| begin |
| return Complex'(Left - Right.Re, -Right.Im); |
| end "-"; |
| |
| function "-" (Left : Complex; Right : Imaginary) return Complex is |
| begin |
| return Complex'(Left.Re, Left.Im - R (Right)); |
| end "-"; |
| |
| function "-" (Left : Imaginary; Right : Complex) return Complex is |
| begin |
| return Complex'(-Right.Re, R (Left) - Right.Im); |
| end "-"; |
| |
| function "-" (Left : Imaginary; Right : Real'Base) return Complex is |
| begin |
| return Complex'(-Right, R (Left)); |
| end "-"; |
| |
| function "-" (Left : Real'Base; Right : Imaginary) return Complex is |
| begin |
| return Complex'(Left, -R (Right)); |
| end "-"; |
| |
| --------- |
| -- "/" -- |
| --------- |
| |
| function "/" (Left, Right : Complex) return Complex is |
| a : constant R := Left.Re; |
| b : constant R := Left.Im; |
| c : constant R := Right.Re; |
| d : constant R := Right.Im; |
| |
| begin |
| if c = 0.0 and then d = 0.0 then |
| raise Constraint_Error; |
| else |
| return Complex'(Re => ((a * c) + (b * d)) / (c ** 2 + d ** 2), |
| Im => ((b * c) - (a * d)) / (c ** 2 + d ** 2)); |
| end if; |
| end "/"; |
| |
| function "/" (Left, Right : Imaginary) return Real'Base is |
| begin |
| return R (Left) / R (Right); |
| end "/"; |
| |
| function "/" (Left : Complex; Right : Real'Base) return Complex is |
| begin |
| return Complex'(Left.Re / Right, Left.Im / Right); |
| end "/"; |
| |
| function "/" (Left : Real'Base; Right : Complex) return Complex is |
| a : constant R := Left; |
| c : constant R := Right.Re; |
| d : constant R := Right.Im; |
| begin |
| return Complex'(Re => (a * c) / (c ** 2 + d ** 2), |
| Im => -((a * d) / (c ** 2 + d ** 2))); |
| end "/"; |
| |
| function "/" (Left : Complex; Right : Imaginary) return Complex is |
| a : constant R := Left.Re; |
| b : constant R := Left.Im; |
| d : constant R := R (Right); |
| |
| begin |
| return (b / d, -(a / d)); |
| end "/"; |
| |
| function "/" (Left : Imaginary; Right : Complex) return Complex is |
| b : constant R := R (Left); |
| c : constant R := Right.Re; |
| d : constant R := Right.Im; |
| |
| begin |
| return (Re => b * d / (c ** 2 + d ** 2), |
| Im => b * c / (c ** 2 + d ** 2)); |
| end "/"; |
| |
| function "/" (Left : Imaginary; Right : Real'Base) return Imaginary is |
| begin |
| return Imaginary (R (Left) / Right); |
| end "/"; |
| |
| function "/" (Left : Real'Base; Right : Imaginary) return Imaginary is |
| begin |
| return Imaginary (-(Left / R (Right))); |
| end "/"; |
| |
| --------- |
| -- "<" -- |
| --------- |
| |
| function "<" (Left, Right : Imaginary) return Boolean is |
| begin |
| return R (Left) < R (Right); |
| end "<"; |
| |
| ---------- |
| -- "<=" -- |
| ---------- |
| |
| function "<=" (Left, Right : Imaginary) return Boolean is |
| begin |
| return R (Left) <= R (Right); |
| end "<="; |
| |
| --------- |
| -- ">" -- |
| --------- |
| |
| function ">" (Left, Right : Imaginary) return Boolean is |
| begin |
| return R (Left) > R (Right); |
| end ">"; |
| |
| ---------- |
| -- ">=" -- |
| ---------- |
| |
| function ">=" (Left, Right : Imaginary) return Boolean is |
| begin |
| return R (Left) >= R (Right); |
| end ">="; |
| |
| ----------- |
| -- "abs" -- |
| ----------- |
| |
| function "abs" (Right : Imaginary) return Real'Base is |
| begin |
| return abs R (Right); |
| end "abs"; |
| |
| -------------- |
| -- Argument -- |
| -------------- |
| |
| function Argument (X : Complex) return Real'Base is |
| a : constant R := X.Re; |
| b : constant R := X.Im; |
| arg : R; |
| |
| begin |
| if b = 0.0 then |
| |
| if a >= 0.0 then |
| return 0.0; |
| else |
| return R'Copy_Sign (Pi, b); |
| end if; |
| |
| elsif a = 0.0 then |
| |
| if b >= 0.0 then |
| return Half_Pi; |
| else |
| return -Half_Pi; |
| end if; |
| |
| else |
| arg := R (Atan (Double (abs (b / a)))); |
| |
| if a > 0.0 then |
| if b > 0.0 then |
| return arg; |
| else -- b < 0.0 |
| return -arg; |
| end if; |
| |
| else -- a < 0.0 |
| if b >= 0.0 then |
| return Pi - arg; |
| else -- b < 0.0 |
| return -(Pi - arg); |
| end if; |
| end if; |
| end if; |
| |
| exception |
| when Constraint_Error => |
| if b > 0.0 then |
| return Half_Pi; |
| else |
| return -Half_Pi; |
| end if; |
| end Argument; |
| |
| function Argument (X : Complex; Cycle : Real'Base) return Real'Base is |
| begin |
| if Cycle > 0.0 then |
| return Argument (X) * Cycle / Two_Pi; |
| else |
| raise Argument_Error; |
| end if; |
| end Argument; |
| |
| ---------------------------- |
| -- Compose_From_Cartesian -- |
| ---------------------------- |
| |
| function Compose_From_Cartesian (Re, Im : Real'Base) return Complex is |
| begin |
| return (Re, Im); |
| end Compose_From_Cartesian; |
| |
| function Compose_From_Cartesian (Re : Real'Base) return Complex is |
| begin |
| return (Re, 0.0); |
| end Compose_From_Cartesian; |
| |
| function Compose_From_Cartesian (Im : Imaginary) return Complex is |
| begin |
| return (0.0, R (Im)); |
| end Compose_From_Cartesian; |
| |
| ------------------------ |
| -- Compose_From_Polar -- |
| ------------------------ |
| |
| function Compose_From_Polar ( |
| Modulus, Argument : Real'Base) |
| return Complex |
| is |
| begin |
| if Modulus = 0.0 then |
| return (0.0, 0.0); |
| else |
| return (Modulus * R (Cos (Double (Argument))), |
| Modulus * R (Sin (Double (Argument)))); |
| end if; |
| end Compose_From_Polar; |
| |
| function Compose_From_Polar ( |
| Modulus, Argument, Cycle : Real'Base) |
| return Complex |
| is |
| Arg : Real'Base; |
| |
| begin |
| if Modulus = 0.0 then |
| return (0.0, 0.0); |
| |
| elsif Cycle > 0.0 then |
| if Argument = 0.0 then |
| return (Modulus, 0.0); |
| |
| elsif Argument = Cycle / 4.0 then |
| return (0.0, Modulus); |
| |
| elsif Argument = Cycle / 2.0 then |
| return (-Modulus, 0.0); |
| |
| elsif Argument = 3.0 * Cycle / R (4.0) then |
| return (0.0, -Modulus); |
| else |
| Arg := Two_Pi * Argument / Cycle; |
| return (Modulus * R (Cos (Double (Arg))), |
| Modulus * R (Sin (Double (Arg)))); |
| end if; |
| else |
| raise Argument_Error; |
| end if; |
| end Compose_From_Polar; |
| |
| --------------- |
| -- Conjugate -- |
| --------------- |
| |
| function Conjugate (X : Complex) return Complex is |
| begin |
| return Complex'(X.Re, -X.Im); |
| end Conjugate; |
| |
| -------- |
| -- Im -- |
| -------- |
| |
| function Im (X : Complex) return Real'Base is |
| begin |
| return X.Im; |
| end Im; |
| |
| function Im (X : Imaginary) return Real'Base is |
| begin |
| return R (X); |
| end Im; |
| |
| ------------- |
| -- Modulus -- |
| ------------- |
| |
| function Modulus (X : Complex) return Real'Base is |
| Re2, Im2 : R; |
| |
| begin |
| |
| begin |
| Re2 := X.Re ** 2; |
| |
| -- To compute (a**2 + b**2) ** (0.5) when a**2 may be out of bounds, |
| -- compute a * (1 + (b/a) **2) ** (0.5). On a machine where the |
| -- squaring does not raise constraint_error but generates infinity, |
| -- we can use an explicit comparison to determine whether to use |
| -- the scaling expression. |
| |
| -- The scaling expression is computed in double format throughout |
| -- in order to prevent inaccuracies on machines where not all |
| -- immediate expressions are rounded, such as PowerPC. |
| |
| -- ??? same weird test, why not Re2 > R'Last ??? |
| if not (Re2 <= R'Last) then |
| raise Constraint_Error; |
| end if; |
| |
| exception |
| when Constraint_Error => |
| return R (Double (abs (X.Re)) |
| * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2)); |
| end; |
| |
| begin |
| Im2 := X.Im ** 2; |
| |
| -- ??? same weird test |
| if not (Im2 <= R'Last) then |
| raise Constraint_Error; |
| end if; |
| |
| exception |
| when Constraint_Error => |
| return R (Double (abs (X.Im)) |
| * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2)); |
| end; |
| |
| -- Now deal with cases of underflow. If only one of the squares |
| -- underflows, return the modulus of the other component. If both |
| -- squares underflow, use scaling as above. |
| |
| if Re2 = 0.0 then |
| |
| if X.Re = 0.0 then |
| return abs (X.Im); |
| |
| elsif Im2 = 0.0 then |
| |
| if X.Im = 0.0 then |
| return abs (X.Re); |
| |
| else |
| if abs (X.Re) > abs (X.Im) then |
| return |
| R (Double (abs (X.Re)) |
| * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2)); |
| else |
| return |
| R (Double (abs (X.Im)) |
| * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2)); |
| end if; |
| end if; |
| |
| else |
| return abs (X.Im); |
| end if; |
| |
| elsif Im2 = 0.0 then |
| return abs (X.Re); |
| |
| -- In all other cases, the naive computation will do |
| |
| else |
| return R (Sqrt (Double (Re2 + Im2))); |
| end if; |
| end Modulus; |
| |
| -------- |
| -- Re -- |
| -------- |
| |
| function Re (X : Complex) return Real'Base is |
| begin |
| return X.Re; |
| end Re; |
| |
| ------------ |
| -- Set_Im -- |
| ------------ |
| |
| procedure Set_Im (X : in out Complex; Im : Real'Base) is |
| begin |
| X.Im := Im; |
| end Set_Im; |
| |
| procedure Set_Im (X : out Imaginary; Im : Real'Base) is |
| begin |
| X := Imaginary (Im); |
| end Set_Im; |
| |
| ------------ |
| -- Set_Re -- |
| ------------ |
| |
| procedure Set_Re (X : in out Complex; Re : Real'Base) is |
| begin |
| X.Re := Re; |
| end Set_Re; |
| |
| end Ada.Numerics.Generic_Complex_Types; |