| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME COMPONENTS -- |
| -- -- |
| -- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S -- |
| -- -- |
| -- S p e c -- |
| -- -- |
| -- Copyright (C) 1992-2009, Free Software Foundation, Inc. -- |
| -- -- |
| -- This specification is derived from the Ada Reference Manual for use with -- |
| -- GNAT. The copyright notice above, and the license provisions that follow -- |
| -- apply solely to the contents of the part following the private keyword. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| generic |
| type Real is digits <>; |
| |
| package Ada.Numerics.Generic_Complex_Types is |
| pragma Pure; |
| |
| type Complex is record |
| Re, Im : Real'Base; |
| end record; |
| |
| pragma Complex_Representation (Complex); |
| |
| type Imaginary is private; |
| pragma Preelaborable_Initialization (Imaginary); |
| |
| i : constant Imaginary; |
| j : constant Imaginary; |
| |
| function Re (X : Complex) return Real'Base; |
| function Im (X : Complex) return Real'Base; |
| function Im (X : Imaginary) return Real'Base; |
| |
| procedure Set_Re (X : in out Complex; Re : Real'Base); |
| procedure Set_Im (X : in out Complex; Im : Real'Base); |
| procedure Set_Im (X : out Imaginary; Im : Real'Base); |
| |
| function Compose_From_Cartesian (Re, Im : Real'Base) return Complex; |
| function Compose_From_Cartesian (Re : Real'Base) return Complex; |
| function Compose_From_Cartesian (Im : Imaginary) return Complex; |
| |
| function Modulus (X : Complex) return Real'Base; |
| function "abs" (Right : Complex) return Real'Base renames Modulus; |
| |
| function Argument (X : Complex) return Real'Base; |
| function Argument (X : Complex; Cycle : Real'Base) return Real'Base; |
| |
| function Compose_From_Polar ( |
| Modulus, Argument : Real'Base) |
| return Complex; |
| |
| function Compose_From_Polar ( |
| Modulus, Argument, Cycle : Real'Base) |
| return Complex; |
| |
| function "+" (Right : Complex) return Complex; |
| function "-" (Right : Complex) return Complex; |
| function Conjugate (X : Complex) return Complex; |
| |
| function "+" (Left, Right : Complex) return Complex; |
| function "-" (Left, Right : Complex) return Complex; |
| function "*" (Left, Right : Complex) return Complex; |
| function "/" (Left, Right : Complex) return Complex; |
| |
| function "**" (Left : Complex; Right : Integer) return Complex; |
| |
| function "+" (Right : Imaginary) return Imaginary; |
| function "-" (Right : Imaginary) return Imaginary; |
| function Conjugate (X : Imaginary) return Imaginary renames "-"; |
| function "abs" (Right : Imaginary) return Real'Base; |
| |
| function "+" (Left, Right : Imaginary) return Imaginary; |
| function "-" (Left, Right : Imaginary) return Imaginary; |
| function "*" (Left, Right : Imaginary) return Real'Base; |
| function "/" (Left, Right : Imaginary) return Real'Base; |
| |
| function "**" (Left : Imaginary; Right : Integer) return Complex; |
| |
| function "<" (Left, Right : Imaginary) return Boolean; |
| function "<=" (Left, Right : Imaginary) return Boolean; |
| function ">" (Left, Right : Imaginary) return Boolean; |
| function ">=" (Left, Right : Imaginary) return Boolean; |
| |
| function "+" (Left : Complex; Right : Real'Base) return Complex; |
| function "+" (Left : Real'Base; Right : Complex) return Complex; |
| function "-" (Left : Complex; Right : Real'Base) return Complex; |
| function "-" (Left : Real'Base; Right : Complex) return Complex; |
| function "*" (Left : Complex; Right : Real'Base) return Complex; |
| function "*" (Left : Real'Base; Right : Complex) return Complex; |
| function "/" (Left : Complex; Right : Real'Base) return Complex; |
| function "/" (Left : Real'Base; Right : Complex) return Complex; |
| |
| function "+" (Left : Complex; Right : Imaginary) return Complex; |
| function "+" (Left : Imaginary; Right : Complex) return Complex; |
| function "-" (Left : Complex; Right : Imaginary) return Complex; |
| function "-" (Left : Imaginary; Right : Complex) return Complex; |
| function "*" (Left : Complex; Right : Imaginary) return Complex; |
| function "*" (Left : Imaginary; Right : Complex) return Complex; |
| function "/" (Left : Complex; Right : Imaginary) return Complex; |
| function "/" (Left : Imaginary; Right : Complex) return Complex; |
| |
| function "+" (Left : Imaginary; Right : Real'Base) return Complex; |
| function "+" (Left : Real'Base; Right : Imaginary) return Complex; |
| function "-" (Left : Imaginary; Right : Real'Base) return Complex; |
| function "-" (Left : Real'Base; Right : Imaginary) return Complex; |
| |
| function "*" (Left : Imaginary; Right : Real'Base) return Imaginary; |
| function "*" (Left : Real'Base; Right : Imaginary) return Imaginary; |
| function "/" (Left : Imaginary; Right : Real'Base) return Imaginary; |
| function "/" (Left : Real'Base; Right : Imaginary) return Imaginary; |
| |
| private |
| type Imaginary is new Real'Base; |
| |
| i : constant Imaginary := 1.0; |
| j : constant Imaginary := 1.0; |
| |
| pragma Inline ("+"); |
| pragma Inline ("-"); |
| pragma Inline ("*"); |
| pragma Inline ("<"); |
| pragma Inline ("<="); |
| pragma Inline (">"); |
| pragma Inline (">="); |
| pragma Inline ("abs"); |
| pragma Inline (Compose_From_Cartesian); |
| pragma Inline (Conjugate); |
| pragma Inline (Im); |
| pragma Inline (Re); |
| pragma Inline (Set_Im); |
| pragma Inline (Set_Re); |
| |
| end Ada.Numerics.Generic_Complex_Types; |