blob: 0b011e1efa399c892014322536a6baafecfb5636 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S --
-- --
-- S p e c --
-- --
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
generic
type Real is digits <>;
package Ada.Numerics.Generic_Complex_Types is
pragma Pure;
type Complex is record
Re, Im : Real'Base;
end record;
pragma Complex_Representation (Complex);
type Imaginary is private;
pragma Preelaborable_Initialization (Imaginary);
i : constant Imaginary;
j : constant Imaginary;
function Re (X : Complex) return Real'Base;
function Im (X : Complex) return Real'Base;
function Im (X : Imaginary) return Real'Base;
procedure Set_Re (X : in out Complex; Re : Real'Base);
procedure Set_Im (X : in out Complex; Im : Real'Base);
procedure Set_Im (X : out Imaginary; Im : Real'Base);
function Compose_From_Cartesian (Re, Im : Real'Base) return Complex;
function Compose_From_Cartesian (Re : Real'Base) return Complex;
function Compose_From_Cartesian (Im : Imaginary) return Complex;
function Modulus (X : Complex) return Real'Base;
function "abs" (Right : Complex) return Real'Base renames Modulus;
function Argument (X : Complex) return Real'Base;
function Argument (X : Complex; Cycle : Real'Base) return Real'Base;
function Compose_From_Polar (
Modulus, Argument : Real'Base)
return Complex;
function Compose_From_Polar (
Modulus, Argument, Cycle : Real'Base)
return Complex;
function "+" (Right : Complex) return Complex;
function "-" (Right : Complex) return Complex;
function Conjugate (X : Complex) return Complex;
function "+" (Left, Right : Complex) return Complex;
function "-" (Left, Right : Complex) return Complex;
function "*" (Left, Right : Complex) return Complex;
function "/" (Left, Right : Complex) return Complex;
function "**" (Left : Complex; Right : Integer) return Complex;
function "+" (Right : Imaginary) return Imaginary;
function "-" (Right : Imaginary) return Imaginary;
function Conjugate (X : Imaginary) return Imaginary renames "-";
function "abs" (Right : Imaginary) return Real'Base;
function "+" (Left, Right : Imaginary) return Imaginary;
function "-" (Left, Right : Imaginary) return Imaginary;
function "*" (Left, Right : Imaginary) return Real'Base;
function "/" (Left, Right : Imaginary) return Real'Base;
function "**" (Left : Imaginary; Right : Integer) return Complex;
function "<" (Left, Right : Imaginary) return Boolean;
function "<=" (Left, Right : Imaginary) return Boolean;
function ">" (Left, Right : Imaginary) return Boolean;
function ">=" (Left, Right : Imaginary) return Boolean;
function "+" (Left : Complex; Right : Real'Base) return Complex;
function "+" (Left : Real'Base; Right : Complex) return Complex;
function "-" (Left : Complex; Right : Real'Base) return Complex;
function "-" (Left : Real'Base; Right : Complex) return Complex;
function "*" (Left : Complex; Right : Real'Base) return Complex;
function "*" (Left : Real'Base; Right : Complex) return Complex;
function "/" (Left : Complex; Right : Real'Base) return Complex;
function "/" (Left : Real'Base; Right : Complex) return Complex;
function "+" (Left : Complex; Right : Imaginary) return Complex;
function "+" (Left : Imaginary; Right : Complex) return Complex;
function "-" (Left : Complex; Right : Imaginary) return Complex;
function "-" (Left : Imaginary; Right : Complex) return Complex;
function "*" (Left : Complex; Right : Imaginary) return Complex;
function "*" (Left : Imaginary; Right : Complex) return Complex;
function "/" (Left : Complex; Right : Imaginary) return Complex;
function "/" (Left : Imaginary; Right : Complex) return Complex;
function "+" (Left : Imaginary; Right : Real'Base) return Complex;
function "+" (Left : Real'Base; Right : Imaginary) return Complex;
function "-" (Left : Imaginary; Right : Real'Base) return Complex;
function "-" (Left : Real'Base; Right : Imaginary) return Complex;
function "*" (Left : Imaginary; Right : Real'Base) return Imaginary;
function "*" (Left : Real'Base; Right : Imaginary) return Imaginary;
function "/" (Left : Imaginary; Right : Real'Base) return Imaginary;
function "/" (Left : Real'Base; Right : Imaginary) return Imaginary;
private
type Imaginary is new Real'Base;
i : constant Imaginary := 1.0;
j : constant Imaginary := 1.0;
pragma Inline ("+");
pragma Inline ("-");
pragma Inline ("*");
pragma Inline ("<");
pragma Inline ("<=");
pragma Inline (">");
pragma Inline (">=");
pragma Inline ("abs");
pragma Inline (Compose_From_Cartesian);
pragma Inline (Conjugate);
pragma Inline (Im);
pragma Inline (Re);
pragma Inline (Set_Im);
pragma Inline (Set_Re);
end Ada.Numerics.Generic_Complex_Types;