| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME COMPONENTS -- |
| -- -- |
| -- ADA.NUMERICS.GENERIC_REAL_ARRAYS -- |
| -- -- |
| -- S p e c -- |
| -- -- |
| -- Copyright (C) 2009-2012, Free Software Foundation, Inc. -- |
| -- -- |
| -- This specification is derived from the Ada Reference Manual for use with -- |
| -- GNAT. The copyright notice above, and the license provisions that follow -- |
| -- apply solely to the contents of the part following the private keyword. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| generic |
| type Real is digits <>; |
| package Ada.Numerics.Generic_Real_Arrays is |
| pragma Pure (Generic_Real_Arrays); |
| |
| -- Types |
| |
| type Real_Vector is array (Integer range <>) of Real'Base; |
| type Real_Matrix is array (Integer range <>, Integer range <>) of Real'Base; |
| |
| -- Subprograms for Real_Vector types |
| |
| -- Real_Vector arithmetic operations |
| |
| function "+" (Right : Real_Vector) return Real_Vector; |
| function "-" (Right : Real_Vector) return Real_Vector; |
| function "abs" (Right : Real_Vector) return Real_Vector; |
| |
| function "+" (Left, Right : Real_Vector) return Real_Vector; |
| function "-" (Left, Right : Real_Vector) return Real_Vector; |
| |
| function "*" (Left, Right : Real_Vector) return Real'Base; |
| |
| function "abs" (Right : Real_Vector) return Real'Base; |
| |
| -- Real_Vector scaling operations |
| |
| function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector; |
| function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector; |
| function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector; |
| |
| -- Other Real_Vector operations |
| |
| function Unit_Vector |
| (Index : Integer; |
| Order : Positive; |
| First : Integer := 1) return Real_Vector; |
| |
| -- Subprograms for Real_Matrix types |
| |
| -- Real_Matrix arithmetic operations |
| |
| function "+" (Right : Real_Matrix) return Real_Matrix; |
| function "-" (Right : Real_Matrix) return Real_Matrix; |
| function "abs" (Right : Real_Matrix) return Real_Matrix; |
| function Transpose (X : Real_Matrix) return Real_Matrix; |
| |
| function "+" (Left, Right : Real_Matrix) return Real_Matrix; |
| function "-" (Left, Right : Real_Matrix) return Real_Matrix; |
| function "*" (Left, Right : Real_Matrix) return Real_Matrix; |
| |
| function "*" (Left, Right : Real_Vector) return Real_Matrix; |
| |
| function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector; |
| function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector; |
| |
| -- Real_Matrix scaling operations |
| |
| function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix; |
| function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix; |
| function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix; |
| |
| -- Real_Matrix inversion and related operations |
| |
| function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector; |
| function Solve (A, X : Real_Matrix) return Real_Matrix; |
| function Inverse (A : Real_Matrix) return Real_Matrix; |
| function Determinant (A : Real_Matrix) return Real'Base; |
| |
| -- Eigenvalues and vectors of a real symmetric matrix |
| |
| function Eigenvalues (A : Real_Matrix) return Real_Vector; |
| |
| procedure Eigensystem |
| (A : Real_Matrix; |
| Values : out Real_Vector; |
| Vectors : out Real_Matrix); |
| |
| -- Other Real_Matrix operations |
| |
| function Unit_Matrix |
| (Order : Positive; |
| First_1 : Integer := 1; |
| First_2 : Integer := 1) return Real_Matrix; |
| |
| private |
| -- The following operations are either relatively simple compared to the |
| -- expense of returning unconstrained arrays, or are just function wrappers |
| -- calling procedures implementing the actual operation. By having the |
| -- front end inline these, the expense of the unconstrained returns |
| -- can be avoided. |
| |
| -- Note: We use an extended return statement in their implementation to |
| -- allow the frontend to inline these functions. |
| |
| pragma Inline ("+"); |
| pragma Inline ("-"); |
| pragma Inline ("*"); |
| pragma Inline ("/"); |
| pragma Inline ("abs"); |
| pragma Inline (Eigenvalues); |
| pragma Inline (Inverse); |
| pragma Inline (Solve); |
| pragma Inline (Transpose); |
| pragma Inline (Unit_Matrix); |
| pragma Inline (Unit_Vector); |
| end Ada.Numerics.Generic_Real_Arrays; |