| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME COMPONENTS -- |
| -- -- |
| -- A D A . N U M E R I C S . A U X -- |
| -- -- |
| -- B o d y -- |
| -- (Machine Version for x86) -- |
| -- -- |
| -- Copyright (C) 1998-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with System.Machine_Code; use System.Machine_Code; |
| |
| package body Ada.Numerics.Aux is |
| |
| NL : constant String := ASCII.LF & ASCII.HT; |
| |
| ----------------------- |
| -- Local subprograms -- |
| ----------------------- |
| |
| function Is_Nan (X : Double) return Boolean; |
| -- Return True iff X is a IEEE NaN value |
| |
| function Logarithmic_Pow (X, Y : Double) return Double; |
| -- Implementation of X**Y using Exp and Log functions (binary base) |
| -- to calculate the exponentiation. This is used by Pow for values |
| -- for values of Y in the open interval (-0.25, 0.25) |
| |
| procedure Reduce (X : in out Double; Q : out Natural); |
| -- Implements reduction of X by Pi/2. Q is the quadrant of the final |
| -- result in the range 0 .. 3. The absolute value of X is at most Pi. |
| |
| pragma Inline (Is_Nan); |
| pragma Inline (Reduce); |
| |
| -------------------------------- |
| -- Basic Elementary Functions -- |
| -------------------------------- |
| |
| -- This section implements a few elementary functions that are used to |
| -- build the more complex ones. This ordering enables better inlining. |
| |
| ---------- |
| -- Atan -- |
| ---------- |
| |
| function Atan (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| Asm (Template => |
| "fld1" & NL |
| & "fpatan", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| |
| -- The result value is NaN iff input was invalid |
| |
| if not (Result = Result) then |
| raise Argument_Error; |
| end if; |
| |
| return Result; |
| end Atan; |
| |
| --------- |
| -- Exp -- |
| --------- |
| |
| function Exp (X : Double) return Double is |
| Result : Double; |
| begin |
| Asm (Template => |
| "fldl2e " & NL |
| & "fmulp %%st, %%st(1)" & NL -- X * log2 (E) |
| & "fld %%st(0) " & NL |
| & "frndint " & NL -- Integer (X * Log2 (E)) |
| & "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E)) |
| & "fxch " & NL |
| & "f2xm1 " & NL -- 2**(...) - 1 |
| & "fld1 " & NL |
| & "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E))) |
| & "fscale " & NL -- E ** X |
| & "fstp %%st(1) ", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| return Result; |
| end Exp; |
| |
| ------------ |
| -- Is_Nan -- |
| ------------ |
| |
| function Is_Nan (X : Double) return Boolean is |
| begin |
| -- The IEEE NaN values are the only ones that do not equal themselves |
| |
| return not (X = X); |
| end Is_Nan; |
| |
| --------- |
| -- Log -- |
| --------- |
| |
| function Log (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| Asm (Template => |
| "fldln2 " & NL |
| & "fxch " & NL |
| & "fyl2x " & NL, |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| return Result; |
| end Log; |
| |
| ------------ |
| -- Reduce -- |
| ------------ |
| |
| procedure Reduce (X : in out Double; Q : out Natural) is |
| Half_Pi : constant := Pi / 2.0; |
| Two_Over_Pi : constant := 2.0 / Pi; |
| |
| HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size); |
| M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant |
| P1 : constant Double := Double'Leading_Part (Half_Pi, HM); |
| P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM); |
| P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM); |
| P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM); |
| P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3 |
| - P4, HM); |
| P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5); |
| K : Double := X * Two_Over_Pi; |
| begin |
| -- For X < 2.0**32, all products below are computed exactly. |
| -- Due to cancellation effects all subtractions are exact as well. |
| -- As no double extended floating-point number has more than 75 |
| -- zeros after the binary point, the result will be the correctly |
| -- rounded result of X - K * (Pi / 2.0). |
| |
| while abs K >= 2.0**HM loop |
| K := K * M - (K * M - K); |
| X := (((((X - K * P1) - K * P2) - K * P3) |
| - K * P4) - K * P5) - K * P6; |
| K := X * Two_Over_Pi; |
| end loop; |
| |
| if K /= K then |
| |
| -- K is not a number, because X was not finite |
| |
| raise Constraint_Error; |
| end if; |
| |
| K := Double'Rounding (K); |
| Q := Integer (K) mod 4; |
| X := (((((X - K * P1) - K * P2) - K * P3) |
| - K * P4) - K * P5) - K * P6; |
| end Reduce; |
| |
| ---------- |
| -- Sqrt -- |
| ---------- |
| |
| function Sqrt (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| if X < 0.0 then |
| raise Argument_Error; |
| end if; |
| |
| Asm (Template => "fsqrt", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| |
| return Result; |
| end Sqrt; |
| |
| -------------------------------- |
| -- Other Elementary Functions -- |
| -------------------------------- |
| |
| -- These are built using the previously implemented basic functions |
| |
| ---------- |
| -- Acos -- |
| ---------- |
| |
| function Acos (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X))); |
| |
| -- The result value is NaN iff input was invalid |
| |
| if Is_Nan (Result) then |
| raise Argument_Error; |
| end if; |
| |
| return Result; |
| end Acos; |
| |
| ---------- |
| -- Asin -- |
| ---------- |
| |
| function Asin (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X))); |
| |
| -- The result value is NaN iff input was invalid |
| |
| if Is_Nan (Result) then |
| raise Argument_Error; |
| end if; |
| |
| return Result; |
| end Asin; |
| |
| --------- |
| -- Cos -- |
| --------- |
| |
| function Cos (X : Double) return Double is |
| Reduced_X : Double := abs X; |
| Result : Double; |
| Quadrant : Natural range 0 .. 3; |
| |
| begin |
| if Reduced_X > Pi / 4.0 then |
| Reduce (Reduced_X, Quadrant); |
| |
| case Quadrant is |
| when 0 => |
| Asm (Template => "fcos", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| when 1 => |
| Asm (Template => "fsin", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", -Reduced_X)); |
| when 2 => |
| Asm (Template => "fcos ; fchs", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| when 3 => |
| Asm (Template => "fsin", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| end case; |
| |
| else |
| Asm (Template => "fcos", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| end if; |
| |
| return Result; |
| end Cos; |
| |
| --------------------- |
| -- Logarithmic_Pow -- |
| --------------------- |
| |
| function Logarithmic_Pow (X, Y : Double) return Double is |
| Result : Double; |
| begin |
| Asm (Template => "" -- X : Y |
| & "fyl2x " & NL -- Y * Log2 (X) |
| & "fld %%st(0) " & NL -- Y * Log2 (X) : Y * Log2 (X) |
| & "frndint " & NL -- Int (...) : Y * Log2 (X) |
| & "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...) |
| & "fxch " & NL -- Fract (...) : Int (...) |
| & "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...) |
| & "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...) |
| & "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...) |
| & "fscale ", -- 2**(Fract (...) + Int (...)) |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => |
| (Double'Asm_Input ("0", X), |
| Double'Asm_Input ("u", Y))); |
| return Result; |
| end Logarithmic_Pow; |
| |
| --------- |
| -- Pow -- |
| --------- |
| |
| function Pow (X, Y : Double) return Double is |
| type Mantissa_Type is mod 2**Double'Machine_Mantissa; |
| -- Modular type that can hold all bits of the mantissa of Double |
| |
| -- For negative exponents, do divide at the end of the processing |
| |
| Negative_Y : constant Boolean := Y < 0.0; |
| Abs_Y : constant Double := abs Y; |
| |
| -- During this function the following invariant is kept: |
| -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor |
| |
| Base : Double := X; |
| |
| Exp_High : Double := Double'Floor (Abs_Y); |
| Exp_Mid : Double; |
| Exp_Low : Double; |
| Exp_Int : Mantissa_Type; |
| |
| Factor : Double := 1.0; |
| |
| begin |
| -- Select algorithm for calculating Pow (integer cases fall through) |
| |
| if Exp_High >= 2.0**Double'Machine_Mantissa then |
| |
| -- In case of Y that is IEEE infinity, just raise constraint error |
| |
| if Exp_High > Double'Safe_Last then |
| raise Constraint_Error; |
| end if; |
| |
| -- Large values of Y are even integers and will stay integer |
| -- after division by two. |
| |
| loop |
| -- Exp_Mid and Exp_Low are zero, so |
| -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2) |
| |
| Exp_High := Exp_High / 2.0; |
| Base := Base * Base; |
| exit when Exp_High < 2.0**Double'Machine_Mantissa; |
| end loop; |
| |
| elsif Exp_High /= Abs_Y then |
| Exp_Low := Abs_Y - Exp_High; |
| Factor := 1.0; |
| |
| if Exp_Low /= 0.0 then |
| |
| -- Exp_Low now is in interval (0.0, 1.0) |
| -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0; |
| |
| Exp_Mid := 0.0; |
| Exp_Low := Exp_Low - Exp_Mid; |
| |
| if Exp_Low >= 0.5 then |
| Factor := Sqrt (X); |
| Exp_Low := Exp_Low - 0.5; -- exact |
| |
| if Exp_Low >= 0.25 then |
| Factor := Factor * Sqrt (Factor); |
| Exp_Low := Exp_Low - 0.25; -- exact |
| end if; |
| |
| elsif Exp_Low >= 0.25 then |
| Factor := Sqrt (Sqrt (X)); |
| Exp_Low := Exp_Low - 0.25; -- exact |
| end if; |
| |
| -- Exp_Low now is in interval (0.0, 0.25) |
| |
| -- This means it is safe to call Logarithmic_Pow |
| -- for the remaining part. |
| |
| Factor := Factor * Logarithmic_Pow (X, Exp_Low); |
| end if; |
| |
| elsif X = 0.0 then |
| return 0.0; |
| end if; |
| |
| -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa |
| |
| Exp_Int := Mantissa_Type (Exp_High); |
| |
| -- Standard way for processing integer powers > 0 |
| |
| while Exp_Int > 1 loop |
| if (Exp_Int and 1) = 1 then |
| |
| -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0 |
| |
| Factor := Factor * Base; |
| end if; |
| |
| -- Exp_Int is even and Exp_Int > 0, so |
| -- Base**Y = (Base**2)**(Exp_Int / 2) |
| |
| Base := Base * Base; |
| Exp_Int := Exp_Int / 2; |
| end loop; |
| |
| -- Exp_Int = 1 or Exp_Int = 0 |
| |
| if Exp_Int = 1 then |
| Factor := Base * Factor; |
| end if; |
| |
| if Negative_Y then |
| Factor := 1.0 / Factor; |
| end if; |
| |
| return Factor; |
| end Pow; |
| |
| --------- |
| -- Sin -- |
| --------- |
| |
| function Sin (X : Double) return Double is |
| Reduced_X : Double := X; |
| Result : Double; |
| Quadrant : Natural range 0 .. 3; |
| |
| begin |
| if abs X > Pi / 4.0 then |
| Reduce (Reduced_X, Quadrant); |
| |
| case Quadrant is |
| when 0 => |
| Asm (Template => "fsin", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| when 1 => |
| Asm (Template => "fcos", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| when 2 => |
| Asm (Template => "fsin", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", -Reduced_X)); |
| when 3 => |
| Asm (Template => "fcos ; fchs", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| end case; |
| |
| else |
| Asm (Template => "fsin", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| end if; |
| |
| return Result; |
| end Sin; |
| |
| --------- |
| -- Tan -- |
| --------- |
| |
| function Tan (X : Double) return Double is |
| Reduced_X : Double := X; |
| Result : Double; |
| Quadrant : Natural range 0 .. 3; |
| |
| begin |
| if abs X > Pi / 4.0 then |
| Reduce (Reduced_X, Quadrant); |
| |
| if Quadrant mod 2 = 0 then |
| Asm (Template => "fptan" & NL |
| & "ffree %%st(0)" & NL |
| & "fincstp", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| else |
| Asm (Template => "fsincos" & NL |
| & "fdivp %%st, %%st(1)" & NL |
| & "fchs", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| end if; |
| |
| else |
| Asm (Template => |
| "fptan " & NL |
| & "ffree %%st(0) " & NL |
| & "fincstp ", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| end if; |
| |
| return Result; |
| end Tan; |
| |
| ---------- |
| -- Sinh -- |
| ---------- |
| |
| function Sinh (X : Double) return Double is |
| begin |
| -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0 |
| |
| if abs X < 25.0 then |
| return (Exp (X) - Exp (-X)) / 2.0; |
| else |
| return Exp (X) / 2.0; |
| end if; |
| end Sinh; |
| |
| ---------- |
| -- Cosh -- |
| ---------- |
| |
| function Cosh (X : Double) return Double is |
| begin |
| -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0 |
| |
| if abs X < 22.0 then |
| return (Exp (X) + Exp (-X)) / 2.0; |
| else |
| return Exp (X) / 2.0; |
| end if; |
| end Cosh; |
| |
| ---------- |
| -- Tanh -- |
| ---------- |
| |
| function Tanh (X : Double) return Double is |
| begin |
| -- Return the Hyperbolic Tangent of x |
| |
| -- x -x |
| -- e - e Sinh (X) |
| -- Tanh (X) is defined to be ----------- = -------- |
| -- x -x Cosh (X) |
| -- e + e |
| |
| if abs X > 23.0 then |
| return Double'Copy_Sign (1.0, X); |
| end if; |
| |
| return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X)); |
| end Tanh; |
| |
| end Ada.Numerics.Aux; |