| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E V A L _ F A T -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Einfo; use Einfo; |
| with Errout; use Errout; |
| with Sem_Util; use Sem_Util; |
| |
| package body Eval_Fat is |
| |
| Radix : constant Int := 2; |
| -- This code is currently only correct for the radix 2 case. We use the |
| -- symbolic value Radix where possible to help in the unlikely case of |
| -- anyone ever having to adjust this code for another value, and for |
| -- documentation purposes. |
| |
| -- Another assumption is that the range of the floating-point type is |
| -- symmetric around zero. |
| |
| type Radix_Power_Table is array (Int range 1 .. 4) of Int; |
| |
| Radix_Powers : constant Radix_Power_Table := |
| (Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4); |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Decompose |
| (RT : R; |
| X : T; |
| Fraction : out T; |
| Exponent : out UI; |
| Mode : Rounding_Mode := Round); |
| -- Decomposes a non-zero floating-point number into fraction and exponent |
| -- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and |
| -- uses Rbase = Radix. The result is rounded to a nearest machine number. |
| |
| -------------- |
| -- Adjacent -- |
| -------------- |
| |
| function Adjacent (RT : R; X, Towards : T) return T is |
| begin |
| if Towards = X then |
| return X; |
| elsif Towards > X then |
| return Succ (RT, X); |
| else |
| return Pred (RT, X); |
| end if; |
| end Adjacent; |
| |
| ------------- |
| -- Ceiling -- |
| ------------- |
| |
| function Ceiling (RT : R; X : T) return T is |
| XT : constant T := Truncation (RT, X); |
| begin |
| if UR_Is_Negative (X) then |
| return XT; |
| elsif X = XT then |
| return X; |
| else |
| return XT + Ureal_1; |
| end if; |
| end Ceiling; |
| |
| ------------- |
| -- Compose -- |
| ------------- |
| |
| function Compose (RT : R; Fraction : T; Exponent : UI) return T is |
| Arg_Frac : T; |
| Arg_Exp : UI; |
| pragma Warnings (Off, Arg_Exp); |
| begin |
| Decompose (RT, Fraction, Arg_Frac, Arg_Exp); |
| return Scaling (RT, Arg_Frac, Exponent); |
| end Compose; |
| |
| --------------- |
| -- Copy_Sign -- |
| --------------- |
| |
| function Copy_Sign (RT : R; Value, Sign : T) return T is |
| pragma Warnings (Off, RT); |
| Result : T; |
| |
| begin |
| Result := abs Value; |
| |
| if UR_Is_Negative (Sign) then |
| return -Result; |
| else |
| return Result; |
| end if; |
| end Copy_Sign; |
| |
| --------------- |
| -- Decompose -- |
| --------------- |
| |
| procedure Decompose |
| (RT : R; |
| X : T; |
| Fraction : out T; |
| Exponent : out UI; |
| Mode : Rounding_Mode := Round) |
| is |
| Int_F : UI; |
| |
| begin |
| Decompose_Int (RT, abs X, Int_F, Exponent, Mode); |
| |
| Fraction := UR_From_Components |
| (Num => Int_F, |
| Den => Machine_Mantissa_Value (RT), |
| Rbase => Radix, |
| Negative => False); |
| |
| if UR_Is_Negative (X) then |
| Fraction := -Fraction; |
| end if; |
| |
| return; |
| end Decompose; |
| |
| ------------------- |
| -- Decompose_Int -- |
| ------------------- |
| |
| -- This procedure should be modified with care, as there are many non- |
| -- obvious details that may cause problems that are hard to detect. For |
| -- zero arguments, Fraction and Exponent are set to zero. Note that sign |
| -- of zero cannot be preserved. |
| |
| procedure Decompose_Int |
| (RT : R; |
| X : T; |
| Fraction : out UI; |
| Exponent : out UI; |
| Mode : Rounding_Mode) |
| is |
| Base : Int := Rbase (X); |
| N : UI := abs Numerator (X); |
| D : UI := Denominator (X); |
| |
| N_Times_Radix : UI; |
| |
| Even : Boolean; |
| -- True iff Fraction is even |
| |
| Most_Significant_Digit : constant UI := |
| Radix ** (Machine_Mantissa_Value (RT) - 1); |
| |
| Uintp_Mark : Uintp.Save_Mark; |
| -- The code is divided into blocks that systematically release |
| -- intermediate values (this routine generates lots of junk). |
| |
| begin |
| if N = Uint_0 then |
| Fraction := Uint_0; |
| Exponent := Uint_0; |
| return; |
| end if; |
| |
| Calculate_D_And_Exponent_1 : begin |
| Uintp_Mark := Mark; |
| Exponent := Uint_0; |
| |
| -- In cases where Base > 1, the actual denominator is Base**D. For |
| -- cases where Base is a power of Radix, use the value 1 for the |
| -- Denominator and adjust the exponent. |
| |
| -- Note: Exponent has different sign from D, because D is a divisor |
| |
| for Power in 1 .. Radix_Powers'Last loop |
| if Base = Radix_Powers (Power) then |
| Exponent := -D * Power; |
| Base := 0; |
| D := Uint_1; |
| exit; |
| end if; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, D, Exponent); |
| end Calculate_D_And_Exponent_1; |
| |
| if Base > 0 then |
| Calculate_Exponent : begin |
| Uintp_Mark := Mark; |
| |
| -- For bases that are a multiple of the Radix, divide the base by |
| -- Radix and adjust the Exponent. This will help because D will be |
| -- much smaller and faster to process. |
| |
| -- This occurs for decimal bases on machines with binary floating- |
| -- point for example. When calculating 1E40, with Radix = 2, N |
| -- will be 93 bits instead of 133. |
| |
| -- N E |
| -- ------ * Radix |
| -- D |
| -- Base |
| |
| -- N E |
| -- = -------------------------- * Radix |
| -- D D |
| -- (Base/Radix) * Radix |
| |
| -- N E-D |
| -- = --------------- * Radix |
| -- D |
| -- (Base/Radix) |
| |
| -- This code is commented out, because it causes numerous |
| -- failures in the regression suite. To be studied ??? |
| |
| while False and then Base > 0 and then Base mod Radix = 0 loop |
| Base := Base / Radix; |
| Exponent := Exponent + D; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, Exponent); |
| end Calculate_Exponent; |
| |
| -- For remaining bases we must actually compute the exponentiation |
| |
| -- Because the exponentiation can be negative, and D must be integer, |
| -- the numerator is corrected instead. |
| |
| Calculate_N_And_D : begin |
| Uintp_Mark := Mark; |
| |
| if D < 0 then |
| N := N * Base ** (-D); |
| D := Uint_1; |
| else |
| D := Base ** D; |
| end if; |
| |
| Release_And_Save (Uintp_Mark, N, D); |
| end Calculate_N_And_D; |
| |
| Base := 0; |
| end if; |
| |
| -- Now scale N and D so that N / D is a value in the interval [1.0 / |
| -- Radix, 1.0) and adjust Exponent accordingly, so the value N / D * |
| -- Radix ** Exponent remains unchanged. |
| |
| -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0 |
| |
| -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D. |
| -- As this scaling is not possible for N is Uint_0, zero is handled |
| -- explicitly at the start of this subprogram. |
| |
| Calculate_N_And_Exponent : begin |
| Uintp_Mark := Mark; |
| |
| N_Times_Radix := N * Radix; |
| while not (N_Times_Radix >= D) loop |
| N := N_Times_Radix; |
| Exponent := Exponent - 1; |
| N_Times_Radix := N * Radix; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, N, Exponent); |
| end Calculate_N_And_Exponent; |
| |
| -- Step 2 - Adjust D so N / D < 1 |
| |
| -- Scale up D so N / D < 1, so N < D |
| |
| Calculate_D_And_Exponent_2 : begin |
| Uintp_Mark := Mark; |
| |
| while not (N < D) loop |
| |
| -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so |
| -- the result of Step 1 stays valid |
| |
| D := D * Radix; |
| Exponent := Exponent + 1; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, D, Exponent); |
| end Calculate_D_And_Exponent_2; |
| |
| -- Here the value N / D is in the range [1.0 / Radix .. 1.0) |
| |
| -- Now find the fraction by doing a very simple-minded division until |
| -- enough digits have been computed. |
| |
| -- This division works for all radices, but is only efficient for a |
| -- binary radix. It is just like a manual division algorithm, but |
| -- instead of moving the denominator one digit right, we move the |
| -- numerator one digit left so the numerator and denominator remain |
| -- integral. |
| |
| Fraction := Uint_0; |
| Even := True; |
| |
| Calculate_Fraction_And_N : begin |
| Uintp_Mark := Mark; |
| |
| loop |
| while N >= D loop |
| N := N - D; |
| Fraction := Fraction + 1; |
| Even := not Even; |
| end loop; |
| |
| -- Stop when the result is in [1.0 / Radix, 1.0) |
| |
| exit when Fraction >= Most_Significant_Digit; |
| |
| N := N * Radix; |
| Fraction := Fraction * Radix; |
| Even := True; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, Fraction, N); |
| end Calculate_Fraction_And_N; |
| |
| Calculate_Fraction_And_Exponent : begin |
| Uintp_Mark := Mark; |
| |
| -- Determine correct rounding based on the remainder which is in |
| -- N and the divisor D. The rounding is performed on the absolute |
| -- value of X, so Ceiling and Floor need to check for the sign of |
| -- X explicitly. |
| |
| case Mode is |
| when Round_Even => |
| |
| -- This rounding mode corresponds to the unbiased rounding |
| -- method that is used at run time. When the real value is |
| -- exactly between two machine numbers, choose the machine |
| -- number with its least significant bit equal to zero. |
| |
| -- The recommendation advice in RM 4.9(38) is that static |
| -- expressions are rounded to machine numbers in the same |
| -- way as the target machine does. |
| |
| if (Even and then N * 2 > D) |
| or else |
| (not Even and then N * 2 >= D) |
| then |
| Fraction := Fraction + 1; |
| end if; |
| |
| when Round => |
| |
| -- Do not round to even as is done with IEEE arithmetic, but |
| -- instead round away from zero when the result is exactly |
| -- between two machine numbers. This biased rounding method |
| -- should not be used to convert static expressions to |
| -- machine numbers, see AI95-268. |
| |
| if N * 2 >= D then |
| Fraction := Fraction + 1; |
| end if; |
| |
| when Ceiling => |
| if N > Uint_0 and then not UR_Is_Negative (X) then |
| Fraction := Fraction + 1; |
| end if; |
| |
| when Floor => |
| if N > Uint_0 and then UR_Is_Negative (X) then |
| Fraction := Fraction + 1; |
| end if; |
| end case; |
| |
| -- The result must be normalized to [1.0/Radix, 1.0), so adjust if |
| -- the result is 1.0 because of rounding. |
| |
| if Fraction = Most_Significant_Digit * Radix then |
| Fraction := Most_Significant_Digit; |
| Exponent := Exponent + 1; |
| end if; |
| |
| -- Put back sign after applying the rounding |
| |
| if UR_Is_Negative (X) then |
| Fraction := -Fraction; |
| end if; |
| |
| Release_And_Save (Uintp_Mark, Fraction, Exponent); |
| end Calculate_Fraction_And_Exponent; |
| end Decompose_Int; |
| |
| -------------- |
| -- Exponent -- |
| -------------- |
| |
| function Exponent (RT : R; X : T) return UI is |
| X_Frac : UI; |
| X_Exp : UI; |
| pragma Warnings (Off, X_Frac); |
| begin |
| Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even); |
| return X_Exp; |
| end Exponent; |
| |
| ----------- |
| -- Floor -- |
| ----------- |
| |
| function Floor (RT : R; X : T) return T is |
| XT : constant T := Truncation (RT, X); |
| |
| begin |
| if UR_Is_Positive (X) then |
| return XT; |
| |
| elsif XT = X then |
| return X; |
| |
| else |
| return XT - Ureal_1; |
| end if; |
| end Floor; |
| |
| -------------- |
| -- Fraction -- |
| -------------- |
| |
| function Fraction (RT : R; X : T) return T is |
| X_Frac : T; |
| X_Exp : UI; |
| pragma Warnings (Off, X_Exp); |
| begin |
| Decompose (RT, X, X_Frac, X_Exp); |
| return X_Frac; |
| end Fraction; |
| |
| ------------------ |
| -- Leading_Part -- |
| ------------------ |
| |
| function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is |
| RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT)); |
| L : UI; |
| Y : T; |
| begin |
| L := Exponent (RT, X) - RD; |
| Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L))); |
| return Scaling (RT, Y, L); |
| end Leading_Part; |
| |
| ------------- |
| -- Machine -- |
| ------------- |
| |
| function Machine |
| (RT : R; |
| X : T; |
| Mode : Rounding_Mode; |
| Enode : Node_Id) return T |
| is |
| X_Frac : T; |
| X_Exp : UI; |
| Emin : constant UI := Machine_Emin_Value (RT); |
| |
| begin |
| Decompose (RT, X, X_Frac, X_Exp, Mode); |
| |
| -- Case of denormalized number or (gradual) underflow |
| |
| -- A denormalized number is one with the minimum exponent Emin, but that |
| -- breaks the assumption that the first digit of the mantissa is a one. |
| -- This allows the first non-zero digit to be in any of the remaining |
| -- Mant - 1 spots. The gap between subsequent denormalized numbers is |
| -- the same as for the smallest normalized numbers. However, the number |
| -- of significant digits left decreases as a result of the mantissa now |
| -- having leading seros. |
| |
| if X_Exp < Emin then |
| declare |
| Emin_Den : constant UI := Machine_Emin_Value (RT) |
| - Machine_Mantissa_Value (RT) + Uint_1; |
| begin |
| if X_Exp < Emin_Den or not Has_Denormals (RT) then |
| if Has_Signed_Zeros (RT) and then UR_Is_Negative (X) then |
| Error_Msg_N |
| ("floating-point value underflows to -0.0??", Enode); |
| return Ureal_M_0; |
| |
| else |
| Error_Msg_N |
| ("floating-point value underflows to 0.0??", Enode); |
| return Ureal_0; |
| end if; |
| |
| elsif Has_Denormals (RT) then |
| |
| -- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle |
| -- gradual underflow by first computing the number of |
| -- significant bits still available for the mantissa and |
| -- then truncating the fraction to this number of bits. |
| |
| -- If this value is different from the original fraction, |
| -- precision is lost due to gradual underflow. |
| |
| -- We probably should round here and prevent double rounding as |
| -- a result of first rounding to a model number and then to a |
| -- machine number. However, this is an extremely rare case that |
| -- is not worth the extra complexity. In any case, a warning is |
| -- issued in cases where gradual underflow occurs. |
| |
| declare |
| Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1; |
| |
| X_Frac_Denorm : constant T := UR_From_Components |
| (UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)), |
| Denorm_Sig_Bits, |
| Radix, |
| UR_Is_Negative (X)); |
| |
| begin |
| if X_Frac_Denorm /= X_Frac then |
| Error_Msg_N |
| ("gradual underflow causes loss of precision??", |
| Enode); |
| X_Frac := X_Frac_Denorm; |
| end if; |
| end; |
| end if; |
| end; |
| end if; |
| |
| return Scaling (RT, X_Frac, X_Exp); |
| end Machine; |
| |
| ----------- |
| -- Model -- |
| ----------- |
| |
| function Model (RT : R; X : T) return T is |
| X_Frac : T; |
| X_Exp : UI; |
| begin |
| Decompose (RT, X, X_Frac, X_Exp); |
| return Compose (RT, X_Frac, X_Exp); |
| end Model; |
| |
| ---------- |
| -- Pred -- |
| ---------- |
| |
| function Pred (RT : R; X : T) return T is |
| begin |
| return -Succ (RT, -X); |
| end Pred; |
| |
| --------------- |
| -- Remainder -- |
| --------------- |
| |
| function Remainder (RT : R; X, Y : T) return T is |
| A : T; |
| B : T; |
| Arg : T; |
| P : T; |
| Arg_Frac : T; |
| P_Frac : T; |
| Sign_X : T; |
| IEEE_Rem : T; |
| Arg_Exp : UI; |
| P_Exp : UI; |
| K : UI; |
| P_Even : Boolean; |
| |
| pragma Warnings (Off, Arg_Frac); |
| |
| begin |
| if UR_Is_Positive (X) then |
| Sign_X := Ureal_1; |
| else |
| Sign_X := -Ureal_1; |
| end if; |
| |
| Arg := abs X; |
| P := abs Y; |
| |
| if Arg < P then |
| P_Even := True; |
| IEEE_Rem := Arg; |
| P_Exp := Exponent (RT, P); |
| |
| else |
| -- ??? what about zero cases? |
| Decompose (RT, Arg, Arg_Frac, Arg_Exp); |
| Decompose (RT, P, P_Frac, P_Exp); |
| |
| P := Compose (RT, P_Frac, Arg_Exp); |
| K := Arg_Exp - P_Exp; |
| P_Even := True; |
| IEEE_Rem := Arg; |
| |
| for Cnt in reverse 0 .. UI_To_Int (K) loop |
| if IEEE_Rem >= P then |
| P_Even := False; |
| IEEE_Rem := IEEE_Rem - P; |
| else |
| P_Even := True; |
| end if; |
| |
| P := P * Ureal_Half; |
| end loop; |
| end if; |
| |
| -- That completes the calculation of modulus remainder. The final step |
| -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2. |
| |
| if P_Exp >= 0 then |
| A := IEEE_Rem; |
| B := abs Y * Ureal_Half; |
| |
| else |
| A := IEEE_Rem * Ureal_2; |
| B := abs Y; |
| end if; |
| |
| if A > B or else (A = B and then not P_Even) then |
| IEEE_Rem := IEEE_Rem - abs Y; |
| end if; |
| |
| return Sign_X * IEEE_Rem; |
| end Remainder; |
| |
| -------------- |
| -- Rounding -- |
| -------------- |
| |
| function Rounding (RT : R; X : T) return T is |
| Result : T; |
| Tail : T; |
| |
| begin |
| Result := Truncation (RT, abs X); |
| Tail := abs X - Result; |
| |
| if Tail >= Ureal_Half then |
| Result := Result + Ureal_1; |
| end if; |
| |
| if UR_Is_Negative (X) then |
| return -Result; |
| else |
| return Result; |
| end if; |
| end Rounding; |
| |
| ------------- |
| -- Scaling -- |
| ------------- |
| |
| function Scaling (RT : R; X : T; Adjustment : UI) return T is |
| pragma Warnings (Off, RT); |
| |
| begin |
| if Rbase (X) = Radix then |
| return UR_From_Components |
| (Num => Numerator (X), |
| Den => Denominator (X) - Adjustment, |
| Rbase => Radix, |
| Negative => UR_Is_Negative (X)); |
| |
| elsif Adjustment >= 0 then |
| return X * Radix ** Adjustment; |
| else |
| return X / Radix ** (-Adjustment); |
| end if; |
| end Scaling; |
| |
| ---------- |
| -- Succ -- |
| ---------- |
| |
| function Succ (RT : R; X : T) return T is |
| Emin : constant UI := Machine_Emin_Value (RT); |
| Mantissa : constant UI := Machine_Mantissa_Value (RT); |
| Exp : UI := UI_Max (Emin, Exponent (RT, X)); |
| Frac : T; |
| New_Frac : T; |
| |
| begin |
| if UR_Is_Zero (X) then |
| Exp := Emin; |
| end if; |
| |
| -- Set exponent such that the radix point will be directly following the |
| -- mantissa after scaling. |
| |
| if Has_Denormals (RT) or Exp /= Emin then |
| Exp := Exp - Mantissa; |
| else |
| Exp := Exp - 1; |
| end if; |
| |
| Frac := Scaling (RT, X, -Exp); |
| New_Frac := Ceiling (RT, Frac); |
| |
| if New_Frac = Frac then |
| if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then |
| New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1); |
| else |
| New_Frac := New_Frac + Ureal_1; |
| end if; |
| end if; |
| |
| return Scaling (RT, New_Frac, Exp); |
| end Succ; |
| |
| ---------------- |
| -- Truncation -- |
| ---------------- |
| |
| function Truncation (RT : R; X : T) return T is |
| pragma Warnings (Off, RT); |
| begin |
| return UR_From_Uint (UR_Trunc (X)); |
| end Truncation; |
| |
| ----------------------- |
| -- Unbiased_Rounding -- |
| ----------------------- |
| |
| function Unbiased_Rounding (RT : R; X : T) return T is |
| Abs_X : constant T := abs X; |
| Result : T; |
| Tail : T; |
| |
| begin |
| Result := Truncation (RT, Abs_X); |
| Tail := Abs_X - Result; |
| |
| if Tail > Ureal_Half then |
| Result := Result + Ureal_1; |
| |
| elsif Tail = Ureal_Half then |
| Result := Ureal_2 * |
| Truncation (RT, (Result / Ureal_2) + Ureal_Half); |
| end if; |
| |
| if UR_Is_Negative (X) then |
| return -Result; |
| elsif UR_Is_Positive (X) then |
| return Result; |
| |
| -- For zero case, make sure sign of zero is preserved |
| |
| else |
| return X; |
| end if; |
| end Unbiased_Rounding; |
| |
| end Eval_Fat; |