| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E X P _ A T T R -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2015, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Aspects; use Aspects; |
| with Atree; use Atree; |
| with Checks; use Checks; |
| with Einfo; use Einfo; |
| with Elists; use Elists; |
| with Exp_Atag; use Exp_Atag; |
| with Exp_Ch2; use Exp_Ch2; |
| with Exp_Ch3; use Exp_Ch3; |
| with Exp_Ch6; use Exp_Ch6; |
| with Exp_Ch9; use Exp_Ch9; |
| with Exp_Dist; use Exp_Dist; |
| with Exp_Imgv; use Exp_Imgv; |
| with Exp_Pakd; use Exp_Pakd; |
| with Exp_Strm; use Exp_Strm; |
| with Exp_Tss; use Exp_Tss; |
| with Exp_Util; use Exp_Util; |
| with Fname; use Fname; |
| with Freeze; use Freeze; |
| with Gnatvsn; use Gnatvsn; |
| with Itypes; use Itypes; |
| with Lib; use Lib; |
| with Namet; use Namet; |
| with Nmake; use Nmake; |
| with Nlists; use Nlists; |
| with Opt; use Opt; |
| with Restrict; use Restrict; |
| with Rident; use Rident; |
| with Rtsfind; use Rtsfind; |
| with Sem; use Sem; |
| with Sem_Aux; use Sem_Aux; |
| with Sem_Ch6; use Sem_Ch6; |
| with Sem_Ch7; use Sem_Ch7; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Util; use Sem_Util; |
| with Sinfo; use Sinfo; |
| with Snames; use Snames; |
| with Stand; use Stand; |
| with Stringt; use Stringt; |
| with Targparm; use Targparm; |
| with Tbuild; use Tbuild; |
| with Ttypes; use Ttypes; |
| with Uintp; use Uintp; |
| with Uname; use Uname; |
| with Validsw; use Validsw; |
| |
| package body Exp_Attr is |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| function Build_Array_VS_Func |
| (A_Type : Entity_Id; |
| Nod : Node_Id) return Entity_Id; |
| -- Build function to test Valid_Scalars for array type A_Type. Nod is the |
| -- Valid_Scalars attribute node, used to insert the function body, and the |
| -- value returned is the entity of the constructed function body. We do not |
| -- bother to generate a separate spec for this subprogram. |
| |
| function Build_Record_VS_Func |
| (R_Type : Entity_Id; |
| Nod : Node_Id) return Entity_Id; |
| -- Build function to test Valid_Scalars for record type A_Type. Nod is the |
| -- Valid_Scalars attribute node, used to insert the function body, and the |
| -- value returned is the entity of the constructed function body. We do not |
| -- bother to generate a separate spec for this subprogram. |
| |
| procedure Compile_Stream_Body_In_Scope |
| (N : Node_Id; |
| Decl : Node_Id; |
| Arr : Entity_Id; |
| Check : Boolean); |
| -- The body for a stream subprogram may be generated outside of the scope |
| -- of the type. If the type is fully private, it may depend on the full |
| -- view of other types (e.g. indexes) that are currently private as well. |
| -- We install the declarations of the package in which the type is declared |
| -- before compiling the body in what is its proper environment. The Check |
| -- parameter indicates if checks are to be suppressed for the stream body. |
| -- We suppress checks for array/record reads, since the rule is that these |
| -- are like assignments, out of range values due to uninitialized storage, |
| -- or other invalid values do NOT cause a Constraint_Error to be raised. |
| -- If we are within an instance body all visibility has been established |
| -- already and there is no need to install the package. |
| |
| procedure Expand_Access_To_Protected_Op |
| (N : Node_Id; |
| Pref : Node_Id; |
| Typ : Entity_Id); |
| -- An attribute reference to a protected subprogram is transformed into |
| -- a pair of pointers: one to the object, and one to the operations. |
| -- This expansion is performed for 'Access and for 'Unrestricted_Access. |
| |
| procedure Expand_Fpt_Attribute |
| (N : Node_Id; |
| Pkg : RE_Id; |
| Nam : Name_Id; |
| Args : List_Id); |
| -- This procedure expands a call to a floating-point attribute function. |
| -- N is the attribute reference node, and Args is a list of arguments to |
| -- be passed to the function call. Pkg identifies the package containing |
| -- the appropriate instantiation of System.Fat_Gen. Float arguments in Args |
| -- have already been converted to the floating-point type for which Pkg was |
| -- instantiated. The Nam argument is the relevant attribute processing |
| -- routine to be called. This is the same as the attribute name, except in |
| -- the Unaligned_Valid case. |
| |
| procedure Expand_Fpt_Attribute_R (N : Node_Id); |
| -- This procedure expands a call to a floating-point attribute function |
| -- that takes a single floating-point argument. The function to be called |
| -- is always the same as the attribute name. |
| |
| procedure Expand_Fpt_Attribute_RI (N : Node_Id); |
| -- This procedure expands a call to a floating-point attribute function |
| -- that takes one floating-point argument and one integer argument. The |
| -- function to be called is always the same as the attribute name. |
| |
| procedure Expand_Fpt_Attribute_RR (N : Node_Id); |
| -- This procedure expands a call to a floating-point attribute function |
| -- that takes two floating-point arguments. The function to be called |
| -- is always the same as the attribute name. |
| |
| procedure Expand_Loop_Entry_Attribute (N : Node_Id); |
| -- Handle the expansion of attribute 'Loop_Entry. As a result, the related |
| -- loop may be converted into a conditional block. See body for details. |
| |
| procedure Expand_Min_Max_Attribute (N : Node_Id); |
| -- Handle the expansion of attributes 'Max and 'Min, including expanding |
| -- then out if we are in Modify_Tree_For_C mode. |
| |
| procedure Expand_Pred_Succ_Attribute (N : Node_Id); |
| -- Handles expansion of Pred or Succ attributes for case of non-real |
| -- operand with overflow checking required. |
| |
| procedure Expand_Update_Attribute (N : Node_Id); |
| -- Handle the expansion of attribute Update |
| |
| function Get_Index_Subtype (N : Node_Id) return Entity_Id; |
| -- Used for Last, Last, and Length, when the prefix is an array type. |
| -- Obtains the corresponding index subtype. |
| |
| procedure Find_Fat_Info |
| (T : Entity_Id; |
| Fat_Type : out Entity_Id; |
| Fat_Pkg : out RE_Id); |
| -- Given a floating-point type T, identifies the package containing the |
| -- attributes for this type (returned in Fat_Pkg), and the corresponding |
| -- type for which this package was instantiated from Fat_Gen. Error if T |
| -- is not a floating-point type. |
| |
| function Find_Stream_Subprogram |
| (Typ : Entity_Id; |
| Nam : TSS_Name_Type) return Entity_Id; |
| -- Returns the stream-oriented subprogram attribute for Typ. For tagged |
| -- types, the corresponding primitive operation is looked up, else the |
| -- appropriate TSS from the type itself, or from its closest ancestor |
| -- defining it, is returned. In both cases, inheritance of representation |
| -- aspects is thus taken into account. |
| |
| function Full_Base (T : Entity_Id) return Entity_Id; |
| -- The stream functions need to examine the underlying representation of |
| -- composite types. In some cases T may be non-private but its base type |
| -- is, in which case the function returns the corresponding full view. |
| |
| function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id; |
| -- Given a type, find a corresponding stream convert pragma that applies to |
| -- the implementation base type of this type (Typ). If found, return the |
| -- pragma node, otherwise return Empty if no pragma is found. |
| |
| function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean; |
| -- Utility for array attributes, returns true on packed constrained |
| -- arrays, and on access to same. |
| |
| function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean; |
| -- Returns true iff the given node refers to an attribute call that |
| -- can be expanded directly by the back end and does not need front end |
| -- expansion. Typically used for rounding and truncation attributes that |
| -- appear directly inside a conversion to integer. |
| |
| ------------------------- |
| -- Build_Array_VS_Func -- |
| ------------------------- |
| |
| function Build_Array_VS_Func |
| (A_Type : Entity_Id; |
| Nod : Node_Id) return Entity_Id |
| is |
| Loc : constant Source_Ptr := Sloc (Nod); |
| Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V'); |
| Comp_Type : constant Entity_Id := Component_Type (A_Type); |
| Body_Stmts : List_Id; |
| Index_List : List_Id; |
| Formals : List_Id; |
| |
| function Test_Component return List_Id; |
| -- Create one statement to test validity of one component designated by |
| -- a full set of indexes. Returns statement list containing test. |
| |
| function Test_One_Dimension (N : Int) return List_Id; |
| -- Create loop to test one dimension of the array. The single statement |
| -- in the loop body tests the inner dimensions if any, or else the |
| -- single component. Note that this procedure is called recursively, |
| -- with N being the dimension to be initialized. A call with N greater |
| -- than the number of dimensions simply generates the component test, |
| -- terminating the recursion. Returns statement list containing tests. |
| |
| -------------------- |
| -- Test_Component -- |
| -------------------- |
| |
| function Test_Component return List_Id is |
| Comp : Node_Id; |
| Anam : Name_Id; |
| |
| begin |
| Comp := |
| Make_Indexed_Component (Loc, |
| Prefix => Make_Identifier (Loc, Name_uA), |
| Expressions => Index_List); |
| |
| if Is_Scalar_Type (Comp_Type) then |
| Anam := Name_Valid; |
| else |
| Anam := Name_Valid_Scalars; |
| end if; |
| |
| return New_List ( |
| Make_If_Statement (Loc, |
| Condition => |
| Make_Op_Not (Loc, |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Anam, |
| Prefix => Comp)), |
| Then_Statements => New_List ( |
| Make_Simple_Return_Statement (Loc, |
| Expression => New_Occurrence_Of (Standard_False, Loc))))); |
| end Test_Component; |
| |
| ------------------------ |
| -- Test_One_Dimension -- |
| ------------------------ |
| |
| function Test_One_Dimension (N : Int) return List_Id is |
| Index : Entity_Id; |
| |
| begin |
| -- If all dimensions dealt with, we simply test the component |
| |
| if N > Number_Dimensions (A_Type) then |
| return Test_Component; |
| |
| -- Here we generate the required loop |
| |
| else |
| Index := |
| Make_Defining_Identifier (Loc, New_External_Name ('J', N)); |
| |
| Append (New_Occurrence_Of (Index, Loc), Index_List); |
| |
| return New_List ( |
| Make_Implicit_Loop_Statement (Nod, |
| Identifier => Empty, |
| Iteration_Scheme => |
| Make_Iteration_Scheme (Loc, |
| Loop_Parameter_Specification => |
| Make_Loop_Parameter_Specification (Loc, |
| Defining_Identifier => Index, |
| Discrete_Subtype_Definition => |
| Make_Attribute_Reference (Loc, |
| Prefix => Make_Identifier (Loc, Name_uA), |
| Attribute_Name => Name_Range, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, N))))), |
| Statements => Test_One_Dimension (N + 1)), |
| Make_Simple_Return_Statement (Loc, |
| Expression => New_Occurrence_Of (Standard_True, Loc))); |
| end if; |
| end Test_One_Dimension; |
| |
| -- Start of processing for Build_Array_VS_Func |
| |
| begin |
| Index_List := New_List; |
| Body_Stmts := Test_One_Dimension (1); |
| |
| -- Parameter is always (A : A_Typ) |
| |
| Formals := New_List ( |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Make_Defining_Identifier (Loc, Name_uA), |
| In_Present => True, |
| Out_Present => False, |
| Parameter_Type => New_Occurrence_Of (A_Type, Loc))); |
| |
| -- Build body |
| |
| Set_Ekind (Func_Id, E_Function); |
| Set_Is_Internal (Func_Id); |
| |
| Insert_Action (Nod, |
| Make_Subprogram_Body (Loc, |
| Specification => |
| Make_Function_Specification (Loc, |
| Defining_Unit_Name => Func_Id, |
| Parameter_Specifications => Formals, |
| Result_Definition => |
| New_Occurrence_Of (Standard_Boolean, Loc)), |
| Declarations => New_List, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => Body_Stmts))); |
| |
| if not Debug_Generated_Code then |
| Set_Debug_Info_Off (Func_Id); |
| end if; |
| |
| Set_Is_Pure (Func_Id); |
| return Func_Id; |
| end Build_Array_VS_Func; |
| |
| -------------------------- |
| -- Build_Record_VS_Func -- |
| -------------------------- |
| |
| -- Generates: |
| |
| -- function _Valid_Scalars (X : T) return Boolean is |
| -- begin |
| -- -- Check discriminants |
| |
| -- if not X.D1'Valid_Scalars or else |
| -- not X.D2'Valid_Scalars or else |
| -- ... |
| -- then |
| -- return False; |
| -- end if; |
| |
| -- -- Check components |
| |
| -- if not X.C1'Valid_Scalars or else |
| -- not X.C2'Valid_Scalars or else |
| -- ... |
| -- then |
| -- return False; |
| -- end if; |
| |
| -- -- Check variant part |
| |
| -- case X.D1 is |
| -- when V1 => |
| -- if not X.C2'Valid_Scalars or else |
| -- not X.C3'Valid_Scalars or else |
| -- ... |
| -- then |
| -- return False; |
| -- end if; |
| -- ... |
| -- when Vn => |
| -- if not X.Cn'Valid_Scalars or else |
| -- ... |
| -- then |
| -- return False; |
| -- end if; |
| -- end case; |
| |
| -- return True; |
| -- end _Valid_Scalars; |
| |
| function Build_Record_VS_Func |
| (R_Type : Entity_Id; |
| Nod : Node_Id) return Entity_Id |
| is |
| Loc : constant Source_Ptr := Sloc (R_Type); |
| Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V'); |
| X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X); |
| |
| function Make_VS_Case |
| (E : Entity_Id; |
| CL : Node_Id; |
| Discrs : Elist_Id := New_Elmt_List) return List_Id; |
| -- Building block for variant valid scalars. Given a Component_List node |
| -- CL, it generates an 'if' followed by a 'case' statement that compares |
| -- all components of local temporaries named X and Y (that are declared |
| -- as formals at some upper level). E provides the Sloc to be used for |
| -- the generated code. |
| |
| function Make_VS_If |
| (E : Entity_Id; |
| L : List_Id) return Node_Id; |
| -- Building block for variant validate scalars. Given the list, L, of |
| -- components (or discriminants) L, it generates a return statement that |
| -- compares all components of local temporaries named X and Y (that are |
| -- declared as formals at some upper level). E provides the Sloc to be |
| -- used for the generated code. |
| |
| ------------------ |
| -- Make_VS_Case -- |
| ------------------ |
| |
| -- <Make_VS_If on shared components> |
| |
| -- case X.D1 is |
| -- when V1 => <Make_VS_Case> on subcomponents |
| -- ... |
| -- when Vn => <Make_VS_Case> on subcomponents |
| -- end case; |
| |
| function Make_VS_Case |
| (E : Entity_Id; |
| CL : Node_Id; |
| Discrs : Elist_Id := New_Elmt_List) return List_Id |
| is |
| Loc : constant Source_Ptr := Sloc (E); |
| Result : constant List_Id := New_List; |
| Variant : Node_Id; |
| Alt_List : List_Id; |
| |
| begin |
| Append_To (Result, Make_VS_If (E, Component_Items (CL))); |
| |
| if No (Variant_Part (CL)) then |
| return Result; |
| end if; |
| |
| Variant := First_Non_Pragma (Variants (Variant_Part (CL))); |
| |
| if No (Variant) then |
| return Result; |
| end if; |
| |
| Alt_List := New_List; |
| while Present (Variant) loop |
| Append_To (Alt_List, |
| Make_Case_Statement_Alternative (Loc, |
| Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)), |
| Statements => |
| Make_VS_Case (E, Component_List (Variant), Discrs))); |
| Next_Non_Pragma (Variant); |
| end loop; |
| |
| Append_To (Result, |
| Make_Case_Statement (Loc, |
| Expression => |
| Make_Selected_Component (Loc, |
| Prefix => Make_Identifier (Loc, Name_X), |
| Selector_Name => New_Copy (Name (Variant_Part (CL)))), |
| Alternatives => Alt_List)); |
| |
| return Result; |
| end Make_VS_Case; |
| |
| ---------------- |
| -- Make_VS_If -- |
| ---------------- |
| |
| -- Generates: |
| |
| -- if |
| -- not X.C1'Valid_Scalars |
| -- or else |
| -- not X.C2'Valid_Scalars |
| -- ... |
| -- then |
| -- return False; |
| -- end if; |
| |
| -- or a null statement if the list L is empty |
| |
| function Make_VS_If |
| (E : Entity_Id; |
| L : List_Id) return Node_Id |
| is |
| Loc : constant Source_Ptr := Sloc (E); |
| C : Node_Id; |
| Def_Id : Entity_Id; |
| Field_Name : Name_Id; |
| Cond : Node_Id; |
| |
| begin |
| if No (L) then |
| return Make_Null_Statement (Loc); |
| |
| else |
| Cond := Empty; |
| |
| C := First_Non_Pragma (L); |
| while Present (C) loop |
| Def_Id := Defining_Identifier (C); |
| Field_Name := Chars (Def_Id); |
| |
| -- The tags need not be checked since they will always be valid |
| |
| -- Note also that in the following, we use Make_Identifier for |
| -- the component names. Use of New_Occurrence_Of to identify |
| -- the components would be incorrect because wrong entities for |
| -- discriminants could be picked up in the private type case. |
| |
| -- Don't bother with abstract parent in interface case |
| |
| if Field_Name = Name_uParent |
| and then Is_Interface (Etype (Def_Id)) |
| then |
| null; |
| |
| -- Don't bother with tag, always valid, and not scalar anyway |
| |
| elsif Field_Name = Name_uTag then |
| null; |
| |
| -- Don't bother with component with no scalar components |
| |
| elsif not Scalar_Part_Present (Etype (Def_Id)) then |
| null; |
| |
| -- Normal case, generate Valid_Scalars attribute reference |
| |
| else |
| Evolve_Or_Else (Cond, |
| Make_Op_Not (Loc, |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Make_Selected_Component (Loc, |
| Prefix => |
| Make_Identifier (Loc, Name_X), |
| Selector_Name => |
| Make_Identifier (Loc, Field_Name)), |
| Attribute_Name => Name_Valid_Scalars))); |
| end if; |
| |
| Next_Non_Pragma (C); |
| end loop; |
| |
| if No (Cond) then |
| return Make_Null_Statement (Loc); |
| |
| else |
| return |
| Make_Implicit_If_Statement (E, |
| Condition => Cond, |
| Then_Statements => New_List ( |
| Make_Simple_Return_Statement (Loc, |
| Expression => |
| New_Occurrence_Of (Standard_False, Loc)))); |
| end if; |
| end if; |
| end Make_VS_If; |
| |
| -- Local Declarations |
| |
| Def : constant Node_Id := Parent (R_Type); |
| Comps : constant Node_Id := Component_List (Type_Definition (Def)); |
| Stmts : constant List_Id := New_List; |
| Pspecs : constant List_Id := New_List; |
| |
| begin |
| Append_To (Pspecs, |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => X, |
| Parameter_Type => New_Occurrence_Of (R_Type, Loc))); |
| |
| Append_To (Stmts, |
| Make_VS_If (R_Type, Discriminant_Specifications (Def))); |
| Append_List_To (Stmts, Make_VS_Case (R_Type, Comps)); |
| |
| Append_To (Stmts, |
| Make_Simple_Return_Statement (Loc, |
| Expression => New_Occurrence_Of (Standard_True, Loc))); |
| |
| Insert_Action (Nod, |
| Make_Subprogram_Body (Loc, |
| Specification => |
| Make_Function_Specification (Loc, |
| Defining_Unit_Name => Func_Id, |
| Parameter_Specifications => Pspecs, |
| Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)), |
| Declarations => New_List, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)), |
| Suppress => Discriminant_Check); |
| |
| if not Debug_Generated_Code then |
| Set_Debug_Info_Off (Func_Id); |
| end if; |
| |
| Set_Is_Pure (Func_Id); |
| return Func_Id; |
| end Build_Record_VS_Func; |
| |
| ---------------------------------- |
| -- Compile_Stream_Body_In_Scope -- |
| ---------------------------------- |
| |
| procedure Compile_Stream_Body_In_Scope |
| (N : Node_Id; |
| Decl : Node_Id; |
| Arr : Entity_Id; |
| Check : Boolean) |
| is |
| Installed : Boolean := False; |
| Scop : constant Entity_Id := Scope (Arr); |
| Curr : constant Entity_Id := Current_Scope; |
| |
| begin |
| if Is_Hidden (Arr) |
| and then not In_Open_Scopes (Scop) |
| and then Ekind (Scop) = E_Package |
| |
| -- If we are within an instance body, then all visibility has been |
| -- established already and there is no need to install the package. |
| |
| and then not In_Instance_Body |
| then |
| Push_Scope (Scop); |
| Install_Visible_Declarations (Scop); |
| Install_Private_Declarations (Scop); |
| Installed := True; |
| |
| -- The entities in the package are now visible, but the generated |
| -- stream entity must appear in the current scope (usually an |
| -- enclosing stream function) so that itypes all have their proper |
| -- scopes. |
| |
| Push_Scope (Curr); |
| end if; |
| |
| if Check then |
| Insert_Action (N, Decl); |
| else |
| Insert_Action (N, Decl, Suppress => All_Checks); |
| end if; |
| |
| if Installed then |
| |
| -- Remove extra copy of current scope, and package itself |
| |
| Pop_Scope; |
| End_Package_Scope (Scop); |
| end if; |
| end Compile_Stream_Body_In_Scope; |
| |
| ----------------------------------- |
| -- Expand_Access_To_Protected_Op -- |
| ----------------------------------- |
| |
| procedure Expand_Access_To_Protected_Op |
| (N : Node_Id; |
| Pref : Node_Id; |
| Typ : Entity_Id) |
| is |
| -- The value of the attribute_reference is a record containing two |
| -- fields: an access to the protected object, and an access to the |
| -- subprogram itself. The prefix is a selected component. |
| |
| Loc : constant Source_Ptr := Sloc (N); |
| Agg : Node_Id; |
| Btyp : constant Entity_Id := Base_Type (Typ); |
| Sub : Entity_Id; |
| Sub_Ref : Node_Id; |
| E_T : constant Entity_Id := Equivalent_Type (Btyp); |
| Acc : constant Entity_Id := |
| Etype (Next_Component (First_Component (E_T))); |
| Obj_Ref : Node_Id; |
| Curr : Entity_Id; |
| |
| -- Start of processing for Expand_Access_To_Protected_Op |
| |
| begin |
| -- Within the body of the protected type, the prefix designates a local |
| -- operation, and the object is the first parameter of the corresponding |
| -- protected body of the current enclosing operation. |
| |
| if Is_Entity_Name (Pref) then |
| -- All indirect calls are external calls, so must do locking and |
| -- barrier reevaluation, even if the 'Access occurs within the |
| -- protected body. Hence the call to External_Subprogram, as opposed |
| -- to Protected_Body_Subprogram, below. See RM-9.5(5). This means |
| -- that indirect calls from within the same protected body will |
| -- deadlock, as allowed by RM-9.5.1(8,15,17). |
| |
| Sub := New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc); |
| |
| -- Don't traverse the scopes when the attribute occurs within an init |
| -- proc, because we directly use the _init formal of the init proc in |
| -- that case. |
| |
| Curr := Current_Scope; |
| if not Is_Init_Proc (Curr) then |
| pragma Assert (In_Open_Scopes (Scope (Entity (Pref)))); |
| |
| while Scope (Curr) /= Scope (Entity (Pref)) loop |
| Curr := Scope (Curr); |
| end loop; |
| end if; |
| |
| -- In case of protected entries the first formal of its Protected_ |
| -- Body_Subprogram is the address of the object. |
| |
| if Ekind (Curr) = E_Entry then |
| Obj_Ref := |
| New_Occurrence_Of |
| (First_Formal |
| (Protected_Body_Subprogram (Curr)), Loc); |
| |
| -- If the current scope is an init proc, then use the address of the |
| -- _init formal as the object reference. |
| |
| elsif Is_Init_Proc (Curr) then |
| Obj_Ref := |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (First_Formal (Curr), Loc), |
| Attribute_Name => Name_Address); |
| |
| -- In case of protected subprograms the first formal of its |
| -- Protected_Body_Subprogram is the object and we get its address. |
| |
| else |
| Obj_Ref := |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of |
| (First_Formal |
| (Protected_Body_Subprogram (Curr)), Loc), |
| Attribute_Name => Name_Address); |
| end if; |
| |
| -- Case where the prefix is not an entity name. Find the |
| -- version of the protected operation to be called from |
| -- outside the protected object. |
| |
| else |
| Sub := |
| New_Occurrence_Of |
| (External_Subprogram |
| (Entity (Selector_Name (Pref))), Loc); |
| |
| Obj_Ref := |
| Make_Attribute_Reference (Loc, |
| Prefix => Relocate_Node (Prefix (Pref)), |
| Attribute_Name => Name_Address); |
| end if; |
| |
| Sub_Ref := |
| Make_Attribute_Reference (Loc, |
| Prefix => Sub, |
| Attribute_Name => Name_Access); |
| |
| -- We set the type of the access reference to the already generated |
| -- access_to_subprogram type, and declare the reference analyzed, to |
| -- prevent further expansion when the enclosing aggregate is analyzed. |
| |
| Set_Etype (Sub_Ref, Acc); |
| Set_Analyzed (Sub_Ref); |
| |
| Agg := |
| Make_Aggregate (Loc, |
| Expressions => New_List (Obj_Ref, Sub_Ref)); |
| |
| -- Sub_Ref has been marked as analyzed, but we still need to make sure |
| -- Sub is correctly frozen. |
| |
| Freeze_Before (N, Entity (Sub)); |
| |
| Rewrite (N, Agg); |
| Analyze_And_Resolve (N, E_T); |
| |
| -- For subsequent analysis, the node must retain its type. The backend |
| -- will replace it with the equivalent type where needed. |
| |
| Set_Etype (N, Typ); |
| end Expand_Access_To_Protected_Op; |
| |
| -------------------------- |
| -- Expand_Fpt_Attribute -- |
| -------------------------- |
| |
| procedure Expand_Fpt_Attribute |
| (N : Node_Id; |
| Pkg : RE_Id; |
| Nam : Name_Id; |
| Args : List_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Fnm : Node_Id; |
| |
| begin |
| -- The function name is the selected component Attr_xxx.yyy where |
| -- Attr_xxx is the package name, and yyy is the argument Nam. |
| |
| -- Note: it would be more usual to have separate RE entries for each |
| -- of the entities in the Fat packages, but first they have identical |
| -- names (so we would have to have lots of renaming declarations to |
| -- meet the normal RE rule of separate names for all runtime entities), |
| -- and second there would be an awful lot of them. |
| |
| Fnm := |
| Make_Selected_Component (Loc, |
| Prefix => New_Occurrence_Of (RTE (Pkg), Loc), |
| Selector_Name => Make_Identifier (Loc, Nam)); |
| |
| -- The generated call is given the provided set of parameters, and then |
| -- wrapped in a conversion which converts the result to the target type |
| -- We use the base type as the target because a range check may be |
| -- required. |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Base_Type (Etype (N)), |
| Make_Function_Call (Loc, |
| Name => Fnm, |
| Parameter_Associations => Args))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Expand_Fpt_Attribute; |
| |
| ---------------------------- |
| -- Expand_Fpt_Attribute_R -- |
| ---------------------------- |
| |
| -- The single argument is converted to its root type to call the |
| -- appropriate runtime function, with the actual call being built |
| -- by Expand_Fpt_Attribute |
| |
| procedure Expand_Fpt_Attribute_R (N : Node_Id) is |
| E1 : constant Node_Id := First (Expressions (N)); |
| Ftp : Entity_Id; |
| Pkg : RE_Id; |
| begin |
| Find_Fat_Info (Etype (E1), Ftp, Pkg); |
| Expand_Fpt_Attribute |
| (N, Pkg, Attribute_Name (N), |
| New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1)))); |
| end Expand_Fpt_Attribute_R; |
| |
| ----------------------------- |
| -- Expand_Fpt_Attribute_RI -- |
| ----------------------------- |
| |
| -- The first argument is converted to its root type and the second |
| -- argument is converted to standard long long integer to call the |
| -- appropriate runtime function, with the actual call being built |
| -- by Expand_Fpt_Attribute |
| |
| procedure Expand_Fpt_Attribute_RI (N : Node_Id) is |
| E1 : constant Node_Id := First (Expressions (N)); |
| Ftp : Entity_Id; |
| Pkg : RE_Id; |
| E2 : constant Node_Id := Next (E1); |
| begin |
| Find_Fat_Info (Etype (E1), Ftp, Pkg); |
| Expand_Fpt_Attribute |
| (N, Pkg, Attribute_Name (N), |
| New_List ( |
| Unchecked_Convert_To (Ftp, Relocate_Node (E1)), |
| Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2)))); |
| end Expand_Fpt_Attribute_RI; |
| |
| ----------------------------- |
| -- Expand_Fpt_Attribute_RR -- |
| ----------------------------- |
| |
| -- The two arguments are converted to their root types to call the |
| -- appropriate runtime function, with the actual call being built |
| -- by Expand_Fpt_Attribute |
| |
| procedure Expand_Fpt_Attribute_RR (N : Node_Id) is |
| E1 : constant Node_Id := First (Expressions (N)); |
| E2 : constant Node_Id := Next (E1); |
| Ftp : Entity_Id; |
| Pkg : RE_Id; |
| |
| begin |
| Find_Fat_Info (Etype (E1), Ftp, Pkg); |
| Expand_Fpt_Attribute |
| (N, Pkg, Attribute_Name (N), |
| New_List ( |
| Unchecked_Convert_To (Ftp, Relocate_Node (E1)), |
| Unchecked_Convert_To (Ftp, Relocate_Node (E2)))); |
| end Expand_Fpt_Attribute_RR; |
| |
| --------------------------------- |
| -- Expand_Loop_Entry_Attribute -- |
| --------------------------------- |
| |
| procedure Expand_Loop_Entry_Attribute (N : Node_Id) is |
| procedure Build_Conditional_Block |
| (Loc : Source_Ptr; |
| Cond : Node_Id; |
| Loop_Stmt : Node_Id; |
| If_Stmt : out Node_Id; |
| Blk_Stmt : out Node_Id); |
| -- Create a block Blk_Stmt with an empty declarative list and a single |
| -- loop Loop_Stmt. The block is encased in an if statement If_Stmt with |
| -- condition Cond. If_Stmt is Empty when there is no condition provided. |
| |
| function Is_Array_Iteration (N : Node_Id) return Boolean; |
| -- Determine whether loop statement N denotes an Ada 2012 iteration over |
| -- an array object. |
| |
| ----------------------------- |
| -- Build_Conditional_Block -- |
| ----------------------------- |
| |
| procedure Build_Conditional_Block |
| (Loc : Source_Ptr; |
| Cond : Node_Id; |
| Loop_Stmt : Node_Id; |
| If_Stmt : out Node_Id; |
| Blk_Stmt : out Node_Id) |
| is |
| begin |
| -- Do not reanalyze the original loop statement because it is simply |
| -- being relocated. |
| |
| Set_Analyzed (Loop_Stmt); |
| |
| Blk_Stmt := |
| Make_Block_Statement (Loc, |
| Declarations => New_List, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => New_List (Loop_Stmt))); |
| |
| if Present (Cond) then |
| If_Stmt := |
| Make_If_Statement (Loc, |
| Condition => Cond, |
| Then_Statements => New_List (Blk_Stmt)); |
| else |
| If_Stmt := Empty; |
| end if; |
| end Build_Conditional_Block; |
| |
| ------------------------ |
| -- Is_Array_Iteration -- |
| ------------------------ |
| |
| function Is_Array_Iteration (N : Node_Id) return Boolean is |
| Stmt : constant Node_Id := Original_Node (N); |
| Iter : Node_Id; |
| |
| begin |
| if Nkind (Stmt) = N_Loop_Statement |
| and then Present (Iteration_Scheme (Stmt)) |
| and then Present (Iterator_Specification (Iteration_Scheme (Stmt))) |
| then |
| Iter := Iterator_Specification (Iteration_Scheme (Stmt)); |
| |
| return |
| Of_Present (Iter) and then Is_Array_Type (Etype (Name (Iter))); |
| end if; |
| |
| return False; |
| end Is_Array_Iteration; |
| |
| -- Local variables |
| |
| Exprs : constant List_Id := Expressions (N); |
| Pref : constant Node_Id := Prefix (N); |
| Typ : constant Entity_Id := Etype (Pref); |
| Blk : Node_Id; |
| CW_Decl : Node_Id; |
| CW_Temp : Entity_Id; |
| CW_Typ : Entity_Id; |
| Decls : List_Id; |
| Installed : Boolean; |
| Loc : Source_Ptr; |
| Loop_Id : Entity_Id; |
| Loop_Stmt : Node_Id; |
| Result : Node_Id; |
| Scheme : Node_Id; |
| Temp_Decl : Node_Id; |
| Temp_Id : Entity_Id; |
| |
| -- Start of processing for Expand_Loop_Entry_Attribute |
| |
| begin |
| -- Step 1: Find the related loop |
| |
| -- The loop label variant of attribute 'Loop_Entry already has all the |
| -- information in its expression. |
| |
| if Present (Exprs) then |
| Loop_Id := Entity (First (Exprs)); |
| Loop_Stmt := Label_Construct (Parent (Loop_Id)); |
| |
| -- Climb the parent chain to find the nearest enclosing loop. Skip all |
| -- internally generated loops for quantified expressions. |
| |
| else |
| Loop_Stmt := N; |
| while Present (Loop_Stmt) loop |
| if Nkind (Loop_Stmt) = N_Loop_Statement |
| and then Present (Identifier (Loop_Stmt)) |
| then |
| exit; |
| end if; |
| |
| Loop_Stmt := Parent (Loop_Stmt); |
| end loop; |
| |
| Loop_Id := Entity (Identifier (Loop_Stmt)); |
| end if; |
| |
| Loc := Sloc (Loop_Stmt); |
| |
| -- Step 2: Transform the loop |
| |
| -- The loop has already been transformed during the expansion of a prior |
| -- 'Loop_Entry attribute. Retrieve the declarative list of the block. |
| |
| if Has_Loop_Entry_Attributes (Loop_Id) then |
| |
| -- When the related loop name appears as the argument of attribute |
| -- Loop_Entry, the corresponding label construct is the generated |
| -- block statement. This is because the expander reuses the label. |
| |
| if Nkind (Loop_Stmt) = N_Block_Statement then |
| Decls := Declarations (Loop_Stmt); |
| |
| -- In all other cases, the loop must appear in the handled sequence |
| -- of statements of the generated block. |
| |
| else |
| pragma Assert |
| (Nkind (Parent (Loop_Stmt)) = N_Handled_Sequence_Of_Statements |
| and then |
| Nkind (Parent (Parent (Loop_Stmt))) = N_Block_Statement); |
| |
| Decls := Declarations (Parent (Parent (Loop_Stmt))); |
| end if; |
| |
| Result := Empty; |
| |
| -- Transform the loop into a conditional block |
| |
| else |
| Set_Has_Loop_Entry_Attributes (Loop_Id); |
| Scheme := Iteration_Scheme (Loop_Stmt); |
| |
| -- Infinite loops are transformed into: |
| |
| -- declare |
| -- Temp1 : constant <type of Pref1> := <Pref1>; |
| -- . . . |
| -- TempN : constant <type of PrefN> := <PrefN>; |
| -- begin |
| -- loop |
| -- <original source statements with attribute rewrites> |
| -- end loop; |
| -- end; |
| |
| if No (Scheme) then |
| Build_Conditional_Block (Loc, |
| Cond => Empty, |
| Loop_Stmt => Relocate_Node (Loop_Stmt), |
| If_Stmt => Result, |
| Blk_Stmt => Blk); |
| |
| Result := Blk; |
| |
| -- While loops are transformed into: |
| |
| -- function Fnn return Boolean is |
| -- begin |
| -- <condition actions> |
| -- return <condition>; |
| -- end Fnn; |
| |
| -- if Fnn then |
| -- declare |
| -- Temp1 : constant <type of Pref1> := <Pref1>; |
| -- . . . |
| -- TempN : constant <type of PrefN> := <PrefN>; |
| -- begin |
| -- loop |
| -- <original source statements with attribute rewrites> |
| -- exit when not Fnn; |
| -- end loop; |
| -- end; |
| -- end if; |
| |
| -- Note that loops over iterators and containers are already |
| -- converted into while loops. |
| |
| elsif Present (Condition (Scheme)) then |
| declare |
| Func_Decl : Node_Id; |
| Func_Id : Entity_Id; |
| Stmts : List_Id; |
| |
| begin |
| -- Wrap the condition of the while loop in a Boolean function. |
| -- This avoids the duplication of the same code which may lead |
| -- to gigi issues with respect to multiple declaration of the |
| -- same entity in the presence of side effects or checks. Note |
| -- that the condition actions must also be relocated to the |
| -- wrapping function. |
| |
| -- Generate: |
| -- <condition actions> |
| -- return <condition>; |
| |
| if Present (Condition_Actions (Scheme)) then |
| Stmts := Condition_Actions (Scheme); |
| else |
| Stmts := New_List; |
| end if; |
| |
| Append_To (Stmts, |
| Make_Simple_Return_Statement (Loc, |
| Expression => Relocate_Node (Condition (Scheme)))); |
| |
| -- Generate: |
| -- function Fnn return Boolean is |
| -- begin |
| -- <Stmts> |
| -- end Fnn; |
| |
| Func_Id := Make_Temporary (Loc, 'F'); |
| Func_Decl := |
| Make_Subprogram_Body (Loc, |
| Specification => |
| Make_Function_Specification (Loc, |
| Defining_Unit_Name => Func_Id, |
| Result_Definition => |
| New_Occurrence_Of (Standard_Boolean, Loc)), |
| Declarations => Empty_List, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => Stmts)); |
| |
| -- The function is inserted before the related loop. Make sure |
| -- to analyze it in the context of the loop's enclosing scope. |
| |
| Push_Scope (Scope (Loop_Id)); |
| Insert_Action (Loop_Stmt, Func_Decl); |
| Pop_Scope; |
| |
| -- Transform the original while loop into an infinite loop |
| -- where the last statement checks the negated condition. This |
| -- placement ensures that the condition will not be evaluated |
| -- twice on the first iteration. |
| |
| Set_Iteration_Scheme (Loop_Stmt, Empty); |
| Scheme := Empty; |
| |
| -- Generate: |
| -- exit when not Fnn; |
| |
| Append_To (Statements (Loop_Stmt), |
| Make_Exit_Statement (Loc, |
| Condition => |
| Make_Op_Not (Loc, |
| Right_Opnd => |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Func_Id, Loc))))); |
| |
| Build_Conditional_Block (Loc, |
| Cond => |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Func_Id, Loc)), |
| Loop_Stmt => Relocate_Node (Loop_Stmt), |
| If_Stmt => Result, |
| Blk_Stmt => Blk); |
| end; |
| |
| -- Ada 2012 iteration over an array is transformed into: |
| |
| -- if <Array_Nam>'Length (1) > 0 |
| -- and then <Array_Nam>'Length (N) > 0 |
| -- then |
| -- declare |
| -- Temp1 : constant <type of Pref1> := <Pref1>; |
| -- . . . |
| -- TempN : constant <type of PrefN> := <PrefN>; |
| -- begin |
| -- for X in ... loop -- multiple loops depending on dims |
| -- <original source statements with attribute rewrites> |
| -- end loop; |
| -- end; |
| -- end if; |
| |
| elsif Is_Array_Iteration (Loop_Stmt) then |
| declare |
| Array_Nam : constant Entity_Id := |
| Entity (Name (Iterator_Specification |
| (Iteration_Scheme (Original_Node (Loop_Stmt))))); |
| Num_Dims : constant Pos := |
| Number_Dimensions (Etype (Array_Nam)); |
| Cond : Node_Id := Empty; |
| Check : Node_Id; |
| |
| begin |
| -- Generate a check which determines whether all dimensions of |
| -- the array are non-null. |
| |
| for Dim in 1 .. Num_Dims loop |
| Check := |
| Make_Op_Gt (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Array_Nam, Loc), |
| Attribute_Name => Name_Length, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, Dim))), |
| Right_Opnd => |
| Make_Integer_Literal (Loc, 0)); |
| |
| if No (Cond) then |
| Cond := Check; |
| else |
| Cond := |
| Make_And_Then (Loc, |
| Left_Opnd => Cond, |
| Right_Opnd => Check); |
| end if; |
| end loop; |
| |
| Build_Conditional_Block (Loc, |
| Cond => Cond, |
| Loop_Stmt => Relocate_Node (Loop_Stmt), |
| If_Stmt => Result, |
| Blk_Stmt => Blk); |
| end; |
| |
| -- For loops are transformed into: |
| |
| -- if <Low> <= <High> then |
| -- declare |
| -- Temp1 : constant <type of Pref1> := <Pref1>; |
| -- . . . |
| -- TempN : constant <type of PrefN> := <PrefN>; |
| -- begin |
| -- for <Def_Id> in <Low> .. <High> loop |
| -- <original source statements with attribute rewrites> |
| -- end loop; |
| -- end; |
| -- end if; |
| |
| elsif Present (Loop_Parameter_Specification (Scheme)) then |
| declare |
| Loop_Spec : constant Node_Id := |
| Loop_Parameter_Specification (Scheme); |
| Cond : Node_Id; |
| Subt_Def : Node_Id; |
| |
| begin |
| Subt_Def := Discrete_Subtype_Definition (Loop_Spec); |
| |
| -- When the loop iterates over a subtype indication with a |
| -- range, use the low and high bounds of the subtype itself. |
| |
| if Nkind (Subt_Def) = N_Subtype_Indication then |
| Subt_Def := Scalar_Range (Etype (Subt_Def)); |
| end if; |
| |
| pragma Assert (Nkind (Subt_Def) = N_Range); |
| |
| -- Generate |
| -- Low <= High |
| |
| Cond := |
| Make_Op_Le (Loc, |
| Left_Opnd => New_Copy_Tree (Low_Bound (Subt_Def)), |
| Right_Opnd => New_Copy_Tree (High_Bound (Subt_Def))); |
| |
| Build_Conditional_Block (Loc, |
| Cond => Cond, |
| Loop_Stmt => Relocate_Node (Loop_Stmt), |
| If_Stmt => Result, |
| Blk_Stmt => Blk); |
| end; |
| end if; |
| |
| Decls := Declarations (Blk); |
| end if; |
| |
| -- Step 3: Create a constant to capture the value of the prefix at the |
| -- entry point into the loop. |
| |
| Temp_Id := Make_Temporary (Loc, 'P'); |
| |
| -- Preserve the tag of the prefix by offering a specific view of the |
| -- class-wide version of the prefix. |
| |
| if Is_Tagged_Type (Typ) then |
| |
| -- Generate: |
| -- CW_Temp : constant Typ'Class := Typ'Class (Pref); |
| |
| CW_Temp := Make_Temporary (Loc, 'T'); |
| CW_Typ := Class_Wide_Type (Typ); |
| |
| CW_Decl := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => CW_Temp, |
| Constant_Present => True, |
| Object_Definition => New_Occurrence_Of (CW_Typ, Loc), |
| Expression => |
| Convert_To (CW_Typ, Relocate_Node (Pref))); |
| Append_To (Decls, CW_Decl); |
| |
| -- Generate: |
| -- Temp : Typ renames Typ (CW_Temp); |
| |
| Temp_Decl := |
| Make_Object_Renaming_Declaration (Loc, |
| Defining_Identifier => Temp_Id, |
| Subtype_Mark => New_Occurrence_Of (Typ, Loc), |
| Name => |
| Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))); |
| Append_To (Decls, Temp_Decl); |
| |
| -- Non-tagged case |
| |
| else |
| CW_Decl := Empty; |
| |
| -- Generate: |
| -- Temp : constant Typ := Pref; |
| |
| Temp_Decl := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Temp_Id, |
| Constant_Present => True, |
| Object_Definition => New_Occurrence_Of (Typ, Loc), |
| Expression => Relocate_Node (Pref)); |
| Append_To (Decls, Temp_Decl); |
| end if; |
| |
| -- Step 4: Analyze all bits |
| |
| Installed := Current_Scope = Scope (Loop_Id); |
| |
| -- Depending on the pracement of attribute 'Loop_Entry relative to the |
| -- associated loop, ensure the proper visibility for analysis. |
| |
| if not Installed then |
| Push_Scope (Scope (Loop_Id)); |
| end if; |
| |
| -- The analysis of the conditional block takes care of the constant |
| -- declaration. |
| |
| if Present (Result) then |
| Rewrite (Loop_Stmt, Result); |
| Analyze (Loop_Stmt); |
| |
| -- The conditional block was analyzed when a previous 'Loop_Entry was |
| -- expanded. There is no point in reanalyzing the block, simply analyze |
| -- the declaration of the constant. |
| |
| else |
| if Present (CW_Decl) then |
| Analyze (CW_Decl); |
| end if; |
| |
| Analyze (Temp_Decl); |
| end if; |
| |
| Rewrite (N, New_Occurrence_Of (Temp_Id, Loc)); |
| Analyze (N); |
| |
| if not Installed then |
| Pop_Scope; |
| end if; |
| end Expand_Loop_Entry_Attribute; |
| |
| ------------------------------ |
| -- Expand_Min_Max_Attribute -- |
| ------------------------------ |
| |
| procedure Expand_Min_Max_Attribute (N : Node_Id) is |
| begin |
| -- Min and Max are handled by the back end (except that static cases |
| -- have already been evaluated during semantic processing, although the |
| -- back end should not count on this). The one bit of special processing |
| -- required in the normal case is that these two attributes typically |
| -- generate conditionals in the code, so check the relevant restriction. |
| |
| Check_Restriction (No_Implicit_Conditionals, N); |
| |
| -- In Modify_Tree_For_C mode, we rewrite as an if expression |
| |
| if Modify_Tree_For_C then |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Expr : constant Node_Id := First (Expressions (N)); |
| Left : constant Node_Id := Relocate_Node (Expr); |
| Right : constant Node_Id := Relocate_Node (Next (Expr)); |
| |
| function Make_Compare (Left, Right : Node_Id) return Node_Id; |
| -- Returns Left >= Right for Max, Left <= Right for Min |
| |
| ------------------ |
| -- Make_Compare -- |
| ------------------ |
| |
| function Make_Compare (Left, Right : Node_Id) return Node_Id is |
| begin |
| if Attribute_Name (N) = Name_Max then |
| return |
| Make_Op_Ge (Loc, |
| Left_Opnd => Left, |
| Right_Opnd => Right); |
| else |
| return |
| Make_Op_Le (Loc, |
| Left_Opnd => Left, |
| Right_Opnd => Right); |
| end if; |
| end Make_Compare; |
| |
| -- Start of processing for Min_Max |
| |
| begin |
| -- If both Left and Right are side effect free, then we can just |
| -- use Duplicate_Expr to duplicate the references and return |
| |
| -- (if Left >=|<= Right then Left else Right) |
| |
| if Side_Effect_Free (Left) and then Side_Effect_Free (Right) then |
| Rewrite (N, |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| Make_Compare (Left, Right), |
| Duplicate_Subexpr_No_Checks (Left), |
| Duplicate_Subexpr_No_Checks (Right)))); |
| |
| -- Otherwise we generate declarations to capture the values. We |
| -- can't put these declarations inside the if expression, since |
| -- we could end up with an N_Expression_With_Actions which has |
| -- declarations in the actions, forbidden for Modify_Tree_For_C. |
| |
| -- The translation is |
| |
| -- T1 : styp; -- inserted high up in tree |
| -- T2 : styp; -- inserted high up in tree |
| |
| -- do |
| -- T1 := styp!(Left); |
| -- T2 := styp!(Right); |
| -- in |
| -- (if T1 >=|<= T2 then typ!(T1) else typ!(T2)) |
| -- end; |
| |
| -- We insert the T1,T2 declarations with Insert_Declaration which |
| -- inserts these declarations high up in the tree unconditionally. |
| -- This is safe since no code is associated with the declarations. |
| -- Here styp is a standard type whose Esize matches the size of |
| -- our type. We do this because the actual type may be a result of |
| -- some local declaration which would not be visible at the point |
| -- where we insert the declarations of T1 and T2. |
| |
| else |
| declare |
| T1 : constant Entity_Id := Make_Temporary (Loc, 'T', Left); |
| T2 : constant Entity_Id := Make_Temporary (Loc, 'T', Left); |
| Styp : constant Entity_Id := Matching_Standard_Type (Typ); |
| |
| begin |
| Insert_Declaration (N, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => T1, |
| Object_Definition => New_Occurrence_Of (Styp, Loc))); |
| |
| Insert_Declaration (N, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => T2, |
| Object_Definition => New_Occurrence_Of (Styp, Loc))); |
| |
| Rewrite (N, |
| Make_Expression_With_Actions (Loc, |
| Actions => New_List ( |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (T1, Loc), |
| Expression => Unchecked_Convert_To (Styp, Left)), |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (T2, Loc), |
| Expression => Unchecked_Convert_To (Styp, Right))), |
| |
| Expression => |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| Make_Compare |
| (New_Occurrence_Of (T1, Loc), |
| New_Occurrence_Of (T2, Loc)), |
| Unchecked_Convert_To (Typ, |
| New_Occurrence_Of (T1, Loc)), |
| Unchecked_Convert_To (Typ, |
| New_Occurrence_Of (T2, Loc)))))); |
| end; |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| end; |
| end if; |
| end Expand_Min_Max_Attribute; |
| |
| ---------------------------------- |
| -- Expand_N_Attribute_Reference -- |
| ---------------------------------- |
| |
| procedure Expand_N_Attribute_Reference (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Btyp : constant Entity_Id := Base_Type (Typ); |
| Pref : constant Node_Id := Prefix (N); |
| Ptyp : constant Entity_Id := Etype (Pref); |
| Exprs : constant List_Id := Expressions (N); |
| Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N)); |
| |
| procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id); |
| -- Rewrites a stream attribute for Read, Write or Output with the |
| -- procedure call. Pname is the entity for the procedure to call. |
| |
| ------------------------------ |
| -- Rewrite_Stream_Proc_Call -- |
| ------------------------------ |
| |
| procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is |
| Item : constant Node_Id := Next (First (Exprs)); |
| Formal : constant Entity_Id := Next_Formal (First_Formal (Pname)); |
| Formal_Typ : constant Entity_Id := Etype (Formal); |
| Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter); |
| |
| begin |
| -- The expansion depends on Item, the second actual, which is |
| -- the object being streamed in or out. |
| |
| -- If the item is a component of a packed array type, and |
| -- a conversion is needed on exit, we introduce a temporary to |
| -- hold the value, because otherwise the packed reference will |
| -- not be properly expanded. |
| |
| if Nkind (Item) = N_Indexed_Component |
| and then Is_Packed (Base_Type (Etype (Prefix (Item)))) |
| and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ) |
| and then Is_Written |
| then |
| declare |
| Temp : constant Entity_Id := Make_Temporary (Loc, 'V'); |
| Decl : Node_Id; |
| Assn : Node_Id; |
| |
| begin |
| Decl := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Temp, |
| Object_Definition => |
| New_Occurrence_Of (Formal_Typ, Loc)); |
| Set_Etype (Temp, Formal_Typ); |
| |
| Assn := |
| Make_Assignment_Statement (Loc, |
| Name => New_Copy_Tree (Item), |
| Expression => |
| Unchecked_Convert_To |
| (Etype (Item), New_Occurrence_Of (Temp, Loc))); |
| |
| Rewrite (Item, New_Occurrence_Of (Temp, Loc)); |
| Insert_Actions (N, |
| New_List ( |
| Decl, |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Pname, Loc), |
| Parameter_Associations => Exprs), |
| Assn)); |
| |
| Rewrite (N, Make_Null_Statement (Loc)); |
| return; |
| end; |
| end if; |
| |
| -- For the class-wide dispatching cases, and for cases in which |
| -- the base type of the second argument matches the base type of |
| -- the corresponding formal parameter (that is to say the stream |
| -- operation is not inherited), we are all set, and can use the |
| -- argument unchanged. |
| |
| -- For all other cases we do an unchecked conversion of the second |
| -- parameter to the type of the formal of the procedure we are |
| -- calling. This deals with the private type cases, and with going |
| -- to the root type as required in elementary type case. |
| |
| if not Is_Class_Wide_Type (Entity (Pref)) |
| and then not Is_Class_Wide_Type (Etype (Item)) |
| and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ) |
| then |
| Rewrite (Item, |
| Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item))); |
| |
| -- For untagged derived types set Assignment_OK, to prevent |
| -- copies from being created when the unchecked conversion |
| -- is expanded (which would happen in Remove_Side_Effects |
| -- if Expand_N_Unchecked_Conversion were allowed to call |
| -- Force_Evaluation). The copy could violate Ada semantics in |
| -- cases such as an actual that is an out parameter. Note that |
| -- this approach is also used in exp_ch7 for calls to controlled |
| -- type operations to prevent problems with actuals wrapped in |
| -- unchecked conversions. |
| |
| if Is_Untagged_Derivation (Etype (Expression (Item))) then |
| Set_Assignment_OK (Item); |
| end if; |
| end if; |
| |
| -- The stream operation to call may be a renaming created by an |
| -- attribute definition clause, and may not be frozen yet. Ensure |
| -- that it has the necessary extra formals. |
| |
| if not Is_Frozen (Pname) then |
| Create_Extra_Formals (Pname); |
| end if; |
| |
| -- And now rewrite the call |
| |
| Rewrite (N, |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Pname, Loc), |
| Parameter_Associations => Exprs)); |
| |
| Analyze (N); |
| end Rewrite_Stream_Proc_Call; |
| |
| -- Start of processing for Expand_N_Attribute_Reference |
| |
| begin |
| -- Do required validity checking, if enabled. Do not apply check to |
| -- output parameters of an Asm instruction, since the value of this |
| -- is not set till after the attribute has been elaborated, and do |
| -- not apply the check to the arguments of a 'Read or 'Input attribute |
| -- reference since the scalar argument is an OUT scalar. |
| |
| if Validity_Checks_On and then Validity_Check_Operands |
| and then Id /= Attribute_Asm_Output |
| and then Id /= Attribute_Read |
| and then Id /= Attribute_Input |
| then |
| declare |
| Expr : Node_Id; |
| begin |
| Expr := First (Expressions (N)); |
| while Present (Expr) loop |
| Ensure_Valid (Expr); |
| Next (Expr); |
| end loop; |
| end; |
| end if; |
| |
| -- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in- |
| -- place function, then a temporary return object needs to be created |
| -- and access to it must be passed to the function. Currently we limit |
| -- such functions to those with inherently limited result subtypes, but |
| -- eventually we plan to expand the functions that are treated as |
| -- build-in-place to include other composite result types. |
| |
| if Ada_Version >= Ada_2005 |
| and then Is_Build_In_Place_Function_Call (Pref) |
| then |
| Make_Build_In_Place_Call_In_Anonymous_Context (Pref); |
| end if; |
| |
| -- If prefix is a protected type name, this is a reference to the |
| -- current instance of the type. For a component definition, nothing |
| -- to do (expansion will occur in the init proc). In other contexts, |
| -- rewrite into reference to current instance. |
| |
| if Is_Protected_Self_Reference (Pref) |
| and then not |
| (Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint, |
| N_Discriminant_Association) |
| and then Nkind (Parent (Parent (Parent (Parent (N))))) = |
| N_Component_Definition) |
| |
| -- No action needed for these attributes since the current instance |
| -- will be rewritten to be the name of the _object parameter |
| -- associated with the enclosing protected subprogram (see below). |
| |
| and then Id /= Attribute_Access |
| and then Id /= Attribute_Unchecked_Access |
| and then Id /= Attribute_Unrestricted_Access |
| then |
| Rewrite (Pref, Concurrent_Ref (Pref)); |
| Analyze (Pref); |
| end if; |
| |
| -- Remaining processing depends on specific attribute |
| |
| -- Note: individual sections of the following case statement are |
| -- allowed to assume there is no code after the case statement, and |
| -- are legitimately allowed to execute return statements if they have |
| -- nothing more to do. |
| |
| case Id is |
| |
| -- Attributes related to Ada 2012 iterators |
| |
| when Attribute_Constant_Indexing | |
| Attribute_Default_Iterator | |
| Attribute_Implicit_Dereference | |
| Attribute_Iterable | |
| Attribute_Iterator_Element | |
| Attribute_Variable_Indexing => |
| null; |
| |
| -- Internal attributes used to deal with Ada 2012 delayed aspects. These |
| -- were already rejected by the parser. Thus they shouldn't appear here. |
| |
| when Internal_Attribute_Id => |
| raise Program_Error; |
| |
| ------------ |
| -- Access -- |
| ------------ |
| |
| when Attribute_Access | |
| Attribute_Unchecked_Access | |
| Attribute_Unrestricted_Access => |
| |
| Access_Cases : declare |
| Ref_Object : constant Node_Id := Get_Referenced_Object (Pref); |
| Btyp_DDT : Entity_Id; |
| |
| function Enclosing_Object (N : Node_Id) return Node_Id; |
| -- If N denotes a compound name (selected component, indexed |
| -- component, or slice), returns the name of the outermost such |
| -- enclosing object. Otherwise returns N. If the object is a |
| -- renaming, then the renamed object is returned. |
| |
| ---------------------- |
| -- Enclosing_Object -- |
| ---------------------- |
| |
| function Enclosing_Object (N : Node_Id) return Node_Id is |
| Obj_Name : Node_Id; |
| |
| begin |
| Obj_Name := N; |
| while Nkind_In (Obj_Name, N_Selected_Component, |
| N_Indexed_Component, |
| N_Slice) |
| loop |
| Obj_Name := Prefix (Obj_Name); |
| end loop; |
| |
| return Get_Referenced_Object (Obj_Name); |
| end Enclosing_Object; |
| |
| -- Local declarations |
| |
| Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object); |
| |
| -- Start of processing for Access_Cases |
| |
| begin |
| Btyp_DDT := Designated_Type (Btyp); |
| |
| -- Handle designated types that come from the limited view |
| |
| if Ekind (Btyp_DDT) = E_Incomplete_Type |
| and then From_Limited_With (Btyp_DDT) |
| and then Present (Non_Limited_View (Btyp_DDT)) |
| then |
| Btyp_DDT := Non_Limited_View (Btyp_DDT); |
| |
| elsif Is_Class_Wide_Type (Btyp_DDT) |
| and then Ekind (Etype (Btyp_DDT)) = E_Incomplete_Type |
| and then From_Limited_With (Etype (Btyp_DDT)) |
| and then Present (Non_Limited_View (Etype (Btyp_DDT))) |
| and then Present (Class_Wide_Type |
| (Non_Limited_View (Etype (Btyp_DDT)))) |
| then |
| Btyp_DDT := |
| Class_Wide_Type (Non_Limited_View (Etype (Btyp_DDT))); |
| end if; |
| |
| -- In order to improve the text of error messages, the designated |
| -- type of access-to-subprogram itypes is set by the semantics as |
| -- the associated subprogram entity (see sem_attr). Now we replace |
| -- such node with the proper E_Subprogram_Type itype. |
| |
| if Id = Attribute_Unrestricted_Access |
| and then Is_Subprogram (Directly_Designated_Type (Typ)) |
| then |
| -- The following conditions ensure that this special management |
| -- is done only for "Address!(Prim'Unrestricted_Access)" nodes. |
| -- At this stage other cases in which the designated type is |
| -- still a subprogram (instead of an E_Subprogram_Type) are |
| -- wrong because the semantics must have overridden the type of |
| -- the node with the type imposed by the context. |
| |
| if Nkind (Parent (N)) = N_Unchecked_Type_Conversion |
| and then Etype (Parent (N)) = RTE (RE_Prim_Ptr) |
| then |
| Set_Etype (N, RTE (RE_Prim_Ptr)); |
| |
| else |
| declare |
| Subp : constant Entity_Id := |
| Directly_Designated_Type (Typ); |
| Etyp : Entity_Id; |
| Extra : Entity_Id := Empty; |
| New_Formal : Entity_Id; |
| Old_Formal : Entity_Id := First_Formal (Subp); |
| Subp_Typ : Entity_Id; |
| |
| begin |
| Subp_Typ := Create_Itype (E_Subprogram_Type, N); |
| Set_Etype (Subp_Typ, Etype (Subp)); |
| Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp)); |
| |
| if Present (Old_Formal) then |
| New_Formal := New_Copy (Old_Formal); |
| Set_First_Entity (Subp_Typ, New_Formal); |
| |
| loop |
| Set_Scope (New_Formal, Subp_Typ); |
| Etyp := Etype (New_Formal); |
| |
| -- Handle itypes. There is no need to duplicate |
| -- here the itypes associated with record types |
| -- (i.e the implicit full view of private types). |
| |
| if Is_Itype (Etyp) |
| and then Ekind (Base_Type (Etyp)) /= E_Record_Type |
| then |
| Extra := New_Copy (Etyp); |
| Set_Parent (Extra, New_Formal); |
| Set_Etype (New_Formal, Extra); |
| Set_Scope (Extra, Subp_Typ); |
| end if; |
| |
| Extra := New_Formal; |
| Next_Formal (Old_Formal); |
| exit when No (Old_Formal); |
| |
| Set_Next_Entity (New_Formal, |
| New_Copy (Old_Formal)); |
| Next_Entity (New_Formal); |
| end loop; |
| |
| Set_Next_Entity (New_Formal, Empty); |
| Set_Last_Entity (Subp_Typ, Extra); |
| end if; |
| |
| -- Now that the explicit formals have been duplicated, |
| -- any extra formals needed by the subprogram must be |
| -- created. |
| |
| if Present (Extra) then |
| Set_Extra_Formal (Extra, Empty); |
| end if; |
| |
| Create_Extra_Formals (Subp_Typ); |
| Set_Directly_Designated_Type (Typ, Subp_Typ); |
| end; |
| end if; |
| end if; |
| |
| if Is_Access_Protected_Subprogram_Type (Btyp) then |
| Expand_Access_To_Protected_Op (N, Pref, Typ); |
| |
| -- If prefix is a type name, this is a reference to the current |
| -- instance of the type, within its initialization procedure. |
| |
| elsif Is_Entity_Name (Pref) |
| and then Is_Type (Entity (Pref)) |
| then |
| declare |
| Par : Node_Id; |
| Formal : Entity_Id; |
| |
| begin |
| -- If the current instance name denotes a task type, then |
| -- the access attribute is rewritten to be the name of the |
| -- "_task" parameter associated with the task type's task |
| -- procedure. An unchecked conversion is applied to ensure |
| -- a type match in cases of expander-generated calls (e.g. |
| -- init procs). |
| |
| if Is_Task_Type (Entity (Pref)) then |
| Formal := |
| First_Entity (Get_Task_Body_Procedure (Entity (Pref))); |
| while Present (Formal) loop |
| exit when Chars (Formal) = Name_uTask; |
| Next_Entity (Formal); |
| end loop; |
| |
| pragma Assert (Present (Formal)); |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Typ, |
| New_Occurrence_Of (Formal, Loc))); |
| Set_Etype (N, Typ); |
| |
| elsif Is_Protected_Type (Entity (Pref)) then |
| |
| -- No action needed for current instance located in a |
| -- component definition (expansion will occur in the |
| -- init proc) |
| |
| if Is_Protected_Type (Current_Scope) then |
| null; |
| |
| -- If the current instance reference is located in a |
| -- protected subprogram or entry then rewrite the access |
| -- attribute to be the name of the "_object" parameter. |
| -- An unchecked conversion is applied to ensure a type |
| -- match in cases of expander-generated calls (e.g. init |
| -- procs). |
| |
| -- The code may be nested in a block, so find enclosing |
| -- scope that is a protected operation. |
| |
| else |
| declare |
| Subp : Entity_Id; |
| |
| begin |
| Subp := Current_Scope; |
| while Ekind_In (Subp, E_Loop, E_Block) loop |
| Subp := Scope (Subp); |
| end loop; |
| |
| Formal := |
| First_Entity |
| (Protected_Body_Subprogram (Subp)); |
| |
| -- For a protected subprogram the _Object parameter |
| -- is the protected record, so we create an access |
| -- to it. The _Object parameter of an entry is an |
| -- address. |
| |
| if Ekind (Subp) = E_Entry then |
| Rewrite (N, |
| Unchecked_Convert_To (Typ, |
| New_Occurrence_Of (Formal, Loc))); |
| Set_Etype (N, Typ); |
| |
| else |
| Rewrite (N, |
| Unchecked_Convert_To (Typ, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Unrestricted_Access, |
| Prefix => |
| New_Occurrence_Of (Formal, Loc)))); |
| Analyze_And_Resolve (N); |
| end if; |
| end; |
| end if; |
| |
| -- The expression must appear in a default expression, |
| -- (which in the initialization procedure is the right-hand |
| -- side of an assignment), and not in a discriminant |
| -- constraint. |
| |
| else |
| Par := Parent (N); |
| while Present (Par) loop |
| exit when Nkind (Par) = N_Assignment_Statement; |
| |
| if Nkind (Par) = N_Component_Declaration then |
| return; |
| end if; |
| |
| Par := Parent (Par); |
| end loop; |
| |
| if Present (Par) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => Make_Identifier (Loc, Name_uInit), |
| Attribute_Name => Attribute_Name (N))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end if; |
| end; |
| |
| -- If the prefix of an Access attribute is a dereference of an |
| -- access parameter (or a renaming of such a dereference, or a |
| -- subcomponent of such a dereference) and the context is a |
| -- general access type (including the type of an object or |
| -- component with an access_definition, but not the anonymous |
| -- type of an access parameter or access discriminant), then |
| -- apply an accessibility check to the access parameter. We used |
| -- to rewrite the access parameter as a type conversion, but that |
| -- could only be done if the immediate prefix of the Access |
| -- attribute was the dereference, and didn't handle cases where |
| -- the attribute is applied to a subcomponent of the dereference, |
| -- since there's generally no available, appropriate access type |
| -- to convert to in that case. The attribute is passed as the |
| -- point to insert the check, because the access parameter may |
| -- come from a renaming, possibly in a different scope, and the |
| -- check must be associated with the attribute itself. |
| |
| elsif Id = Attribute_Access |
| and then Nkind (Enc_Object) = N_Explicit_Dereference |
| and then Is_Entity_Name (Prefix (Enc_Object)) |
| and then (Ekind (Btyp) = E_General_Access_Type |
| or else Is_Local_Anonymous_Access (Btyp)) |
| and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind |
| and then Ekind (Etype (Entity (Prefix (Enc_Object)))) |
| = E_Anonymous_Access_Type |
| and then Present (Extra_Accessibility |
| (Entity (Prefix (Enc_Object)))) |
| then |
| Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N); |
| |
| -- Ada 2005 (AI-251): If the designated type is an interface we |
| -- add an implicit conversion to force the displacement of the |
| -- pointer to reference the secondary dispatch table. |
| |
| elsif Is_Interface (Btyp_DDT) |
| and then (Comes_From_Source (N) |
| or else Comes_From_Source (Ref_Object) |
| or else (Nkind (Ref_Object) in N_Has_Chars |
| and then Chars (Ref_Object) = Name_uInit)) |
| then |
| if Nkind (Ref_Object) /= N_Explicit_Dereference then |
| |
| -- No implicit conversion required if types match, or if |
| -- the prefix is the class_wide_type of the interface. In |
| -- either case passing an object of the interface type has |
| -- already set the pointer correctly. |
| |
| if Btyp_DDT = Etype (Ref_Object) |
| or else (Is_Class_Wide_Type (Etype (Ref_Object)) |
| and then |
| Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object)) |
| then |
| null; |
| |
| else |
| Rewrite (Prefix (N), |
| Convert_To (Btyp_DDT, |
| New_Copy_Tree (Prefix (N)))); |
| |
| Analyze_And_Resolve (Prefix (N), Btyp_DDT); |
| end if; |
| |
| -- When the object is an explicit dereference, convert the |
| -- dereference's prefix. |
| |
| else |
| declare |
| Obj_DDT : constant Entity_Id := |
| Base_Type |
| (Directly_Designated_Type |
| (Etype (Prefix (Ref_Object)))); |
| begin |
| -- No implicit conversion required if designated types |
| -- match, or if we have an unrestricted access. |
| |
| if Obj_DDT /= Btyp_DDT |
| and then Id /= Attribute_Unrestricted_Access |
| and then not (Is_Class_Wide_Type (Obj_DDT) |
| and then Etype (Obj_DDT) = Btyp_DDT) |
| then |
| Rewrite (N, |
| Convert_To (Typ, |
| New_Copy_Tree (Prefix (Ref_Object)))); |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end; |
| end if; |
| end if; |
| end Access_Cases; |
| |
| -------------- |
| -- Adjacent -- |
| -------------- |
| |
| -- Transforms 'Adjacent into a call to the floating-point attribute |
| -- function Adjacent in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Adjacent => |
| Expand_Fpt_Attribute_RR (N); |
| |
| ------------- |
| -- Address -- |
| ------------- |
| |
| when Attribute_Address => Address : declare |
| Task_Proc : Entity_Id; |
| |
| begin |
| -- If the prefix is a task or a task type, the useful address is that |
| -- of the procedure for the task body, i.e. the actual program unit. |
| -- We replace the original entity with that of the procedure. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Task_Type (Entity (Pref)) |
| then |
| Task_Proc := Next_Entity (Root_Type (Ptyp)); |
| |
| while Present (Task_Proc) loop |
| exit when Ekind (Task_Proc) = E_Procedure |
| and then Etype (First_Formal (Task_Proc)) = |
| Corresponding_Record_Type (Ptyp); |
| Next_Entity (Task_Proc); |
| end loop; |
| |
| if Present (Task_Proc) then |
| Set_Entity (Pref, Task_Proc); |
| Set_Etype (Pref, Etype (Task_Proc)); |
| end if; |
| |
| -- Similarly, the address of a protected operation is the address |
| -- of the corresponding protected body, regardless of the protected |
| -- object from which it is selected. |
| |
| elsif Nkind (Pref) = N_Selected_Component |
| and then Is_Subprogram (Entity (Selector_Name (Pref))) |
| and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref)))) |
| then |
| Rewrite (Pref, |
| New_Occurrence_Of ( |
| External_Subprogram (Entity (Selector_Name (Pref))), Loc)); |
| |
| elsif Nkind (Pref) = N_Explicit_Dereference |
| and then Ekind (Ptyp) = E_Subprogram_Type |
| and then Convention (Ptyp) = Convention_Protected |
| then |
| -- The prefix is be a dereference of an access_to_protected_ |
| -- subprogram. The desired address is the second component of |
| -- the record that represents the access. |
| |
| declare |
| Addr : constant Entity_Id := Etype (N); |
| Ptr : constant Node_Id := Prefix (Pref); |
| T : constant Entity_Id := |
| Equivalent_Type (Base_Type (Etype (Ptr))); |
| |
| begin |
| Rewrite (N, |
| Unchecked_Convert_To (Addr, |
| Make_Selected_Component (Loc, |
| Prefix => Unchecked_Convert_To (T, Ptr), |
| Selector_Name => New_Occurrence_Of ( |
| Next_Entity (First_Entity (T)), Loc)))); |
| |
| Analyze_And_Resolve (N, Addr); |
| end; |
| |
| -- Ada 2005 (AI-251): Class-wide interface objects are always |
| -- "displaced" to reference the tag associated with the interface |
| -- type. In order to obtain the real address of such objects we |
| -- generate a call to a run-time subprogram that returns the base |
| -- address of the object. |
| |
| -- This processing is not needed in the VM case, where dispatching |
| -- issues are taken care of by the virtual machine. |
| |
| elsif Is_Class_Wide_Type (Ptyp) |
| and then Is_Interface (Ptyp) |
| and then Tagged_Type_Expansion |
| and then not (Nkind (Pref) in N_Has_Entity |
| and then Is_Subprogram (Entity (Pref))) |
| then |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Base_Address), Loc), |
| Parameter_Associations => New_List ( |
| Relocate_Node (N)))); |
| Analyze (N); |
| return; |
| end if; |
| |
| -- Deal with packed array reference, other cases are handled by |
| -- the back end. |
| |
| if Involves_Packed_Array_Reference (Pref) then |
| Expand_Packed_Address_Reference (N); |
| end if; |
| end Address; |
| |
| --------------- |
| -- Alignment -- |
| --------------- |
| |
| when Attribute_Alignment => Alignment : declare |
| New_Node : Node_Id; |
| |
| begin |
| -- For class-wide types, X'Class'Alignment is transformed into a |
| -- direct reference to the Alignment of the class type, so that the |
| -- back end does not have to deal with the X'Class'Alignment |
| -- reference. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Class_Wide_Type (Entity (Pref)) |
| then |
| Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc)); |
| return; |
| |
| -- For x'Alignment applied to an object of a class wide type, |
| -- transform X'Alignment into a call to the predefined primitive |
| -- operation _Alignment applied to X. |
| |
| elsif Is_Class_Wide_Type (Ptyp) then |
| New_Node := |
| Make_Attribute_Reference (Loc, |
| Prefix => Pref, |
| Attribute_Name => Name_Tag); |
| |
| if VM_Target = No_VM then |
| New_Node := Build_Get_Alignment (Loc, New_Node); |
| else |
| New_Node := |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Get_Alignment), Loc), |
| Parameter_Associations => New_List (New_Node)); |
| end if; |
| |
| -- Case where the context is a specific integer type with which |
| -- the original attribute was compatible. The function has a |
| -- specific type as well, so to preserve the compatibility we |
| -- must convert explicitly. |
| |
| if Typ /= Standard_Integer then |
| New_Node := Convert_To (Typ, New_Node); |
| end if; |
| |
| Rewrite (N, New_Node); |
| Analyze_And_Resolve (N, Typ); |
| return; |
| |
| -- For all other cases, we just have to deal with the case of |
| -- the fact that the result can be universal. |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Alignment; |
| |
| --------- |
| -- Bit -- |
| --------- |
| |
| -- We compute this if a packed array reference was present, otherwise we |
| -- leave the computation up to the back end. |
| |
| when Attribute_Bit => |
| if Involves_Packed_Array_Reference (Pref) then |
| Expand_Packed_Bit_Reference (N); |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| |
| ------------------ |
| -- Bit_Position -- |
| ------------------ |
| |
| -- We compute this if a component clause was present, otherwise we leave |
| -- the computation up to the back end, since we don't know what layout |
| -- will be chosen. |
| |
| -- Note that the attribute can apply to a naked record component |
| -- in generated code (i.e. the prefix is an identifier that |
| -- references the component or discriminant entity). |
| |
| when Attribute_Bit_Position => Bit_Position : declare |
| CE : Entity_Id; |
| |
| begin |
| if Nkind (Pref) = N_Identifier then |
| CE := Entity (Pref); |
| else |
| CE := Entity (Selector_Name (Pref)); |
| end if; |
| |
| if Known_Static_Component_Bit_Offset (CE) then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => Component_Bit_Offset (CE))); |
| Analyze_And_Resolve (N, Typ); |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Bit_Position; |
| |
| ------------------ |
| -- Body_Version -- |
| ------------------ |
| |
| -- A reference to P'Body_Version or P'Version is expanded to |
| |
| -- Vnn : Unsigned; |
| -- pragma Import (C, Vnn, "uuuuT"); |
| -- ... |
| -- Get_Version_String (Vnn) |
| |
| -- where uuuu is the unit name (dots replaced by double underscore) |
| -- and T is B for the cases of Body_Version, or Version applied to a |
| -- subprogram acting as its own spec, and S for Version applied to a |
| -- subprogram spec or package. This sequence of code references the |
| -- unsigned constant created in the main program by the binder. |
| |
| -- A special exception occurs for Standard, where the string returned |
| -- is a copy of the library string in gnatvsn.ads. |
| |
| when Attribute_Body_Version | Attribute_Version => Version : declare |
| E : constant Entity_Id := Make_Temporary (Loc, 'V'); |
| Pent : Entity_Id; |
| S : String_Id; |
| |
| begin |
| -- If not library unit, get to containing library unit |
| |
| Pent := Entity (Pref); |
| while Pent /= Standard_Standard |
| and then Scope (Pent) /= Standard_Standard |
| and then not Is_Child_Unit (Pent) |
| loop |
| Pent := Scope (Pent); |
| end loop; |
| |
| -- Special case Standard and Standard.ASCII |
| |
| if Pent = Standard_Standard or else Pent = Standard_ASCII then |
| Rewrite (N, |
| Make_String_Literal (Loc, |
| Strval => Verbose_Library_Version)); |
| |
| -- All other cases |
| |
| else |
| -- Build required string constant |
| |
| Get_Name_String (Get_Unit_Name (Pent)); |
| |
| Start_String; |
| for J in 1 .. Name_Len - 2 loop |
| if Name_Buffer (J) = '.' then |
| Store_String_Chars ("__"); |
| else |
| Store_String_Char (Get_Char_Code (Name_Buffer (J))); |
| end if; |
| end loop; |
| |
| -- Case of subprogram acting as its own spec, always use body |
| |
| if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification |
| and then Nkind (Parent (Declaration_Node (Pent))) = |
| N_Subprogram_Body |
| and then Acts_As_Spec (Parent (Declaration_Node (Pent))) |
| then |
| Store_String_Chars ("B"); |
| |
| -- Case of no body present, always use spec |
| |
| elsif not Unit_Requires_Body (Pent) then |
| Store_String_Chars ("S"); |
| |
| -- Otherwise use B for Body_Version, S for spec |
| |
| elsif Id = Attribute_Body_Version then |
| Store_String_Chars ("B"); |
| else |
| Store_String_Chars ("S"); |
| end if; |
| |
| S := End_String; |
| Lib.Version_Referenced (S); |
| |
| -- Insert the object declaration |
| |
| Insert_Actions (N, New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => E, |
| Object_Definition => |
| New_Occurrence_Of (RTE (RE_Unsigned), Loc)))); |
| |
| -- Set entity as imported with correct external name |
| |
| Set_Is_Imported (E); |
| Set_Interface_Name (E, Make_String_Literal (Loc, S)); |
| |
| -- Set entity as internal to ensure proper Sprint output of its |
| -- implicit importation. |
| |
| Set_Is_Internal (E); |
| |
| -- And now rewrite original reference |
| |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Get_Version_String), Loc), |
| Parameter_Associations => New_List ( |
| New_Occurrence_Of (E, Loc)))); |
| end if; |
| |
| Analyze_And_Resolve (N, RTE (RE_Version_String)); |
| end Version; |
| |
| ------------- |
| -- Ceiling -- |
| ------------- |
| |
| -- Transforms 'Ceiling into a call to the floating-point attribute |
| -- function Ceiling in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Ceiling => |
| Expand_Fpt_Attribute_R (N); |
| |
| -------------- |
| -- Callable -- |
| -------------- |
| |
| -- Transforms 'Callable attribute into a call to the Callable function |
| |
| when Attribute_Callable => Callable : |
| begin |
| -- We have an object of a task interface class-wide type as a prefix |
| -- to Callable. Generate: |
| -- callable (Task_Id (Pref._disp_get_task_id)); |
| |
| if Ada_Version >= Ada_2005 |
| and then Ekind (Ptyp) = E_Class_Wide_Type |
| and then Is_Interface (Ptyp) |
| and then Is_Task_Interface (Ptyp) |
| then |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_Callable), Loc), |
| Parameter_Associations => New_List ( |
| Make_Unchecked_Type_Conversion (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc), |
| Expression => |
| Make_Selected_Component (Loc, |
| Prefix => |
| New_Copy_Tree (Pref), |
| Selector_Name => |
| Make_Identifier (Loc, Name_uDisp_Get_Task_Id)))))); |
| |
| else |
| Rewrite (N, |
| Build_Call_With_Task (Pref, RTE (RE_Callable))); |
| end if; |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Callable; |
| |
| ------------ |
| -- Caller -- |
| ------------ |
| |
| -- Transforms 'Caller attribute into a call to either the |
| -- Task_Entry_Caller or the Protected_Entry_Caller function. |
| |
| when Attribute_Caller => Caller : declare |
| Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id); |
| Ent : constant Entity_Id := Entity (Pref); |
| Conctype : constant Entity_Id := Scope (Ent); |
| Nest_Depth : Integer := 0; |
| Name : Node_Id; |
| S : Entity_Id; |
| |
| begin |
| -- Protected case |
| |
| if Is_Protected_Type (Conctype) then |
| case Corresponding_Runtime_Package (Conctype) is |
| when System_Tasking_Protected_Objects_Entries => |
| Name := |
| New_Occurrence_Of |
| (RTE (RE_Protected_Entry_Caller), Loc); |
| |
| when System_Tasking_Protected_Objects_Single_Entry => |
| Name := |
| New_Occurrence_Of |
| (RTE (RE_Protected_Single_Entry_Caller), Loc); |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, |
| Make_Function_Call (Loc, |
| Name => Name, |
| Parameter_Associations => New_List ( |
| New_Occurrence_Of |
| (Find_Protection_Object (Current_Scope), Loc))))); |
| |
| -- Task case |
| |
| else |
| -- Determine the nesting depth of the E'Caller attribute, that |
| -- is, how many accept statements are nested within the accept |
| -- statement for E at the point of E'Caller. The runtime uses |
| -- this depth to find the specified entry call. |
| |
| for J in reverse 0 .. Scope_Stack.Last loop |
| S := Scope_Stack.Table (J).Entity; |
| |
| -- We should not reach the scope of the entry, as it should |
| -- already have been checked in Sem_Attr that this attribute |
| -- reference is within a matching accept statement. |
| |
| pragma Assert (S /= Conctype); |
| |
| if S = Ent then |
| exit; |
| |
| elsif Is_Entry (S) then |
| Nest_Depth := Nest_Depth + 1; |
| end if; |
| end loop; |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_Task_Entry_Caller), Loc), |
| Parameter_Associations => New_List ( |
| Make_Integer_Literal (Loc, |
| Intval => Int (Nest_Depth)))))); |
| end if; |
| |
| Analyze_And_Resolve (N, Id_Kind); |
| end Caller; |
| |
| ------------- |
| -- Compose -- |
| ------------- |
| |
| -- Transforms 'Compose into a call to the floating-point attribute |
| -- function Compose in Fat_xxx (where xxx is the root type) |
| |
| -- Note: we strictly should have special code here to deal with the |
| -- case of absurdly negative arguments (less than Integer'First) |
| -- which will return a (signed) zero value, but it hardly seems |
| -- worth the effort. Absurdly large positive arguments will raise |
| -- constraint error which is fine. |
| |
| when Attribute_Compose => |
| Expand_Fpt_Attribute_RI (N); |
| |
| ----------------- |
| -- Constrained -- |
| ----------------- |
| |
| when Attribute_Constrained => Constrained : declare |
| Formal_Ent : constant Entity_Id := Param_Entity (Pref); |
| |
| function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean; |
| -- Ada 2005 (AI-363): Returns True if the object name Obj denotes a |
| -- view of an aliased object whose subtype is constrained. |
| |
| --------------------------------- |
| -- Is_Constrained_Aliased_View -- |
| --------------------------------- |
| |
| function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is |
| E : Entity_Id; |
| |
| begin |
| if Is_Entity_Name (Obj) then |
| E := Entity (Obj); |
| |
| if Present (Renamed_Object (E)) then |
| return Is_Constrained_Aliased_View (Renamed_Object (E)); |
| else |
| return Is_Aliased (E) and then Is_Constrained (Etype (E)); |
| end if; |
| |
| else |
| return Is_Aliased_View (Obj) |
| and then |
| (Is_Constrained (Etype (Obj)) |
| or else |
| (Nkind (Obj) = N_Explicit_Dereference |
| and then |
| not Object_Type_Has_Constrained_Partial_View |
| (Typ => Base_Type (Etype (Obj)), |
| Scop => Current_Scope))); |
| end if; |
| end Is_Constrained_Aliased_View; |
| |
| -- Start of processing for Constrained |
| |
| begin |
| -- Reference to a parameter where the value is passed as an extra |
| -- actual, corresponding to the extra formal referenced by the |
| -- Extra_Constrained field of the corresponding formal. If this |
| -- is an entry in-parameter, it is replaced by a constant renaming |
| -- for which Extra_Constrained is never created. |
| |
| if Present (Formal_Ent) |
| and then Ekind (Formal_Ent) /= E_Constant |
| and then Present (Extra_Constrained (Formal_Ent)) |
| then |
| Rewrite (N, |
| New_Occurrence_Of |
| (Extra_Constrained (Formal_Ent), Sloc (N))); |
| |
| -- For variables with a Extra_Constrained field, we use the |
| -- corresponding entity. |
| |
| elsif Nkind (Pref) = N_Identifier |
| and then Ekind (Entity (Pref)) = E_Variable |
| and then Present (Extra_Constrained (Entity (Pref))) |
| then |
| Rewrite (N, |
| New_Occurrence_Of |
| (Extra_Constrained (Entity (Pref)), Sloc (N))); |
| |
| -- For all other entity names, we can tell at compile time |
| |
| elsif Is_Entity_Name (Pref) then |
| declare |
| Ent : constant Entity_Id := Entity (Pref); |
| Res : Boolean; |
| |
| begin |
| -- (RM J.4) obsolescent cases |
| |
| if Is_Type (Ent) then |
| |
| -- Private type |
| |
| if Is_Private_Type (Ent) then |
| Res := not Has_Discriminants (Ent) |
| or else Is_Constrained (Ent); |
| |
| -- It not a private type, must be a generic actual type |
| -- that corresponded to a private type. We know that this |
| -- correspondence holds, since otherwise the reference |
| -- within the generic template would have been illegal. |
| |
| else |
| if Is_Composite_Type (Underlying_Type (Ent)) then |
| Res := Is_Constrained (Ent); |
| else |
| Res := True; |
| end if; |
| end if; |
| |
| -- If the prefix is not a variable or is aliased, then |
| -- definitely true; if it's a formal parameter without an |
| -- associated extra formal, then treat it as constrained. |
| |
| -- Ada 2005 (AI-363): An aliased prefix must be known to be |
| -- constrained in order to set the attribute to True. |
| |
| elsif not Is_Variable (Pref) |
| or else Present (Formal_Ent) |
| or else (Ada_Version < Ada_2005 |
| and then Is_Aliased_View (Pref)) |
| or else (Ada_Version >= Ada_2005 |
| and then Is_Constrained_Aliased_View (Pref)) |
| then |
| Res := True; |
| |
| -- Variable case, look at type to see if it is constrained. |
| -- Note that the one case where this is not accurate (the |
| -- procedure formal case), has been handled above. |
| |
| -- We use the Underlying_Type here (and below) in case the |
| -- type is private without discriminants, but the full type |
| -- has discriminants. This case is illegal, but we generate it |
| -- internally for passing to the Extra_Constrained parameter. |
| |
| else |
| -- In Ada 2012, test for case of a limited tagged type, in |
| -- which case the attribute is always required to return |
| -- True. The underlying type is tested, to make sure we also |
| -- return True for cases where there is an unconstrained |
| -- object with an untagged limited partial view which has |
| -- defaulted discriminants (such objects always produce a |
| -- False in earlier versions of Ada). (Ada 2012: AI05-0214) |
| |
| Res := Is_Constrained (Underlying_Type (Etype (Ent))) |
| or else |
| (Ada_Version >= Ada_2012 |
| and then Is_Tagged_Type (Underlying_Type (Ptyp)) |
| and then Is_Limited_Type (Ptyp)); |
| end if; |
| |
| Rewrite (N, New_Occurrence_Of (Boolean_Literals (Res), Loc)); |
| end; |
| |
| -- Prefix is not an entity name. These are also cases where we can |
| -- always tell at compile time by looking at the form and type of the |
| -- prefix. If an explicit dereference of an object with constrained |
| -- partial view, this is unconstrained (Ada 2005: AI95-0363). If the |
| -- underlying type is a limited tagged type, then Constrained is |
| -- required to always return True (Ada 2012: AI05-0214). |
| |
| else |
| Rewrite (N, |
| New_Occurrence_Of ( |
| Boolean_Literals ( |
| not Is_Variable (Pref) |
| or else |
| (Nkind (Pref) = N_Explicit_Dereference |
| and then |
| not Object_Type_Has_Constrained_Partial_View |
| (Typ => Base_Type (Ptyp), |
| Scop => Current_Scope)) |
| or else Is_Constrained (Underlying_Type (Ptyp)) |
| or else (Ada_Version >= Ada_2012 |
| and then Is_Tagged_Type (Underlying_Type (Ptyp)) |
| and then Is_Limited_Type (Ptyp))), |
| Loc)); |
| end if; |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Constrained; |
| |
| --------------- |
| -- Copy_Sign -- |
| --------------- |
| |
| -- Transforms 'Copy_Sign into a call to the floating-point attribute |
| -- function Copy_Sign in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Copy_Sign => |
| Expand_Fpt_Attribute_RR (N); |
| |
| ----------- |
| -- Count -- |
| ----------- |
| |
| -- Transforms 'Count attribute into a call to the Count function |
| |
| when Attribute_Count => Count : declare |
| Call : Node_Id; |
| Conctyp : Entity_Id; |
| Entnam : Node_Id; |
| Entry_Id : Entity_Id; |
| Index : Node_Id; |
| Name : Node_Id; |
| |
| begin |
| -- If the prefix is a member of an entry family, retrieve both |
| -- entry name and index. For a simple entry there is no index. |
| |
| if Nkind (Pref) = N_Indexed_Component then |
| Entnam := Prefix (Pref); |
| Index := First (Expressions (Pref)); |
| else |
| Entnam := Pref; |
| Index := Empty; |
| end if; |
| |
| Entry_Id := Entity (Entnam); |
| |
| -- Find the concurrent type in which this attribute is referenced |
| -- (there had better be one). |
| |
| Conctyp := Current_Scope; |
| while not Is_Concurrent_Type (Conctyp) loop |
| Conctyp := Scope (Conctyp); |
| end loop; |
| |
| -- Protected case |
| |
| if Is_Protected_Type (Conctyp) then |
| case Corresponding_Runtime_Package (Conctyp) is |
| when System_Tasking_Protected_Objects_Entries => |
| Name := New_Occurrence_Of (RTE (RE_Protected_Count), Loc); |
| |
| Call := |
| Make_Function_Call (Loc, |
| Name => Name, |
| Parameter_Associations => New_List ( |
| New_Occurrence_Of |
| (Find_Protection_Object (Current_Scope), Loc), |
| Entry_Index_Expression |
| (Loc, Entry_Id, Index, Scope (Entry_Id)))); |
| |
| when System_Tasking_Protected_Objects_Single_Entry => |
| Name := |
| New_Occurrence_Of (RTE (RE_Protected_Count_Entry), Loc); |
| |
| Call := |
| Make_Function_Call (Loc, |
| Name => Name, |
| Parameter_Associations => New_List ( |
| New_Occurrence_Of |
| (Find_Protection_Object (Current_Scope), Loc))); |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| -- Task case |
| |
| else |
| Call := |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Task_Count), Loc), |
| Parameter_Associations => New_List ( |
| Entry_Index_Expression (Loc, |
| Entry_Id, Index, Scope (Entry_Id)))); |
| end if; |
| |
| -- The call returns type Natural but the context is universal integer |
| -- so any integer type is allowed. The attribute was already resolved |
| -- so its Etype is the required result type. If the base type of the |
| -- context type is other than Standard.Integer we put in a conversion |
| -- to the required type. This can be a normal typed conversion since |
| -- both input and output types of the conversion are integer types |
| |
| if Base_Type (Typ) /= Base_Type (Standard_Integer) then |
| Rewrite (N, Convert_To (Typ, Call)); |
| else |
| Rewrite (N, Call); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| end Count; |
| |
| --------------------- |
| -- Descriptor_Size -- |
| --------------------- |
| |
| when Attribute_Descriptor_Size => |
| |
| -- Attribute Descriptor_Size is handled by the back end when applied |
| -- to an unconstrained array type. |
| |
| if Is_Array_Type (Ptyp) |
| and then not Is_Constrained (Ptyp) |
| then |
| Apply_Universal_Integer_Attribute_Checks (N); |
| |
| -- For any other type, the descriptor size is 0 because there is no |
| -- actual descriptor, but the result is not formally static. |
| |
| else |
| Rewrite (N, Make_Integer_Literal (Loc, 0)); |
| Analyze (N); |
| Set_Is_Static_Expression (N, False); |
| end if; |
| |
| --------------- |
| -- Elab_Body -- |
| --------------- |
| |
| -- This processing is shared by Elab_Spec |
| |
| -- What we do is to insert the following declarations |
| |
| -- procedure tnn; |
| -- pragma Import (C, enn, "name___elabb/s"); |
| |
| -- and then the Elab_Body/Spec attribute is replaced by a reference |
| -- to this defining identifier. |
| |
| when Attribute_Elab_Body | |
| Attribute_Elab_Spec => |
| |
| -- Leave attribute unexpanded in CodePeer mode: the gnat2scil |
| -- back-end knows how to handle these attributes directly. |
| |
| if CodePeer_Mode then |
| return; |
| end if; |
| |
| Elab_Body : declare |
| Ent : constant Entity_Id := Make_Temporary (Loc, 'E'); |
| Str : String_Id; |
| Lang : Node_Id; |
| |
| procedure Make_Elab_String (Nod : Node_Id); |
| -- Given Nod, an identifier, or a selected component, put the |
| -- image into the current string literal, with double underline |
| -- between components. |
| |
| ---------------------- |
| -- Make_Elab_String -- |
| ---------------------- |
| |
| procedure Make_Elab_String (Nod : Node_Id) is |
| begin |
| if Nkind (Nod) = N_Selected_Component then |
| Make_Elab_String (Prefix (Nod)); |
| |
| case VM_Target is |
| when JVM_Target => |
| Store_String_Char ('$'); |
| when CLI_Target => |
| Store_String_Char ('.'); |
| when No_VM => |
| Store_String_Char ('_'); |
| Store_String_Char ('_'); |
| end case; |
| |
| Get_Name_String (Chars (Selector_Name (Nod))); |
| |
| else |
| pragma Assert (Nkind (Nod) = N_Identifier); |
| Get_Name_String (Chars (Nod)); |
| end if; |
| |
| Store_String_Chars (Name_Buffer (1 .. Name_Len)); |
| end Make_Elab_String; |
| |
| -- Start of processing for Elab_Body/Elab_Spec |
| |
| begin |
| -- First we need to prepare the string literal for the name of |
| -- the elaboration routine to be referenced. |
| |
| Start_String; |
| Make_Elab_String (Pref); |
| |
| if VM_Target = No_VM then |
| Store_String_Chars ("___elab"); |
| Lang := Make_Identifier (Loc, Name_C); |
| else |
| Store_String_Chars ("._elab"); |
| Lang := Make_Identifier (Loc, Name_Ada); |
| end if; |
| |
| if Id = Attribute_Elab_Body then |
| Store_String_Char ('b'); |
| else |
| Store_String_Char ('s'); |
| end if; |
| |
| Str := End_String; |
| |
| Insert_Actions (N, New_List ( |
| Make_Subprogram_Declaration (Loc, |
| Specification => |
| Make_Procedure_Specification (Loc, |
| Defining_Unit_Name => Ent)), |
| |
| Make_Pragma (Loc, |
| Chars => Name_Import, |
| Pragma_Argument_Associations => New_List ( |
| Make_Pragma_Argument_Association (Loc, Expression => Lang), |
| |
| Make_Pragma_Argument_Association (Loc, |
| Expression => Make_Identifier (Loc, Chars (Ent))), |
| |
| Make_Pragma_Argument_Association (Loc, |
| Expression => Make_String_Literal (Loc, Str)))))); |
| |
| Set_Entity (N, Ent); |
| Rewrite (N, New_Occurrence_Of (Ent, Loc)); |
| end Elab_Body; |
| |
| -------------------- |
| -- Elab_Subp_Body -- |
| -------------------- |
| |
| -- Always ignored. In CodePeer mode, gnat2scil knows how to handle |
| -- this attribute directly, and if we are not in CodePeer mode it is |
| -- entirely ignored ??? |
| |
| when Attribute_Elab_Subp_Body => |
| return; |
| |
| ---------------- |
| -- Elaborated -- |
| ---------------- |
| |
| -- Elaborated is always True for preelaborated units, predefined units, |
| -- pure units and units which have Elaborate_Body pragmas. These units |
| -- have no elaboration entity. |
| |
| -- Note: The Elaborated attribute is never passed to the back end |
| |
| when Attribute_Elaborated => Elaborated : declare |
| Ent : constant Entity_Id := Entity (Pref); |
| |
| begin |
| if Present (Elaboration_Entity (Ent)) then |
| Rewrite (N, |
| Make_Op_Ne (Loc, |
| Left_Opnd => |
| New_Occurrence_Of (Elaboration_Entity (Ent), Loc), |
| Right_Opnd => |
| Make_Integer_Literal (Loc, Uint_0))); |
| Analyze_And_Resolve (N, Typ); |
| else |
| Rewrite (N, New_Occurrence_Of (Standard_True, Loc)); |
| end if; |
| end Elaborated; |
| |
| -------------- |
| -- Enum_Rep -- |
| -------------- |
| |
| when Attribute_Enum_Rep => Enum_Rep : |
| begin |
| -- X'Enum_Rep (Y) expands to |
| |
| -- target-type (Y) |
| |
| -- This is simply a direct conversion from the enumeration type to |
| -- the target integer type, which is treated by the back end as a |
| -- normal integer conversion, treating the enumeration type as an |
| -- integer, which is exactly what we want. We set Conversion_OK to |
| -- make sure that the analyzer does not complain about what otherwise |
| -- might be an illegal conversion. |
| |
| if Is_Non_Empty_List (Exprs) then |
| Rewrite (N, |
| OK_Convert_To (Typ, Relocate_Node (First (Exprs)))); |
| |
| -- X'Enum_Rep where X is an enumeration literal is replaced by |
| -- the literal value. |
| |
| elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref)))); |
| |
| -- If this is a renaming of a literal, recover the representation |
| -- of the original. |
| |
| elsif Ekind (Entity (Pref)) = E_Constant |
| and then Present (Renamed_Object (Entity (Pref))) |
| and then |
| Ekind (Entity (Renamed_Object (Entity (Pref)))) |
| = E_Enumeration_Literal |
| then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Enumeration_Rep (Entity (Renamed_Object (Entity (Pref)))))); |
| |
| -- X'Enum_Rep where X is an object does a direct unchecked conversion |
| -- of the object value, as described for the type case above. |
| |
| else |
| Rewrite (N, |
| OK_Convert_To (Typ, Relocate_Node (Pref))); |
| end if; |
| |
| Set_Etype (N, Typ); |
| Analyze_And_Resolve (N, Typ); |
| end Enum_Rep; |
| |
| -------------- |
| -- Enum_Val -- |
| -------------- |
| |
| when Attribute_Enum_Val => Enum_Val : declare |
| Expr : Node_Id; |
| Btyp : constant Entity_Id := Base_Type (Ptyp); |
| |
| begin |
| -- X'Enum_Val (Y) expands to |
| |
| -- [constraint_error when _rep_to_pos (Y, False) = -1, msg] |
| -- X!(Y); |
| |
| Expr := Unchecked_Convert_To (Ptyp, First (Exprs)); |
| |
| Insert_Action (N, |
| Make_Raise_Constraint_Error (Loc, |
| Condition => |
| Make_Op_Eq (Loc, |
| Left_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc), |
| Parameter_Associations => New_List ( |
| Relocate_Node (Duplicate_Subexpr (Expr)), |
| New_Occurrence_Of (Standard_False, Loc))), |
| |
| Right_Opnd => Make_Integer_Literal (Loc, -1)), |
| Reason => CE_Range_Check_Failed)); |
| |
| Rewrite (N, Expr); |
| Analyze_And_Resolve (N, Ptyp); |
| end Enum_Val; |
| |
| -------------- |
| -- Exponent -- |
| -------------- |
| |
| -- Transforms 'Exponent into a call to the floating-point attribute |
| -- function Exponent in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Exponent => |
| Expand_Fpt_Attribute_R (N); |
| |
| ------------------ |
| -- External_Tag -- |
| ------------------ |
| |
| -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag) |
| |
| when Attribute_External_Tag => External_Tag : |
| begin |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_External_Tag), Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Tag, |
| Prefix => Prefix (N))))); |
| |
| Analyze_And_Resolve (N, Standard_String); |
| end External_Tag; |
| |
| ----------- |
| -- First -- |
| ----------- |
| |
| when Attribute_First => |
| |
| -- If the prefix type is a constrained packed array type which |
| -- already has a Packed_Array_Impl_Type representation defined, then |
| -- replace this attribute with a direct reference to 'First of the |
| -- appropriate index subtype (since otherwise the back end will try |
| -- to give us the value of 'First for this implementation type). |
| |
| if Is_Constrained_Packed_Array (Ptyp) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_First, |
| Prefix => |
| New_Occurrence_Of (Get_Index_Subtype (N), Loc))); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For access type, apply access check as needed |
| |
| elsif Is_Access_Type (Ptyp) then |
| Apply_Access_Check (N); |
| |
| -- For scalar type, if low bound is a reference to an entity, just |
| -- replace with a direct reference. Note that we can only have a |
| -- reference to a constant entity at this stage, anything else would |
| -- have already been rewritten. |
| |
| elsif Is_Scalar_Type (Ptyp) then |
| declare |
| Lo : constant Node_Id := Type_Low_Bound (Ptyp); |
| begin |
| if Is_Entity_Name (Lo) then |
| Rewrite (N, New_Occurrence_Of (Entity (Lo), Loc)); |
| end if; |
| end; |
| end if; |
| |
| --------------- |
| -- First_Bit -- |
| --------------- |
| |
| -- Compute this if component clause was present, otherwise we leave the |
| -- computation to be completed in the back-end, since we don't know what |
| -- layout will be chosen. |
| |
| when Attribute_First_Bit => First_Bit_Attr : declare |
| CE : constant Entity_Id := Entity (Selector_Name (Pref)); |
| |
| begin |
| -- In Ada 2005 (or later) if we have the non-default bit order, then |
| -- we return the original value as given in the component clause |
| -- (RM 2005 13.5.2(3/2)). |
| |
| if Present (Component_Clause (CE)) |
| and then Ada_Version >= Ada_2005 |
| and then Reverse_Bit_Order (Scope (CE)) |
| then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => Expr_Value (First_Bit (Component_Clause (CE))))); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order), |
| -- rewrite with normalized value if we know it statically. |
| |
| elsif Known_Static_Component_Bit_Offset (CE) then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Component_Bit_Offset (CE) mod System_Storage_Unit)); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- Otherwise left to back end, just do universal integer checks |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end First_Bit_Attr; |
| |
| ----------------- |
| -- Fixed_Value -- |
| ----------------- |
| |
| -- We transform: |
| |
| -- fixtype'Fixed_Value (integer-value) |
| |
| -- into |
| |
| -- fixtype(integer-value) |
| |
| -- We do all the required analysis of the conversion here, because we do |
| -- not want this to go through the fixed-point conversion circuits. Note |
| -- that the back end always treats fixed-point as equivalent to the |
| -- corresponding integer type anyway. |
| |
| when Attribute_Fixed_Value => Fixed_Value : |
| begin |
| Rewrite (N, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc), |
| Expression => Relocate_Node (First (Exprs)))); |
| Set_Etype (N, Entity (Pref)); |
| Set_Analyzed (N); |
| |
| -- Note: it might appear that a properly analyzed unchecked conversion |
| -- would be just fine here, but that's not the case, since the full |
| -- range checks performed by the following call are critical. |
| |
| Apply_Type_Conversion_Checks (N); |
| end Fixed_Value; |
| |
| ----------- |
| -- Floor -- |
| ----------- |
| |
| -- Transforms 'Floor into a call to the floating-point attribute |
| -- function Floor in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Floor => |
| Expand_Fpt_Attribute_R (N); |
| |
| ---------- |
| -- Fore -- |
| ---------- |
| |
| -- For the fixed-point type Typ: |
| |
| -- Typ'Fore |
| |
| -- expands into |
| |
| -- Result_Type (System.Fore (Universal_Real (Type'First)), |
| -- Universal_Real (Type'Last)) |
| |
| -- Note that we know that the type is a non-static subtype, or Fore |
| -- would have itself been computed dynamically in Eval_Attribute. |
| |
| when Attribute_Fore => Fore : begin |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Fore), Loc), |
| |
| Parameter_Associations => New_List ( |
| Convert_To (Universal_Real, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First)), |
| |
| Convert_To (Universal_Real, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last)))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Fore; |
| |
| -------------- |
| -- Fraction -- |
| -------------- |
| |
| -- Transforms 'Fraction into a call to the floating-point attribute |
| -- function Fraction in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Fraction => |
| Expand_Fpt_Attribute_R (N); |
| |
| -------------- |
| -- From_Any -- |
| -------------- |
| |
| when Attribute_From_Any => From_Any : declare |
| P_Type : constant Entity_Id := Etype (Pref); |
| Decls : constant List_Id := New_List; |
| begin |
| Rewrite (N, |
| Build_From_Any_Call (P_Type, |
| Relocate_Node (First (Exprs)), |
| Decls)); |
| Insert_Actions (N, Decls); |
| Analyze_And_Resolve (N, P_Type); |
| end From_Any; |
| |
| ---------------------- |
| -- Has_Same_Storage -- |
| ---------------------- |
| |
| when Attribute_Has_Same_Storage => Has_Same_Storage : declare |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| X : constant Node_Id := Prefix (N); |
| Y : constant Node_Id := First (Expressions (N)); |
| -- The arguments |
| |
| X_Addr, Y_Addr : Node_Id; |
| -- Rhe expressions for their addresses |
| |
| X_Size, Y_Size : Node_Id; |
| -- Rhe expressions for their sizes |
| |
| begin |
| -- The attribute is expanded as: |
| |
| -- (X'address = Y'address) |
| -- and then (X'Size = Y'Size) |
| |
| -- If both arguments have the same Etype the second conjunct can be |
| -- omitted. |
| |
| X_Addr := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Address, |
| Prefix => New_Copy_Tree (X)); |
| |
| Y_Addr := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Address, |
| Prefix => New_Copy_Tree (Y)); |
| |
| X_Size := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Size, |
| Prefix => New_Copy_Tree (X)); |
| |
| Y_Size := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Size, |
| Prefix => New_Copy_Tree (Y)); |
| |
| if Etype (X) = Etype (Y) then |
| Rewrite (N, |
| (Make_Op_Eq (Loc, |
| Left_Opnd => X_Addr, |
| Right_Opnd => Y_Addr))); |
| else |
| Rewrite (N, |
| Make_Op_And (Loc, |
| Left_Opnd => |
| Make_Op_Eq (Loc, |
| Left_Opnd => X_Addr, |
| Right_Opnd => Y_Addr), |
| Right_Opnd => |
| Make_Op_Eq (Loc, |
| Left_Opnd => X_Size, |
| Right_Opnd => Y_Size))); |
| end if; |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Has_Same_Storage; |
| |
| -------------- |
| -- Identity -- |
| -------------- |
| |
| -- For an exception returns a reference to the exception data: |
| -- Exception_Id!(Prefix'Reference) |
| |
| -- For a task it returns a reference to the _task_id component of |
| -- corresponding record: |
| |
| -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined |
| |
| -- in Ada.Task_Identification |
| |
| when Attribute_Identity => Identity : declare |
| Id_Kind : Entity_Id; |
| |
| begin |
| if Ptyp = Standard_Exception_Type then |
| Id_Kind := RTE (RE_Exception_Id); |
| |
| if Present (Renamed_Object (Entity (Pref))) then |
| Set_Entity (Pref, Renamed_Object (Entity (Pref))); |
| end if; |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref))); |
| else |
| Id_Kind := RTE (RO_AT_Task_Id); |
| |
| -- If the prefix is a task interface, the Task_Id is obtained |
| -- dynamically through a dispatching call, as for other task |
| -- attributes applied to interfaces. |
| |
| if Ada_Version >= Ada_2005 |
| and then Ekind (Ptyp) = E_Class_Wide_Type |
| and then Is_Interface (Ptyp) |
| and then Is_Task_Interface (Ptyp) |
| then |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, |
| Make_Selected_Component (Loc, |
| Prefix => |
| New_Copy_Tree (Pref), |
| Selector_Name => |
| Make_Identifier (Loc, Name_uDisp_Get_Task_Id)))); |
| |
| else |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref))); |
| end if; |
| end if; |
| |
| Analyze_And_Resolve (N, Id_Kind); |
| end Identity; |
| |
| ----------- |
| -- Image -- |
| ----------- |
| |
| -- Image attribute is handled in separate unit Exp_Imgv |
| |
| when Attribute_Image => |
| Exp_Imgv.Expand_Image_Attribute (N); |
| |
| --------- |
| -- Img -- |
| --------- |
| |
| -- X'Img is expanded to typ'Image (X), where typ is the type of X |
| |
| when Attribute_Img => Img : |
| begin |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Image, |
| Expressions => New_List (Relocate_Node (Pref)))); |
| |
| Analyze_And_Resolve (N, Standard_String); |
| end Img; |
| |
| ----------- |
| -- Input -- |
| ----------- |
| |
| when Attribute_Input => Input : declare |
| P_Type : constant Entity_Id := Entity (Pref); |
| B_Type : constant Entity_Id := Base_Type (P_Type); |
| U_Type : constant Entity_Id := Underlying_Type (P_Type); |
| Strm : constant Node_Id := First (Exprs); |
| Fname : Entity_Id; |
| Decl : Node_Id; |
| Call : Node_Id; |
| Prag : Node_Id; |
| Arg2 : Node_Id; |
| Rfunc : Node_Id; |
| |
| Cntrl : Node_Id := Empty; |
| -- Value for controlling argument in call. Always Empty except in |
| -- the dispatching (class-wide type) case, where it is a reference |
| -- to the dummy object initialized to the right internal tag. |
| |
| procedure Freeze_Stream_Subprogram (F : Entity_Id); |
| -- The expansion of the attribute reference may generate a call to |
| -- a user-defined stream subprogram that is frozen by the call. This |
| -- can lead to access-before-elaboration problem if the reference |
| -- appears in an object declaration and the subprogram body has not |
| -- been seen. The freezing of the subprogram requires special code |
| -- because it appears in an expanded context where expressions do |
| -- not freeze their constituents. |
| |
| ------------------------------ |
| -- Freeze_Stream_Subprogram -- |
| ------------------------------ |
| |
| procedure Freeze_Stream_Subprogram (F : Entity_Id) is |
| Decl : constant Node_Id := Unit_Declaration_Node (F); |
| Bod : Node_Id; |
| |
| begin |
| -- If this is user-defined subprogram, the corresponding |
| -- stream function appears as a renaming-as-body, and the |
| -- user subprogram must be retrieved by tree traversal. |
| |
| if Present (Decl) |
| and then Nkind (Decl) = N_Subprogram_Declaration |
| and then Present (Corresponding_Body (Decl)) |
| then |
| Bod := Corresponding_Body (Decl); |
| |
| if Nkind (Unit_Declaration_Node (Bod)) = |
| N_Subprogram_Renaming_Declaration |
| then |
| Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod)))); |
| end if; |
| end if; |
| end Freeze_Stream_Subprogram; |
| |
| -- Start of processing for Input |
| |
| begin |
| -- If no underlying type, we have an error that will be diagnosed |
| -- elsewhere, so here we just completely ignore the expansion. |
| |
| if No (U_Type) then |
| return; |
| end if; |
| |
| -- Stream operations can appear in user code even if the restriction |
| -- No_Streams is active (for example, when instantiating a predefined |
| -- container). In that case rewrite the attribute as a Raise to |
| -- prevent any run-time use. |
| |
| if Restriction_Active (No_Streams) then |
| Rewrite (N, |
| Make_Raise_Program_Error (Sloc (N), |
| Reason => PE_Stream_Operation_Not_Allowed)); |
| Set_Etype (N, B_Type); |
| return; |
| end if; |
| |
| -- If there is a TSS for Input, just call it |
| |
| Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input); |
| |
| if Present (Fname) then |
| null; |
| |
| else |
| -- If there is a Stream_Convert pragma, use it, we rewrite |
| |
| -- sourcetyp'Input (stream) |
| |
| -- as |
| |
| -- sourcetyp (streamread (strmtyp'Input (stream))); |
| |
| -- where streamread is the given Read function that converts an |
| -- argument of type strmtyp to type sourcetyp or a type from which |
| -- it is derived (extra conversion required for the derived case). |
| |
| Prag := Get_Stream_Convert_Pragma (P_Type); |
| |
| if Present (Prag) then |
| Arg2 := Next (First (Pragma_Argument_Associations (Prag))); |
| Rfunc := Entity (Expression (Arg2)); |
| |
| Rewrite (N, |
| Convert_To (B_Type, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Rfunc, Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of |
| (Etype (First_Formal (Rfunc)), Loc), |
| Attribute_Name => Name_Input, |
| Expressions => Exprs))))); |
| |
| Analyze_And_Resolve (N, B_Type); |
| return; |
| |
| -- Elementary types |
| |
| elsif Is_Elementary_Type (U_Type) then |
| |
| -- A special case arises if we have a defined _Read routine, |
| -- since in this case we are required to call this routine. |
| |
| if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then |
| Build_Record_Or_Elementary_Input_Function |
| (Loc, U_Type, Decl, Fname); |
| Insert_Action (N, Decl); |
| |
| -- For normal cases, we call the I_xxx routine directly |
| |
| else |
| Rewrite (N, Build_Elementary_Input_Call (N)); |
| Analyze_And_Resolve (N, P_Type); |
| return; |
| end if; |
| |
| -- Array type case |
| |
| elsif Is_Array_Type (U_Type) then |
| Build_Array_Input_Function (Loc, U_Type, Decl, Fname); |
| Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False); |
| |
| -- Dispatching case with class-wide type |
| |
| elsif Is_Class_Wide_Type (P_Type) then |
| |
| -- No need to do anything else compiling under restriction |
| -- No_Dispatching_Calls. During the semantic analysis we |
| -- already notified such violation. |
| |
| if Restriction_Active (No_Dispatching_Calls) then |
| return; |
| end if; |
| |
| declare |
| Rtyp : constant Entity_Id := Root_Type (P_Type); |
| Expr : Node_Id; |
| |
| begin |
| -- Read the internal tag (RM 13.13.2(34)) and use it to |
| -- initialize a dummy tag value: |
| |
| -- Descendant_Tag (String'Input (Strm), P_Type); |
| |
| -- This value is used only to provide a controlling |
| -- argument for the eventual _Input call. Descendant_Tag is |
| -- called rather than Internal_Tag to ensure that we have a |
| -- tag for a type that is descended from the prefix type and |
| -- declared at the same accessibility level (the exception |
| -- Tag_Error will be raised otherwise). The level check is |
| -- required for Ada 2005 because tagged types can be |
| -- extended in nested scopes (AI-344). |
| |
| -- Note: we used to generate an explicit declaration of a |
| -- constant Ada.Tags.Tag object, and use an occurrence of |
| -- this constant in Cntrl, but this caused a secondary stack |
| -- leak. |
| |
| Expr := |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Standard_String, Loc), |
| Attribute_Name => Name_Input, |
| Expressions => New_List ( |
| Relocate_Node (Duplicate_Subexpr (Strm)))), |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (P_Type, Loc), |
| Attribute_Name => Name_Tag))); |
| Set_Etype (Expr, RTE (RE_Tag)); |
| |
| -- Now we need to get the entity for the call, and construct |
| -- a function call node, where we preset a reference to Dnn |
| -- as the controlling argument (doing an unchecked convert |
| -- to the class-wide tagged type to make it look like a real |
| -- tagged object). |
| |
| Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input); |
| Cntrl := Unchecked_Convert_To (P_Type, Expr); |
| Set_Etype (Cntrl, P_Type); |
| Set_Parent (Cntrl, N); |
| end; |
| |
| -- For tagged types, use the primitive Input function |
| |
| elsif Is_Tagged_Type (U_Type) then |
| Fname := Find_Prim_Op (U_Type, TSS_Stream_Input); |
| |
| -- All other record type cases, including protected records. The |
| -- latter only arise for expander generated code for handling |
| -- shared passive partition access. |
| |
| else |
| pragma Assert |
| (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type)); |
| |
| -- Ada 2005 (AI-216): Program_Error is raised executing default |
| -- implementation of the Input attribute of an unchecked union |
| -- type if the type lacks default discriminant values. |
| |
| if Is_Unchecked_Union (Base_Type (U_Type)) |
| and then No (Discriminant_Constraint (U_Type)) |
| then |
| Insert_Action (N, |
| Make_Raise_Program_Error (Loc, |
| Reason => PE_Unchecked_Union_Restriction)); |
| |
| return; |
| end if; |
| |
| -- Build the type's Input function, passing the subtype rather |
| -- than its base type, because checks are needed in the case of |
| -- constrained discriminants (see Ada 2012 AI05-0192). |
| |
| Build_Record_Or_Elementary_Input_Function |
| (Loc, U_Type, Decl, Fname); |
| Insert_Action (N, Decl); |
| |
| if Nkind (Parent (N)) = N_Object_Declaration |
| and then Is_Record_Type (U_Type) |
| then |
| -- The stream function may contain calls to user-defined |
| -- Read procedures for individual components. |
| |
| declare |
| Comp : Entity_Id; |
| Func : Entity_Id; |
| |
| begin |
| Comp := First_Component (U_Type); |
| while Present (Comp) loop |
| Func := |
| Find_Stream_Subprogram |
| (Etype (Comp), TSS_Stream_Read); |
| |
| if Present (Func) then |
| Freeze_Stream_Subprogram (Func); |
| end if; |
| |
| Next_Component (Comp); |
| end loop; |
| end; |
| end if; |
| end if; |
| end if; |
| |
| -- If we fall through, Fname is the function to be called. The result |
| -- is obtained by calling the appropriate function, then converting |
| -- the result. The conversion does a subtype check. |
| |
| Call := |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Fname, Loc), |
| Parameter_Associations => New_List ( |
| Relocate_Node (Strm))); |
| |
| Set_Controlling_Argument (Call, Cntrl); |
| Rewrite (N, Unchecked_Convert_To (P_Type, Call)); |
| Analyze_And_Resolve (N, P_Type); |
| |
| if Nkind (Parent (N)) = N_Object_Declaration then |
| Freeze_Stream_Subprogram (Fname); |
| end if; |
| end Input; |
| |
| ------------------- |
| -- Integer_Value -- |
| ------------------- |
| |
| -- We transform |
| |
| -- inttype'Fixed_Value (fixed-value) |
| |
| -- into |
| |
| -- inttype(integer-value)) |
| |
| -- we do all the required analysis of the conversion here, because we do |
| -- not want this to go through the fixed-point conversion circuits. Note |
| -- that the back end always treats fixed-point as equivalent to the |
| -- corresponding integer type anyway. |
| |
| when Attribute_Integer_Value => Integer_Value : |
| begin |
| Rewrite (N, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc), |
| Expression => Relocate_Node (First (Exprs)))); |
| Set_Etype (N, Entity (Pref)); |
| Set_Analyzed (N); |
| |
| -- Note: it might appear that a properly analyzed unchecked conversion |
| -- would be just fine here, but that's not the case, since the full |
| -- range checks performed by the following call are critical. |
| |
| Apply_Type_Conversion_Checks (N); |
| end Integer_Value; |
| |
| ------------------- |
| -- Invalid_Value -- |
| ------------------- |
| |
| when Attribute_Invalid_Value => |
| Rewrite (N, Get_Simple_Init_Val (Ptyp, N)); |
| |
| ---------- |
| -- Last -- |
| ---------- |
| |
| when Attribute_Last => |
| |
| -- If the prefix type is a constrained packed array type which |
| -- already has a Packed_Array_Impl_Type representation defined, then |
| -- replace this attribute with a direct reference to 'Last of the |
| -- appropriate index subtype (since otherwise the back end will try |
| -- to give us the value of 'Last for this implementation type). |
| |
| if Is_Constrained_Packed_Array (Ptyp) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Last, |
| Prefix => New_Occurrence_Of (Get_Index_Subtype (N), Loc))); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For access type, apply access check as needed |
| |
| elsif Is_Access_Type (Ptyp) then |
| Apply_Access_Check (N); |
| |
| -- For scalar type, if low bound is a reference to an entity, just |
| -- replace with a direct reference. Note that we can only have a |
| -- reference to a constant entity at this stage, anything else would |
| -- have already been rewritten. |
| |
| elsif Is_Scalar_Type (Ptyp) then |
| declare |
| Hi : constant Node_Id := Type_High_Bound (Ptyp); |
| begin |
| if Is_Entity_Name (Hi) then |
| Rewrite (N, New_Occurrence_Of (Entity (Hi), Loc)); |
| end if; |
| end; |
| end if; |
| |
| -------------- |
| -- Last_Bit -- |
| -------------- |
| |
| -- We compute this if a component clause was present, otherwise we leave |
| -- the computation up to the back end, since we don't know what layout |
| -- will be chosen. |
| |
| when Attribute_Last_Bit => Last_Bit_Attr : declare |
| CE : constant Entity_Id := Entity (Selector_Name (Pref)); |
| |
| begin |
| -- In Ada 2005 (or later) if we have the non-default bit order, then |
| -- we return the original value as given in the component clause |
| -- (RM 2005 13.5.2(3/2)). |
| |
| if Present (Component_Clause (CE)) |
| and then Ada_Version >= Ada_2005 |
| and then Reverse_Bit_Order (Scope (CE)) |
| then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => Expr_Value (Last_Bit (Component_Clause (CE))))); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order), |
| -- rewrite with normalized value if we know it statically. |
| |
| elsif Known_Static_Component_Bit_Offset (CE) |
| and then Known_Static_Esize (CE) |
| then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit) |
| + Esize (CE) - 1)); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- Otherwise leave to back end, just apply universal integer checks |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Last_Bit_Attr; |
| |
| ------------------ |
| -- Leading_Part -- |
| ------------------ |
| |
| -- Transforms 'Leading_Part into a call to the floating-point attribute |
| -- function Leading_Part in Fat_xxx (where xxx is the root type) |
| |
| -- Note: strictly, we should generate special case code to deal with |
| -- absurdly large positive arguments (greater than Integer'Last), which |
| -- result in returning the first argument unchanged, but it hardly seems |
| -- worth the effort. We raise constraint error for absurdly negative |
| -- arguments which is fine. |
| |
| when Attribute_Leading_Part => |
| Expand_Fpt_Attribute_RI (N); |
| |
| ------------ |
| -- Length -- |
| ------------ |
| |
| when Attribute_Length => Length : declare |
| Ityp : Entity_Id; |
| Xnum : Uint; |
| |
| begin |
| -- Processing for packed array types |
| |
| if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then |
| Ityp := Get_Index_Subtype (N); |
| |
| -- If the index type, Ityp, is an enumeration type with holes, |
| -- then we calculate X'Length explicitly using |
| |
| -- Typ'Max |
| -- (0, Ityp'Pos (X'Last (N)) - |
| -- Ityp'Pos (X'First (N)) + 1); |
| |
| -- Since the bounds in the template are the representation values |
| -- and the back end would get the wrong value. |
| |
| if Is_Enumeration_Type (Ityp) |
| and then Present (Enum_Pos_To_Rep (Base_Type (Ityp))) |
| then |
| if No (Exprs) then |
| Xnum := Uint_1; |
| else |
| Xnum := Expr_Value (First (Expressions (N))); |
| end if; |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Typ, Loc), |
| Attribute_Name => Name_Max, |
| Expressions => New_List |
| (Make_Integer_Literal (Loc, 0), |
| |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ityp, Loc), |
| Attribute_Name => Name_Pos, |
| |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Duplicate_Subexpr (Pref), |
| Attribute_Name => Name_Last, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, Xnum))))), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ityp, Loc), |
| Attribute_Name => Name_Pos, |
| |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Duplicate_Subexpr_No_Checks (Pref), |
| Attribute_Name => Name_First, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, Xnum)))))), |
| |
| Right_Opnd => Make_Integer_Literal (Loc, 1))))); |
| |
| Analyze_And_Resolve (N, Typ, Suppress => All_Checks); |
| return; |
| |
| -- If the prefix type is a constrained packed array type which |
| -- already has a Packed_Array_Impl_Type representation defined, |
| -- then replace this attribute with a reference to 'Range_Length |
| -- of the appropriate index subtype (since otherwise the |
| -- back end will try to give us the value of 'Length for |
| -- this implementation type).s |
| |
| elsif Is_Constrained (Ptyp) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Range_Length, |
| Prefix => New_Occurrence_Of (Ityp, Loc))); |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| |
| -- Access type case |
| |
| elsif Is_Access_Type (Ptyp) then |
| Apply_Access_Check (N); |
| |
| -- If the designated type is a packed array type, then we convert |
| -- the reference to: |
| |
| -- typ'Max (0, 1 + |
| -- xtyp'Pos (Pref'Last (Expr)) - |
| -- xtyp'Pos (Pref'First (Expr))); |
| |
| -- This is a bit complex, but it is the easiest thing to do that |
| -- works in all cases including enum types with holes xtyp here |
| -- is the appropriate index type. |
| |
| declare |
| Dtyp : constant Entity_Id := Designated_Type (Ptyp); |
| Xtyp : Entity_Id; |
| |
| begin |
| if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then |
| Xtyp := Get_Index_Subtype (N); |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Typ, Loc), |
| Attribute_Name => Name_Max, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, 0), |
| |
| Make_Op_Add (Loc, |
| Make_Integer_Literal (Loc, 1), |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Xtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Duplicate_Subexpr (Pref), |
| Attribute_Name => Name_Last, |
| Expressions => |
| New_Copy_List (Exprs)))), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Xtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Duplicate_Subexpr_No_Checks (Pref), |
| Attribute_Name => Name_First, |
| Expressions => |
| New_Copy_List (Exprs))))))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end; |
| |
| -- Otherwise leave it to the back end |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Length; |
| |
| -- Attribute Loop_Entry is replaced with a reference to a constant value |
| -- which captures the prefix at the entry point of the related loop. The |
| -- loop itself may be transformed into a conditional block. |
| |
| when Attribute_Loop_Entry => |
| Expand_Loop_Entry_Attribute (N); |
| |
| ------------- |
| -- Machine -- |
| ------------- |
| |
| -- Transforms 'Machine into a call to the floating-point attribute |
| -- function Machine in Fat_xxx (where xxx is the root type). |
| -- Expansion is avoided for cases the back end can handle directly. |
| |
| when Attribute_Machine => |
| if not Is_Inline_Floating_Point_Attribute (N) then |
| Expand_Fpt_Attribute_R (N); |
| end if; |
| |
| ---------------------- |
| -- Machine_Rounding -- |
| ---------------------- |
| |
| -- Transforms 'Machine_Rounding into a call to the floating-point |
| -- attribute function Machine_Rounding in Fat_xxx (where xxx is the root |
| -- type). Expansion is avoided for cases the back end can handle |
| -- directly. |
| |
| when Attribute_Machine_Rounding => |
| if not Is_Inline_Floating_Point_Attribute (N) then |
| Expand_Fpt_Attribute_R (N); |
| end if; |
| |
| ------------------ |
| -- Machine_Size -- |
| ------------------ |
| |
| -- Machine_Size is equivalent to Object_Size, so transform it into |
| -- Object_Size and that way the back end never sees Machine_Size. |
| |
| when Attribute_Machine_Size => |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => Prefix (N), |
| Attribute_Name => Name_Object_Size)); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -------------- |
| -- Mantissa -- |
| -------------- |
| |
| -- The only case that can get this far is the dynamic case of the old |
| -- Ada 83 Mantissa attribute for the fixed-point case. For this case, |
| -- we expand: |
| |
| -- typ'Mantissa |
| |
| -- into |
| |
| -- ityp (System.Mantissa.Mantissa_Value |
| -- (Integer'Integer_Value (typ'First), |
| -- Integer'Integer_Value (typ'Last))); |
| |
| when Attribute_Mantissa => Mantissa : begin |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc), |
| |
| Parameter_Associations => New_List ( |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Standard_Integer, Loc), |
| Attribute_Name => Name_Integer_Value, |
| Expressions => New_List ( |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First))), |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Standard_Integer, Loc), |
| Attribute_Name => Name_Integer_Value, |
| Expressions => New_List ( |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last))))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Mantissa; |
| |
| --------- |
| -- Max -- |
| --------- |
| |
| when Attribute_Max => |
| Expand_Min_Max_Attribute (N); |
| |
| ---------------------------------- |
| -- Max_Size_In_Storage_Elements -- |
| ---------------------------------- |
| |
| when Attribute_Max_Size_In_Storage_Elements => declare |
| Typ : constant Entity_Id := Etype (N); |
| Attr : Node_Id; |
| |
| Conversion_Added : Boolean := False; |
| -- A flag which tracks whether the original attribute has been |
| -- wrapped inside a type conversion. |
| |
| begin |
| -- If the prefix is X'Class, we transform it into a direct reference |
| -- to the class-wide type, because the back end must not see a 'Class |
| -- reference. See also 'Size. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Class_Wide_Type (Entity (Pref)) |
| then |
| Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc)); |
| return; |
| end if; |
| |
| Apply_Universal_Integer_Attribute_Checks (N); |
| |
| -- The universal integer check may sometimes add a type conversion, |
| -- retrieve the original attribute reference from the expression. |
| |
| Attr := N; |
| |
| if Nkind (Attr) = N_Type_Conversion then |
| Attr := Expression (Attr); |
| Conversion_Added := True; |
| end if; |
| |
| pragma Assert (Nkind (Attr) = N_Attribute_Reference); |
| |
| -- Heap-allocated controlled objects contain two extra pointers which |
| -- are not part of the actual type. Transform the attribute reference |
| -- into a runtime expression to add the size of the hidden header. |
| |
| -- Do not perform this expansion on .NET/JVM targets because the |
| -- two pointers are already present in the type. |
| |
| if VM_Target = No_VM |
| and then Needs_Finalization (Ptyp) |
| and then not Header_Size_Added (Attr) |
| then |
| Set_Header_Size_Added (Attr); |
| |
| -- Generate: |
| -- P'Max_Size_In_Storage_Elements + |
| -- Universal_Integer |
| -- (Header_Size_With_Padding (Ptyp'Alignment)) |
| |
| Rewrite (Attr, |
| Make_Op_Add (Loc, |
| Left_Opnd => Relocate_Node (Attr), |
| Right_Opnd => |
| Convert_To (Universal_Integer, |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of |
| (RTE (RE_Header_Size_With_Padding), Loc), |
| |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Alignment)))))); |
| |
| -- Add a conversion to the target type |
| |
| if not Conversion_Added then |
| Rewrite (Attr, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Typ, Loc), |
| Expression => Relocate_Node (Attr))); |
| end if; |
| |
| Analyze (Attr); |
| return; |
| end if; |
| end; |
| |
| -------------------- |
| -- Mechanism_Code -- |
| -------------------- |
| |
| when Attribute_Mechanism_Code => |
| |
| -- We must replace the prefix i the renamed case |
| |
| if Is_Entity_Name (Pref) |
| and then Present (Alias (Entity (Pref))) |
| then |
| Set_Renamed_Subprogram (Pref, Alias (Entity (Pref))); |
| end if; |
| |
| --------- |
| -- Min -- |
| --------- |
| |
| when Attribute_Min => |
| Expand_Min_Max_Attribute (N); |
| |
| --------- |
| -- Mod -- |
| --------- |
| |
|