blob: 9fa05009dbdc43b4af4c88c7883bd11ad1b958f3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 9 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch11; use Exp_Ch11;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Sel; use Exp_Sel;
with Exp_Smem; use Exp_Smem;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Hostparm;
with Itypes; use Itypes;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch9; use Sem_Ch9;
with Sem_Ch11; use Sem_Ch11;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
package body Exp_Ch9 is
-- The following constant establishes the upper bound for the index of
-- an entry family. It is used to limit the allocated size of protected
-- types with defaulted discriminant of an integer type, when the bound
-- of some entry family depends on a discriminant. The limitation to entry
-- families of 128K should be reasonable in all cases, and is a documented
-- implementation restriction.
Entry_Family_Bound : constant Int := 2**16;
-----------------------
-- Local Subprograms --
-----------------------
function Actual_Index_Expression
(Sloc : Source_Ptr;
Ent : Entity_Id;
Index : Node_Id;
Tsk : Entity_Id) return Node_Id;
-- Compute the index position for an entry call. Tsk is the target task. If
-- the bounds of some entry family depend on discriminants, the expression
-- computed by this function uses the discriminants of the target task.
procedure Add_Object_Pointer
(Loc : Source_Ptr;
Conc_Typ : Entity_Id;
Decls : List_Id);
-- Prepend an object pointer declaration to the declaration list Decls.
-- This object pointer is initialized to a type conversion of the System.
-- Address pointer passed to entry barrier functions and entry body
-- procedures.
procedure Add_Formal_Renamings
(Spec : Node_Id;
Decls : List_Id;
Ent : Entity_Id;
Loc : Source_Ptr);
-- Create renaming declarations for the formals, inside the procedure that
-- implements an entry body. The renamings make the original names of the
-- formals accessible to gdb, and serve no other purpose.
-- Spec is the specification of the procedure being built.
-- Decls is the list of declarations to be enhanced.
-- Ent is the entity for the original entry body.
function Build_Accept_Body (Astat : Node_Id) return Node_Id;
-- Transform accept statement into a block with added exception handler.
-- Used both for simple accept statements and for accept alternatives in
-- select statements. Astat is the accept statement.
function Build_Barrier_Function
(N : Node_Id;
Ent : Entity_Id;
Pid : Node_Id) return Node_Id;
-- Build the function body returning the value of the barrier expression
-- for the specified entry body.
function Build_Barrier_Function_Specification
(Loc : Source_Ptr;
Def_Id : Entity_Id) return Node_Id;
-- Build a specification for a function implementing the protected entry
-- barrier of the specified entry body.
function Build_Corresponding_Record
(N : Node_Id;
Ctyp : Node_Id;
Loc : Source_Ptr) return Node_Id;
-- Common to tasks and protected types. Copy discriminant specifications,
-- build record declaration. N is the type declaration, Ctyp is the
-- concurrent entity (task type or protected type).
function Build_Dispatching_Tag_Check
(K : Entity_Id;
N : Node_Id) return Node_Id;
-- Utility to create the tree to check whether the dispatching call in
-- a timed entry call, a conditional entry call, or an asynchronous
-- transfer of control is a call to a primitive of a non-synchronized type.
-- K is the temporary that holds the tagged kind of the target object, and
-- N is the enclosing construct.
function Build_Entry_Count_Expression
(Concurrent_Type : Node_Id;
Component_List : List_Id;
Loc : Source_Ptr) return Node_Id;
-- Compute number of entries for concurrent object. This is a count of
-- simple entries, followed by an expression that computes the length
-- of the range of each entry family. A single array with that size is
-- allocated for each concurrent object of the type.
function Build_Find_Body_Index (Typ : Entity_Id) return Node_Id;
-- Build the function that translates the entry index in the call
-- (which depends on the size of entry families) into an index into the
-- Entry_Bodies_Array, to determine the body and barrier function used
-- in a protected entry call. A pointer to this function appears in every
-- protected object.
function Build_Find_Body_Index_Spec (Typ : Entity_Id) return Node_Id;
-- Build subprogram declaration for previous one
function Build_Lock_Free_Protected_Subprogram_Body
(N : Node_Id;
Prot_Typ : Node_Id;
Unprot_Spec : Node_Id) return Node_Id;
-- N denotes a subprogram body of protected type Prot_Typ. Unprot_Spec is
-- the subprogram specification of the unprotected version of N. Transform
-- N such that it invokes the unprotected version of the body.
function Build_Lock_Free_Unprotected_Subprogram_Body
(N : Node_Id;
Prot_Typ : Node_Id) return Node_Id;
-- N denotes a subprogram body of protected type Prot_Typ. Build a version
-- of N where the original statements of N are synchronized through atomic
-- actions such as compare and exchange. Prior to invoking this routine, it
-- has been established that N can be implemented in a lock-free fashion.
function Build_Parameter_Block
(Loc : Source_Ptr;
Actuals : List_Id;
Formals : List_Id;
Decls : List_Id) return Entity_Id;
-- Generate an access type for each actual parameter in the list Actuals.
-- Create an encapsulating record that contains all the actuals and return
-- its type. Generate:
-- type Ann1 is access all <actual1-type>
-- ...
-- type AnnN is access all <actualN-type>
-- type Pnn is record
-- <formal1> : Ann1;
-- ...
-- <formalN> : AnnN;
-- end record;
procedure Build_PPC_Wrapper (E : Entity_Id; Decl : Node_Id);
-- Build body of wrapper procedure for an entry or entry family that has
-- pre/postconditions. The body gathers the PPC's and expands them in the
-- usual way, and performs the entry call itself. This way preconditions
-- are evaluated before the call is queued. E is the entry in question,
-- and Decl is the enclosing synchronized type declaration at whose freeze
-- point the generated body is analyzed.
function Build_Protected_Entry
(N : Node_Id;
Ent : Entity_Id;
Pid : Node_Id) return Node_Id;
-- Build the procedure implementing the statement sequence of the specified
-- entry body.
function Build_Protected_Entry_Specification
(Loc : Source_Ptr;
Def_Id : Entity_Id;
Ent_Id : Entity_Id) return Node_Id;
-- Build a specification for the procedure implementing the statements of
-- the specified entry body. Add attributes associating it with the entry
-- defining identifier Ent_Id.
function Build_Protected_Spec
(N : Node_Id;
Obj_Type : Entity_Id;
Ident : Entity_Id;
Unprotected : Boolean := False) return List_Id;
-- Utility shared by Build_Protected_Sub_Spec and Expand_Access_Protected_
-- Subprogram_Type. Builds signature of protected subprogram, adding the
-- formal that corresponds to the object itself. For an access to protected
-- subprogram, there is no object type to specify, so the parameter has
-- type Address and mode In. An indirect call through such a pointer will
-- convert the address to a reference to the actual object. The object is
-- a limited record and therefore a by_reference type.
function Build_Protected_Subprogram_Body
(N : Node_Id;
Pid : Node_Id;
N_Op_Spec : Node_Id) return Node_Id;
-- This function is used to construct the protected version of a protected
-- subprogram. Its statement sequence first defers abort, then locks the
-- associated protected object, and then enters a block that contains a
-- call to the unprotected version of the subprogram (for details, see
-- Build_Unprotected_Subprogram_Body). This block statement requires a
-- cleanup handler that unlocks the object in all cases. For details,
-- see Exp_Ch7.Expand_Cleanup_Actions.
function Build_Renamed_Formal_Declaration
(New_F : Entity_Id;
Formal : Entity_Id;
Comp : Entity_Id;
Renamed_Formal : Node_Id) return Node_Id;
-- Create a renaming declaration for a formal, within a protected entry
-- body or an accept body. The renamed object is a component of the
-- parameter block that is a parameter in the entry call.
--
-- In Ada 2012, if the formal is an incomplete tagged type, the renaming
-- does not dereference the corresponding component to prevent an illegal
-- use of the incomplete type (AI05-0151).
function Build_Selected_Name
(Prefix : Entity_Id;
Selector : Entity_Id;
Append_Char : Character := ' ') return Name_Id;
-- Build a name in the form of Prefix__Selector, with an optional character
-- appended. This is used for internal subprograms generated for operations
-- of protected types, including barrier functions. For the subprograms
-- generated for entry bodies and entry barriers, the generated name
-- includes a sequence number that makes names unique in the presence of
-- entry overloading. This is necessary because entry body procedures and
-- barrier functions all have the same signature.
procedure Build_Simple_Entry_Call
(N : Node_Id;
Concval : Node_Id;
Ename : Node_Id;
Index : Node_Id);
-- Some comments here would be useful ???
function Build_Task_Proc_Specification (T : Entity_Id) return Node_Id;
-- This routine constructs a specification for the procedure that we will
-- build for the task body for task type T. The spec has the form:
--
-- procedure tnameB (_Task : access tnameV);
--
-- where name is the character name taken from the task type entity that
-- is passed as the argument to the procedure, and tnameV is the task
-- value type that is associated with the task type.
function Build_Unprotected_Subprogram_Body
(N : Node_Id;
Pid : Node_Id) return Node_Id;
-- This routine constructs the unprotected version of a protected
-- subprogram body, which is contains all of the code in the original,
-- unexpanded body. This is the version of the protected subprogram that is
-- called from all protected operations on the same object, including the
-- protected version of the same subprogram.
procedure Build_Wrapper_Bodies
(Loc : Source_Ptr;
Typ : Entity_Id;
N : Node_Id);
-- Ada 2005 (AI-345): Typ is either a concurrent type or the corresponding
-- record of a concurrent type. N is the insertion node where all bodies
-- will be placed. This routine builds the bodies of the subprograms which
-- serve as an indirection mechanism to overriding primitives of concurrent
-- types, entries and protected procedures. Any new body is analyzed.
procedure Build_Wrapper_Specs
(Loc : Source_Ptr;
Typ : Entity_Id;
N : in out Node_Id);
-- Ada 2005 (AI-345): Typ is either a concurrent type or the corresponding
-- record of a concurrent type. N is the insertion node where all specs
-- will be placed. This routine builds the specs of the subprograms which
-- serve as an indirection mechanism to overriding primitives of concurrent
-- types, entries and protected procedures. Any new spec is analyzed.
procedure Collect_Entry_Families
(Loc : Source_Ptr;
Cdecls : List_Id;
Current_Node : in out Node_Id;
Conctyp : Entity_Id);
-- For each entry family in a concurrent type, create an anonymous array
-- type of the right size, and add a component to the corresponding_record.
function Concurrent_Object
(Spec_Id : Entity_Id;
Conc_Typ : Entity_Id) return Entity_Id;
-- Given a subprogram entity Spec_Id and concurrent type Conc_Typ, return
-- the entity associated with the concurrent object in the Protected_Body_
-- Subprogram or the Task_Body_Procedure of Spec_Id. The returned entity
-- denotes formal parameter _O, _object or _task.
function Copy_Result_Type (Res : Node_Id) return Node_Id;
-- Copy the result type of a function specification, when building the
-- internal operation corresponding to a protected function, or when
-- expanding an access to protected function. If the result is an anonymous
-- access to subprogram itself, we need to create a new signature with the
-- same parameter names and the same resolved types, but with new entities
-- for the formals.
procedure Debug_Private_Data_Declarations (Decls : List_Id);
-- Decls is a list which may contain the declarations created by Install_
-- Private_Data_Declarations. All generated entities are marked as needing
-- debug info and debug nodes are manually generation where necessary. This
-- step of the expansion must to be done after private data has been moved
-- to its final resting scope to ensure proper visibility of debug objects.
procedure Ensure_Statement_Present (Loc : Source_Ptr; Alt : Node_Id);
-- If control flow optimizations are suppressed, and Alt is an accept,
-- delay, or entry call alternative with no trailing statements, insert
-- a null trailing statement with the given Loc (which is the sloc of
-- the accept, delay, or entry call statement). There might not be any
-- generated code for the accept, delay, or entry call itself (the effect
-- of these statements is part of the general processsing done for the
-- enclosing selective accept, timed entry call, or asynchronous select),
-- and the null statement is there to carry the sloc of that statement to
-- the back-end for trace-based coverage analysis purposes.
procedure Extract_Dispatching_Call
(N : Node_Id;
Call_Ent : out Entity_Id;
Object : out Entity_Id;
Actuals : out List_Id;
Formals : out List_Id);
-- Given a dispatching call, extract the entity of the name of the call,
-- its actual dispatching object, its actual parameters and the formal
-- parameters of the overridden interface-level version. If the type of
-- the dispatching object is an access type then an explicit dereference
-- is returned in Object.
procedure Extract_Entry
(N : Node_Id;
Concval : out Node_Id;
Ename : out Node_Id;
Index : out Node_Id);
-- Given an entry call, returns the associated concurrent object, the entry
-- name, and the entry family index.
function Family_Offset
(Loc : Source_Ptr;
Hi : Node_Id;
Lo : Node_Id;
Ttyp : Entity_Id;
Cap : Boolean) return Node_Id;
-- Compute (Hi - Lo) for two entry family indexes. Hi is the index in an
-- accept statement, or the upper bound in the discrete subtype of an entry
-- declaration. Lo is the corresponding lower bound. Ttyp is the concurrent
-- type of the entry. If Cap is true, the result is capped according to
-- Entry_Family_Bound.
function Family_Size
(Loc : Source_Ptr;
Hi : Node_Id;
Lo : Node_Id;
Ttyp : Entity_Id;
Cap : Boolean) return Node_Id;
-- Compute (Hi - Lo) + 1 Max 0, to determine the number of entries in a
-- family, and handle properly the superflat case. This is equivalent to
-- the use of 'Length on the index type, but must use Family_Offset to
-- handle properly the case of bounds that depend on discriminants. If
-- Cap is true, the result is capped according to Entry_Family_Bound.
procedure Find_Enclosing_Context
(N : Node_Id;
Context : out Node_Id;
Context_Id : out Entity_Id;
Context_Decls : out List_Id);
-- Subsidiary routine to procedures Build_Activation_Chain_Entity and
-- Build_Master_Entity. Given an arbitrary node in the tree, find the
-- nearest enclosing body, block, package or return statement and return
-- its constituents. Context is the enclosing construct, Context_Id is
-- the scope of Context_Id and Context_Decls is the declarative list of
-- Context.
function Index_Object (Spec_Id : Entity_Id) return Entity_Id;
-- Given a subprogram identifier, return the entity which is associated
-- with the protection entry index in the Protected_Body_Subprogram or
-- the Task_Body_Procedure of Spec_Id. The returned entity denotes formal
-- parameter _E.
function Is_Exception_Safe (Subprogram : Node_Id) return Boolean;
-- Tell whether a given subprogram cannot raise an exception
function Is_Potentially_Large_Family
(Base_Index : Entity_Id;
Conctyp : Entity_Id;
Lo : Node_Id;
Hi : Node_Id) return Boolean;
function Is_Private_Primitive_Subprogram (Id : Entity_Id) return Boolean;
-- Determine whether Id is a function or a procedure and is marked as a
-- private primitive.
function Null_Statements (Stats : List_Id) return Boolean;
-- Used to check DO-END sequence. Checks for equivalent of DO NULL; END.
-- Allows labels, and pragma Warnings/Unreferenced in the sequence as well
-- to still count as null. Returns True for a null sequence. The argument
-- is the list of statements from the DO-END sequence.
function Parameter_Block_Pack
(Loc : Source_Ptr;
Blk_Typ : Entity_Id;
Actuals : List_Id;
Formals : List_Id;
Decls : List_Id;
Stmts : List_Id) return Entity_Id;
-- Set the components of the generated parameter block with the values
-- of the actual parameters. Generate aliased temporaries to capture the
-- values for types that are passed by copy. Otherwise generate a reference
-- to the actual's value. Return the address of the aggregate block.
-- Generate:
-- Jnn1 : alias <formal-type1>;
-- Jnn1 := <actual1>;
-- ...
-- P : Blk_Typ := (
-- Jnn1'unchecked_access;
-- <actual2>'reference;
-- ...);
function Parameter_Block_Unpack
(Loc : Source_Ptr;
P : Entity_Id;
Actuals : List_Id;
Formals : List_Id) return List_Id;
-- Retrieve the values of the components from the parameter block and
-- assign then to the original actual parameters. Generate:
-- <actual1> := P.<formal1>;
-- ...
-- <actualN> := P.<formalN>;
function Trivial_Accept_OK return Boolean;
-- If there is no DO-END block for an accept, or if the DO-END block has
-- only null statements, then it is possible to do the Rendezvous with much
-- less overhead using the Accept_Trivial routine in the run-time library.
-- However, this is not always a valid optimization. Whether it is valid or
-- not depends on the Task_Dispatching_Policy. The issue is whether a full
-- rescheduling action is required or not. In FIFO_Within_Priorities, such
-- a rescheduling is required, so this optimization is not allowed. This
-- function returns True if the optimization is permitted.
-----------------------------
-- Actual_Index_Expression --
-----------------------------
function Actual_Index_Expression
(Sloc : Source_Ptr;
Ent : Entity_Id;
Index : Node_Id;
Tsk : Entity_Id) return Node_Id
is
Ttyp : constant Entity_Id := Etype (Tsk);
Expr : Node_Id;
Num : Node_Id;
Lo : Node_Id;
Hi : Node_Id;
Prev : Entity_Id;
S : Node_Id;
function Actual_Family_Offset (Hi, Lo : Node_Id) return Node_Id;
-- Compute difference between bounds of entry family
--------------------------
-- Actual_Family_Offset --
--------------------------
function Actual_Family_Offset (Hi, Lo : Node_Id) return Node_Id is
function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
-- Replace a reference to a discriminant with a selected component
-- denoting the discriminant of the target task.
-----------------------------
-- Actual_Discriminant_Ref --
-----------------------------
function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
Typ : constant Entity_Id := Etype (Bound);
B : Node_Id;
begin
if not Is_Entity_Name (Bound)
or else Ekind (Entity (Bound)) /= E_Discriminant
then
if Nkind (Bound) = N_Attribute_Reference then
return Bound;
else
B := New_Copy_Tree (Bound);
end if;
else
B :=
Make_Selected_Component (Sloc,
Prefix => New_Copy_Tree (Tsk),
Selector_Name => New_Occurrence_Of (Entity (Bound), Sloc));
Analyze_And_Resolve (B, Typ);
end if;
return
Make_Attribute_Reference (Sloc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Etype (Bound), Sloc),
Expressions => New_List (B));
end Actual_Discriminant_Ref;
-- Start of processing for Actual_Family_Offset
begin
return
Make_Op_Subtract (Sloc,
Left_Opnd => Actual_Discriminant_Ref (Hi),
Right_Opnd => Actual_Discriminant_Ref (Lo));
end Actual_Family_Offset;
-- Start of processing for Actual_Index_Expression
begin
-- The queues of entries and entry families appear in textual order in
-- the associated record. The entry index is computed as the sum of the
-- number of queues for all entries that precede the designated one, to
-- which is added the index expression, if this expression denotes a
-- member of a family.
-- The following is a place holder for the count of simple entries
Num := Make_Integer_Literal (Sloc, 1);
-- We construct an expression which is a series of addition operations.
-- See comments in Entry_Index_Expression, which is identical in
-- structure.
if Present (Index) then
S := Etype (Discrete_Subtype_Definition (Declaration_Node (Ent)));
Expr :=
Make_Op_Add (Sloc,
Left_Opnd => Num,
Right_Opnd =>
Actual_Family_Offset (
Make_Attribute_Reference (Sloc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Base_Type (S), Sloc),
Expressions => New_List (Relocate_Node (Index))),
Type_Low_Bound (S)));
else
Expr := Num;
end if;
-- Now add lengths of preceding entries and entry families
Prev := First_Entity (Ttyp);
while Chars (Prev) /= Chars (Ent)
or else (Ekind (Prev) /= Ekind (Ent))
or else not Sem_Ch6.Type_Conformant (Ent, Prev)
loop
if Ekind (Prev) = E_Entry then
Set_Intval (Num, Intval (Num) + 1);
elsif Ekind (Prev) = E_Entry_Family then
S :=
Etype (Discrete_Subtype_Definition (Declaration_Node (Prev)));
-- The need for the following full view retrieval stems from this
-- complex case of nested generics and tasking:
-- generic
-- type Formal_Index is range <>;
-- ...
-- package Outer is
-- type Index is private;
-- generic
-- ...
-- package Inner is
-- procedure P;
-- end Inner;
-- private
-- type Index is new Formal_Index range 1 .. 10;
-- end Outer;
-- package body Outer is
-- task type T is
-- entry Fam (Index); -- (2)
-- entry E;
-- end T;
-- package body Inner is -- (3)
-- procedure P is
-- begin
-- T.E; -- (1)
-- end P;
-- end Inner;
-- ...
-- We are currently building the index expression for the entry
-- call "T.E" (1). Part of the expansion must mention the range
-- of the discrete type "Index" (2) of entry family "Fam".
-- However only the private view of type "Index" is available to
-- the inner generic (3) because there was no prior mention of
-- the type inside "Inner". This visibility requirement is
-- implicit and cannot be detected during the construction of
-- the generic trees and needs special handling.
if In_Instance_Body
and then Is_Private_Type (S)
and then Present (Full_View (S))
then
S := Full_View (S);
end if;
Lo := Type_Low_Bound (S);
Hi := Type_High_Bound (S);
Expr :=
Make_Op_Add (Sloc,
Left_Opnd => Expr,
Right_Opnd =>
Make_Op_Add (Sloc,
Left_Opnd => Actual_Family_Offset (Hi, Lo),
Right_Opnd => Make_Integer_Literal (Sloc, 1)));
-- Other components are anonymous types to be ignored
else
null;
end if;
Next_Entity (Prev);
end loop;
return Expr;
end Actual_Index_Expression;
--------------------------
-- Add_Formal_Renamings --
--------------------------
procedure Add_Formal_Renamings
(Spec : Node_Id;
Decls : List_Id;
Ent : Entity_Id;
Loc : Source_Ptr)
is
Ptr : constant Entity_Id :=
Defining_Identifier
(Next (First (Parameter_Specifications (Spec))));
-- The name of the formal that holds the address of the parameter block
-- for the call.
Comp : Entity_Id;
Decl : Node_Id;
Formal : Entity_Id;
New_F : Entity_Id;
Renamed_Formal : Node_Id;
begin
Formal := First_Formal (Ent);
while Present (Formal) loop
Comp := Entry_Component (Formal);
New_F :=
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal));
Set_Etype (New_F, Etype (Formal));
Set_Scope (New_F, Ent);
-- Now we set debug info needed on New_F even though it does not come
-- from source, so that the debugger will get the right information
-- for these generated names.
Set_Debug_Info_Needed (New_F);
if Ekind (Formal) = E_In_Parameter then
Set_Ekind (New_F, E_Constant);
else
Set_Ekind (New_F, E_Variable);
Set_Extra_Constrained (New_F, Extra_Constrained (Formal));
end if;
Set_Actual_Subtype (New_F, Actual_Subtype (Formal));
Renamed_Formal :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Entry_Parameters_Type (Ent),
Make_Identifier (Loc, Chars (Ptr))),
Selector_Name => New_Occurrence_Of (Comp, Loc));
Decl :=
Build_Renamed_Formal_Declaration
(New_F, Formal, Comp, Renamed_Formal);
Append (Decl, Decls);
Set_Renamed_Object (Formal, New_F);
Next_Formal (Formal);
end loop;
end Add_Formal_Renamings;
------------------------
-- Add_Object_Pointer --
------------------------
procedure Add_Object_Pointer
(Loc : Source_Ptr;
Conc_Typ : Entity_Id;
Decls : List_Id)
is
Rec_Typ : constant Entity_Id := Corresponding_Record_Type (Conc_Typ);
Decl : Node_Id;
Obj_Ptr : Node_Id;
begin
-- Create the renaming declaration for the Protection object of a
-- protected type. _Object is used by Complete_Entry_Body.
-- ??? An attempt to make this a renaming was unsuccessful.
-- Build the entity for the access type
Obj_Ptr :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Rec_Typ), 'P'));
-- Generate:
-- _object : poVP := poVP!O;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_uObject),
Object_Definition => New_Occurrence_Of (Obj_Ptr, Loc),
Expression =>
Unchecked_Convert_To (Obj_Ptr, Make_Identifier (Loc, Name_uO)));
Set_Debug_Info_Needed (Defining_Identifier (Decl));
Prepend_To (Decls, Decl);
-- Generate:
-- type poVP is access poV;
Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier =>
Obj_Ptr,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (Rec_Typ, Loc)));
Set_Debug_Info_Needed (Defining_Identifier (Decl));
Prepend_To (Decls, Decl);
end Add_Object_Pointer;
-----------------------
-- Build_Accept_Body --
-----------------------
function Build_Accept_Body (Astat : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Astat);
Stats : constant Node_Id := Handled_Statement_Sequence (Astat);
New_S : Node_Id;
Hand : Node_Id;
Call : Node_Id;
Ohandle : Node_Id;
begin
-- At the end of the statement sequence, Complete_Rendezvous is called.
-- A label skipping the Complete_Rendezvous, and all other accept
-- processing, has already been added for the expansion of requeue
-- statements. The Sloc is copied from the last statement since it
-- is really part of this last statement.
Call :=
Build_Runtime_Call
(Sloc (Last (Statements (Stats))), RE_Complete_Rendezvous);
Insert_Before (Last (Statements (Stats)), Call);
Analyze (Call);
-- If exception handlers are present, then append Complete_Rendezvous
-- calls to the handlers, and construct the required outer block. As
-- above, the Sloc is copied from the last statement in the sequence.
if Present (Exception_Handlers (Stats)) then
Hand := First (Exception_Handlers (Stats));
while Present (Hand) loop
Call :=
Build_Runtime_Call
(Sloc (Last (Statements (Hand))), RE_Complete_Rendezvous);
Append (Call, Statements (Hand));
Analyze (Call);
Next (Hand);
end loop;
New_S :=
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Block_Statement (Loc,
Handled_Statement_Sequence => Stats)));
else
New_S := Stats;
end if;
-- At this stage we know that the new statement sequence does
-- not have an exception handler part, so we supply one to call
-- Exceptional_Complete_Rendezvous. This handler is
-- when all others =>
-- Exceptional_Complete_Rendezvous (Get_GNAT_Exception);
-- We handle Abort_Signal to make sure that we properly catch the abort
-- case and wake up the caller.
Ohandle := Make_Others_Choice (Loc);
Set_All_Others (Ohandle);
Set_Exception_Handlers (New_S,
New_List (
Make_Implicit_Exception_Handler (Loc,
Exception_Choices => New_List (Ohandle),
Statements => New_List (
Make_Procedure_Call_Statement (Sloc (Stats),
Name => New_Occurrence_Of (
RTE (RE_Exceptional_Complete_Rendezvous), Sloc (Stats)),
Parameter_Associations => New_List (
Make_Function_Call (Sloc (Stats),
Name =>
New_Occurrence_Of
(RTE (RE_Get_GNAT_Exception), Sloc (Stats)))))))));
Set_Parent (New_S, Astat); -- temp parent for Analyze call
Analyze_Exception_Handlers (Exception_Handlers (New_S));
Expand_Exception_Handlers (New_S);
-- Exceptional_Complete_Rendezvous must be called with abort still
-- deferred, which is the case for a "when all others" handler.
return New_S;
end Build_Accept_Body;
-----------------------------------
-- Build_Activation_Chain_Entity --
-----------------------------------
procedure Build_Activation_Chain_Entity (N : Node_Id) is
function Has_Activation_Chain (Stmt : Node_Id) return Boolean;
-- Determine whether an extended return statement has activation chain
--------------------------
-- Has_Activation_Chain --
--------------------------
function Has_Activation_Chain (Stmt : Node_Id) return Boolean is
Decl : Node_Id;
begin
Decl := First (Return_Object_Declarations (Stmt));
while Present (Decl) loop
if Nkind (Decl) = N_Object_Declaration
and then Chars (Defining_Identifier (Decl)) = Name_uChain
then
return True;
end if;
Next (Decl);
end loop;
return False;
end Has_Activation_Chain;
-- Local variables
Context : Node_Id;
Context_Id : Entity_Id;
Decls : List_Id;
-- Start of processing for Build_Activation_Chain_Entity
begin
-- Activation chain is never used for sequential elaboration policy, see
-- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
if Partition_Elaboration_Policy = 'S' then
return;
end if;
Find_Enclosing_Context (N, Context, Context_Id, Decls);
-- If activation chain entity has not been declared already, create one
if Nkind (Context) = N_Extended_Return_Statement
or else No (Activation_Chain_Entity (Context))
then
-- Since extended return statements do not store the entity of the
-- chain, examine the return object declarations to avoid creating
-- a duplicate.
if Nkind (Context) = N_Extended_Return_Statement
and then Has_Activation_Chain (Context)
then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (Context);
Chain : Entity_Id;
Decl : Node_Id;
begin
Chain := Make_Defining_Identifier (Sloc (N), Name_uChain);
-- Note: An extended return statement is not really a task
-- activator, but it does have an activation chain on which to
-- store the tasks temporarily. On successful return, the tasks
-- on this chain are moved to the chain passed in by the caller.
-- We do not build an Activation_Chain_Entity for an extended
-- return statement, because we do not want to build a call to
-- Activate_Tasks. Task activation is the responsibility of the
-- caller.
if Nkind (Context) /= N_Extended_Return_Statement then
Set_Activation_Chain_Entity (Context, Chain);
end if;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Chain,
Aliased_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Activation_Chain), Loc));
Prepend_To (Decls, Decl);
-- Ensure that _chain appears in the proper scope of the context
if Context_Id /= Current_Scope then
Push_Scope (Context_Id);
Analyze (Decl);
Pop_Scope;
else
Analyze (Decl);
end if;
end;
end if;
end Build_Activation_Chain_Entity;
----------------------------
-- Build_Barrier_Function --
----------------------------
function Build_Barrier_Function
(N : Node_Id;
Ent : Entity_Id;
Pid : Node_Id) return Node_Id
is
Ent_Formals : constant Node_Id := Entry_Body_Formal_Part (N);
Cond : constant Node_Id := Condition (Ent_Formals);
Loc : constant Source_Ptr := Sloc (Cond);
Func_Id : constant Entity_Id := Barrier_Function (Ent);
Op_Decls : constant List_Id := New_List;
Stmt : Node_Id;
Func_Body : Node_Id;
begin
-- Add a declaration for the Protection object, renaming declarations
-- for the discriminals and privals and finally a declaration for the
-- entry family index (if applicable).
Install_Private_Data_Declarations (Sloc (N),
Spec_Id => Func_Id,
Conc_Typ => Pid,
Body_Nod => N,
Decls => Op_Decls,
Barrier => True,
Family => Ekind (Ent) = E_Entry_Family);
-- If compiling with -fpreserve-control-flow, make sure we insert an
-- IF statement so that the back-end knows to generate a conditional
-- branch instruction, even if the condition is just the name of a
-- boolean object. Note that Expand_N_If_Statement knows to preserve
-- such redundant IF statements under -fpreserve-control-flow
-- (whether coming from this routine, or directly from source).
if Opt.Suppress_Control_Flow_Optimizations then
Stmt := Make_Implicit_If_Statement (Cond,
Condition => Cond,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
New_Occurrence_Of (Standard_True, Loc))),
Else_Statements => New_List (
Make_Simple_Return_Statement (Loc,
New_Occurrence_Of (Standard_False, Loc))));
else
Stmt := Make_Simple_Return_Statement (Loc, Cond);
end if;
-- Note: the condition in the barrier function needs to be properly
-- processed for the C/Fortran boolean possibility, but this happens
-- automatically since the return statement does this normalization.
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Build_Barrier_Function_Specification (Loc,
Make_Defining_Identifier (Loc, Chars (Func_Id))),
Declarations => Op_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Stmt)));
Set_Is_Entry_Barrier_Function (Func_Body);
return Func_Body;
end Build_Barrier_Function;
------------------------------------------
-- Build_Barrier_Function_Specification --
------------------------------------------
function Build_Barrier_Function_Specification
(Loc : Source_Ptr;
Def_Id : Entity_Id) return Node_Id
is
begin
Set_Debug_Info_Needed (Def_Id);
return Make_Function_Specification (Loc,
Defining_Unit_Name => Def_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uO),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uE),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Protected_Entry_Index), Loc))),
Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
end Build_Barrier_Function_Specification;
--------------------------
-- Build_Call_With_Task --
--------------------------
function Build_Call_With_Task
(N : Node_Id;
E : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
begin
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (E, Loc),
Parameter_Associations => New_List (Concurrent_Ref (N)));
end Build_Call_With_Task;
-----------------------------
-- Build_Class_Wide_Master --
-----------------------------
procedure Build_Class_Wide_Master (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Master_Id : Entity_Id;
Master_Scope : Entity_Id;
Name_Id : Node_Id;
Related_Node : Node_Id;
Ren_Decl : Node_Id;
begin
-- Nothing to do if there is no task hierarchy
if Restriction_Active (No_Task_Hierarchy) then
return;
end if;
-- Find the declaration that created the access type, which is either a
-- type declaration, or an object declaration with an access definition,
-- in which case the type is anonymous.
if Is_Itype (Typ) then
Related_Node := Associated_Node_For_Itype (Typ);
else
Related_Node := Parent (Typ);
end if;
Master_Scope := Find_Master_Scope (Typ);
-- Nothing to do if the master scope already contains a _master entity.
-- The only exception to this is the following scenario:
-- Source_Scope
-- Transient_Scope_1
-- _master
-- Transient_Scope_2
-- use of master
-- In this case the source scope is marked as having the master entity
-- even though the actual declaration appears inside an inner scope. If
-- the second transient scope requires a _master, it cannot use the one
-- already declared because the entity is not visible.
Name_Id := Make_Identifier (Loc, Name_uMaster);
if not Has_Master_Entity (Master_Scope)
or else No (Current_Entity_In_Scope (Name_Id))
then
declare
Master_Decl : Node_Id;
begin
Set_Has_Master_Entity (Master_Scope);
-- Generate:
-- _master : constant Integer := Current_Master.all;
Master_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Standard_Integer, Loc),
Expression =>
Make_Explicit_Dereference (Loc,
New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
Insert_Action (Find_Hook_Context (Related_Node), Master_Decl);
Analyze (Master_Decl);
-- Mark the containing scope as a task master. Masters associated
-- with return statements are already marked at this stage (see
-- Analyze_Subprogram_Body).
if Ekind (Current_Scope) /= E_Return_Statement then
declare
Par : Node_Id := Related_Node;
begin
while Nkind (Par) /= N_Compilation_Unit loop
Par := Parent (Par);
-- If we fall off the top, we are at the outer level,
-- and the environment task is our effective master,
-- so nothing to mark.
if Nkind_In (Par, N_Block_Statement,
N_Subprogram_Body,
N_Task_Body)
then
Set_Is_Task_Master (Par);
exit;
end if;
end loop;
end;
end if;
end;
end if;
Master_Id :=
Make_Defining_Identifier (Loc, New_External_Name (Chars (Typ), 'M'));
-- Generate:
-- typeMnn renames _master;
Ren_Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Master_Id,
Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
Name => Name_Id);
Insert_Action (Related_Node, Ren_Decl);
Set_Master_Id (Typ, Master_Id);
end Build_Class_Wide_Master;
--------------------------------
-- Build_Corresponding_Record --
--------------------------------
function Build_Corresponding_Record
(N : Node_Id;
Ctyp : Entity_Id;
Loc : Source_Ptr) return Node_Id
is
Rec_Ent : constant Entity_Id :=
Make_Defining_Identifier
(Loc, New_External_Name (Chars (Ctyp), 'V'));
Disc : Entity_Id;
Dlist : List_Id;
New_Disc : Entity_Id;
Cdecls : List_Id;
begin
Set_Corresponding_Record_Type (Ctyp, Rec_Ent);
Set_Ekind (Rec_Ent, E_Record_Type);
Set_Has_Delayed_Freeze (Rec_Ent, Has_Delayed_Freeze (Ctyp));
Set_Is_Concurrent_Record_Type (Rec_Ent, True);
Set_Corresponding_Concurrent_Type (Rec_Ent, Ctyp);
Set_Stored_Constraint (Rec_Ent, No_Elist);
Cdecls := New_List;
-- Propagate type invariants to the corresponding record type
Set_Has_Invariants (Rec_Ent, Has_Invariants (Ctyp));
Set_Has_Inheritable_Invariants (Rec_Ent,
Has_Inheritable_Invariants (Ctyp));
-- Use discriminals to create list of discriminants for record, and
-- create new discriminals for use in default expressions, etc. It is
-- worth noting that a task discriminant gives rise to 5 entities;
-- a) The original discriminant.
-- b) The discriminal for use in the task.
-- c) The discriminant of the corresponding record.
-- d) The discriminal for the init proc of the corresponding record.
-- e) The local variable that renames the discriminant in the procedure
-- for the task body.
-- In fact the discriminals b) are used in the renaming declarations
-- for e). See details in einfo (Handling of Discriminants).
if Present (Discriminant_Specifications (N)) then
Dlist := New_List;
Disc := First_Discriminant (Ctyp);
while Present (Disc) loop
New_Disc := CR_Discriminant (Disc);
Append_To (Dlist,
Make_Discriminant_Specification (Loc,
Defining_Identifier => New_Disc,
Discriminant_Type =>
New_Occurrence_Of (Etype (Disc), Loc),
Expression =>
New_Copy (Discriminant_Default_Value (Disc))));
Next_Discriminant (Disc);
end loop;
else
Dlist := No_List;
end if;
-- Now we can construct the record type declaration. Note that this
-- record is "limited tagged". It is "limited" to reflect the underlying
-- limitedness of the task or protected object that it represents, and
-- ensuring for example that it is properly passed by reference. It is
-- "tagged" to give support to dispatching calls through interfaces. We
-- propagate here the list of interfaces covered by the concurrent type
-- (Ada 2005: AI-345).
return
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Rec_Ent,
Discriminant_Specifications => Dlist,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc, Component_Items => Cdecls),
Tagged_Present =>
Ada_Version >= Ada_2005 and then Is_Tagged_Type (Ctyp),
Interface_List => Interface_List (N),
Limited_Present => True));
end Build_Corresponding_Record;
---------------------------------
-- Build_Dispatching_Tag_Check --
---------------------------------
function Build_Dispatching_Tag_Check
(K : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
begin
return
Make_Op_Or (Loc,
Make_Op_Eq (Loc,
Left_Opnd =>
New_Occurrence_Of (K, Loc),
Right_Opnd =>
New_Occurrence_Of (RTE (RE_TK_Limited_Tagged), Loc)),
Make_Op_Eq (Loc,
Left_Opnd =>
New_Occurrence_Of (K, Loc),
Right_Opnd =>
New_Occurrence_Of (RTE (RE_TK_Tagged), Loc)));
end Build_Dispatching_Tag_Check;
----------------------------------
-- Build_Entry_Count_Expression --
----------------------------------
function Build_Entry_Count_Expression
(Concurrent_Type : Node_Id;
Component_List : List_Id;
Loc : Source_Ptr) return Node_Id
is
Eindx : Nat;
Ent : Entity_Id;
Ecount : Node_Id;
Comp : Node_Id;
Lo : Node_Id;
Hi : Node_Id;
Typ : Entity_Id;
Large : Boolean;
begin
-- Count number of non-family entries
Eindx := 0;
Ent := First_Entity (Concurrent_Type);
while Present (Ent) loop
if Ekind (Ent) = E_Entry then
Eindx := Eindx + 1;
end if;
Next_Entity (Ent);
end loop;
Ecount := Make_Integer_Literal (Loc, Eindx);
-- Loop through entry families building the addition nodes
Ent := First_Entity (Concurrent_Type);
Comp := First (Component_List);
while Present (Ent) loop
if Ekind (Ent) = E_Entry_Family then
while Chars (Ent) /= Chars (Defining_Identifier (Comp)) loop
Next (Comp);
end loop;
Typ := Etype (Discrete_Subtype_Definition (Parent (Ent)));
Hi := Type_High_Bound (Typ);
Lo := Type_Low_Bound (Typ);
Large := Is_Potentially_Large_Family
(Base_Type (Typ), Concurrent_Type, Lo, Hi);
Ecount :=
Make_Op_Add (Loc,
Left_Opnd => Ecount,
Right_Opnd =>
Family_Size (Loc, Hi, Lo, Concurrent_Type, Large));
end if;
Next_Entity (Ent);
end loop;
return Ecount;
end Build_Entry_Count_Expression;
-----------------------
-- Build_Entry_Names --
-----------------------
procedure Build_Entry_Names
(Obj_Ref : Node_Id;
Obj_Typ : Entity_Id;
Stmts : List_Id)
is
Loc : constant Source_Ptr := Sloc (Obj_Ref);
Data : Entity_Id := Empty;
Index : Entity_Id := Empty;
Typ : Entity_Id := Obj_Typ;
procedure Build_Entry_Name (Comp_Id : Entity_Id);
-- Given an entry [family], create a static string which denotes the
-- name of Comp_Id and assign it to the underlying data structure which
-- contains the entry names of a concurrent object.
function Object_Reference return Node_Id;
-- Return a reference to field _object or _task_id depending on the
-- concurrent object being processed.
----------------------
-- Build_Entry_Name --
----------------------
procedure Build_Entry_Name (Comp_Id : Entity_Id) is
function Build_Range (Def : Node_Id) return Node_Id;
-- Given a discrete subtype definition of an entry family, generate a
-- range node which covers the range of Def's type.
procedure Create_Index_And_Data;
-- Generate the declarations of variables Index and Data. Subsequent
-- calls do nothing.
function Increment_Index return Node_Id;
-- Increment the index used in the assignment of string names to the
-- Data array.
function Name_Declaration (Def_Id : Entity_Id) return Node_Id;
-- Given the name of a temporary variable, create the following
-- declaration for it:
--
-- Def_Id : aliased constant String := <String_Name_From_Buffer>;
function Set_Entry_Name (Def_Id : Entity_Id) return Node_Id;
-- Given the name of a temporary variable, place it in the array of
-- string names. Generate:
--
-- Data (Index) := Def_Id'Unchecked_Access;
-----------------
-- Build_Range --
-----------------
function Build_Range (Def : Node_Id) return Node_Id is
High : Node_Id := Type_High_Bound (Etype (Def));
Low : Node_Id := Type_Low_Bound (Etype (Def));
begin
-- If a bound references a discriminant, generate an identifier
-- with the same name. Resolution will map it to the formals of
-- the init proc.
if Is_Entity_Name (Low)
and then Ekind (Entity (Low)) = E_Discriminant
then
Low :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Obj_Ref),
Selector_Name => Make_Identifier (Loc, Chars (Low)));
else
Low := New_Copy_Tree (Low);
end if;
if Is_Entity_Name (High)
and then Ekind (Entity (High)) = E_Discriminant
then
High :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Obj_Ref),
Selector_Name => Make_Identifier (Loc, Chars (High)));
else
High := New_Copy_Tree (High);
end if;
return
Make_Range (Loc,
Low_Bound => Low,
High_Bound => High);
end Build_Range;
---------------------------
-- Create_Index_And_Data --
---------------------------
procedure Create_Index_And_Data is
begin
if No (Index) and then No (Data) then
declare
Count : RE_Id;
Data_Typ : RE_Id;
Size : Entity_Id;
begin
if Is_Protected_Type (Typ) then
Count := RO_PE_Number_Of_Entries;
Data_Typ := RE_Protected_Entry_Names_Array;
else
Count := RO_ST_Number_Of_Entries;
Data_Typ := RE_Task_Entry_Names_Array;
end if;
-- Step 1: Generate the declaration of the index variable:
-- Index : Entry_Index := 1;
Index := Make_Temporary (Loc, 'I');
Append_To (Stmts,
Make_Object_Declaration (Loc,
Defining_Identifier => Index,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Entry_Index), Loc),
Expression => Make_Integer_Literal (Loc, 1)));
-- Step 2: Generate the declaration of an array to house all
-- names:
-- Size : constant Entry_Index := <Count> (Obj_Ref);
-- Data : aliased <Data_Typ> := (1 .. Size => null);
Size := Make_Temporary (Loc, 'S');
Append_To (Stmts,
Make_Object_Declaration (Loc,
Defining_Identifier => Size,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Entry_Index), Loc),
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (Count), Loc),
Parameter_Associations =>
New_List (Object_Reference))));
Data := Make_Temporary (Loc, 'A');
Append_To (Stmts,
Make_Object_Declaration (Loc,
Defining_Identifier => Data,
Aliased_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (Data_Typ), Loc),
Expression =>
Make_Aggregate (Loc,
Component_Associations => New_List (
Make_Component_Association (Loc,
Choices => New_List (
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc, 1),
High_Bound =>
New_Occurrence_Of (Size, Loc))),
Expression => Make_Null (Loc))))));
end;
end if;
end Create_Index_And_Data;
---------------------
-- Increment_Index --
---------------------
function Increment_Index return Node_Id is
begin
return
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Index, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Index, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
end Increment_Index;
----------------------
-- Name_Declaration --
----------------------
function Name_Declaration (Def_Id : Entity_Id) return Node_Id is
begin
return
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Aliased_Present => True,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc, String_From_Name_Buffer));
end Name_Declaration;
--------------------
-- Set_Entry_Name --
--------------------
function Set_Entry_Name (Def_Id : Entity_Id) return Node_Id is
begin
return
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Data, Loc),
Expressions => New_List (New_Occurrence_Of (Index, Loc))),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Def_Id, Loc),
Attribute_Name => Name_Unchecked_Access));
end Set_Entry_Name;
-- Local variables
Temp_Id : Entity_Id;
Subt_Def : Node_Id;
-- Start of processing for Build_Entry_Name
begin
if Ekind (Comp_Id) = E_Entry_Family then
Subt_Def := Discrete_Subtype_Definition (Parent (Comp_Id));
Create_Index_And_Data;
-- Step 1: Create the string name of the entry family.
-- Generate:
-- Temp : aliased constant String := "name ()";
Temp_Id := Make_Temporary (Loc, 'S');
Get_Name_String (Chars (Comp_Id));
Add_Char_To_Name_Buffer (' ');
Add_Char_To_Name_Buffer ('(');
Add_Char_To_Name_Buffer (')');
Append_To (Stmts, Name_Declaration (Temp_Id));
-- Generate:
-- for Member in Family_Low .. Family_High loop
-- Set_Entry_Name (...);
-- Index := Index + 1;
-- end loop;
Append_To (Stmts,
Make_Loop_Statement (Loc,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Temporary (Loc, 'L'),
Discrete_Subtype_Definition =>
Build_Range (Subt_Def))),
Statements => New_List (
Set_Entry_Name (Temp_Id),
Increment_Index),
End_Label => Empty));
-- Entry
else
Create_Index_And_Data;
-- Step 1: Create the string name of the entry. Generate:
-- Temp : aliased constant String := "name";
Temp_Id := Make_Temporary (Loc, 'S');
Get_Name_String (Chars (Comp_Id));
Append_To (Stmts, Name_Declaration (Temp_Id));
-- Step 2: Associate the string name with the underlying data
-- structure.
Append_To (Stmts, Set_Entry_Name (Temp_Id));
Append_To (Stmts, Increment_Index);
end if;
end Build_Entry_Name;
----------------------
-- Object_Reference --
----------------------
function Object_Reference return Node_Id is
Conc_Typ : constant Entity_Id := Corresponding_Record_Type (Typ);
Field : Name_Id;
Ref : Node_Id;
begin
if Is_Protected_Type (Typ) then
Field := Name_uObject;
else
Field := Name_uTask_Id;
end if;
Ref :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Conc_Typ, New_Copy_Tree (Obj_Ref)),
Selector_Name => Make_Identifier (Loc, Field));
if Is_Protected_Type (Typ) then
Ref :=
Make_Attribute_Reference (Loc,
Prefix => Ref,
Attribute_Name => Name_Unchecked_Access);
end if;
return Ref;
end Object_Reference;
-- Local variables
Comp : Node_Id;
Proc : RE_Id;
-- Start of processing for Build_Entry_Names
begin
-- Retrieve the original concurrent type
if Is_Concurrent_Record_Type (Typ) then
Typ := Corresponding_Concurrent_Type (Typ);
end if;
pragma Assert (Is_Concurrent_Type (Typ));
-- Nothing to do if the type has no entries
if not Has_Entries (Typ) then
return;
end if;
-- Avoid generating entry names for a protected type with only one entry
if Is_Protected_Type (Typ)
and then Find_Protection_Type (Base_Type (Typ)) /=
RTE (RE_Protection_Entries)
then
return;
end if;
-- Step 1: Populate the array with statically generated strings denoting
-- entries and entry family names.
Comp := First_Entity (Typ);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Ekind_In (Comp, E_Entry, E_Entry_Family)
then
Build_Entry_Name (Comp);
end if;
Next_Entity (Comp);
end loop;
-- Step 2: Associate the array with the related concurrent object:
-- Set_Entry_Names (Obj_Ref, <Data>'Unchecked_Access);
if Present (Data) then
if Is_Protected_Type (Typ) then
Proc := RO_PE_Set_Entry_Names;
else
Proc := RO_ST_Set_Entry_Names;
end if;
Append_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (Proc), Loc),
Parameter_Associations => New_List (
Object_Reference,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Data, Loc),
Attribute_Name => Name_Unchecked_Access))));
end if;
end Build_Entry_Names;
---------------------------
-- Build_Parameter_Block --
---------------------------
function Build_Parameter_Block
(Loc : Source_Ptr;
Actuals : List_Id;
Formals : List_Id;
Decls : List_Id) return Entity_Id
is
Actual : Entity_Id;
Comp_Nam : Node_Id;
Comps : List_Id;
Formal : Entity_Id;
Has_Comp : Boolean := False;
Rec_Nam : Node_Id;
begin
Actual := First (Actuals);
Comps := New_List;
Formal := Defining_Identifier (First (Formals));
while Present (Actual) loop
if not Is_Controlling_Actual (Actual) then
-- Generate:
-- type Ann is access all <actual-type>
Comp_Nam := Make_Temporary (Loc, 'A');
Append_To (Decls,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Comp_Nam,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Constant_Present => Ekind (Formal) = E_In_Parameter,
Subtype_Indication =>
New_Occurrence_Of (Etype (Actual), Loc))));
-- Generate:
-- Param : Ann;
Append_To (Comps,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Formal)),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present =>
False,
Subtype_Indication =>
New_Occurrence_Of (Comp_Nam, Loc))));
Has_Comp := True;
end if;
Next_Actual (Actual);
Next_Formal_With_Extras (Formal);
end loop;
Rec_Nam := Make_Temporary (Loc, 'P');
if Has_Comp then
-- Generate:
-- type Pnn is record
-- Param1 : Ann1;
-- ...
-- ParamN : AnnN;
-- where Pnn is a parameter wrapping record, Param1 .. ParamN are
-- the original parameter names and Ann1 .. AnnN are the access to
-- actual types.
Append_To (Decls,
Make_Full_Type_Declaration (Loc,
Defining_Identifier =>
Rec_Nam,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc, Comps))));
else
-- Generate:
-- type Pnn is null record;
Append_To (Decls,
Make_Full_Type_Declaration (Loc,
Defining_Identifier =>
Rec_Nam,
Type_Definition =>
Make_Record_Definition (Loc,
Null_Present => True,
Component_List => Empty)));
end if;
return Rec_Nam;
end Build_Parameter_Block;
--------------------------------------
-- Build_Renamed_Formal_Declaration --
--------------------------------------
function Build_Renamed_Formal_Declaration
(New_F : Entity_Id;
Formal : Entity_Id;
Comp : Entity_Id;
Renamed_Formal : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (New_F);
Decl : Node_Id;
begin
-- If the formal is a tagged incomplete type, it is already passed
-- by reference, so it is sufficient to rename the pointer component
-- that corresponds to the actual. Otherwise we need to dereference
-- the pointer component to obtain the actual.
if Is_Incomplete_Type (Etype (Formal))
and then Is_Tagged_Type (Etype (Formal))
then
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => New_F,
Subtype_Mark => New_Occurrence_Of (Etype (Comp), Loc),
Name => Renamed_Formal);
else
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => New_F,
Subtype_Mark => New_Occurrence_Of (Etype (Formal), Loc),
Name =>
Make_Explicit_Dereference (Loc, Renamed_Formal));
end if;
return Decl;
end Build_Renamed_Formal_Declaration;
-----------------------
-- Build_PPC_Wrapper --
-----------------------
procedure Build_PPC_Wrapper (E : Entity_Id; Decl : Node_Id) is
Items : constant Node_Id := Contract (E);
Loc : constant Source_Ptr := Sloc (E);
Synch_Type : constant Entity_Id := Scope (E);
Actuals : List_Id;
Decls : List_Id;
Entry_Call : Node_Id;
Entry_Name : Node_Id;
Params : List_Id;
Prag : Node_Id;
Synch_Id : Entity_Id;
Wrapper_Id : Entity_Id;
begin
-- Only build the wrapper if entry has pre/postconditions
-- Should this be done unconditionally instead ???
if Present (Items) then
Prag := Pre_Post_Conditions (Items);
if No (Prag) then
return;
end if;
-- Transfer ppc pragmas to the declarations of the wrapper
Decls := New_List;
while Present (Prag) loop
if Nam_In (Pragma_Name (Prag), Name_Precondition,
Name_Postcondition)
then
Append (Relocate_Node (Prag), Decls);
Set_Analyzed (Last (Decls), False);
end if;
Prag := Next_Pragma (Prag);
end loop;
else
return;
end if;
Actuals := New_List;
Synch_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Scope (E)), 'A'));
-- First formal is synchronized object
Params := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Synch_Id,
Out_Present => True,
In_Present => True,
Parameter_Type => New_Occurrence_Of (Scope (E), Loc)));
Entry_Name :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Synch_Id, Loc),
Selector_Name => New_Occurrence_Of (E, Loc));
-- If entity is entry family, second formal is the corresponding index,
-- and entry name is an indexed component.
if Ekind (E) = E_Entry_Family then
declare
Index : constant Entity_Id :=
Make_Defining_Identifier (Loc, Name_I);
begin
Append_To (Params,
Make_Parameter_Specification (Loc,
Defining_Identifier => Index,
Parameter_Type =>
New_Occurrence_Of (Entry_Index_Type (E), Loc)));
Entry_Name :=
Make_Indexed_Component (Loc,
Prefix => Entry_Name,
Expressions => New_List (New_Occurrence_Of (Index, Loc)));
end;
end if;
Entry_Call :=
Make_Procedure_Call_Statement (Loc,
Name => Entry_Name,
Parameter_Associations => Actuals);
-- Now add formals that match those of the entry, and build actuals for
-- the nested entry call.
declare
Form : Entity_Id;
New_Form : Entity_Id;
Parm_Spec : Node_Id;
begin
Form := First_Formal (E);
while Present (Form) loop
New_Form := Make_Defining_Identifier (Loc, Chars (Form));
Parm_Spec :=
Make_Parameter_Specification (Loc,
Defining_Identifier => New_Form,
Out_Present => Out_Present (Parent (Form)),
In_Present => In_Present (Parent (Form)),
Parameter_Type => New_Occurrence_Of (Etype (Form), Loc));
Append (Parm_Spec, Params);
Append (New_Occurrence_Of (New_Form, Loc), Actuals);
Next_Formal (Form);
end loop;
end;
-- Add renaming declarations for the discriminants of the enclosing
-- type, which may be visible in the preconditions.
if Has_Discriminants (Synch_Type) then
declare
D : Entity_Id;
Decl : Node_Id;
begin
D := First_Discriminant (Synch_Type);
while Present (D) loop
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (D)),
Subtype_Mark => New_Occurrence_Of (Etype (D), Loc),
Name =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Synch_Id, Loc),
Selector_Name => Make_Identifier (Loc, Chars (D))));
Prepend (Decl, Decls);
Next_Discriminant (D);
end loop;
end;
end if;
Wrapper_Id :=
Make_Defining_Identifier (Loc, New_External_Name (Chars (E), 'E'));
Set_PPC_Wrapper (E, Wrapper_Id);
-- The wrapper body is analyzed when the enclosing type is frozen
Append_Freeze_Action (Defining_Entity (Decl),
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Wrapper_Id,
Parameter_Specifications => Params),
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Entry_Call))));
end Build_PPC_Wrapper;
--------------------------
-- Build_Wrapper_Bodies --
--------------------------
procedure Build_Wrapper_Bodies
(Loc : Source_Ptr;
Typ : Entity_Id;
N : Node_Id)
is
Rec_Typ : Entity_Id;
function Build_Wrapper_Body
(Loc : Source_Ptr;
Subp_Id : Entity_Id;
Obj_Typ : Entity_Id;
Formals : List_Id) return Node_Id;
-- Ada 2005 (AI-345): Build the body that wraps a primitive operation
-- associated with a protected or task type. Subp_Id is the subprogram
-- name which will be wrapped. Obj_Typ is the type of the new formal
-- parameter which handles dispatching and object notation. Formals are
-- the original formals of Subp_Id which will be explicitly replicated.
------------------------
-- Build_Wrapper_Body --
------------------------
function Build_Wrapper_Body
(Loc : Source_Ptr;
Subp_Id : Entity_Id;
Obj_Typ : Entity_Id;
Formals : List_Id) return Node_Id
is
Body_Spec : Node_Id;
begin
Body_Spec := Build_Wrapper_Spec (Subp_Id, Obj_Typ, Formals);
-- The subprogram is not overriding or is not a primitive declared
-- between two views.
if No (Body_Spec) then
return Empty;
end if;
declare
Actuals : List_Id := No_List;
Conv_Id : Node_Id;
First_Form : Node_Id;
Formal : Node_Id;
Nam : Node_Id;
begin
-- Map formals to actuals. Use the list built for the wrapper
-- spec, skipping the object notation parameter.
First_Form := First (Parameter_Specifications (Body_Spec));
Formal := First_Form;
Next (Formal);
if Present (Formal) then
Actuals := New_List;
while Present (Formal) loop
Append_To (Actuals,
Make_Identifier (Loc,
Chars => Chars (Defining_Identifier (Formal))));
Next (Formal);
end loop;
end if;
-- Special processing for primitives declared between a private
-- type and its completion: the wrapper needs a properly typed
-- parameter if the wrapped operation has a controlling first
-- parameter. Note that this might not be the case for a function
-- with a controlling result.
if Is_Private_Primitive_Subprogram (Subp_Id) then
if No (Actuals) then
Actuals := New_List;
end if;
if Is_Controlling_Formal (First_Formal (Subp_Id)) then
Prepend_To (Actuals,
Unchecked_Convert_To
(Corresponding_Concurrent_Type (Obj_Typ),
Make_Identifier (Loc, Name_uO)));
else
Prepend_To (Actuals,
Make_Identifier (Loc,
Chars => Chars (Defining_Identifier (First_Form))));
end if;
Nam := New_Occurrence_Of (Subp_Id, Loc);
else
-- An access-to-variable object parameter requires an explicit
-- dereference in the unchecked conversion. This case occurs
-- when a protected entry wrapper must override an interface
-- level procedure with interface access as first parameter.
-- O.all.Subp_Id (Formal_1, ..., Formal_N)
if Nkind (Parameter_Type (First_Form)) =
N_Access_Definition
then
Conv_Id :=
Make_Explicit_Dereference (Loc,
Prefix => Make_Identifier (Loc, Name_uO));
else
Conv_Id := Make_Identifier (Loc, Name_uO);
end if;
Nam :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To
(Corresponding_Concurrent_Type (Obj_Typ), Conv_Id),
Selector_Name => New_Occurrence_Of (Subp_Id, Loc));
end if;
-- Create the subprogram body. For a function, the call to the
-- actual subprogram has to be converted to the corresponding
-- record if it is a controlling result.
if Ekind (Subp_Id) = E_Function then
declare
Res : Node_Id;
begin
Res :=
Make_Function_Call (Loc,
Name => Nam,
Parameter_Associations => Actuals);
if Has_Controlling_Result (Subp_Id) then
Res :=
Unchecked_Convert_To
(Corresponding_Record_Type (Etype (Subp_Id)), Res);
end if;
return
Make_Subprogram_Body (Loc,
Specification => Body_Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc, Res))));
end;
else
return
Make_Subprogram_Body (Loc,
Specification => Body_Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name => Nam,
Parameter_Associations => Actuals))));
end if;
end;
end Build_Wrapper_Body;
-- Start of processing for Build_Wrapper_Bodies
begin
if Is_Concurrent_Type (Typ) then
Rec_Typ := Corresponding_Record_Type (Typ);
else
Rec_Typ := Typ;
end if;
-- Generate wrapper bodies for a concurrent type which implements an
-- interface.
if Present (Interfaces (Rec_Typ)) then
declare
Insert_Nod : Node_Id;
Prim : Entity_Id;
Prim_Elmt : Elmt_Id;
Prim_Decl : Node_Id;
Subp : Entity_Id;
Wrap_Body : Node_Id;
Wrap_Id : Entity_Id;
begin
Insert_Nod := N;
-- Examine all primitive operations of the corresponding record
-- type, looking for wrapper specs. Generate bodies in order to
-- complete them.
Prim_Elmt := First_Elmt (Primitive_Operations (Rec_Typ));
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
if (Ekind (Prim) = E_Function
or else Ekind (Prim) = E_Procedure)
and then Is_Primitive_Wrapper (Prim)
then
Subp := Wrapped_Entity (Prim);
Prim_Decl := Parent (Parent (Prim));
Wrap_Body :=
Build_Wrapper_Body (Loc,
Subp_Id => Subp,
Obj_Typ => Rec_Typ,
Formals => Parameter_Specifications (Parent (Subp)));
Wrap_Id := Defining_Unit_Name (Specification (Wrap_Body));
Set_Corresponding_Spec (Wrap_Body, Prim);
Set_Corresponding_Body (Prim_Decl, Wrap_Id);
Insert_After (Insert_Nod, Wrap_Body);
Insert_Nod := Wrap_Body;
Analyze (Wrap_Body);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end;
end if;
end Build_Wrapper_Bodies;
------------------------
-- Build_Wrapper_Spec --
------------------------
function Build_Wrapper_Spec
(Subp_Id : Entity_Id;
Obj_Typ : Entity_Id;
Formals : List_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Subp_Id);
First_Param : Node_Id;
Iface : Entity_Id;
Iface_Elmt : Elmt_Id;
Iface_Op : Entity_Id;
Iface_Op_Elmt : Elmt_Id;
function Overriding_Possible
(Iface_Op : Entity_Id;
Wrapper : Entity_Id) return Boolean;
-- Determine whether a primitive operation can be overridden by Wrapper.
-- Iface_Op is the candidate primitive operation of an interface type,
-- Wrapper is the generated entry wrapper.
function Replicate_Formals
(Loc : Source_Ptr;
Formals : List_Id) return List_Id;
-- An explicit parameter replication is required due to the Is_Entry_
-- Formal flag being set for all the formals of an entry. The explicit
-- replication removes the flag that would otherwise cause a different
-- path of analysis.
-------------------------
-- Overriding_Possible --
-------------------------
function Overriding_Possible
(Iface_Op : Entity_Id;
Wrapper : Entity_Id) return Boolean
is
Iface_Op_Spec : constant Node_Id := Parent (Iface_Op);
Wrapper_Spec : constant Node_Id := Parent (Wrapper);
function Type_Conformant_Parameters
(Iface_Op_Params : List_Id;
Wrapper_Params : List_Id) return Boolean;
-- Determine whether the parameters of the generated entry wrapper
-- and those of a primitive operation are type conformant. During
-- this check, the first parameter of the primitive operation is
-- skipped if it is a controlling argument: protected functions
-- may have a controlling result.
--------------------------------
-- Type_Conformant_Parameters --
--------------------------------
function Type_Conformant_Parameters
(Iface_Op_Params : List_Id;
Wrapper_Params : List_Id) return Boolean
is
Iface_Op_Param : Node_Id;
Iface_Op_Typ : Entity_Id;
Wrapper_Param : Node_Id;
Wrapper_Typ : Entity_Id;
begin
-- Skip the first (controlling) parameter of primitive operation
Iface_Op_Param := First (Iface_Op_Params);
if Present (First_Formal (Iface_Op))
and then Is_Controlling_Formal (First_Formal (Iface_Op))
then
Iface_Op_Param := Next (Iface_Op_Param);
end if;
Wrapper_Param := First (Wrapper_Params);
while Present (Iface_Op_Param)
and then Present (Wrapper_Param)
loop
Iface_Op_Typ := Find_Parameter_Type (Iface_Op_Param);
Wrapper_Typ := Find_Parameter_Type (Wrapper_Param);
-- The two parameters must be mode conformant
if not Conforming_Types
(Iface_Op_Typ, Wrapper_Typ, Mode_Conformant)
then
return False;
end if;
Next (Iface_Op_Param);
Next (Wrapper_Param);
end loop;
-- One of the lists is longer than the other
if Present (Iface_Op_Param) or else Present (Wrapper_Param) then
return False;
end if;
return True;
end Type_Conformant_Parameters;
-- Start of processing for Overriding_Possible
begin
if Chars (Iface_Op) /= Chars (Wrapper) then
return False;
end if;
-- If an inherited subprogram is implemented by a protected procedure
-- or an entry, then the first parameter of the inherited subprogram
-- must be of mode OUT or IN OUT, or access-to-variable parameter.
if Ekind (Iface_Op) = E_Procedure
and then Present (Parameter_Specifications (Iface_Op_Spec))
then
declare
Obj_Param : constant Node_Id :=
First (Parameter_Specifications (Iface_Op_Spec));
begin
if not Out_Present (Obj_Param)
and then Nkind (Parameter_Type (Obj_Param)) /=
N_Access_Definition
then
return False;
end if;
end;
end if;
return
Type_Conformant_Parameters (
Parameter_Specifications (Iface_Op_Spec),
Parameter_Specifications (Wrapper_Spec));
end Overriding_Possible;
-----------------------
-- Replicate_Formals --
-----------------------
function Replicate_Formals
(Loc : Source_Ptr;
Formals : List_Id) return List_Id
is
New_Formals : constant List_Id := New_List;
Formal : Node_Id;
Param_Type : Node_Id;
begin
Formal := First (Formals);
-- Skip the object parameter when dealing with primitives declared
-- between two views.
if Is_Private_Primitive_Subprogram (Subp_Id)
and then not Has_Controlling_Result (Subp_Id)
then
Formal := Next (Formal);
end if;
while Present (Formal) loop
-- Create an explicit copy of the entry parameter
-- When creating the wrapper subprogram for a primitive operation
-- of a protected interface we must construct an equivalent
-- signature to that of the overriding operation. For regular
-- parameters we can just use the type of the formal, but for
-- access to subprogram parameters we need to reanalyze the
-- parameter type to create local entities for the signature of
-- the subprogram type. Using the entities of the overriding
-- subprogram will result in out-of-scope errors in the back-end.
if Nkind (Parameter_Type (Formal)) = N_Access_Definition then
Param_Type := Copy_Separate_Tree (Parameter_Type (Formal));
else
Param_Type :=
New_Occurrence_Of (Etype (Parameter_Type (Formal)), Loc);
end if;
Append_To (New_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => Chars
(Defining_Identifier (Formal))),
In_Present => In_Present (Formal),
Out_Present => Out_Present (Formal),
Null_Exclusion_Present => Null_Exclusion_Present (Formal),
Parameter_Type => Param_Type));
Next (Formal);
end loop;
return New_Formals;
end Replicate_Formals;
-- Start of processing for Build_Wrapper_Spec
begin
-- No point in building wrappers for untagged concurrent types
pragma Assert (Is_Tagged_Type (Obj_Typ));
-- An entry or a protected procedure can override a routine where the
-- controlling formal is either IN OUT, OUT or is of access-to-variable
-- type. Since the wrapper must have the exact same signature as that of
-- the overridden subprogram, we try to find the overriding candidate
-- and use its controlling formal.
First_Param := Empty;
-- Check every implemented interface
if Present (Interfaces (Obj_Typ)) then
Iface_Elmt := First_Elmt (Interfaces (Obj_Typ));
Search : while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
-- Check every interface primitive
if Present (Primitive_Operations (Iface)) then
Iface_Op_Elmt := First_Elmt (Primitive_Operations (Iface));
while Present (Iface_Op_Elmt) loop
Iface_Op := Node (Iface_Op_Elmt);
-- Ignore predefined primitives
if not Is_Predefined_Dispatching_Operation (Iface_Op) then
Iface_Op := Ultimate_Alias (Iface_Op);
-- The current primitive operation can be overridden by
-- the generated entry wrapper.
if Overriding_Possible (Iface_Op, Subp_Id) then
First_Param :=
First (Parameter_Specifications (Parent (Iface_Op)));
exit Search;
end if;
end if;
Next_Elmt (Iface_Op_Elmt);
end loop;
end if;
Next_Elmt (Iface_Elmt);
end loop Search;
end if;
-- Ada 2012 (AI05-0090-1): If no interface primitive is covered by
-- this subprogram and this is not a primitive declared between two
-- views then force the generation of a wrapper. As an optimization,
-- previous versions of the frontend avoid generating the wrapper;
-- however, the wrapper facilitates locating and reporting an error
-- when a duplicate declaration is found later. See example in
-- AI05-0090-1.
if No (First_Param)
and then not Is_Private_Primitive_Subprogram (Subp_Id)
then
if Is_Task_Type
(Corresponding_Concurrent_Type (Obj_Typ))
then
First_Param :=
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_uO),
In_Present => True,
Out_Present => False,
Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc));
-- For entries and procedures of protected types the mode of
-- the controlling argument must be in-out.
else
First_Param :=
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => Name_uO),
In_Present => True,
Out_Present => (Ekind (Subp_Id) /= E_Function),
Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc));
end if;
end if;
declare
Wrapper_Id : constant Entity_Id :=
Make_Defining_Identifier (Loc, Chars (Subp_Id));
New_Formals : List_Id;
Obj_Param : Node_Id;
Obj_Param_Typ : Entity_Id;
begin
-- Minimum decoration is needed to catch the entity in
-- Sem_Ch6.Override_Dispatching_Operation.
if Ekind (Subp_Id) = E_Function then
Set_Ekind (Wrapper_Id, E_Function);
else
Set_Ekind (Wrapper_Id, E_Procedure);
end if;
Set_Is_Primitive_Wrapper (Wrapper_Id);
Set_Wrapped_Entity (Wrapper_Id, Subp_Id);
Set_Is_Private_Primitive (Wrapper_Id,
Is_Private_Primitive_Subprogram (Subp_Id));
-- Process the formals
New_Formals := Replicate_Formals (Loc, Formals);
-- A function with a controlling result and no first controlling
-- formal needs no additional parameter.
if Has_Controlling_Result (Subp_Id)
and then
(No (First_Formal (Subp_Id))
or else not Is_Controlling_Formal (First_Formal (Subp_Id)))
then
null;
-- Routine Subp_Id has been found to override an interface primitive.
-- If the interface operation has an access parameter, create a copy
-- of it, with the same null exclusion indicator if present.
elsif Present (First_Param) then
if Nkind (Parameter_Type (First_Param)) = N_Access_Definition then
Obj_Param_Typ :=
Make_Access_Definition (Loc,
Subtype_Mark =>
New_Occurrence_Of (Obj_Typ, Loc),
Null_Exclusion_Present =>
Null_Exclusion_Present (Parameter_Type (First_Param)),
Constant_Present =>
Constant_Present (Parameter_Type (First_Param)));
else
Obj_Param_Typ := New_Occurrence_Of (Obj_Typ, Loc);
end if;
Obj_Param :=
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => Name_uO),
In_Present => In_Present (First_Param),
Out_Present => Out_Present (First_Param),
Parameter_Type => Obj_Param_Typ);
Prepend_To (New_Formals, Obj_Param);
-- If we are dealing with a primitive declared between two views,
-- implemented by a synchronized operation, we need to create
-- a default parameter. The mode of the parameter must match that
-- of the primitive operation.
else
pragma Assert (Is_Private_Primitive_Subprogram (Subp_Id));
Obj_Param :=
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uO),
In_Present => In_Present (Parent (First_Entity (Subp_Id))),
Out_Present => Ekind (Subp_Id) /= E_Function,
Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc));
Prepend_To (New_Formals, Obj_Param);
end if;
-- Build the final spec. If it is a function with a controlling
-- result, it is a primitive operation of the corresponding
-- record type, so mark the spec accordingly.
if Ekind (Subp_Id) = E_Function then
declare
Res_Def : Node_Id;
begin
if Has_Controlling_Result (Subp_Id) then
Res_Def :=
New_Occurrence_Of
(Corresponding_Record_Type (Etype (Subp_Id)), Loc);
else
Res_Def := New_Copy (Result_Definition (Parent (Subp_Id)));
end if;
return
Make_Function_Specification (Loc,
Defining_Unit_Name => Wrapper_Id,
Parameter_Specifications => New_Formals,
Result_Definition => Res_Def);
end;
else
return
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Wrapper_Id,
Parameter_Specifications => New_Formals);
end if;
end;
end Build_Wrapper_Spec;
-------------------------
-- Build_Wrapper_Specs --
-------------------------
procedure Build_Wrapper_Specs
(Loc : Source_Ptr;
Typ : Entity_Id;
N : in out Node_Id)
is
Def : Node_Id;
Rec_Typ : Entity_Id;
procedure Scan_Declarations (L : List_Id);
-- Common processing for visible and private declarations
-- of a protected type.
procedure Scan_Declarations (L : List_Id) is
Decl : Node_Id;
Wrap_Decl : Node_Id;
Wrap_Spec : Node_Id;
begin
if No (L) then
return;
end if;
Decl := First (L);
while Present (Decl) loop
Wrap_Spec := Empty;
if Nkind (Decl) = N_Entry_Declaration
and then Ekind (Defining_Identifier (Decl)) = E_Entry
then
Wrap_Spec :=
Build_Wrapper_Spec
(Subp_Id => Defining_Identifier (Decl),
Obj_Typ => Rec_Typ,
Formals => Parameter_Specifications (Decl));
elsif Nkind (Decl) = N_Subprogram_Declaration then
Wrap_Spec :=
Build_Wrapper_Spec
(Subp_Id => Defining_Unit_Name (Specification (Decl)),
Obj_Typ => Rec_Typ,
Formals =>
Parameter_Specifications (Specification (Decl)));
end if;
if Present (Wrap_Spec) then
Wrap_Decl :=
Make_Subprogram_Declaration (Loc,
Specification => Wrap_Spec);
Insert_After (N, Wrap_Decl);
N := Wrap_Decl;
Analyze (Wrap_Decl);
end if;
Next (Decl);
end loop;
end Scan_Declarations;
-- start of processing for Build_Wrapper_Specs
begin
if Is_Protected_Type (Typ) then
Def := Protected_Definition (Parent (Typ));
else pragma Assert (Is_Task_Type (Typ));
Def := Task_Definition (Parent (Typ));
end if;
Rec_Typ := Corresponding_Record_Type (Typ);
-- Generate wrapper specs for a concurrent type which implements an
-- interface. Operations in both the visible and private parts may
-- implement progenitor operations.
if Present (Interfaces (Rec_Typ)) and then Present (Def) then
Scan_Declarations (Visible_Declarations (Def));
Scan_Declarations (Private_Declarations (Def));
end if;
end Build_Wrapper_Specs;
---------------------------
-- Build_Find_Body_Index --
---------------------------
function Build_Find_Body_Index (Typ : Entity_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Typ);
Ent : Entity_Id;
E_Typ : Entity_Id;
Has_F : Boolean := False;
Index : Nat;
If_St : Node_Id := Empty;
Lo : Node_Id;
Hi : Node_Id;
Decls : List_Id := New_List;
Ret : Node_Id;
Spec : Node_Id;
Siz : Node_Id := Empty;
procedure Add_If_Clause (Expr : Node_Id);
-- Add test for range of current entry
function Convert_Discriminant_Ref (Bound : Node_Id) return Node_Id;
-- If a bound of an entry is given by a discriminant, retrieve the
-- actual value of the discriminant from the enclosing object.
-------------------
-- Add_If_Clause --
-------------------
procedure Add_If_Clause (Expr : Node_Id) is
Cond : Node_Id;
Stats : constant List_Id :=
New_List (
Make_Simple_Return_Statement (Loc,
Expression => Make_Integer_Literal (Loc, Index + 1)));
begin
-- Index for current entry body
Index := Index + 1;
-- Compute total length of entry queues so far
if No (Siz) then
Siz := Expr;
else
Siz :=
Make_Op_Add (Loc,
Left_Opnd => Siz,
Right_Opnd => Expr);
end if;
Cond :=
Make_Op_Le (Loc,
Left_Opnd => Make_Identifier (Loc, Name_uE),
Right_Opnd => Siz);
-- Map entry queue indexes in the range of the current family
-- into the current index, that designates the entry body.
if No (If_St) then
If_St :=
Make_Implicit_If_Statement (Typ,
Condition => Cond,
Then_Statements => Stats,
Elsif_Parts => New_List);
Ret := If_St;
else
Append_To (Elsif_Parts (If_St),
Make_Elsif_Part (Loc,
Condition => Cond,
Then_Statements => Stats));
end if;
end Add_If_Clause;
------------------------------
-- Convert_Discriminant_Ref --
------------------------------
function Convert_Discriminant_Ref (Bound : Node_Id) return Node_Id is
B : Node_Id;
begin
if Is_Entity_Name (Bound)
and then Ekind (Entity (Bound)) = E_Discriminant
then
B :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Corresponding_Record_Type (Typ),
Make_Explicit_Dereference (Loc,
Make_Identifier (Loc, Name_uObject))),
Selector_Name => Make_Identifier (Loc, Chars (Bound)));
Set_Etype (B, Etype (Entity (Bound)));
else
B := New_Copy_Tree (Bound);
end if;
return B;
end Convert_Discriminant_Ref;
-- Start of processing for Build_Find_Body_Index
begin
Spec := Build_Find_Body_Index_Spec (Typ);
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Entry_Family then
Has_F := True;
exit;
end if;
Next_Entity (Ent);
end loop;
if not Has_F then
-- If the protected type has no entry families, there is a one-one
-- correspondence between entry queue and entry body.
Ret :=
Make_Simple_Return_Statement (Loc,
Expression => Make_Identifier (Loc, Name_uE));
else
-- Suppose entries e1, e2, ... have size l1, l2, ... we generate
-- the following:
-- if E <= l1 then return 1;
-- elsif E <= l1 + l2 then return 2;
-- ...
Index := 0;
Siz := Empty;
Ent := First_Entity (Typ);
Add_Object_Pointer (Loc, Typ, Decls);
while Present (Ent) loop
if Ekind (Ent) = E_Entry then
Add_If_Clause (Make_Integer_Literal (Loc, 1));
elsif Ekind (Ent) = E_Entry_Family then
E_Typ := Etype (Discrete_Subtype_Definition (Parent (Ent)));
Hi := Convert_Discriminant_Ref (Type_High_Bound (E_Typ));
Lo := Convert_Discriminant_Ref (Type_Low_Bound (E_Typ));
Add_If_Clause (Family_Size (Loc, Hi, Lo, Typ, False));
end if;
Next_Entity (Ent);
end loop;
if Index = 1 then
Decls := New_List;
Ret :=
Make_Simple_Return_Statement (Loc,
Expression => Make_Integer_Literal (Loc, 1));
elsif Nkind (Ret) = N_If_Statement then
-- Ranges are in increasing order, so last one doesn't need guard
declare
Nod : constant Node_Id := Last (Elsif_Parts (Ret));
begin
Remove (Nod);
Set_Else_Statements (Ret, Then_Statements (Nod));
end;
end if;
end if;
return
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Ret)));
end Build_Find_Body_Index;
--------------------------------
-- Build_Find_Body_Index_Spec --
--------------------------------
function Build_Find_Body_Index_Spec (Typ : Entity_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Typ);
Id : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), 'F'));
Parm1 : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uO);
Parm2 : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uE);
begin
return
Make_Function_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Parm1,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Parm2,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Protected_Entry_Index), Loc))),
Result_Definition => New_Occurrence_Of (
RTE (RE_Protected_Entry_Index), Loc));
end Build_Find_Body_Index_Spec;
-----------------------------------------------
-- Build_Lock_Free_Protected_Subprogram_Body --
-----------------------------------------------
function Build_Lock_Free_Protected_Subprogram_Body
(N : Node_Id;
Prot_Typ : Node_Id;
Unprot_Spec : Node_Id) return Node_Id
is
Actuals : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (N);
Spec : constant Node_Id := Specification (N);
Unprot_Id : constant Entity_Id := Defining_Unit_Name (Unprot_Spec);
Formal : Node_Id;
Prot_Spec : Node_Id;
Stmt : Node_Id;
begin
-- Create the protected version of the body
Prot_Spec :=
Build_Protected_Sub_Specification (N, Prot_Typ, Protected_Mode);
-- Build the actual parameters which appear in the call to the
-- unprotected version of the body.
Formal := First (Parameter_Specifications (Prot_Spec));
while Present (Formal) loop
Append_To (Actuals,
Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
Next (Formal);
end loop;
-- Function case, generate:
-- return <Unprot_Func_Call>;
if Nkind (Spec) = N_Function_Specification then
Stmt :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name =>
Make_Identifier (Loc, Chars (Unprot_Id)),
Parameter_Associations => Actuals));
-- Procedure case, call the unprotected version
else
Stmt :=
Make_Procedure_Call_Statement (Loc,
Name =>
Make_Identifier (Loc, Chars (Unprot_Id)),
Parameter_Associations => Actuals);
end if;
return
Make_Subprogram_Body (Loc,
Declarations => Empty_List,
Specification => Prot_Spec,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Stmt)));
end Build_Lock_Free_Protected_Subprogram_Body;
-------------------------------------------------
-- Build_Lock_Free_Unprotected_Subprogram_Body --
-------------------------------------------------
-- Procedures which meet the lock-free implementation requirements and
-- reference a unique scalar component Comp are expanded in the following
-- manner:
-- procedure P (...) is
-- Expected_Comp : constant Comp_Type :=
-- Comp_Type
-- (System.Atomic_Primitives.Lock_Free_Read_N
-- (_Object.Comp'Address));
-- begin
-- loop
-- declare
-- <original declarations before the object renaming declaration
-- of Comp>
--
-- Desired_Comp : Comp_Type := Expected_Comp;
-- Comp : Comp_Type renames Desired_Comp;
--
-- <original delarations after the object renaming declaration
-- of Comp>
--
-- begin
-- <original statements>
-- exit when System.Atomic_Primitives.Lock_Free_Try_Write_N
-- (_Object.Comp'Address,
-- Interfaces.Unsigned_N (Expected_Comp),
-- Interfaces.Unsigned_N (Desired_Comp));
-- end;
-- end loop;
-- end P;
-- Each return and raise statement of P is transformed into an atomic
-- status check:
-- if System.Atomic_Primitives.Lock_Free_Try_Write_N
-- (_Object.Comp'Address,
-- Interfaces.Unsigned_N (Expected_Comp),
-- Interfaces.Unsigned_N (Desired_Comp));
-- then
-- <original statement>
-- else
-- goto L0;
-- end if;
-- Functions which meet the lock-free implementation requirements and
-- reference a unique scalar component Comp are expanded in the following
-- manner:
-- function F (...) return ... is
-- <original declarations before the object renaming declaration
-- of Comp>
--
-- Expected_Comp : constant Comp_Type :=
-- Comp_Type
-- (System.Atomic_Primitives.Lock_Free_Read_N
-- (_Object.Comp'Address));
-- Comp : Comp_Type renames Expected_Comp;
--
-- <original delarations after the object renaming declaration of
-- Comp>
--
-- begin
-- <original statements>
-- end F;
function Build_Lock_Free_Unprotected_Subprogram_Body
(N : Node_Id;
Prot_Typ : Node_Id) return Node_Id
is
function Referenced_Component (N : Node_Id) return Entity_Id;
-- Subprograms which meet the lock-free implementation criteria are
-- allowed to reference only one unique component. Return the prival
-- of the said component.
--------------------------
-- Referenced_Component --
--------------------------
function Referenced_Component (N : Node_Id) return Entity_Id is
Comp : Entity_Id;
Decl : Node_Id;
Source_Comp : Entity_Id := Empty;
begin
-- Find the unique source component which N references in its
-- statements.
for Index in 1 .. Lock_Free_Subprogram_Table.Last loop
declare
Element : Lock_Free_Subprogram renames
Lock_Free_Subprogram_Table.Table (Index);
begin
if Element.Sub_Body = N then
Source_Comp := Element.Comp_Id;
exit;
end if;
end;
end loop;
if No (Source_Comp) then
return Empty;
end if;
-- Find the prival which corresponds to the source component within
-- the declarations of N.
Decl := First (Declarations (N));
while Present (Decl) loop
-- Privals appear as object renamings
if Nkind (Decl) = N_Object_Renaming_Declaration then
Comp := Defining_Identifier (Decl);
if Present (Prival_Link (Comp))
and then Prival_Link (Comp) = Source_Comp
then
return Comp;
end if;
end if;
Next (Decl);
end loop;
return Empty;
end Referenced_Component;
-- Local variables
Comp : constant Entity_Id := Referenced_Component (N);
Loc : constant Source_Ptr := Sloc (N);
Hand_Stmt_Seq : Node_Id := Handled_Statement_Sequence (N);
Decls : List_Id := Declarations (N);
-- Start of processing for Build_Lock_Free_Unprotected_Subprogram_Body
begin
-- Add renamings for the protection object, discriminals, privals and
-- the entry index constant for use by debugger.
Debug_Private_Data_Declarations (Decls);
-- Perform the lock-free expansion when the subprogram references a
-- protected component.
if Present (Comp) then
Protected_Component_Ref : declare
Comp_Decl : constant Node_Id := Parent (Comp);
Comp_Sel_Nam : constant Node_Id := Name (Comp_Decl);
Comp_Type : constant Entity_Id := Etype (Comp);
Is_Procedure : constant Boolean :=
Ekind (Corresponding_Spec (N)) = E_Procedure;
-- Indicates if N is a protected procedure body
Block_Decls : List_Id;
Try_Write : Entity_Id;
Desired_Comp : Entity_Id;
Decl : Node_Id;
Label : Node_Id;
Label_Id : Entity_Id := Empty;
Read : Entity_Id;
Expected_Comp : Entity_Id;
Stmt : Node_Id;
Stmts : List_Id :=
New_Copy_List (Statements (Hand_Stmt_Seq));
Typ_Size : Int;
Unsigned : Entity_Id;
function Process_Node (N : Node_Id) return Traverse_Result;
-- Transform a single node if it is a return statement, a raise
-- statement or a reference to Comp.
procedure Process_Stmts (Stmts : List_Id);
-- Given a statement sequence Stmts, wrap any return or raise
-- statements in the following manner:
--
-- if System.Atomic_Primitives.Lock_Free_Try_Write_N
-- (_Object.Comp'Address,
-- Interfaces.Unsigned_N (Expected_Comp),
-- Interfaces.Unsigned_N (Desired_Comp))
-- then
-- <Stmt>;
-- else
-- goto L0;
-- end if;
------------------
-- Process_Node --
------------------
function Process_Node (N : Node_Id) return Traverse_Result is
procedure Wrap_Statement (Stmt : Node_Id);
-- Wrap an arbitrary statement inside an if statement where the
-- condition does an atomic check on the state of the object.
--------------------
-- Wrap_Statement --
--------------------
procedure Wrap_Statement (Stmt : Node_Id) is
begin
-- The first time through, create the declaration of a label
-- which is used to skip the remainder of source statements
-- if the state of the object has changed.
if No (Label_Id) then
Label_Id :=
Make_Identifier (Loc, New_External_Name ('L', 0));
Set_Entity (Label_Id,
Make_Defining_Identifier (Loc, Chars (Label_Id)));
end if;
-- Generate:
-- if System.Atomic_Primitives.Lock_Free_Try_Write_N
-- (_Object.Comp'Address,
-- Interfaces.Unsigned_N (Expected_Comp),
-- Interfaces.Unsigned_N (Desired_Comp))
-- then
-- <Stmt>;
-- else
-- goto L0;
-- end if;
Rewrite (Stmt,
Make_Implicit_If_Statement (N,
Condition =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Try_Write, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Comp_Sel_Nam),
Attribute_Name => Name_Address),
Unchecked_Convert_To (Unsigned,
New_Occurrence_Of (Expected_Comp, Loc)),
Unchecked_Convert_To (Unsigned,
New_Occurrence_Of (Desired_Comp, Loc)))),
Then_Statements => New_List (Relocate_Node (Stmt)),
Else_Statements => New_List (
Make_Goto_Statement (Loc,
Name =>
New_Occurrence_Of (Entity (Label_Id), Loc)))));
end Wrap_Statement;
-- Start of processing for Process_Node
begin
-- Wrap each return and raise statement that appear inside a
-- procedure. Skip the last return statement which is added by
-- default since it is transformed into an exit statement.
if Is_Procedure
and then ((Nkind (N) = N_Simple_Return_Statement
and then N /= Last (Stmts))
or else Nkind (N) = N_Extended_Return_Statement
or else (Nkind_In (N, N_Raise_Constraint_Error,
N_Raise_Program_Error,
N_Raise_Statement,
N_Raise_Storage_Error)
and then Comes_From_Source (N)))
then
Wrap_Statement (N);
return Skip;
end if;
-- Force reanalysis
Set_Analyzed (N, False);
return OK;
end Process_Node;
procedure Process_Nodes is new Traverse_Proc (Process_Node);
-------------------
-- Process_Stmts --
-------------------
procedure Process_Stmts (Stmts : List_Id) is
Stmt : Node_Id;
begin
Stmt := First (Stmts);
while Present (Stmt) loop
Process_Nodes (Stmt);
Next (Stmt);
end loop;
end Process_Stmts;
-- Start of processing for Protected_Component_Ref
begin
-- Get the type size
if Known_Static_Esize (Comp_Type) then
Typ_Size := UI_To_Int (Esize (Comp_Type));
-- If the Esize (Object_Size) is unknown at compile time, look at
-- the RM_Size (Value_Size) since it may have been set by an
-- explicit representation clause.
elsif Known_Static_RM_Size (Comp_Type) then
Typ_Size := UI_To_Int (RM_Size (Comp_Type));
-- Should not happen since this has already been checked in
-- Allows_Lock_Free_Implementation (see Sem_Ch9).
else
raise Program_Error;
end if;
-- Retrieve all relevant atomic routines and types
case Typ_Size is
when 8 =>
Try_Write := RTE (RE_Lock_Free_Try_Write_8);
Read := RTE (RE_Lock_Free_Read_8);
Unsigned := RTE (RE_Uint8);
when 16 =>
Try_Write := RTE (RE_Lock_Free_Try_Write_16);
Read := RTE (RE_Lock_Free_Read_16);
Unsigned := RTE (RE_Uint16);
when 32 =>
Try_Write := RTE (RE_Lock_Free_Try_Write_32);
Read := RTE (RE_Lock_Free_Read_32);
Unsigned := RTE (RE_Uint32);
when 64 =>
Try_Write := RTE (RE_Lock_Free_Try_Write_64);
Read := RTE (RE_Lock_Free_Read_64);
Unsigned := RTE (RE_Uint64);
when others =>
raise Program_Error;
end case;
-- Generate:
-- Expected_Comp : constant Comp_Type :=
-- Comp_Type
-- (System.Atomic_Primitives.Lock_Free_Read_N
-- (_Object.Comp'Address));
Expected_Comp :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Comp), Suffix => "_saved"));
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Expected_Comp,
Object_Definition => New_Occurrence_Of (Comp_Type, Loc),
Constant_Present => True,
Expression =>
Unchecked_Convert_To (Comp_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Read, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Comp_Sel_Nam),
Attribute_Name => Name_Address)))));
-- Protected procedures
if Is_Procedure then
-- Move the original declarations inside the generated block
Block_Decls := Decls;
-- Reset the declarations list of the protected procedure to
-- contain only Decl.
Decls := New_List (Decl);
-- Generate:
-- Desired_Comp : Comp_Type := Expected_Comp;
Desired_Comp :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Comp), Suffix => "_current"));
-- Insert the declarations of Expected_Comp and Desired_Comp in
-- the block declarations right before the renaming of the
-- protected component.
Insert_Before (Comp_Decl,
Make_Object_Declaration (Loc,
Defining_Identifier => Desired_Comp,
Object_Definition => New_Occurrence_Of (Comp_Type, Loc),
Expression =>
New_Occurrence_Of (Expected_Comp, Loc)));
-- Protected function
else
Desired_Comp := Expected_Comp;
-- Insert the declaration of Expected_Comp in the function
-- declarations right before the renaming of the protected
-- component.
Insert_Before (Comp_Decl, Decl);
end if;
-- Rewrite the protected component renaming declaration to be a
-- renaming of Desired_Comp.
-- Generate:
-- Comp : Comp_Type renames Desired_Comp;
Rewrite (Comp_Decl,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier =>
Defining_Identifier (Comp_Decl),
Subtype_Mark =>
New_Occurrence_Of (Comp_Type, Loc),
Name =>
New_Occurrence_Of (Desired_Comp, Loc)));
-- Wrap any return or raise statements in Stmts in same the manner
-- described in Process_Stmts.
Process_Stmts (Stmts);
-- Generate:
-- exit when System.Atomic_Primitives.Lock_Free_Try_Write_N
-- (_Object.Comp'Address,
-- Interfaces.Unsigned_N (Expected_Comp),
-- Interfaces.Unsigned_N (Desired_Comp))
if Is_Procedure then
Stmt :=
Make_Exit_Statement (Loc,
Condition =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Try_Write, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Comp_Sel_Nam),
Attribute_Name => Name_Address),
Unchecked_Convert_To (Unsigned,
New_Occurrence_Of (Expected_Comp, Loc)),
Unchecked_Convert_To (Unsigned,
New_Occurrence_Of (Desired_Comp, Loc)))));
-- Small optimization: transform the default return statement
-- of a procedure into the atomic exit statement.
if Nkind (Last (Stmts)) = N_Simple_Return_Statement then
Rewrite (Last (Stmts), Stmt);
else
Append_To (Stmts, Stmt);
end if;
end if;
-- Create the declaration of the label used to skip the rest of
-- the source statements when the object state changes.
if Present (Label_Id) then
Label := Make_Label (Loc, Label_Id);
Append_To (Decls,
Make_Implicit_Label_Declaration (Loc,
Defining_Identifier => Entity (Label_Id),
Label_Construct => Label));
Append_To (Stmts, Label);
end if;
-- Generate:
-- loop
-- declare
-- <Decls>
-- begin
-- <Stmts>
-- end;
-- end loop;
if Is_Procedure then
Stmts :=
New_List (
Make_Loop_Statement (Loc,
Statements => New_List (
Make_Block_Statement (Loc,
Declarations => Block_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts))),
End_Label => Empty));
end if;
Hand_Stmt_Seq :=
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts);
end Protected_Component_Ref;
end if;
-- Make an unprotected version of the subprogram for use within the same
-- object, with new name and extra parameter representing the object.
return
Make_Subprogram_Body (Loc,
Specification =>
Build_Protected_Sub_Specification (N, Prot_Typ, Unprotected_Mode),
Declarations => Decls,
Handled_Statement_Sequence => Hand_Stmt_Seq);
end Build_Lock_Free_Unprotected_Subprogram_Body;
-------------------------
-- Build_Master_Entity --
-------------------------
procedure Build_Master_Entity (Obj_Or_Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Obj_Or_Typ);
Context : Node_Id;
Context_Id : Entity_Id;
Decl : Node_Id;
Decls : List_Id;
Par : Node_Id;
begin
if Is_Itype (Obj_Or_Typ) then
Par := Associated_Node_For_Itype (Obj_Or_Typ);
else
Par := Parent (Obj_Or_Typ);
end if;
-- When creating a master for a record component which is either a task
-- or access-to-task, the enclosing record is the master scope and the
-- proper insertion point is the component list.
if Is_Record_Type (Current_Scope) then
Context := Par;
Context_Id := Current_Scope;
Decls := List_Containing (Context);
-- Default case for object declarations and access types. Note that the
-- context is updated to the nearest enclosing body, block, package or
-- return statement.
else
Find_Enclosing_Context (Par, Context, Context_Id, Decls);
end if;
-- Do not create a master if one already exists or there is no task
-- hierarchy.
if Has_Master_Entity (Context_Id)
or else Restriction_Active (No_Task_Hierarchy)
then
return;
end if;
-- Create a master, generate:
-- _Master : constant Master_Id := Current_Master.all;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Constant_Present => True,
Object_Definition => New_Occurrence_Of (RTE (RE_Master_Id), Loc),
Expression =>
Make_Explicit_Dereference (Loc,
New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
-- The master is inserted at the start of the declarative list of the
-- context.
Prepend_To (Decls, Decl);
-- In certain cases where transient scopes are involved, the immediate
-- scope is not always the proper master scope. Ensure that the master
-- declaration and entity appear in the same context.
if Context_Id /= Current_Scope then
Push_Scope (Context_Id);
Analyze (Decl);
Pop_Scope;
else
Analyze (Decl);
end if;
-- Mark the enclosing scope and its associated construct as being task
-- masters.
Set_Has_Master_Entity (Context_Id);
while Present (Context)
and then Nkind (Context) /= N_Compilation_Unit
loop
if Nkind_In (Context, N_Block_Statement,
N_Subprogram_Body,
N_Task_Body)
then
Set_Is_Task_Master (Context);
exit;
elsif Nkind (Parent (Context)) = N_Subunit then
Context := Corresponding_Stub (Parent (Context));
end if;
Context := Parent (Context);
end loop;
end Build_Master_Entity;
---------------------------
-- Build_Master_Renaming --
---------------------------
procedure Build_Master_Renaming
(Ptr_Typ : Entity_Id;
Ins_Nod : Node_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (Ptr_Typ);
Context : Node_Id;
Master_Decl : Node_Id;
Master_Id : Entity_Id;
begin
-- Nothing to do if there is no task hierarchy
if Restriction_Active (No_Task_Hierarchy) then
return;
end if;
-- Determine the proper context to insert the master renaming
if Present (Ins_Nod) then
Context := Ins_Nod;
elsif Is_Itype (Ptr_Typ) then
Context := Associated_Node_For_Itype (Ptr_Typ);
else
Context := Parent (Ptr_Typ);
end if;
-- Generate:
-- <Ptr_Typ>M : Master_Id renames _Master;
Master_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Ptr_Typ), 'M'));
Master_Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Master_Id,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Master_Id), Loc),
Name => Make_Identifier (Loc, Name_uMaster));
Insert_Action (Context, Master_Decl);
-- The renamed master now services the access type
Set_Master_Id (Ptr_Typ, Master_Id);
end Build_Master_Renaming;
-----------------------------------------
-- Build_Private_Protected_Declaration --
-----------------------------------------
function Build_Private_Protected_Declaration
(N : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (N);
Body_Id : constant Entity_Id := Defining_Entity (N);
Decl : Node_Id;
Plist : List_Id;
Formal : Entity_Id;
New_Spec : Node_Id;
Spec_Id : Entity_Id;
begin
Formal := First_Formal (Body_Id);
-- The protected operation always has at least one formal, namely the
-- object itself, but it is only placed in the parameter list if
-- expansion is enabled.
if Present (Formal) or else Expander_Active then
Plist := Copy_Parameter_List (Body_Id);
else
Plist := No_List;
end if;
if Nkind (Specification (N)) = N_Procedure_Specification then
New_Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Sloc (Body_Id),
Chars => Chars (Body_Id)),
Parameter_Specifications =>
Plist);
else
New_Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Sloc (Body_Id),
Chars => Chars (Body_Id)),
Parameter_Specifications => Plist,
Result_Definition =>
New_Occurrence_Of (Etype (Body_Id), Loc));
end if;
Decl := Make_Subprogram_Declaration (Loc, Specification => New_Spec);
Insert_Before (N, Decl);
Spec_Id := Defining_Unit_Name (New_Spec);
-- Indicate that the entity comes from source, to ensure that cross-
-- reference information is properly generated. The body itself is
-- rewritten during expansion, and the body entity will not appear in
-- calls to the operation.
Set_Comes_From_Source (Spec_Id, True);
Analyze (Decl);
Set_Has_Completion (Spec_Id);
Set_Convention (Spec_Id, Convention_Protected);
return Spec_Id;
end Build_Private_Protected_Declaration;
---------------------------
-- Build_Protected_Entry --
---------------------------
function Build_Protected_Entry
(N : Node_Id;
Ent : Entity_Id;
Pid : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Decls : constant List_Id := Declarations (N);
End_Lab : constant Node_Id :=
End_Label (Handled_Statement_Sequence (N));
End_Loc : constant Source_Ptr :=
Sloc (Last (Statements (Handled_Statement_Sequence (N))));
-- Used for the generated call to Complete_Entry_Body
Han_Loc : Source_Ptr;
-- Used for the exception handler, inserted at end of the body
Op_Decls : constant List_Id := New_List;
Complete : Node_Id;
Edef : Entity_Id;
Espec : Node_Id;
Ohandle : Node_Id;
Op_Stats : List_Id;
begin
-- Set the source location on the exception handler only when debugging
-- the expanded code (see Make_Implicit_Exception_Handler).
if Debug_Generated_Code then
Han_Loc := End_Loc;
-- Otherwise the inserted code should not be visible to the debugger
else
Han_Loc := No_Location;
end if;
Edef :=
Make_Defining_Identifier (Loc,
Chars => Chars (Protected_Body_Subprogram (Ent)));
Espec :=
Build_Protected_Entry_Specification (Loc, Edef, Empty);
-- Add the following declarations:
-- type poVP is access poV;
-- _object : poVP := poVP (_O);
-- where _O is the formal parameter associated with the concurrent
-- object. These declarations are needed for Complete_Entry_Body.
Add_Object_Pointer (Loc, Pid, Op_Decls);
-- Add renamings for all formals, the Protection object, discriminals,
-- privals and the entry index constant for use by debugger.
Add_Formal_Renamings (Espec, Op_Decls, Ent, Loc);
Debug_Private_Data_Declarations (Decls);
-- Put the declarations and the statements from the entry
Op_Stats :=
New_List (
Make_Block_Statement (Loc,
Declarations => Decls,
Handled_Statement_Sequence =>
Handled_Statement_Sequence (N)));
case Corresponding_Runtime_Package (Pid) is
when System_Tasking_Protected_Objects_Entries =>
Append_To (Op_Stats,
Make_Procedure_Call_Statement (End_Loc,
Name =>
New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (End_Loc,
Prefix =>
Make_Selected_Component (End_Loc,
Prefix =>
Make_Identifier (End_Loc, Name_uObject),
Selector_Name =>
Make_Identifier (End_Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access))));
when System_Tasking_Protected_Objects_Single_Entry =>
-- Historically, a call to Complete_Single_Entry_Body was
-- inserted, but it was a null procedure.
null;
when others =>
raise Program_Error;
end case;
-- When exceptions can not be propagated, we never need to call
-- Exception_Complete_Entry_Body
if No_Exception_Handlers_Set then
return
Make_Subprogram_Body (Loc,
Specification => Espec,
Declarations => Op_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Op_Stats,
End_Label => End_Lab));
else
Ohandle := Make_Others_Choice (Loc);
Set_All_Others (Ohandle);
case Corresponding_Runtime_Package (Pid) is
when System_Tasking_Protected_Objects_Entries =>
Complete :=
New_Occurrence_Of
(RTE (RE_Exceptional_Complete_Entry_Body), Loc);
when System_Tasking_Protected_Objects_Single_Entry =>
Complete :=
New_Occurrence_Of
(RTE (RE_Exceptional_Complete_Single_Entry_Body), Loc);
when others =>
raise Program_Error;
end case;
-- Establish link between subprogram body entity and source entry
Set_Corresponding_Protected_Entry (Edef, Ent);
-- Create body of entry procedure. The renaming declarations are
-- placed ahead of the block that contains the actual entry body.
return
Make_Subprogram_Body (Loc,
Specification => Espec,
Declarations => Op_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Op_Stats,
End_Label => End_Lab,
Exception_Handlers => New_List (
Make_Implicit_Exception_Handler (Han_Loc,
Exception_Choices => New_List (Ohandle),
Statements => New_List (
Make_Procedure_Call_Statement (Han_Loc,
Name => Complete,
Parameter_Associations => New_List (
Make_Attribute_Reference (Han_Loc,
Prefix =>
Make_Selected_Component (Han_Loc,
Prefix =>
Make_Identifier (Han_Loc, Name_uObject),
Selector_Name =>
Make_Identifier (Han_Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access),
Make_Function_Call (Han_Loc,
Name => New_Occurrence_Of (
RTE (RE_Get_GNAT_Exception), Loc)))))))));
end if;
end Build_Protected_Entry;
-----------------------------------------
-- Build_Protected_Entry_Specification --
-----------------------------------------
function Build_Protected_Entry_Specification
(Loc : Source_Ptr;
Def_Id : Entity_Id;
Ent_Id : Entity_Id) return Node_Id
is
P : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uP);
begin
Set_Debug_Info_Needed (Def_Id);
if Present (Ent_Id) then
Append_Elmt (P, Accept_Address (Ent_Id));
end if;
return
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Def_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uO),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => P,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uE),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Protected_Entry_Index), Loc))));
end Build_Protected_Entry_Specification;
--------------------------
-- Build_Protected_Spec --
--------------------------
function Build_Protected_Spec
(N : Node_Id;
Obj_Type : Entity_Id;
Ident : Entity_Id;
Unprotected : Boolean := False) return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Formal : Entity_Id;
New_Plist : List_Id;
New_Param : Node_Id;
begin
New_Plist := New_List;
Formal := First_Formal (Ident);
while Present (Formal) loop
New_Param :=
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
Aliased_Present => Aliased_Present (Parent (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Parameter_Type => New_Occurrence_Of (Etype (Formal), Loc));
if Unprotected then
Set_Protected_Formal (Formal, Defining_Identifier (New_Param));
end if;
Append (New_Param, New_Plist);
Next_Formal (Formal);
end loop;
-- If the subprogram is a procedure and the context is not an access
-- to protected subprogram, the parameter is in-out. Otherwise it is
-- an in parameter.
Decl :=
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uObject),
In_Present => True,
Out_Present =>
(Etype (Ident) = Standard_Void_Type
and then not Is_RTE (Obj_Type, RE_Address)),
Parameter_Type =>
New_Occurrence_Of (Obj_Type, Loc));
Set_Debug_Info_Needed (Defining_Identifier (Decl));
Prepend_To (New_Plist, Decl);
return New_Plist;
end Build_Protected_Spec;
---------------------------------------
-- Build_Protected_Sub_Specification --
---------------------------------------
function Build_Protected_Sub_Specification
(N : Node_Id;
Prot_Typ : Entity_Id;
Mode : Subprogram_Protection_Mode) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Def_Id : Entity_Id;
New_Id : Entity_Id;
New_Plist : List_Id;
New_Spec : Node_Id;
Append_Chr : constant array (Subprogram_Protection_Mode) of Character :=
(Dispatching_Mode => ' ',
Protected_Mode => 'P',
Unprotected_Mode => 'N');
begin
if Ekind (Defining_Unit_Name (Specification (N))) =
E_Subprogram_Body
then
Decl := Unit_Declaration_Node (Corresponding_Spec (N));
else
Decl := N;
end if;
Def_Id := Defining_Unit_Name (Specification (Decl));
New_Plist :=
Build_Protected_Spec
(Decl, Corresponding_Record_Type (Prot_Typ), Def_Id,
Mode = Unprotected_Mode);
New_Id :=
Make_Defining_Identifier (Loc,
Chars => Build_Selected_Name (Prot_Typ, Def_Id, Append_Chr (Mode)));
-- The unprotected operation carries the user code, and debugging
-- information must be generated for it, even though this spec does
-- not come from source. It is also convenient to allow gdb to step
-- into the protected operation, even though it only contains lock/
-- unlock calls.
Set_Debug_Info_Needed (New_Id);
-- If a pragma Eliminate applies to the source entity, the internal
-- subprograms will be eliminated as well.
Set_Is_Eliminated (New_Id, Is_Eliminated (Def_Id));
if Nkind (Specification (Decl)) = N_Procedure_Specification then
New_Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => New_Id,
Parameter_Specifications => New_Plist);
-- Create a new specification for the anonymous subprogram type
else
New_Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => New_Id,
Parameter_Specifications => New_Plist,
Result_Definition =>
Copy_Result_Type (Result_Definition (Specification (Decl))));
Set_Return_Present (Defining_Unit_Name (New_Spec));
end if;
return New_Spec;
end Build_Protected_Sub_Specification;
-------------------------------------
-- Build_Protected_Subprogram_Body --
-------------------------------------
function Build_Protected_Subprogram_Body
(N : Node_Id;
Pid : Node_Id;
N_Op_Spec : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Op_Spec : Node_Id;
P_Op_Spec : Node_Id;
Uactuals : List_Id;
Pformal : Node_Id;
Unprot_Call : Node_Id;
Sub_Body : Node_Id;
Lock_Name : Node_Id;
Lock_Stmt : Node_Id;
R : Node_Id;
Return_Stmt : Node_Id := Empty; -- init to avoid gcc 3 warning
Pre_Stmts : List_Id := No_List; -- init to avoid gcc 3 warning
Stmts : List_Id;
Object_Parm : Node_Id;
Exc_Safe : Boolean;
Lock_Kind : RE_Id;
begin
Op_Spec := Specification (N);
Exc_Safe := Is_Exception_Safe (N);
P_Op_Spec :=
Build_Protected_Sub_Specification (N, Pid, Protected_Mode);
-- Build a list of the formal parameters of the protected version of
-- the subprogram to use as the actual parameters of the unprotected
-- version.
Uactuals := New_List;
Pformal := First (Parameter_Specifications (P_Op_Spec));
while Present (Pformal) loop
Append_To (Uactuals,
Make_Identifier (Loc, Chars (Defining_Identifier (Pformal))));
Next (Pformal);
end loop;
-- Make a call to the unprotected version of the subprogram built above
-- for use by the protected version built below.
if Nkind (Op_Spec) = N_Function_Specification then
if Exc_Safe then
R := Make_Temporary (Loc, 'R');
Unprot_Call :=
Make_Object_Declaration (Loc,
Defining_Identifier => R,
Constant_Present => True,
Object_Definition => New_Copy (Result_Definition (N_Op_Spec)),
Expression =>
Make_Function_Call (Loc,
Name => Make_Identifier (Loc,
Chars => Chars (Defining_Unit_Name (N_Op_Spec))),
Parameter_Associations => Uactuals));
Return_Stmt :=
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (R, Loc));
else
Unprot_Call := Make_Simple_Return_Statement (Loc,
Expression => Make_Function_Call (Loc,
Name =>
Make_Identifier (Loc,
Chars => Chars (Defining_Unit_Name (N_Op_Spec))),
Parameter_Associations => Uactuals));
end if;
Lock_Kind := RE_Lock_Read_Only;
else
Unprot_Call :=
Make_Procedure_Call_Statement (Loc,
Name =>
Make_Identifier (Loc, Chars (Defining_Unit_Name (N_Op_Spec))),
Parameter_Associations => Uactuals);
Lock_Kind := RE_Lock;
end if;
-- Wrap call in block that will be covered by an at_end handler
if not Exc_Safe then
Unprot_Call := Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Unprot_Call)));
end if;
-- Make the protected subprogram body. This locks the protected
-- object and calls the unprotected version of the subprogram.
case Corresponding_Runtime_Package (Pid) is
when System_Tasking_Protected_Objects_Entries =>
Lock_Name := New_Occurrence_Of (RTE (RE_Lock_Entries), Loc);
when System_Tasking_Protected_Objects_Single_Entry =>
Lock_Name := New_Occurrence_Of (RTE (RE_Lock_Entry), Loc);
when System_Tasking_Protected_Objects =>
Lock_Name := New_Occurrence_Of (RTE (Lock_Kind), Loc);
when others =>
raise Program_Error;
end case;
Object_Parm :=
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uObject),
Selector_Name => Make_Identifier (Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access);
Lock_Stmt := Make_Procedure_Call_Statement (Loc,
Name => Lock_Name,
Parameter_Associations => New_List (Object_Parm));
if Abort_Allowed then
Stmts := New_List (
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE_Abort_Defer), Loc),
Parameter_Associations => Empty_List),
Lock_Stmt);
else
Stmts := New_List (Lock_Stmt);
end if;
if not Exc_Safe then