blob: bfee6559088db7649fb48e22f532638a35bf4213 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- F R E E Z E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch7; use Exp_Ch7;
with Exp_Disp; use Exp_Disp;
with Exp_Pakd; use Exp_Pakd;
with Exp_Util; use Exp_Util;
with Exp_Tss; use Exp_Tss;
with Ghost; use Ghost;
with Layout; use Layout;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
package body Freeze is
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
-- Typ is a type that is being frozen. If no size clause is given,
-- but a default Esize has been computed, then this default Esize is
-- adjusted up if necessary to be consistent with a given alignment,
-- but never to a value greater than Long_Long_Integer'Size. This
-- is used for all discrete types and for fixed-point types.
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id);
-- Build body for a renaming declaration, insert in tree and analyze
procedure Check_Address_Clause (E : Entity_Id);
-- Apply legality checks to address clauses for object declarations,
-- at the point the object is frozen. Also ensure any initialization is
-- performed only after the object has been frozen.
procedure Check_Component_Storage_Order
(Encl_Type : Entity_Id;
Comp : Entity_Id;
ADC : Node_Id;
Comp_ADC_Present : out Boolean);
-- For an Encl_Type that has a Scalar_Storage_Order attribute definition
-- clause, verify that the component type has an explicit and compatible
-- attribute/aspect. For arrays, Comp is Empty; for records, it is the
-- entity of the component under consideration. For an Encl_Type that
-- does not have a Scalar_Storage_Order attribute definition clause,
-- verify that the component also does not have such a clause.
-- ADC is the attribute definition clause if present (or Empty). On return,
-- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
-- attribute definition clause.
procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
-- When an expression function is frozen by a use of it, the expression
-- itself is frozen. Check that the expression does not include references
-- to deferred constants without completion. We report this at the freeze
-- point of the function, to provide a better error message.
--
-- In most cases the expression itself is frozen by the time the function
-- itself is frozen, because the formals will be frozen by then. However,
-- Attribute references to outer types are freeze points for those types;
-- this routine generates the required freeze nodes for them.
procedure Check_Strict_Alignment (E : Entity_Id);
-- E is a base type. If E is tagged or has a component that is aliased
-- or tagged or contains something this is aliased or tagged, set
-- Strict_Alignment.
procedure Check_Unsigned_Type (E : Entity_Id);
pragma Inline (Check_Unsigned_Type);
-- If E is a fixed-point or discrete type, then all the necessary work
-- to freeze it is completed except for possible setting of the flag
-- Is_Unsigned_Type, which is done by this procedure. The call has no
-- effect if the entity E is not a discrete or fixed-point type.
procedure Freeze_And_Append
(Ent : Entity_Id;
N : Node_Id;
Result : in out List_Id);
-- Freezes Ent using Freeze_Entity, and appends the resulting list of
-- nodes to Result, modifying Result from No_List if necessary. N has
-- the same usage as in Freeze_Entity.
procedure Freeze_Enumeration_Type (Typ : Entity_Id);
-- Freeze enumeration type. The Esize field is set as processing
-- proceeds (i.e. set by default when the type is declared and then
-- adjusted by rep clauses. What this procedure does is to make sure
-- that if a foreign convention is specified, and no specific size
-- is given, then the size must be at least Integer'Size.
procedure Freeze_Static_Object (E : Entity_Id);
-- If an object is frozen which has Is_Statically_Allocated set, then
-- all referenced types must also be marked with this flag. This routine
-- is in charge of meeting this requirement for the object entity E.
procedure Freeze_Subprogram (E : Entity_Id);
-- Perform freezing actions for a subprogram (create extra formals,
-- and set proper default mechanism values). Note that this routine
-- is not called for internal subprograms, for which neither of these
-- actions is needed (or desirable, we do not want for example to have
-- these extra formals present in initialization procedures, where they
-- would serve no purpose). In this call E is either a subprogram or
-- a subprogram type (i.e. an access to a subprogram).
function Is_Fully_Defined (T : Entity_Id) return Boolean;
-- True if T is not private and has no private components, or has a full
-- view. Used to determine whether the designated type of an access type
-- should be frozen when the access type is frozen. This is done when an
-- allocator is frozen, or an expression that may involve attributes of
-- the designated type. Otherwise freezing the access type does not freeze
-- the designated type.
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id);
-- This procedure is called for each subprogram to complete processing of
-- default expressions at the point where all types are known to be frozen.
-- The expressions must be analyzed in full, to make sure that all error
-- processing is done (they have only been pre-analyzed). If the expression
-- is not an entity or literal, its analysis may generate code which must
-- not be executed. In that case we build a function body to hold that
-- code. This wrapper function serves no other purpose (it used to be
-- called to evaluate the default, but now the default is inlined at each
-- point of call).
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
-- Typ is a record or array type that is being frozen. This routine sets
-- the default component alignment from the scope stack values if the
-- alignment is otherwise not specified.
procedure Check_Debug_Info_Needed (T : Entity_Id);
-- As each entity is frozen, this routine is called to deal with the
-- setting of Debug_Info_Needed for the entity. This flag is set if
-- the entity comes from source, or if we are in Debug_Generated_Code
-- mode or if the -gnatdV debug flag is set. However, it never sets
-- the flag if Debug_Info_Off is set. This procedure also ensures that
-- subsidiary entities have the flag set as required.
procedure Set_SSO_From_Default (T : Entity_Id);
-- T is a record or array type that is being frozen. If it is a base type,
-- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
-- will be set appropriately. Note that an explicit occurrence of aspect
-- Scalar_Storage_Order or an explicit setting of this aspect with an
-- attribute definition clause occurs, then these two flags are reset in
-- any case, so call will have no effect.
procedure Undelay_Type (T : Entity_Id);
-- T is a type of a component that we know to be an Itype. We don't want
-- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
-- Full_View or Corresponding_Record_Type.
procedure Warn_Overlay
(Expr : Node_Id;
Typ : Entity_Id;
Nam : Node_Id);
-- Expr is the expression for an address clause for entity Nam whose type
-- is Typ. If Typ has a default initialization, and there is no explicit
-- initialization in the source declaration, check whether the address
-- clause might cause overlaying of an entity, and emit a warning on the
-- side effect that the initialization will cause.
-------------------------------
-- Adjust_Esize_For_Alignment --
-------------------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
Align : Uint;
begin
if Known_Esize (Typ) and then Known_Alignment (Typ) then
Align := Alignment_In_Bits (Typ);
if Align > Esize (Typ)
and then Align <= Standard_Long_Long_Integer_Size
then
Set_Esize (Typ, Align);
end if;
end if;
end Adjust_Esize_For_Alignment;
------------------------------------
-- Build_And_Analyze_Renamed_Body --
------------------------------------
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id)
is
Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
Ent : constant Entity_Id := Defining_Entity (Decl);
Body_Node : Node_Id;
Renamed_Subp : Entity_Id;
begin
-- If the renamed subprogram is intrinsic, there is no need for a
-- wrapper body: we set the alias that will be called and expanded which
-- completes the declaration. This transformation is only legal if the
-- renamed entity has already been elaborated.
-- Note that it is legal for a renaming_as_body to rename an intrinsic
-- subprogram, as long as the renaming occurs before the new entity
-- is frozen (RM 8.5.4 (5)).
if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
and then Is_Entity_Name (Name (Body_Decl))
then
Renamed_Subp := Entity (Name (Body_Decl));
else
Renamed_Subp := Empty;
end if;
if Present (Renamed_Subp)
and then Is_Intrinsic_Subprogram (Renamed_Subp)
and then
(not In_Same_Source_Unit (Renamed_Subp, Ent)
or else Sloc (Renamed_Subp) < Sloc (Ent))
-- We can make the renaming entity intrinsic if the renamed function
-- has an interface name, or if it is one of the shift/rotate
-- operations known to the compiler.
and then
(Present (Interface_Name (Renamed_Subp))
or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
Name_Rotate_Right,
Name_Shift_Left,
Name_Shift_Right,
Name_Shift_Right_Arithmetic))
then
Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
if Present (Alias (Renamed_Subp)) then
Set_Alias (Ent, Alias (Renamed_Subp));
else
Set_Alias (Ent, Renamed_Subp);
end if;
Set_Is_Intrinsic_Subprogram (Ent);
Set_Has_Completion (Ent);
else
Body_Node := Build_Renamed_Body (Decl, New_S);
Insert_After (After, Body_Node);
Mark_Rewrite_Insertion (Body_Node);
Analyze (Body_Node);
After := Body_Node;
end if;
end Build_And_Analyze_Renamed_Body;
------------------------
-- Build_Renamed_Body --
------------------------
function Build_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (New_S);
-- We use for the source location of the renamed body, the location of
-- the spec entity. It might seem more natural to use the location of
-- the renaming declaration itself, but that would be wrong, since then
-- the body we create would look as though it was created far too late,
-- and this could cause problems with elaboration order analysis,
-- particularly in connection with instantiations.
N : constant Node_Id := Unit_Declaration_Node (New_S);
Nam : constant Node_Id := Name (N);
Old_S : Entity_Id;
Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
Actuals : List_Id := No_List;
Call_Node : Node_Id;
Call_Name : Node_Id;
Body_Node : Node_Id;
Formal : Entity_Id;
O_Formal : Entity_Id;
Param_Spec : Node_Id;
Pref : Node_Id := Empty;
-- If the renamed entity is a primitive operation given in prefix form,
-- the prefix is the target object and it has to be added as the first
-- actual in the generated call.
begin
-- Determine the entity being renamed, which is the target of the call
-- statement. If the name is an explicit dereference, this is a renaming
-- of a subprogram type rather than a subprogram. The name itself is
-- fully analyzed.
if Nkind (Nam) = N_Selected_Component then
Old_S := Entity (Selector_Name (Nam));
elsif Nkind (Nam) = N_Explicit_Dereference then
Old_S := Etype (Nam);
elsif Nkind (Nam) = N_Indexed_Component then
if Is_Entity_Name (Prefix (Nam)) then
Old_S := Entity (Prefix (Nam));
else
Old_S := Entity (Selector_Name (Prefix (Nam)));
end if;
elsif Nkind (Nam) = N_Character_Literal then
Old_S := Etype (New_S);
else
Old_S := Entity (Nam);
end if;
if Is_Entity_Name (Nam) then
-- If the renamed entity is a predefined operator, retain full name
-- to ensure its visibility.
if Ekind (Old_S) = E_Operator
and then Nkind (Nam) = N_Expanded_Name
then
Call_Name := New_Copy (Name (N));
else
Call_Name := New_Occurrence_Of (Old_S, Loc);
end if;
else
if Nkind (Nam) = N_Selected_Component
and then Present (First_Formal (Old_S))
and then
(Is_Controlling_Formal (First_Formal (Old_S))
or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
then
-- Retrieve the target object, to be added as a first actual
-- in the call.
Call_Name := New_Occurrence_Of (Old_S, Loc);
Pref := Prefix (Nam);
else
Call_Name := New_Copy (Name (N));
end if;
-- Original name may have been overloaded, but is fully resolved now
Set_Is_Overloaded (Call_Name, False);
end if;
-- For simple renamings, subsequent calls can be expanded directly as
-- calls to the renamed entity. The body must be generated in any case
-- for calls that may appear elsewhere. This is not done in the case
-- where the subprogram is an instantiation because the actual proper
-- body has not been built yet.
if Ekind_In (Old_S, E_Function, E_Procedure)
and then Nkind (Decl) = N_Subprogram_Declaration
and then not Is_Generic_Instance (Old_S)
then
Set_Body_To_Inline (Decl, Old_S);
end if;
-- Check whether the return type is a limited view. If the subprogram
-- is already frozen the generated body may have a non-limited view
-- of the type, that must be used, because it is the one in the spec
-- of the renaming declaration.
if Ekind (Old_S) = E_Function
and then Is_Entity_Name (Result_Definition (Spec))
then
declare
Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
begin
if Ekind (Ret_Type) = E_Incomplete_Type
and then Present (Non_Limited_View (Ret_Type))
then
Set_Result_Definition (Spec,
New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
end if;
end;
end if;
-- The body generated for this renaming is an internal artifact, and
-- does not constitute a freeze point for the called entity.
Set_Must_Not_Freeze (Call_Name);
Formal := First_Formal (Defining_Entity (Decl));
if Present (Pref) then
declare
Pref_Type : constant Entity_Id := Etype (Pref);
Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
begin
-- The controlling formal may be an access parameter, or the
-- actual may be an access value, so adjust accordingly.
if Is_Access_Type (Pref_Type)
and then not Is_Access_Type (Form_Type)
then
Actuals := New_List
(Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
elsif Is_Access_Type (Form_Type)
and then not Is_Access_Type (Pref)
then
Actuals := New_List
(Make_Attribute_Reference (Loc,
Attribute_Name => Name_Access,
Prefix => Relocate_Node (Pref)));
else
Actuals := New_List (Pref);
end if;
end;
elsif Present (Formal) then
Actuals := New_List;
else
Actuals := No_List;
end if;
if Present (Formal) then
while Present (Formal) loop
Append (New_Occurrence_Of (Formal, Loc), Actuals);
Next_Formal (Formal);
end loop;
end if;
-- If the renamed entity is an entry, inherit its profile. For other
-- renamings as bodies, both profiles must be subtype conformant, so it
-- is not necessary to replace the profile given in the declaration.
-- However, default values that are aggregates are rewritten when
-- partially analyzed, so we recover the original aggregate to insure
-- that subsequent conformity checking works. Similarly, if the default
-- expression was constant-folded, recover the original expression.
Formal := First_Formal (Defining_Entity (Decl));
if Present (Formal) then
O_Formal := First_Formal (Old_S);
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Formal) loop
if Is_Entry (Old_S) then
if Nkind (Parameter_Type (Param_Spec)) /=
N_Access_Definition
then
Set_Etype (Formal, Etype (O_Formal));
Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
end if;
elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
or else Nkind (Original_Node (Default_Value (O_Formal))) /=
Nkind (Default_Value (O_Formal))
then
Set_Expression (Param_Spec,
New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
end if;
Next_Formal (Formal);
Next_Formal (O_Formal);
Next (Param_Spec);
end loop;
end if;
-- If the renamed entity is a function, the generated body contains a
-- return statement. Otherwise, build a procedure call. If the entity is
-- an entry, subsequent analysis of the call will transform it into the
-- proper entry or protected operation call. If the renamed entity is
-- a character literal, return it directly.
if Ekind (Old_S) = E_Function
or else Ekind (Old_S) = E_Operator
or else (Ekind (Old_S) = E_Subprogram_Type
and then Etype (Old_S) /= Standard_Void_Type)
then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => Call_Name,
Parameter_Associations => Actuals));
elsif Ekind (Old_S) = E_Enumeration_Literal then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Old_S, Loc));
elsif Nkind (Nam) = N_Character_Literal then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression => Call_Name);
else
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => Call_Name,
Parameter_Associations => Actuals);
end if;
-- Create entities for subprogram body and formals
Set_Defining_Unit_Name (Spec,
Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Param_Spec) loop
Set_Defining_Identifier (Param_Spec,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Param_Spec))));
Next (Param_Spec);
end loop;
Body_Node :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call_Node)));
if Nkind (Decl) /= N_Subprogram_Declaration then
Rewrite (N,
Make_Subprogram_Declaration (Loc,
Specification => Specification (N)));
end if;
-- Link the body to the entity whose declaration it completes. If
-- the body is analyzed when the renamed entity is frozen, it may
-- be necessary to restore the proper scope (see package Exp_Ch13).
if Nkind (N) = N_Subprogram_Renaming_Declaration
and then Present (Corresponding_Spec (N))
then
Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
else
Set_Corresponding_Spec (Body_Node, New_S);
end if;
return Body_Node;
end Build_Renamed_Body;
--------------------------
-- Check_Address_Clause --
--------------------------
procedure Check_Address_Clause (E : Entity_Id) is
Addr : constant Node_Id := Address_Clause (E);
Expr : Node_Id;
Decl : constant Node_Id := Declaration_Node (E);
Loc : constant Source_Ptr := Sloc (Decl);
Typ : constant Entity_Id := Etype (E);
Lhs : Node_Id;
Tag_Assign : Node_Id;
begin
if Present (Addr) then
Expr := Expression (Addr);
if Needs_Constant_Address (Decl, Typ) then
Check_Constant_Address_Clause (Expr, E);
-- Has_Delayed_Freeze was set on E when the address clause was
-- analyzed, and must remain set because we want the address
-- clause to be elaborated only after any entity it references
-- has been elaborated.
end if;
-- If Rep_Clauses are to be ignored, remove address clause from
-- list attached to entity, because it may be illegal for gigi,
-- for example by breaking order of elaboration..
if Ignore_Rep_Clauses then
declare
Rep : Node_Id;
begin
Rep := First_Rep_Item (E);
if Rep = Addr then
Set_First_Rep_Item (E, Next_Rep_Item (Addr));
else
while Present (Rep)
and then Next_Rep_Item (Rep) /= Addr
loop
Rep := Next_Rep_Item (Rep);
end loop;
end if;
if Present (Rep) then
Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
end if;
end;
-- And now remove the address clause
Kill_Rep_Clause (Addr);
elsif not Error_Posted (Expr)
and then not Needs_Finalization (Typ)
then
Warn_Overlay (Expr, Typ, Name (Addr));
end if;
if Present (Expression (Decl)) then
-- Capture initialization value at point of declaration,
-- and make explicit assignment legal, because object may
-- be a constant.
Remove_Side_Effects (Expression (Decl));
Lhs := New_Occurrence_Of (E, Loc);
Set_Assignment_OK (Lhs);
-- Move initialization to freeze actions (once the object has
-- been frozen, and the address clause alignment check has been
-- performed.
Append_Freeze_Action (E,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Expression (Decl)));
Set_No_Initialization (Decl);
-- If the objet is tagged, check whether the tag must be
-- reassigned expliitly.
Tag_Assign := Make_Tag_Assignment (Decl);
if Present (Tag_Assign) then
Append_Freeze_Action (E, Tag_Assign);
end if;
end if;
end if;
end Check_Address_Clause;
-----------------------------
-- Check_Compile_Time_Size --
-----------------------------
procedure Check_Compile_Time_Size (T : Entity_Id) is
procedure Set_Small_Size (T : Entity_Id; S : Uint);
-- Sets the compile time known size (32 bits or less) in the Esize
-- field, of T checking for a size clause that was given which attempts
-- to give a smaller size, and also checking for an alignment clause.
function Size_Known (T : Entity_Id) return Boolean;
-- Recursive function that does all the work
function Static_Discriminated_Components (T : Entity_Id) return Boolean;
-- If T is a constrained subtype, its size is not known if any of its
-- discriminant constraints is not static and it is not a null record.
-- The test is conservative and doesn't check that the components are
-- in fact constrained by non-static discriminant values. Could be made
-- more precise ???
--------------------
-- Set_Small_Size --
--------------------
procedure Set_Small_Size (T : Entity_Id; S : Uint) is
begin
if S > 32 then
return;
-- Check for bad size clause given
elsif Has_Size_Clause (T) then
if RM_Size (T) < S then
Error_Msg_Uint_1 := S;
Error_Msg_NE
("size for& too small, minimum allowed is ^",
Size_Clause (T), T);
end if;
-- Set size if not set already
elsif Unknown_RM_Size (T) then
Set_RM_Size (T, S);
end if;
end Set_Small_Size;
----------------
-- Size_Known --
----------------
function Size_Known (T : Entity_Id) return Boolean is
Index : Entity_Id;
Comp : Entity_Id;
Ctyp : Entity_Id;
Low : Node_Id;
High : Node_Id;
begin
if Size_Known_At_Compile_Time (T) then
return True;
-- Always True for scalar types. This is true even for generic formal
-- scalar types. We used to return False in the latter case, but the
-- size is known at compile time, even in the template, we just do
-- not know the exact size but that's not the point of this routine.
elsif Is_Scalar_Type (T)
or else Is_Task_Type (T)
then
return True;
-- Array types
elsif Is_Array_Type (T) then
-- String literals always have known size, and we can set it
if Ekind (T) = E_String_Literal_Subtype then
Set_Small_Size (T, Component_Size (T)
* String_Literal_Length (T));
return True;
-- Unconstrained types never have known at compile time size
elsif not Is_Constrained (T) then
return False;
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
elsif Error_Posted (T) then
return False;
-- Otherwise if component size unknown, then array size unknown
elsif not Size_Known (Component_Type (T)) then
return False;
end if;
-- Check for all indexes static, and also compute possible size
-- (in case it is less than 32 and may be packable).
declare
Esiz : Uint := Component_Size (T);
Dim : Uint;
begin
Index := First_Index (T);
while Present (Index) loop
if Nkind (Index) = N_Range then
Get_Index_Bounds (Index, Low, High);
elsif Error_Posted (Scalar_Range (Etype (Index))) then
return False;
else
Low := Type_Low_Bound (Etype (Index));
High := Type_High_Bound (Etype (Index));
end if;
if not Compile_Time_Known_Value (Low)
or else not Compile_Time_Known_Value (High)
or else Etype (Index) = Any_Type
then
return False;
else
Dim := Expr_Value (High) - Expr_Value (Low) + 1;
if Dim >= 0 then
Esiz := Esiz * Dim;
else
Esiz := Uint_0;
end if;
end if;
Next_Index (Index);
end loop;
Set_Small_Size (T, Esiz);
return True;
end;
-- Access types always have known at compile time sizes
elsif Is_Access_Type (T) then
return True;
-- For non-generic private types, go to underlying type if present
elsif Is_Private_Type (T)
and then not Is_Generic_Type (T)
and then Present (Underlying_Type (T))
then
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
if Error_Posted (T) then
return False;
else
return Size_Known (Underlying_Type (T));
end if;
-- Record types
elsif Is_Record_Type (T) then
-- A class-wide type is never considered to have a known size
if Is_Class_Wide_Type (T) then
return False;
-- A subtype of a variant record must not have non-static
-- discriminated components.
elsif T /= Base_Type (T)
and then not Static_Discriminated_Components (T)
then
return False;
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
elsif Error_Posted (T) then
return False;
end if;
-- Now look at the components of the record
declare
-- The following two variables are used to keep track of the
-- size of packed records if we can tell the size of the packed
-- record in the front end. Packed_Size_Known is True if so far
-- we can figure out the size. It is initialized to True for a
-- packed record, unless the record has discriminants or atomic
-- components or independent components.
-- The reason we eliminate the discriminated case is that
-- we don't know the way the back end lays out discriminated
-- packed records. If Packed_Size_Known is True, then
-- Packed_Size is the size in bits so far.
Packed_Size_Known : Boolean :=
Is_Packed (T)
and then not Has_Discriminants (T)
and then not Has_Atomic_Components (T)
and then not Has_Independent_Components (T);
Packed_Size : Uint := Uint_0;
-- Size in bits so far
begin
-- Test for variant part present
if Has_Discriminants (T)
and then Present (Parent (T))
and then Nkind (Parent (T)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (T))) =
N_Record_Definition
and then not Null_Present (Type_Definition (Parent (T)))
and then
Present (Variant_Part
(Component_List (Type_Definition (Parent (T)))))
then
-- If variant part is present, and type is unconstrained,
-- then we must have defaulted discriminants, or a size
-- clause must be present for the type, or else the size
-- is definitely not known at compile time.
if not Is_Constrained (T)
and then
No (Discriminant_Default_Value (First_Discriminant (T)))
and then Unknown_RM_Size (T)
then
return False;
end if;
end if;
-- Loop through components
Comp := First_Component_Or_Discriminant (T);
while Present (Comp) loop
Ctyp := Etype (Comp);
-- We do not know the packed size if there is a component
-- clause present (we possibly could, but this would only
-- help in the case of a record with partial rep clauses.
-- That's because in the case of full rep clauses, the
-- size gets figured out anyway by a different circuit).
if Present (Component_Clause (Comp)) then
Packed_Size_Known := False;
end if;
-- We do not know the packed size if we have an atomic type
-- or component, or an independent type or component, or a
-- by reference type or aliased component (because packing
-- does not touch these).
if Is_Atomic (Ctyp)
or else Is_Atomic (Comp)
or else Is_Independent (Ctyp)
or else Is_Independent (Comp)
or else Is_By_Reference_Type (Ctyp)
or else Is_Aliased (Comp)
then
Packed_Size_Known := False;
end if;
-- We need to identify a component that is an array where
-- the index type is an enumeration type with non-standard
-- representation, and some bound of the type depends on a
-- discriminant.
-- This is because gigi computes the size by doing a
-- substitution of the appropriate discriminant value in
-- the size expression for the base type, and gigi is not
-- clever enough to evaluate the resulting expression (which
-- involves a call to rep_to_pos) at compile time.
-- It would be nice if gigi would either recognize that
-- this expression can be computed at compile time, or
-- alternatively figured out the size from the subtype
-- directly, where all the information is at hand ???
if Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Impl_Type (Etype (Comp)))
then
declare
Ocomp : constant Entity_Id :=
Original_Record_Component (Comp);
OCtyp : constant Entity_Id := Etype (Ocomp);
Ind : Node_Id;
Indtyp : Entity_Id;
Lo, Hi : Node_Id;
begin
Ind := First_Index (OCtyp);
while Present (Ind) loop
Indtyp := Etype (Ind);
if Is_Enumeration_Type (Indtyp)
and then Has_Non_Standard_Rep (Indtyp)
then
Lo := Type_Low_Bound (Indtyp);
Hi := Type_High_Bound (Indtyp);
if Is_Entity_Name (Lo)
and then Ekind (Entity (Lo)) = E_Discriminant
then
return False;
elsif Is_Entity_Name (Hi)
and then Ekind (Entity (Hi)) = E_Discriminant
then
return False;
end if;
end if;
Next_Index (Ind);
end loop;
end;
end if;
-- Clearly size of record is not known if the size of one of
-- the components is not known.
if not Size_Known (Ctyp) then
return False;
end if;
-- Accumulate packed size if possible
if Packed_Size_Known then
-- We can only deal with elementary types, since for
-- non-elementary components, alignment enters into the
-- picture, and we don't know enough to handle proper
-- alignment in this context. Packed arrays count as
-- elementary if the representation is a modular type.
if Is_Elementary_Type (Ctyp)
or else (Is_Array_Type (Ctyp)
and then Present
(Packed_Array_Impl_Type (Ctyp))
and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type (Ctyp)))
then
-- Packed size unknown if we have an atomic type
-- or a by reference type, since the back end
-- knows how these are layed out.
if Is_Atomic (Ctyp)
or else Is_By_Reference_Type (Ctyp)
then
Packed_Size_Known := False;
-- If RM_Size is known and static, then we can keep
-- accumulating the packed size
elsif Known_Static_RM_Size (Ctyp) then
-- A little glitch, to be removed sometime ???
-- gigi does not understand zero sizes yet.
if RM_Size (Ctyp) = Uint_0 then
Packed_Size_Known := False;
-- Normal case where we can keep accumulating the
-- packed array size.
else
Packed_Size := Packed_Size + RM_Size (Ctyp);
end if;
-- If we have a field whose RM_Size is not known then
-- we can't figure out the packed size here.
else
Packed_Size_Known := False;
end if;
-- If we have a non-elementary type we can't figure out
-- the packed array size (alignment issues).
else
Packed_Size_Known := False;
end if;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
if Packed_Size_Known then
Set_Small_Size (T, Packed_Size);
end if;
return True;
end;
-- All other cases, size not known at compile time
else
return False;
end if;
end Size_Known;
-------------------------------------
-- Static_Discriminated_Components --
-------------------------------------
function Static_Discriminated_Components
(T : Entity_Id) return Boolean
is
Constraint : Elmt_Id;
begin
if Has_Discriminants (T)
and then Present (Discriminant_Constraint (T))
and then Present (First_Component (T))
then
Constraint := First_Elmt (Discriminant_Constraint (T));
while Present (Constraint) loop
if not Compile_Time_Known_Value (Node (Constraint)) then
return False;
end if;
Next_Elmt (Constraint);
end loop;
end if;
return True;
end Static_Discriminated_Components;
-- Start of processing for Check_Compile_Time_Size
begin
Set_Size_Known_At_Compile_Time (T, Size_Known (T));
end Check_Compile_Time_Size;
-----------------------------------
-- Check_Component_Storage_Order --
-----------------------------------
procedure Check_Component_Storage_Order
(Encl_Type : Entity_Id;
Comp : Entity_Id;
ADC : Node_Id;
Comp_ADC_Present : out Boolean)
is
Comp_Type : Entity_Id;
Comp_ADC : Node_Id;
Err_Node : Node_Id;
Comp_Byte_Aligned : Boolean;
-- Set for the record case, True if Comp starts on a byte boundary
-- (in which case it is allowed to have different storage order).
Comp_SSO_Differs : Boolean;
-- Set True when the component is a nested composite, and it does not
-- have the same scalar storage order as Encl_Type.
Component_Aliased : Boolean;
begin
-- Record case
if Present (Comp) then
Err_Node := Comp;
Comp_Type := Etype (Comp);
if Is_Tag (Comp) then
Comp_Byte_Aligned := True;
Component_Aliased := False;
else
-- If a component clause is present, check if the component starts
-- on a storage element boundary. Otherwise conservatively assume
-- it does so only in the case where the record is not packed.
if Present (Component_Clause (Comp)) then
Comp_Byte_Aligned :=
Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
else
Comp_Byte_Aligned := not Is_Packed (Encl_Type);
end if;
Component_Aliased := Is_Aliased (Comp);
end if;
-- Array case
else
Err_Node := Encl_Type;
Comp_Type := Component_Type (Encl_Type);
Component_Aliased := Has_Aliased_Components (Encl_Type);
end if;
-- Note: the Reverse_Storage_Order flag is set on the base type, but
-- the attribute definition clause is attached to the first subtype.
Comp_Type := Base_Type (Comp_Type);
Comp_ADC := Get_Attribute_Definition_Clause
(First_Subtype (Comp_Type),
Attribute_Scalar_Storage_Order);
Comp_ADC_Present := Present (Comp_ADC);
-- Case of record or array component: check storage order compatibility
if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
Comp_SSO_Differs :=
Reverse_Storage_Order (Encl_Type)
/=
Reverse_Storage_Order (Comp_Type);
-- Parent and extension must have same storage order
if Present (Comp) and then Chars (Comp) = Name_uParent then
if Comp_SSO_Differs then
Error_Msg_N
("record extension must have same scalar storage order as "
& "parent", Err_Node);
end if;
-- If enclosing composite has explicit SSO then nested composite must
-- have explicit SSO as well.
elsif Present (ADC) and then No (Comp_ADC) then
Error_Msg_N ("nested composite must have explicit scalar "
& "storage order", Err_Node);
-- If component and composite SSO differs, check that component
-- falls on byte boundaries and isn't packed.
elsif Comp_SSO_Differs then
-- Component SSO differs from enclosing composite:
-- Reject if component is a packed array, as it may be represented
-- as a scalar internally.
if Is_Packed_Array (Comp_Type) then
Error_Msg_N
("type of packed component must have same scalar "
& "storage order as enclosing composite", Err_Node);
-- Reject if composite is a packed array, as it may be rewritten
-- into an array of scalars.
elsif Is_Packed_Array (Encl_Type) then
Error_Msg_N ("type of packed array must have same scalar "
& "storage order as component", Err_Node);
-- Reject if not byte aligned
elsif Is_Record_Type (Encl_Type)
and then not Comp_Byte_Aligned
then
Error_Msg_N
("type of non-byte-aligned component must have same scalar "
& "storage order as enclosing composite", Err_Node);
end if;
end if;
-- Enclosing type has explicit SSO: non-composite component must not
-- be aliased.
elsif Present (ADC) and then Component_Aliased then
Error_Msg_N
("aliased component not permitted for type with "
& "explicit Scalar_Storage_Order", Err_Node);
end if;
end Check_Component_Storage_Order;
-----------------------------
-- Check_Debug_Info_Needed --
-----------------------------
procedure Check_Debug_Info_Needed (T : Entity_Id) is
begin
if Debug_Info_Off (T) then
return;
elsif Comes_From_Source (T)
or else Debug_Generated_Code
or else Debug_Flag_VV
or else Needs_Debug_Info (T)
then
Set_Debug_Info_Needed (T);
end if;
end Check_Debug_Info_Needed;
-------------------------------
-- Check_Expression_Function --
-------------------------------
procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
Decl : Node_Id;
function Find_Constant (Nod : Node_Id) return Traverse_Result;
-- Function to search for deferred constant
-------------------
-- Find_Constant --
-------------------
function Find_Constant (Nod : Node_Id) return Traverse_Result is
begin
-- When a constant is initialized with the result of a dispatching
-- call, the constant declaration is rewritten as a renaming of the
-- displaced function result. This scenario is not a premature use of
-- a constant even though the Has_Completion flag is not set.
if Is_Entity_Name (Nod)
and then Present (Entity (Nod))
and then Ekind (Entity (Nod)) = E_Constant
and then Scope (Entity (Nod)) = Current_Scope
and then Nkind (Declaration_Node (Entity (Nod))) =
N_Object_Declaration
and then not Is_Imported (Entity (Nod))
and then not Has_Completion (Entity (Nod))
then
Error_Msg_NE
("premature use of& in call or instance", N, Entity (Nod));
elsif Nkind (Nod) = N_Attribute_Reference then
Analyze (Prefix (Nod));
if Is_Entity_Name (Prefix (Nod))
and then Is_Type (Entity (Prefix (Nod)))
then
Freeze_Before (N, Entity (Prefix (Nod)));
end if;
end if;
return OK;
end Find_Constant;
procedure Check_Deferred is new Traverse_Proc (Find_Constant);
-- Start of processing for Check_Expression_Function
begin
Decl := Original_Node (Unit_Declaration_Node (Nam));
if Scope (Nam) = Current_Scope
and then Nkind (Decl) = N_Expression_Function
then
Check_Deferred (Expression (Decl));
end if;
end Check_Expression_Function;
----------------------------
-- Check_Strict_Alignment --
----------------------------
procedure Check_Strict_Alignment (E : Entity_Id) is
Comp : Entity_Id;
begin
if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
Set_Strict_Alignment (E);
elsif Is_Array_Type (E) then
Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
elsif Is_Record_Type (E) then
if Is_Limited_Record (E) then
Set_Strict_Alignment (E);
return;
end if;
Comp := First_Component (E);
while Present (Comp) loop
if not Is_Type (Comp)
and then (Strict_Alignment (Etype (Comp))
or else Is_Aliased (Comp))
then
Set_Strict_Alignment (E);
return;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Strict_Alignment;
-------------------------
-- Check_Unsigned_Type --
-------------------------
procedure Check_Unsigned_Type (E : Entity_Id) is
Ancestor : Entity_Id;
Lo_Bound : Node_Id;
Btyp : Entity_Id;
begin
if not Is_Discrete_Or_Fixed_Point_Type (E) then
return;
end if;
-- Do not attempt to analyze case where range was in error
if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
return;
end if;
-- The situation that is non trivial is something like
-- subtype x1 is integer range -10 .. +10;
-- subtype x2 is x1 range 0 .. V1;
-- subtype x3 is x2 range V2 .. V3;
-- subtype x4 is x3 range V4 .. V5;
-- where Vn are variables. Here the base type is signed, but we still
-- know that x4 is unsigned because of the lower bound of x2.
-- The only way to deal with this is to look up the ancestor chain
Ancestor := E;
loop
if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Ancestor);
if Compile_Time_Known_Value (Lo_Bound) then
if Expr_Rep_Value (Lo_Bound) >= 0 then
Set_Is_Unsigned_Type (E, True);
end if;
return;
else
Ancestor := Ancestor_Subtype (Ancestor);
-- If no ancestor had a static lower bound, go to base type
if No (Ancestor) then
-- Note: the reason we still check for a compile time known
-- value for the base type is that at least in the case of
-- generic formals, we can have bounds that fail this test,
-- and there may be other cases in error situations.
Btyp := Base_Type (E);
if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Base_Type (E));
if Compile_Time_Known_Value (Lo_Bound)
and then Expr_Rep_Value (Lo_Bound) >= 0
then
Set_Is_Unsigned_Type (E, True);
end if;
return;
end if;
end if;
end loop;
end Check_Unsigned_Type;
-------------------------
-- Is_Atomic_Aggregate --
-------------------------
function Is_Atomic_Aggregate
(E : Entity_Id;
Typ : Entity_Id) return Boolean
is
Loc : constant Source_Ptr := Sloc (E);
New_N : Node_Id;
Par : Node_Id;
Temp : Entity_Id;
begin
Par := Parent (E);
-- Array may be qualified, so find outer context
if Nkind (Par) = N_Qualified_Expression then
Par := Parent (Par);
end if;
if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
and then Comes_From_Source (Par)
then
Temp := Make_Temporary (Loc, 'T', E);
New_N :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (E));
Insert_Before (Par, New_N);
Analyze (New_N);
Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
return True;
else
return False;
end if;
end Is_Atomic_Aggregate;
-----------------------------------------------
-- Explode_Initialization_Compound_Statement --
-----------------------------------------------
procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
Init_Stmts : constant Node_Id := Initialization_Statements (E);
begin
if Present (Init_Stmts)
and then Nkind (Init_Stmts) = N_Compound_Statement
then
Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
-- Note that we rewrite Init_Stmts into a NULL statement, rather than
-- just removing it, because Freeze_All may rely on this particular
-- Node_Id still being present in the enclosing list to know where to
-- stop freezing.
Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
Set_Initialization_Statements (E, Empty);
end if;
end Explode_Initialization_Compound_Statement;
----------------
-- Freeze_All --
----------------
-- Note: the easy coding for this procedure would be to just build a
-- single list of freeze nodes and then insert them and analyze them
-- all at once. This won't work, because the analysis of earlier freeze
-- nodes may recursively freeze types which would otherwise appear later
-- on in the freeze list. So we must analyze and expand the freeze nodes
-- as they are generated.
procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
E : Entity_Id;
Decl : Node_Id;
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
-- This is the internal recursive routine that does freezing of entities
-- (but NOT the analysis of default expressions, which should not be
-- recursive, we don't want to analyze those till we are sure that ALL
-- the types are frozen).
--------------------
-- Freeze_All_Ent --
--------------------
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
E : Entity_Id;
Flist : List_Id;
Lastn : Node_Id;
procedure Process_Flist;
-- If freeze nodes are present, insert and analyze, and reset cursor
-- for next insertion.
-------------------
-- Process_Flist --
-------------------
procedure Process_Flist is
begin
if Is_Non_Empty_List (Flist) then
Lastn := Next (After);
Insert_List_After_And_Analyze (After, Flist);
if Present (Lastn) then
After := Prev (Lastn);
else
After := Last (List_Containing (After));
end if;
end if;
end Process_Flist;
-- Start or processing for Freeze_All_Ent
begin
E := From;
while Present (E) loop
-- If the entity is an inner package which is not a package
-- renaming, then its entities must be frozen at this point. Note
-- that such entities do NOT get frozen at the end of the nested
-- package itself (only library packages freeze).
-- Same is true for task declarations, where anonymous records
-- created for entry parameters must be frozen.
if Ekind (E) = E_Package
and then No (Renamed_Object (E))
and then not Is_Child_Unit (E)
and then not Is_Frozen (E)
then
Push_Scope (E);
Install_Visible_Declarations (E);
Install_Private_Declarations (E);
Freeze_All (First_Entity (E), After);
End_Package_Scope (E);
if Is_Generic_Instance (E)
and then Has_Delayed_Freeze (E)
then
Set_Has_Delayed_Freeze (E, False);
Expand_N_Package_Declaration (Unit_Declaration_Node (E));
end if;
elsif Ekind (E) in Task_Kind
and then Nkind_In (Parent (E), N_Task_Type_Declaration,
N_Single_Task_Declaration)
then
Push_Scope (E);
Freeze_All (First_Entity (E), After);
End_Scope;
-- For a derived tagged type, we must ensure that all the
-- primitive operations of the parent have been frozen, so that
-- their addresses will be in the parent's dispatch table at the
-- point it is inherited.
elsif Ekind (E) = E_Record_Type
and then Is_Tagged_Type (E)
and then Is_Tagged_Type (Etype (E))
and then Is_Derived_Type (E)
then
declare
Prim_List : constant Elist_Id :=
Primitive_Operations (Etype (E));
Prim : Elmt_Id;
Subp : Entity_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
Subp := Node (Prim);
if Comes_From_Source (Subp)
and then not Is_Frozen (Subp)
then
Flist := Freeze_Entity (Subp, After);
Process_Flist;
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
if not Is_Frozen (E) then
Flist := Freeze_Entity (E, After);
Process_Flist;
-- If already frozen, and there are delayed aspects, this is where
-- we do the visibility check for these aspects (see Sem_Ch13 spec
-- for a description of how we handle aspect visibility).
elsif Has_Delayed_Aspects (E) then
-- Retrieve the visibility to the discriminants in order to
-- analyze properly the aspects.
Push_Scope_And_Install_Discriminants (E);
declare
Ritem : Node_Id;
begin
Ritem := First_Rep_Item (E);
while Present (Ritem) loop
if Nkind (Ritem) = N_Aspect_Specification
and then Entity (Ritem) = E
and then Is_Delayed_Aspect (Ritem)
then
Check_Aspect_At_End_Of_Declarations (Ritem);
end if;
Ritem := Next_Rep_Item (Ritem);
end loop;
end;
Uninstall_Discriminants_And_Pop_Scope (E);
end if;
-- If an incomplete type is still not frozen, this may be a
-- premature freezing because of a body declaration that follows.
-- Indicate where the freezing took place. Freezing will happen
-- if the body comes from source, but not if it is internally
-- generated, for example as the body of a type invariant.
-- If the freezing is caused by the end of the current declarative
-- part, it is a Taft Amendment type, and there is no error.
if not Is_Frozen (E)
and then Ekind (E) = E_Incomplete_Type
then
declare
Bod : constant Node_Id := Next (After);
begin
-- The presence of a body freezes all entities previously
-- declared in the current list of declarations, but this
-- does not apply if the body does not come from source.
-- A type invariant is transformed into a subprogram body
-- which is placed at the end of the private part of the
-- current package, but this body does not freeze incomplete
-- types that may be declared in this private part.
if (Nkind_In (Bod, N_Subprogram_Body,
N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Task_Body)
or else Nkind (Bod) in N_Body_Stub)
and then
List_Containing (After) = List_Containing (Parent (E))
and then Comes_From_Source (Bod)
then
Error_Msg_Sloc := Sloc (Next (After));
Error_Msg_NE
("type& is frozen# before its full declaration",
Parent (E), E);
end if;
end;
end if;
Next_Entity (E);
end loop;
end Freeze_All_Ent;
-- Start of processing for Freeze_All
begin
Freeze_All_Ent (From, After);
-- Now that all types are frozen, we can deal with default expressions
-- that require us to build a default expression functions. This is the
-- point at which such functions are constructed (after all types that
-- might be used in such expressions have been frozen).
-- For subprograms that are renaming_as_body, we create the wrapper
-- bodies as needed.
-- We also add finalization chains to access types whose designated
-- types are controlled. This is normally done when freezing the type,
-- but this misses recursive type definitions where the later members
-- of the recursion introduce controlled components.
-- Loop through entities
E := From;
while Present (E) loop
if Is_Subprogram (E) then
if not Default_Expressions_Processed (E) then
Process_Default_Expressions (E, After);
end if;
if not Has_Completion (E) then
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
if Error_Posted (Decl) then
Set_Has_Completion (E);
else
Build_And_Analyze_Renamed_Body (Decl, E, After);
end if;
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
and then
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
= N_Subprogram_Renaming_Declaration
then
Build_And_Analyze_Renamed_Body
(Decl, Corresponding_Body (Decl), After);
end if;
end if;
elsif Ekind (E) in Task_Kind
and then Nkind_In (Parent (E), N_Task_Type_Declaration,
N_Single_Task_Declaration)
then
declare
Ent : Entity_Id;
begin
Ent := First_Entity (E);
while Present (Ent) loop
if Is_Entry (Ent)
and then not Default_Expressions_Processed (Ent)
then
Process_Default_Expressions (Ent, After);
end if;
Next_Entity (Ent);
end loop;
end;
end if;
-- Historical note: We used to create a finalization master for an
-- access type whose designated type is not controlled, but contains
-- private controlled compoments. This form of postprocessing is no
-- longer needed because the finalization master is now created when
-- the access type is frozen (see Exp_Ch3.Freeze_Type).
Next_Entity (E);
end loop;
end Freeze_All;
-----------------------
-- Freeze_And_Append --
-----------------------
procedure Freeze_And_Append
(Ent : Entity_Id;
N : Node_Id;
Result : in out List_Id)
is
L : constant List_Id := Freeze_Entity (Ent, N);
begin
if Is_Non_Empty_List (L) then
if Result = No_List then
Result := L;
else
Append_List (L, Result);
end if;
end if;
end Freeze_And_Append;
-------------------
-- Freeze_Before --
-------------------
procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
begin
if Ekind (T) = E_Function then
Check_Expression_Function (N, T);
end if;
if Is_Non_Empty_List (Freeze_Nodes) then
Insert_Actions (N, Freeze_Nodes);
end if;
end Freeze_Before;
-------------------
-- Freeze_Entity --
-------------------
function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
GM : constant Ghost_Mode_Type := Ghost_Mode;
-- Save the current Ghost mode in effect in case the entity being frozen
-- sets a different mode.
Loc : constant Source_Ptr := Sloc (N);
Atype : Entity_Id;
Comp : Entity_Id;
F_Node : Node_Id;
Formal : Entity_Id;
Indx : Node_Id;
Test_E : Entity_Id := E;
-- This could use a comment ???
Late_Freezing : Boolean := False;
-- Used to detect attempt to freeze function declared in another unit
Result : List_Id := No_List;
-- List of freezing actions, left at No_List if none
Has_Default_Initialization : Boolean := False;
-- This flag gets set to true for a variable with default initialization
procedure Add_To_Result (N : Node_Id);
-- N is a freezing action to be appended to the Result
function After_Last_Declaration return Boolean;
-- If Loc is a freeze_entity that appears after the last declaration
-- in the scope, inhibit error messages on late completion.
procedure Check_Current_Instance (Comp_Decl : Node_Id);
-- Check that an Access or Unchecked_Access attribute with a prefix
-- which is the current instance type can only be applied when the type
-- is limited.
procedure Check_Suspicious_Modulus (Utype : Entity_Id);
-- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
-- integer literal without an explicit corresponding size clause. The
-- caller has checked that Utype is a modular integer type.
procedure Freeze_Array_Type (Arr : Entity_Id);
-- Freeze array type, including freezing index and component types
function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
-- Create Freeze_Generic_Entity nodes for types declared in a generic
-- package. Recurse on inner generic packages.
function Freeze_Profile (E : Entity_Id) return Boolean;
-- Freeze formals and return type of subprogram. If some type in the
-- profile is a limited view, freezing of the entity will take place
-- elsewhere, and the function returns False. This routine will be
-- modified if and when we can implement AI05-019 efficiently ???
procedure Freeze_Record_Type (Rec : Entity_Id);
-- Freeze record type, including freezing component types, and freezing
-- primitive operations if this is a tagged type.
function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
-- Determine whether an arbitrary entity is subject to Boolean aspect
-- Import and its value is specified as True.
procedure Late_Freeze_Subprogram (E : Entity_Id);
-- Following AI05-151, a function can return a limited view of a type
-- declared elsewhere. In that case the function cannot be frozen at
-- the end of its enclosing package. If its first use is in a different
-- unit, it cannot be frozen there, but if the call is legal the full
-- view of the return type is available and the subprogram can now be
-- frozen. However the freeze node cannot be inserted at the point of
-- call, but rather must go in the package holding the function, so that
-- the backend can process it in the proper context.
procedure Restore_Globals;
-- Restore the values of all saved global variables
procedure Wrap_Imported_Subprogram (E : Entity_Id);
-- If E is an entity for an imported subprogram with pre/post-conditions
-- then this procedure will create a wrapper to ensure that proper run-
-- time checking of the pre/postconditions. See body for details.
-------------------
-- Add_To_Result --
-------------------
procedure Add_To_Result (N : Node_Id) is
begin
if No (Result) then
Result := New_List (N);
else
Append (N, Result);
end if;
end Add_To_Result;
----------------------------
-- After_Last_Declaration --
----------------------------
function After_Last_Declaration return Boolean is
Spec : constant Node_Id := Parent (Current_Scope);
begin
if Nkind (Spec) = N_Package_Specification then
if Present (Private_Declarations (Spec)) then
return Loc >= Sloc (Last (Private_Declarations (Spec)));
elsif Present (Visible_Declarations (Spec)) then
return Loc >= Sloc (Last (Visible_Declarations (Spec)));
else
return False;
end if;
else
return False;
end if;
end After_Last_Declaration;
----------------------------
-- Check_Current_Instance --
----------------------------
procedure Check_Current_Instance (Comp_Decl : Node_Id) is
function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
-- Determine whether Typ is compatible with the rules for aliased
-- views of types as defined in RM 3.10 in the various dialects.
function Process (N : Node_Id) return Traverse_Result;
-- Process routine to apply check to given node
-----------------------------
-- Is_Aliased_View_Of_Type --
-----------------------------
function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
Typ_Decl : constant Node_Id := Parent (Typ);
begin
-- Common case
if Nkind (Typ_Decl) = N_Full_Type_Declaration
and then Limited_Present (Type_Definition (Typ_Decl))
then
return True;
-- The following paragraphs describe what a legal aliased view of
-- a type is in the various dialects of Ada.
-- Ada 95
-- The current instance of a limited type, and a formal parameter
-- or generic formal object of a tagged type.
-- Ada 95 limited type
-- * Type with reserved word "limited"
-- * A protected or task type
-- * A composite type with limited component
elsif Ada_Version <= Ada_95 then
return Is_Limited_Type (Typ);
-- Ada 2005
-- The current instance of a limited tagged type, a protected
-- type, a task type, or a type that has the reserved word
-- "limited" in its full definition ... a formal parameter or
-- generic formal object of a tagged type.
-- Ada 2005 limited type
-- * Type with reserved word "limited", "synchronized", "task"
-- or "protected"
-- * A composite type with limited component
-- * A derived type whose parent is a non-interface limited type
elsif Ada_Version = Ada_2005 then
return
(Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
or else
(Is_Derived_Type (Typ)
and then not Is_Interface (Etype (Typ))
and then Is_Limited_Type (Etype (Typ)));
-- Ada 2012 and beyond
-- The current instance of an immutably limited type ... a formal
-- parameter or generic formal object of a tagged type.
-- Ada 2012 limited type
-- * Type with reserved word "limited", "synchronized", "task"
-- or "protected"
-- * A composite type with limited component
-- * A derived type whose parent is a non-interface limited type
-- * An incomplete view
-- Ada 2012 immutably limited type
-- * Explicitly limited record type
-- * Record extension with "limited" present
-- * Non-formal limited private type that is either tagged
-- or has at least one access discriminant with a default
-- expression
-- * Task type, protected type or synchronized interface
-- * Type derived from immutably limited type
else
return
Is_Immutably_Limited_Type (Typ)
or else Is_Incomplete_Type (Typ);
end if;
end Is_Aliased_View_Of_Type;
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
when N_Attribute_Reference =>
if Nam_In (Attribute_Name (N), Name_Access,
Name_Unchecked_Access)
and then Is_Entity_Name (Prefix (N))
and then Is_Type (Entity (Prefix (N)))
and then Entity (Prefix (N)) = E
then
if Ada_Version < Ada_2012 then
Error_Msg_N
("current instance must be a limited type",
Prefix (N));
else
Error_Msg_N
("current instance must be an immutably limited "
& "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
end if;
return Abandon;
else
return OK;
end if;
when others => return OK;
end case;
end Process;
procedure Traverse is new Traverse_Proc (Process);
-- Local variables
Rec_Type : constant Entity_Id :=
Scope (Defining_Identifier (Comp_Decl));
-- Start of processing for Check_Current_Instance
begin
if not Is_Aliased_View_Of_Type (Rec_Type) then
Traverse (Comp_Decl);
end if;
end Check_Current_Instance;
------------------------------
-- Check_Suspicious_Modulus --
------------------------------
procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
begin
if not Warn_On_Suspicious_Modulus_Value then
return;
end if;
if Nkind (Decl) = N_Full_Type_Declaration then
declare
Tdef : constant Node_Id := Type_Definition (Decl);
begin
if Nkind (Tdef) = N_Modular_Type_Definition then
declare
Modulus : constant Node_Id :=
Original_Node (Expression (Tdef));
begin
if Nkind (Modulus) = N_Integer_Literal then
declare
Modv : constant Uint := Intval (Modulus);
Sizv : constant Uint := RM_Size (Utype);
begin
-- First case, modulus and size are the same. This
-- happens if you have something like mod 32, with
-- an explicit size of 32, this is for sure a case
-- where the warning is given, since it is seems
-- very unlikely that someone would want e.g. a
-- five bit type stored in 32 bits. It is much
-- more likely they wanted a 32-bit type.
if Modv = Sizv then
null;
-- Second case, the modulus is 32 or 64 and no
-- size clause is present. This is a less clear
-- case for giving the warning, but in the case
-- of 32/64 (5-bit or 6-bit types) these seem rare
-- enough that it is a likely error (and in any
-- case using 2**5 or 2**6 in these cases seems
-- clearer. We don't include 8 or 16 here, simply
-- because in practice 3-bit and 4-bit types are
-- more common and too many false positives if
-- we warn in these cases.
elsif not Has_Size_Clause (Utype)
and then (Modv = Uint_32 or else Modv = Uint_64)
then
null;
-- No warning needed
else
return;
end if;
-- If we fall through, give warning
Error_Msg_Uint_1 := Modv;
Error_Msg_N
("?M?2 '*'*^' may have been intended here",
Modulus);
end;
end if;
end;
end if;
end;
end if;
end Check_Suspicious_Modulus;
-----------------------
-- Freeze_Array_Type --
-----------------------
procedure Freeze_Array_Type (Arr : Entity_Id) is
FS : constant Entity_Id := First_Subtype (Arr);
Ctyp : constant Entity_Id := Component_Type (Arr);
Clause : Entity_Id;
Non_Standard_Enum : Boolean := False;
-- Set true if any of the index types is an enumeration type with a
-- non-standard representation.
begin
Freeze_And_Append (Ctyp, N, Result);
Indx := First_Index (Arr);
while Present (Indx) loop
Freeze_And_Append (Etype (Indx), N, Result);
if Is_Enumeration_Type (Etype (Indx))
and then Has_Non_Standard_Rep (Etype (Indx))
then
Non_Standard_Enum := True;
end if;
Next_Index (Indx);
end loop;
-- Processing that is done only for base types
if Ekind (Arr) = E_Array_Type then
-- Deal with default setting of reverse storage order
Set_SSO_From_Default (Arr);
-- Propagate flags for component type
if Is_Controlled (Component_Type (Arr))
or else Has_Controlled_Component (Ctyp)
then
Set_Has_Controlled_Component (Arr);
end if;
if Has_Unchecked_Union (Component_Type (Arr)) then
Set_Has_Unchecked_Union (Arr);
end if;
-- Warn for pragma Pack overriding foreign convention
if Has_Foreign_Convention (Ctyp)
and then Has_Pragma_Pack (Arr)
then
declare
CN : constant Name_Id :=
Get_Convention_Name (Convention (Ctyp));
PP : constant Node_Id :=
Get_Pragma (First_Subtype (Arr), Pragma_Pack);
begin
if Present (PP) then
Error_Msg_Name_1 := CN;
Error_Msg_Sloc := Sloc (Arr);
Error_Msg_N
("pragma Pack affects convention % components #??", PP);
Error_Msg_Name_1 := CN;
Error_Msg_N
("\array components may not have % compatible "
& "representation??", PP);
end if;
end;
end if;
-- If packing was requested or if the component size was
-- set explicitly, then see if bit packing is required. This
-- processing is only done for base types, since all of the
-- representation aspects involved are type-related.
-- This is not just an optimization, if we start processing the
-- subtypes, they interfere with the settings on the base type
-- (this is because Is_Packed has a slightly different meaning
-- before and after freezing).
declare
Csiz : Uint;
Esiz : Uint;
begin
if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
and then Known_Static_RM_Size (Ctyp)
and then not Has_Component_Size_Clause (Arr)
then
Csiz := UI_Max (RM_Size (Ctyp), 1);
elsif Known_Component_Size (Arr) then
Csiz := Component_Size (Arr);
elsif not Known_Static_Esize (Ctyp) then
Csiz := Uint_0;
else
Esiz := Esize (Ctyp);
-- We can set the component size if it is less than 16,
-- rounding it up to the next storage unit size.
if Esiz <= 8 then
Csiz := Uint_8;
elsif Esiz <= 16 then
Csiz := Uint_16;
else
Csiz := Uint_0;
end if;
-- Set component size up to match alignment if it would
-- otherwise be less than the alignment. This deals with
-- cases of types whose alignment exceeds their size (the
-- padded type cases).
if Csiz /= 0 then
declare
A : constant Uint := Alignment_In_Bits (Ctyp);
begin
if Csiz < A then
Csiz := A;
end if;
end;
end if;
end if;
-- Case of component size that may result in packing
if 1 <= Csiz and then Csiz <= 64 then
declare
Ent : constant Entity_Id :=
First_Subtype (Arr);
Pack_Pragma : constant Node_Id :=
Get_Rep_Pragma (Ent, Name_Pack);
Comp_Size_C : constant Node_Id :=
Get_Attribute_Definition_Clause
(Ent, Attribute_Component_Size);
begin
-- Warn if we have pack and component size so that the
-- pack is ignored.
-- Note: here we must check for the presence of a
-- component size before checking for a Pack pragma to
-- deal with the case where the array type is a derived
-- type whose parent is currently private.
if Present (Comp_Size_C)
and then Has_Pragma_Pack (Ent)
and then Warn_On_Redundant_Constructs
then
Error_Msg_Sloc := Sloc (Comp_Size_C);
Error_Msg_NE
("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
Error_Msg_N
("\?r?explicit component size given#!", Pack_Pragma);
Set_Is_Packed (Base_Type (Ent), False);
Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
end if;
-- Set component size if not already set by a component
-- size clause.
if not Present (Comp_Size_C) then
Set_Component_Size (Arr, Csiz);
end if;
-- Check for base type of 8, 16, 32 bits, where an
-- unsigned subtype has a length one less than the
-- base type (e.g. Natural subtype of Integer).
-- In such cases, if a component size was not set
-- explicitly, then generate a warning.
if Has_Pragma_Pack (Arr)
and then not Present (Comp_Size_C)
and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
and then Esize (Base_Type (Ctyp)) = Csiz + 1
then
Error_Msg_Uint_1 := Csiz;
if Present (Pack_Pragma) then
Error_Msg_N
("??pragma Pack causes component size to be ^!",
Pack_Pragma);
Error_Msg_N
("\??use Component_Size to set desired value!",
Pack_Pragma);
end if;
end if;
-- Actual packing is not needed for 8, 16, 32, 64. Also
-- not needed for 24 if alignment is 1.
if Csiz = 8
or else Csiz = 16
or else Csiz = 32
or else Csiz = 64
or else (Csiz = 24 and then Alignment (Ctyp) = 1)
then
-- Here the array was requested to be packed, but
-- the packing request had no effect, so Is_Packed
-- is reset.
-- Note: semantically this means that we lose track
-- of the fact that a derived type inherited a pragma
-- Pack that was non- effective, but that seems fine.
-- We regard a Pack pragma as a request to set a
-- representation characteristic, and this request
-- may be ignored.
Set_Is_Packed (Base_Type (Arr), False);
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
if Known_Static_Esize (Component_Type (Arr))
and then Esize (Component_Type (Arr)) = Csiz
then
Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
end if;
-- In all other cases, packing is indeed needed
else
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
Set_Is_Packed (Base_Type (Arr), True);
end if;
end;
end if;
end;
-- Check for Aliased or Atomic_Components/Atomic with unsuitable
-- packing or explicit component size clause given.
if (Has_Aliased_Components (Arr)
or else Has_Atomic_Components (Arr)
or else Is_Atomic (Ctyp))
and then
(Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
then
Alias_Atomic_Check : declare
procedure Complain_CS (T : String);
-- Outputs error messages for incorrect CS clause or pragma
-- Pack for aliased or atomic components (T is "aliased" or
-- "atomic");
-----------------
-- Complain_CS --
-----------------
procedure Complain_CS (T : String) is
begin
if Has_Component_Size_Clause (Arr) then
Clause :=
Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size);
Error_Msg_N
("incorrect component size for "
& T & " components", Clause);
Error_Msg_Uint_1 := Esize (Ctyp);
Error_Msg_N
("\only allowed value is^", Clause);
else
Error_Msg_N
("cannot pack " & T & " components",
Get_Rep_Pragma (FS, Name_Pack));
end if;
end Complain_CS;
-- Start of processing for Alias_Atomic_Check
begin
-- If object size of component type isn't known, we cannot
-- be sure so we defer to the back end.
if not Known_Static_Esize (Ctyp) then
null;
-- Case where component size has no effect. First check for
-- object size of component type multiple of the storage
-- unit size.
elsif Esize (Ctyp) mod System_Storage_Unit = 0
-- OK in both packing case and component size case if RM
-- size is known and static and same as the object size.
and then
((Known_Static_RM_Size (Ctyp)
and then Esize (Ctyp) = RM_Size (Ctyp))
-- Or if we have an explicit component size clause and
-- the component size and object size are equal.
or else
(Has_Component_Size_Clause (Arr)
and then Component_Size (Arr) = Esize (Ctyp)))
then
null;
elsif Has_Aliased_Components (Arr) then
Complain_CS ("aliased");
elsif Has_Atomic_Components (Arr) or else Is_Atomic (Ctyp)
then
Complain_CS ("atomic");
end if;
end Alias_Atomic_Check;
end if;
-- Check for Independent_Components/Independent with unsuitable
-- packing or explicit component size clause given.
if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
and then
(Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
then
begin
-- If object size of component type isn't known, we cannot
-- be sure so we defer to the back end.
if not Known_Static_Esize (Ctyp) then
null;
-- Case where component size has no effect. First check for
-- object size of component type multiple of the storage
-- unit size.
elsif Esize (Ctyp) mod System_Storage_Unit = 0
-- OK in both packing case and component size case if RM
-- size is known and multiple of the storage unit size.
and then
((Known_Static_RM_Size (Ctyp)
and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
-- Or if we have an explicit component size clause and
-- the component size is larger than the object size.
or else
(Has_Component_Size_Clause (Arr)
and then Component_Size (Arr) >= Esize (Ctyp)))
then
null;
else
if Has_Component_Size_Clause (Arr) then
Clause :=
Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size);
Error_Msg_N
("incorrect component size for "
& "independent components", Clause);
Error_Msg_Uint_1 := Esize (Ctyp);
Error_Msg_N
("\minimum allowed is^", Clause);
else
Error_Msg_N
("cannot pack independent components",
Get_Rep_Pragma (FS, Name_Pack));
end if;
end if;
end;
end if;
-- Warn for case of atomic type
Clause := Get_Rep_Pragma (FS, Name_Atomic);
if Present (Clause)
and then not Addressable (Component_Size (FS))
then
Error_Msg_NE
("non-atomic components of type& may not be "
& "accessible by separate tasks??", Clause, Arr);
if Has_Component_Size_Clause (Arr) then
Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size));
Error_Msg_N ("\because of component size clause#??", Clause);
elsif Has_Pragma_Pack (Arr) then
Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
Error_Msg_N ("\because of pragma Pack#??", Clause);
end if;
end if;
-- Check for scalar storage order
declare
Dummy : Boolean;
begin
Check_Component_Storage_Order
(Encl_Type => Arr,
Comp => Empty,
ADC => Get_Attribute_Definition_Clause
(First_Subtype (Arr),
Attribute_Scalar_Storage_Order),
Comp_ADC_Present => Dummy);
end;
-- Processing that is done only for subtypes
else
-- Acquire alignment from base type
if Unknown_Alignment (Arr) then
Set_Alignment (Arr, Alignment (Base_Type (Arr)));
Adjust_Esize_Alignment (Arr);
end if;
end if;
-- Specific checks for bit-packed arrays
if Is_Bit_Packed_Array (Arr) then
-- Check number of elements for bit packed arrays that come from
-- source and have compile time known ranges. The bit-packed
-- arrays circuitry does not support arrays with more than
-- Integer'Last + 1 elements, and when this restriction is
-- violated, causes incorrect data access.
-- For the case where this is not compile time known, a run-time
-- check should be generated???
if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
declare
Elmts : Uint;
Index : Node_Id;
Ilen : Node_Id;
Ityp : Entity_Id;
begin
Elmts := Uint_1;
Index := First_Index (Arr);
while Present (Index) loop
Ityp := Etype (Index);
-- Never generate an error if any index is of a generic
-- type. We will check this in instances.
if Is_Generic_Type (Ityp) then
Elmts := Uint_0;
exit;
end if;
Ilen :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Range_Length);
Analyze_And_Resolve (Ilen);
-- No attempt is made to check number of elements if not
-- compile time known.
if Nkind (Ilen) /= N_Integer_Literal then
Elmts := Uint_0;
exit;
end if;
Elmts := Elmts * Intval (Ilen);
Next_Index (Index);
end loop;
if Elmts > Intval (High_Bound
(Scalar_Range (Standard_Integer))) + 1
then
Error_Msg_N
("bit packed array type may not have "
& "more than Integer''Last+1 elements", Arr);
end if;
end;
end if;
-- Check size
if Known_RM_Size (Arr) then
declare
SizC : constant Node_Id := Size_Clause (Arr);
Discard : Boolean;
begin
-- It is not clear if it is possible to have no size clause
-- at this stage, but it is not worth worrying about. Post
-- error on the entity name in the size clause if present,
-- else on the type entity itself.
if Present (SizC) then
Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
else
Check_Size (Arr, Arr, RM_Size (Arr), Discard);
end if;
end;
end if;
end if;
-- If any of the index types was an enumeration type with a non-
-- standard rep clause, then we indicate that the array type is
-- always packed (even if it is not bit packed).
if Non_Standard_Enum then
Set_Has_Non_Standard_Rep (Base_Type (Arr));
Set_Is_Packed (Base_Type (Arr));
end if;
Set_Component_Alignment_If_Not_Set (Arr);
-- If the array is packed, we must create the packed array type to be
-- used to actually implement the type. This is only needed for real
-- array types (not for string literal types, since they are present
-- only for the front end).
if Is_Packed (Arr)
and then Ekind (Arr) /= E_String_Literal_Subtype
then
Create_Packed_Array_Impl_Type (Arr);
Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
-- Make sure that we have the necessary routines to implement the
-- packing, and complain now if not. Note that we only test this
-- for constrained array types.
if Is_Constrained (Arr)
and then Is_Bit_Packed_Array (Arr)
and then Present (Packed_Array_Impl_Type (Arr))
and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
then
declare
CS : constant Uint := Component_Size (Arr);
RE : constant RE_Id := Get_Id (UI_To_Int (CS));
begin
if RE /= RE_Null
and then not RTE_Available (RE)
then
Error_Msg_CRT
("packing of " & UI_Image (CS) & "-bit components",
First_Subtype (Etype (Arr)));
-- Cancel the packing
Set_Is_Packed (Base_Type (Arr), False);
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
Set_Packed_Array_Impl_Type (Arr, Empty);
goto Skip_Packed;
end if;
end;
end if;
-- Size information of packed array type is copied to the array
-- type, since this is really the representation. But do not
-- override explicit existing size values. If the ancestor subtype
-- is constrained the Packed_Array_Impl_Type will be inherited
-- from it, but the size may have been provided already, and
-- must not be overridden either.
if not Has_Size_Clause (Arr)
and then
(No (Ancestor_Subtype (Arr))
or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
then
Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
end if;
if not Has_Alignment_Clause (Arr) then
Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
end if;
end if;
<<Skip_Packed>>
-- For non-packed arrays set the alignment of the array to the
-- alignment of the component type if it is unknown. Skip this
-- in atomic case (atomic arrays may need larger alignments).
if not Is_Packed (Arr)
and then Unknown_Alignment (Arr)
and then Known_Alignment (Ctyp)
and then Known_Static_Component_Size (Arr)
and then Known_Static_Esize (Ctyp)
and then Esize (Ctyp) = Component_Size (Arr)
and then not Is_Atomic (Arr)
then
Set_Alignment (Arr, Alignment (Component_Type (Arr)));
end if;
end Freeze_Array_Type;
-----------------------------
-- Freeze_Generic_Entities --
-----------------------------
function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
E : Entity_Id;
F : Node_Id;
Flist : List_Id;
begin
Flist := New_List;
E := First_Entity (Pack);
while Present (E) loop
if Is_Type (E) and then not Is_Generic_Type (E) then
F := Make_Freeze_Generic_Entity (Sloc (Pack));
Set_Entity (F, E);
Append_To (Flist, F);
elsif Ekind (E) = E_Generic_Package then
Append_List_To (Flist, Freeze_Generic_Entities (E));
end if;
Next_Entity (E);
end loop;
return Flist;
end Freeze_Generic_Entities;
--------------------
-- Freeze_Profile --
--------------------
function Freeze_Profile (E : Entity_Id) return Boolean is
F_Type : Entity_Id;
R_Type : Entity_Id;
Warn_Node : Node_Id;
begin
-- Loop through formals
Formal := First_Formal (E);
while Present (Formal) loop
F_Type := Etype (Formal);
-- AI05-0151: incomplete types can appear in a profile. By the
-- time the entity is frozen, the full view must be available,
-- unless it is a limited view.
if Is_Incomplete_Type (F_Type)
and then Present (Full_View (F_Type))
and then not From_Limited_With (F_Type)
then
F_Type := Full_View (F_Type);
Set_Etype (Formal, F_Type);
end if;
Freeze_And_Append (F_Type, N, Result);
if Is_Private_Type (F_Type)
and then Is_Private_Type (Base_Type (F_Type))
and then No (Full_View (Base_Type (F_Type)))
and then not Is_Generic_Type (F_Type)
and then not Is_Derived_Type (F_Type)
then
-- If the type of a formal is incomplete, subprogram is being
-- frozen prematurely. Within an instance (but not within a
-- wrapper package) this is an artifact of our need to regard
-- the end of an instantiation as a freeze point. Otherwise it
-- is a definite error.
if In_Instance then
Set_Is_Frozen (E, False);
Result := No_List;
return False;
elsif not After_Last_Declaration
and then not Freezing_Library_Level_Tagged_Type
then
Error_Msg_Node_1 := F_Type;
Error_Msg
("type & must be fully defined before this point", Loc);
end if;
end if;
-- Check suspicious parameter for C function. These tests apply
-- only to exported/imported subprograms.
if Warn_On_Export_Import
and then Comes_From_Source (E)
and then (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then (Is_Imported (E) or else Is_Exported (E))
and then Convention (E) /= Convention (Formal)
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (F_Type)
and then not Has_Warnings_Off (Formal)
then
-- Qualify mention of formals with subprogram name
Error_Msg_Qual_Level := 1;
-- Check suspicious use of fat C pointer
if Is_Access_Type (F_Type)
and then Esize (F_Type) > Ttypes.System_Address_Size
then
Error_Msg_N
("?x?type of & does not correspond to C pointer!", Formal);
-- Check suspicious return of boolean
elsif Root_Type (F_Type) = Standard_Boolean
and then Convention (F_Type) = Convention_Ada
and then not Has_Warnings_Off (F_Type)
and then not Has_Size_Clause (F_Type)
and then VM_Target = No_VM
then
Error_Msg_N
("& is an 8-bit Ada Boolean?x?", Formal);
Error_Msg_N
("\use appropriate corresponding type in C "
& "(e.g. char)?x?", Formal);
-- Check suspicious tagged type
elsif (Is_Tagged_Type (F_Type)
or else
(Is_Access_Type (F_Type)
and then Is_Tagged_Type (Designated_Type (F_Type))))
and then Convention (E) = Convention_C
then
Error_Msg_N
("?x?& involves a tagged type which does not "
& "correspond to any C type!", Formal);
-- Check wrong convention subprogram pointer
elsif Ekind (F_Type) = E_Access_Subprogram_Type
and then not Has_Foreign_Convention (F_Type)
then
Error_Msg_N
("?x?subprogram pointer & should "
& "have foreign convention!", Formal);
Error_Msg_Sloc := Sloc (F_Type);
Error_Msg_NE
("\?x?add Convention pragma to declaration of &#",
Formal, F_Type);
end if;
-- Turn off name qualification after message output
Error_Msg_Qual_Level := 0;
end if;
-- Check for unconstrained array in exported foreign convention
-- case.
if Has_Foreign_Convention (E)
and then not Is_Imported (E)
and then Is_Array_Type (F_Type)
and then not Is_Constrained (F_Type)
and then Warn_On_Export_Import
-- Exclude VM case, since both .NET and JVM can handle
-- unconstrained arrays without a problem.
and then VM_Target = No_VM
then
Error_Msg_Qual_Level := 1;
-- If this is an inherited operation, place the warning on
-- the derived type declaration, rather than on the original
-- subprogram.
if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
then
Warn_Node := Parent (E);
if Formal = First_Formal (E) then
Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
end if;
else
Warn_Node := Formal;
end if;
Error_Msg_NE ("?x?type of argument& is unconstrained array",
Warn_Node, Formal);
Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
Warn_Node, Formal);
Error_Msg_Qual_Level := 0;
end if;
if not From_Limited_With (F_Type) then
if Is_Access_Type (F_Type) then
F_Type := Designated_Type (F_Type);
end if;
-- If the formal is an anonymous_access_to_subprogram
-- freeze the subprogram type as well, to prevent
-- scope anomalies in gigi, because there is no other
-- clear point at which it could be frozen.
if Is_Itype (Etype (Formal))
and then Ekind (F_Type) = E_Subprogram_Type
then
Freeze_And_Append (F_Type, N, Result);
end if;
end if;
Next_Formal (Formal);
end loop;
-- Case of function: similar checks on return type
if Ekind (E) = E_Function then
-- Check whether function is declared elsewhere.
Late_Freezing :=
Get_Source_Unit (E) /= Get_Source_Unit (N)
and then Returns_Limited_View (E)
and then not In_Open_Scopes (Scope (E));
-- Freeze return type
R_Type := Etype (E);
-- AI05-0151: the return type may have been incomplete
-- at the point of declaration. Replace it with the full
-- view, unless the current type is a limited view. In
-- that case the full view is in a different unit, and
-- gigi finds the non-limited view after the other unit
-- is elaborated.
if Ekind (R_Type) = E_Incomplete_Type
and then Present (Full_View (R_Type))
and then not From_Limited_With (R_Type)
then
R_Type := Full_View (R_Type);
Set_Etype (E, R_Type);
-- If the return type is a limited view and the non-limited
-- view is still incomplete, the function has to be frozen at a
-- later time. If the function is abstract there is no place at
-- which the full view will become available, and no code to be
-- generated for it, so mark type as frozen.
elsif Ekind (R_Type) = E_Incomplete_Type
and then From_Limited_With (R_Type)
and then Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
then
if Is_Abstract_Subprogram (E) then
null;
else
Set_Is_Frozen (E, False);
Set_Returns_Limited_View (E);
return False;
end if;
end if;
Freeze_And_Append (R_Type, N, Result);
-- Check suspicious return type for C function
if Warn_On_Export_Import
and then (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then (Is_Imported (E) or else Is_Exported (E))
then
-- Check suspicious return of fat C pointer
if Is_Access_Type (R_Type)
and then Esize (R_Type) > Ttypes.System_Address_Size
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?return type of& does not "
& "correspond to C pointer!", E);
-- Check suspicious return of boolean
elsif Root_Type (R_Type) = Standard_Boolean
and then Convention (R_Type) = Convention_Ada
and then VM_Target = No_VM
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
and then not Has_Size_Clause (R_Type)
then
declare
N : constant Node_Id :=
Result_Definition (Declaration_Node (E));
begin
Error_Msg_NE
("return type of & is an 8-bit Ada Boolean?x?", N, E);
Error_Msg_NE
("\use appropriate corresponding type in C "
& "(e.g. char)?x?", N, E);
end;
-- Check suspicious return tagged type
elsif (Is_Tagged_Type (R_Type)
or else (Is_Access_Type (R_Type)
and then
Is_Tagged_Type
(Designated_Type (R_Type))))
and then Convention (E) = Convention_C
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?return type of & does not "
& "correspond to C type!", E);
-- Check return of wrong convention subprogram pointer
elsif Ekind (R_Type) = E_Access_Subprogram_Type
and then not Has_Foreign_Convention (R_Type)
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?& should return a foreign "
& "convention subprogram pointer", E);
Error_Msg_Sloc := Sloc (R_Type);
Error_Msg_NE
("\?x?add Convention pragma to declaration of& #",
E, R_Type);
end if;
end if;
-- Give warning for suspicious return of a result of an
-- unconstrained array type in a foreign convention function.
if Has_Foreign_Convention (E)
-- We are looking for a return of unconstrained array
and then Is_Array_Type (R_Type)
and then not Is_Constrained (R_Type)
-- Exclude imported routines, the warning does not belong on
-- the import, but rather on the routine definition.
and then not Is_Imported (E)
-- Exclude VM case, since both .NET and JVM can handle return
-- of unconstrained arrays without a problem.
and then VM_Target = No_VM
-- Check that general warning is enabled, and that it is not
-- suppressed for this particular case.
and then Warn_On_Export_Import
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?foreign convention function& should not " &
"return unconstrained array!", E);
end if;
end if;
-- Check suspicious use of Import in pure unit
if Is_Imported (E) and then Is_Pure (Cunit_Entity (Current_Sem_Unit))
-- Ignore internally generated entity. This happens in some cases
-- of subprograms in specs, where we generate an implied body.
and then Comes_From_Source (Import_Pragma (E))
-- Assume run-time knows what it is doing
and then not GNAT_Mode
-- Assume explicit Pure_Function means import is pure
and then not Has_Pragma_Pure_Function (E)
-- Don't need warning in relaxed semantics mode
and then not Relaxed_RM_Semantics
-- Assume convention Intrinsic is OK, since this is specialized.
-- This deals with the DEC unit current_exception.ads
and then Convention (E) /= Convention_Intrinsic
-- Assume that ASM interface knows what it is doing. This deals
-- with unsigned.ads in the AAMP back end.
and then Convention (E) /= Convention_Assembler
then
Error_Msg_N
("pragma Import in Pure unit??", Import_Pragma (E));
Error_Msg_NE
("\calls to & may be omitted (RM 10.2.1(18/3))??",
Import_Pragma (E), E);
end if;
return True;
end Freeze_Profile;
------------------------
-- Freeze_Record_Type --
------------------------
procedure Freeze_Record_Type (Rec : Entity_Id) is
ADC : Node_Id;
Comp : Entity_Id;
IR : Node_Id;
Prev : Entity_Id;
Junk : Boolean;
pragma Warnings (Off, Junk);
Rec_Pushed : Boolean := False;
-- Set True if the record type scope Rec has been pushed on the scope
-- stack. Needed for the analysis of delayed aspects specified to the
-- components of Rec.
SSO_ADC : Node_Id;
-- Scalar_Storage_Order attribute definition clause for the record
Unplaced_Component : Boolean := False;
-- Set True if we find at least one component with no component
-- clause (used to warn about useless Pack pragmas).
Placed_Component : Boolean := False;
-- Set True if we find at least one component with a component
-- clause (used to warn about useless Bit_Order pragmas, and also
-- to detect cases where Implicit_Packing may have an effect).
Aliased_Component : Boolean := False;
-- Set True if we find at least one component which is aliased. This
-- is used to prevent Implicit_Packing of the record, since packing
-- cannot modify the size of alignment of an aliased component.
SSO_ADC_Component : Boolean := False;
-- Set True if we find at least one component whose type has a
-- Scalar_Storage_Order attribute definition clause.
All_Scalar_Components : Boolean := True;
-- Set False if we encounter a component of a non-scalar type
Scalar_Component_Total_RM_Size : Uint := Uint_0;
Scalar_Component_Total_Esize : Uint := Uint_0;
-- Accumulates total RM_Size values and total Esize values of all
-- scalar components. Used for processing of Implicit_Packing.
function Check_Allocator (N : Node_Id) return Node_Id;
-- If N is an allocator, possibly wrapped in one or more level of
-- qualified expression(s), return the inner allocator node, else
-- return Empty.
procedure Check_Itype (Typ : Entity_Id);
-- If the component subtype is an access to a constrained subtype of
-- an already frozen type, make the subtype frozen as well. It might
-- otherwise be frozen in the wrong scope, and a freeze node on
-- subtype has no effect. Similarly, if the component subtype is a
-- regular (not protected) access to subprogram, set the anonymous
-- subprogram type to frozen as well, to prevent an out-of-scope
-- freeze node at some eventual point of call. Protected operations
-- are handled elsewhere.
procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
-- Make sure that all types mentioned in Discrete_Choices of the
-- variants referenceed by the Variant_Part VP are frozen. This is
-- a recursive routine to deal with nested variants.
---------------------
-- Check_Allocator --
---------------------
function Check_Allocator (N : Node_Id) return Node_Id is
Inner : Node_Id;
begin
Inner := N;
loop
if Nkind (Inner) = N_Allocator then
return Inner;
elsif Nkind (Inner) = N_Qualified_Expression then
Inner := Expression (Inner);
else
return Empty;
end if;
end loop;
end Check_Allocator;
-----------------
-- Check_Itype --
-----------------
procedure Check_Itype (Typ : Entity_Id) is
Desig : constant Entity_Id := Designated_Type (Typ);
begin
if not Is_Frozen (Desig)
and then Is_Frozen (Base_Type (Desig))
then
Set_Is_Frozen (Desig);
-- In addition, add an Itype_Reference to ensure that the
-- access subtype is elaborated early enough. This cannot be
-- done if the subtype may depend on discriminants.
if Ekind (Comp) = E_Component
and then Is_Itype (Etype (Comp))
and then not Has_Discriminants (Rec)
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Desig);
Add_To_Result (IR);
end if;
elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
and then Convention (Desig) /= Convention_Protected
then
Set_Is_Frozen (Desig);
end if;
end Check_Itype;
------------------------------------
-- Freeze_Choices_In_Variant_Part --
------------------------------------
procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
pragma Assert (Nkind (VP) = N_Variant_Part);
Variant : Node_Id;
Choice : Node_Id;
CL : Node_Id;
begin
-- Loop through variants
Variant := First_Non_Pragma (Variants (VP));
while Present (Variant) loop
-- Loop through choices, checking that all types are frozen
Choice := First_Non_Pragma (Discrete_Choices (Variant));
while Present (Choice) loop
if Nkind (Choice) in N_Has_Etype
and then Present (Etype (Choice))
then
Freeze_And_Append (Etype (Choice), N, Result);
end if;
Next_Non_Pragma (Choice);
end loop;
-- Check for nested variant part to process
CL := Component_List (Variant);
if not Null_Present (CL) then
if Present (Variant_Part (CL)) then
Freeze_Choices_In_Variant_Part (Variant_Part (CL));
end if;
end if;
Next_Non_Pragma (Variant);
end loop;
end Freeze_Choices_In_Variant_Part;
-- Start of processing for Freeze_Record_Type
begin
-- Deal with delayed aspect specifications for components. The
-- analysis of the aspect is required to be delayed to the freeze
-- point, thus we analyze the pragma or attribute definition
-- clause in the tree at this point. We also analyze the aspect
-- specification node at the freeze point when the aspect doesn't
-- correspond to pragma/attribute definition clause.
Comp := First_Entity (Rec);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Has_Delayed_Aspects (Comp)
then
if not Rec_Pushed then
Push_Scope (Rec);
Rec_Pushed := True;
-- The visibility to the discriminants must be restored in
-- order to properly analyze the aspects.
if Has_Discriminants (Rec) then
Install_Discriminants (Rec);
end if;
end if;
Analyze_Aspects_At_Freeze_Point (Comp);
end if;
Next_Entity (Comp);
end loop;
-- Pop the scope if Rec scope has been pushed on the scope stack
-- during the delayed aspect analysis process.
if Rec_Pushed then
if Has_Discriminants (Rec) then
Uninstall_Discriminants (Rec);
end if;
Pop_Scope;
end if;
-- Freeze components and embedded subtypes
Comp := First_Entity (Rec);
Prev := Empty;
while Present (Comp) loop
if Is_Aliased (Comp) then
Aliased_Component := True;
end if;
-- Handle the component and discriminant case
if Ekind_In (Comp, E_Component, E_Discriminant) then
declare
CC : constant Node_Id := Component_Clause (Comp);
begin
-- Freezing a record type freezes the type of each of its
-- components. However, if the type of the component is
-- part of this record, we do not want or need a separate
-- Freeze_Node. Note that Is_Itype is wrong because that's
-- also set in private type cases. We also can't check for
-- the Scope being exactly Rec because of private types and
-- record extensions.
if Is_Itype (Etype (Comp))
and then Is_Record_Type (Underlying_Type
(Scope (Etype (Comp))))
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), N, Result);
-- Warn for pragma Pack overriding foreign convention
if Has_Foreign_Convention (Etype (Comp))
and then Has_Pragma_Pack (Rec)
-- Don't warn for aliased components, since override
-- cannot happen in that case.
and then not Is_Aliased (Comp)
then
declare
CN : constant Name_Id :=
Get_Convention_Name (Convention (Etype (Comp)));
PP : constant Node_Id :=
Get_Pragma (Rec, Pragma_Pack);
begin
if Present (PP) then
Error_Msg_Name_1 := CN;
Error_Msg_Sloc := Sloc (Comp);
Error_Msg_N
("pragma Pack affects convention % component#??",
PP);
Error_Msg_Name_1 := CN;
Error_Msg_NE
("\component & may not have % compatible "
& "representation??", PP, Comp);
end if;
end;
end if;
-- Check for error of component clause given for variable
-- sized type. We have to delay this test till this point,
-- since the component type has to be frozen for us to know
-- if it is variable length.
if Present (CC) then
Placed_Component := True;
-- We omit this test in a generic context, it will be
-- applied at instantiation time.
if Inside_A_Generic then
null;
-- Also omit this test in CodePeer mode, since we do not
-- have sufficient info on size and rep clauses.
elsif CodePeer_Mode then
null;
-- Omit check if component has a generic type. This can
-- happen in an instantiation within a generic in ASIS
-- mode, where we force freeze actions without full
-- expansion.
elsif Is_Generic_Type (Etype (Comp)) then
null;
-- Do the check
elsif not
Size_Known_At_Compile_Time
(Underlying_Type (Etype (Comp)))
then
Error_Msg_N
("component clause not allowed for variable " &
"length component", CC);
end if;
else
Unplaced_Component := True;
end if;
-- Case of component requires byte alignment
if Must_Be_On_Byte_Boundary (Etype (Comp)) then
-- Set the enclosing record to also require byte align
Set_Must_Be_On_Byte_Boundary (Rec);
-- Check for component clause that is inconsistent with
-- the required byte boundary alignment.
if Present (CC)
and then Normalized_First_Bit (Comp) mod
System_Storage_Unit /= 0
then
Error_Msg_N
("component & must be byte aligned",
Component_Name (Component_Clause (Comp)));
end if;
end if;
end;
end if;
-- Gather data for possible Implicit_Packing later. Note that at
-- this stage we might be dealing with a real component, or with
-- an implicit subtype declaration.
if not Is_Scalar_Type (Etype (Comp)) then
All_Scalar_Components := False;
else
Scalar_Component_Total_RM_Size :=
Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
Scalar_Component_Total_Esize :=
Scalar_Component_Total_Esize + Esize (Etype (Comp));
end if;
-- If the component is an Itype with Delayed_Freeze and is either
-- a record or array subtype and its base type has not yet been
-- frozen, we must remove this from the entity list of this record
-- and put it on the entity list of the scope of its base type.
-- Note that we know that this is not the type of a component
-- since we cleared Has_Delayed_Freeze for it in the previous
-- loop. Thus this must be the Designated_Type of an access type,
-- which is the type of a component.
if Is_Itype (Comp)
and then Is_Type (Scope (Comp))
and then Is_Composite_Type (Comp)
and then Base_Type (Comp) /= Comp
and then Has_Delayed_Freeze (Comp)
and then not Is_Frozen (Base_Type (Comp))
then
declare
Will_Be_Frozen : Boolean := False;
S : Entity_Id;
begin
-- We have a difficult case to handle here. Suppose Rec is
-- subtype being defined in a subprogram that's created as
-- part of the freezing of Rec'Base. In that case, we know
-- that Comp'Base must have already been frozen by the time
-- we get to elaborate this because Gigi doesn't elaborate
-- any bodies until it has elaborated all of the declarative
-- part. But Is_Frozen will not be set at this point because
-- we are processing code in lexical order.
-- We detect this case by going up the Scope chain of Rec
-- and seeing if we have a subprogram scope before reaching
-- the top of the scope chain or that of Comp'Base. If we
-- do, then mark that Comp'Base will actually be frozen. If
-- so, we merely undelay it.
S := Scope (Rec);
while Present (S) loop
if Is_Subprogram (S) then
Will_Be_Frozen := True;
exit;
elsif S = Scope (Base_Type (Comp)) then
exit;
end if;
S := Scope (S);
end loop;
if Will_Be_Frozen then
Undelay_Type (Comp);
else
if Present (Prev) then
Set_Next_Entity (Prev, Next_Entity (Comp));
else
Set_First_Entity (Rec, Next_Entity (Comp));
end if;
-- Insert in entity list of scope of base type (which
-- must be an enclosing scope, because still unfrozen).
Append_Entity (Comp, Scope (Base_Type (Comp)));
end if;
end;
-- If the component is an access type with an allocator as default
-- value, the designated type will be frozen by the corresponding
-- expression in init_proc. In order to place the freeze node for
-- the designated type before that for the current record type,
-- freeze it now.
-- Same process if the component is an array of access types,
-- initialized with an aggregate. If the designated type is
-- private, it cannot contain allocators, and it is premature
-- to freeze the type, so we check for this as well.
elsif Is_Access_Type (Etype (Comp))
and then Present (Parent (Comp))
and then Present (Expression (Parent (Comp)))
then
declare
Alloc : constant Node_Id :=
Check_Allocator (Expression (Parent (Comp)));
begin
if Present (Alloc) then
-- If component is pointer to a class-wide type, freeze
-- the specific type in the expression being allocated.
-- The expression may be a subtype indication, in which
-- case freeze the subtype mark.
if Is_Class_Wide_Type
(Designated_Type (Etype (Comp)))
then
if Is_Entity_Name (Expression (Alloc)) then
Freeze_And_Append
(Entity (Expression (Alloc)), N, Result);
elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
then
Freeze_And_Append
(Entity (Subtype_Mark (Expression (Alloc))),
N, Result);
end if;
elsif Is_Itype (Designated_Type (Etype (Comp))) then
Check_Itype (Etype (Comp));
else
Freeze_And_Append
(Designated_Type (Etype (Comp)), N, Result);
end if;
end if;
end;
elsif Is_Access_Type (Etype (Comp))
and then Is_Itype (Designated_Type (Etype (Comp)))
then
Check_Itype (Etype (Comp));
-- Freeze the designated type when initializing a component with
-- an aggregate in case the aggregate contains allocators.
-- type T is ...;
-- type T_Ptr is access all T;
-- type T_Array is array ... of T_Ptr;
-- type Rec is record
-- Comp : T_Array := (others => ...);
-- end record;
elsif Is_Array_Type (Etype (Comp))
and then Is_Access_Type (Component_Type (Etype (Comp)))
then
declare
Comp_Par : constant Node_Id := Parent (Comp);
Desig_Typ : constant Entity_Id :=
Designated_Type
(Component_Type (Etype (Comp)));
begin
-- The only case when this sort of freezing is not done is
-- when the designated type is class-wide and the root type
-- is the record owning the component. This scenario results
-- in a circularity because the class-wide type requires
-- primitives that have not been created yet as the root
-- type is in the process of being frozen.
-- type Rec is tagged;
-- type Rec_Ptr is access all Rec'Class;
-- type Rec_Array is array ... of Rec_Ptr;
-- type Rec is record
-- Comp : Rec_Array := (others => ...);
-- end record;
if Is_Class_Wide_Type (Desig_Typ)
and then Root_Type (Desig_Typ) = Rec
then
null;
elsif Is_Fully_Defined (Desig_Typ)
and then Present (Comp_Par)
and then Nkind (Comp_Par) = N_Component_Declaration
and then Present (Expression (Comp_Par))
and then Nkind (Expression (Comp_Par)) = N_Aggregate
then
Freeze_And_Append (Desig_Typ, N, Result);
end if;
end;
end if;
Prev := Comp;
Next_Entity (Comp);
end loop;
-- Deal with default setting of reverse storage order
Set_SSO_From_Default (Rec);
-- Check consistent attribute setting on component types
SSO_ADC := Get_Attribute_Definition_Clause
(Rec, Attribute_Scalar_Storage_Order);
declare
Comp_ADC_Present : Boolean;
begin
Comp := First_Component (Rec);
while Present (Comp) loop
Check_Component_Storage_Order
(Encl_Type => Rec,
Comp => Comp,
ADC => SSO_ADC,
Comp_ADC_Present => Comp_ADC_Present);
SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
Next_Component (Comp);
end loop;
end;
-- Now deal with reverse storage order/bit order issues
if Present (SSO_ADC) then
-- Check compatibility of Scalar_Storage_Order with Bit_Order, if
-- the former is specified.
if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
-- Note: report error on Rec, not on SSO_ADC, as ADC may apply
-- to some ancestor type.
Error_Msg_Sloc := Sloc (SSO_ADC);
Error_Msg_N
("scalar storage order for& specified# inconsistent with "
& "bit order", Rec);
end if;
-- Warn if there is an Scalar_Storage_Order attribute definition
-- clause but no component clause, no component that itself has
-- such an attribute definition, and no pragma Pack.
if not (Placed_Component
or else
SSO_ADC_Component
or else
Is_Packed (Rec))
then
Error_Msg_N
("??scalar storage order specified but no component clause",
SSO_ADC);
end if;
end if;
-- Deal with Bit_Order aspect
ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
if Present (ADC) and then Base_Type (Rec) = Rec then
if not (Placed_Component
or else Present (SSO_ADC)
or else Is_Packed (Rec))
then
-- Warn if clause has no effect when no component clause is
-- present, but suppress warning if the Bit_Order is required
-- due to the presence of a Scalar_Storage_Order attribute.
Error_Msg_N
("??bit order specification has no effect", ADC);
Error_Msg_N
("\??since no component clauses were specified", ADC);
-- Here is where we do the processing to adjust component clauses
-- for reversed bit order, when not using reverse SSO.
elsif Reverse_Bit_Order (Rec)
and then not Reverse_Storage_Order (Rec)
then
Adjust_Record_For_Reverse_Bit_Order (Rec);
-- Case where we have both an explicit Bit_Order and the same
-- Scalar_Storage_Order: leave record untouched, the back-end
-- will take care of required layout conversions.
else
null;
end if;
end if;
-- Complete error checking on record representation clause (e.g.
-- overlap of components). This is called after adjusting the
-- record for reverse bit order.
declare
RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
begin
if Present (RRC) then
Check_Record_Representation_Clause (RRC);
end if;
end;
-- Set OK_To_Reorder_Components depending on debug flags
if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
or else
(not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
then
Set_OK_To_Reorder_Components (Rec);
end if;
end if;
-- Check for useless pragma Pack when all components placed. We only
-- do this check for record types, not subtypes, since a subtype may
-- have all its components placed, and it still makes perfectly good
-- sense to pack other subtypes or the parent type. We do not give
-- this warning if Optimize_Alignment is set to Space, since the
-- pragma Pack does have an effect in this case (it always resets
-- the alignment to one).
if Ekind (Rec) = E_Record_Type
and then Is_Packed (Rec)
and then not Unplaced_Component
and then Optimize_Alignment /= 'S'
then
-- Reset packed status. Probably not necessary, but we do it so
-- that there is no chance of the back end doing something strange
-- with this redundant indication of packing.
Set_Is_Packed (Rec, False);
-- Give warning if redundant constructs warnings on
if Warn_On_Redundant_Constructs then
Error_Msg_N -- CODEFIX
("??pragma Pack has no effect, no unplaced components",
Get_Rep_Pragma (Rec, Name_Pack));
end if;
end if;
-- If this is the record corresponding to a remote type, freeze the
-- remote type here since that is what we are semantically freezing.
-- This prevents the freeze node for that type in an inner scope.
if Ekind (Rec) = E_Record_Type then
if Present (Corresponding_Remote_Type (Rec)) then
Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
end if;
-- Check for controlled components and unchecked unions.
Comp := First_Component (Rec);
while Present (Comp) loop
-- Do not set Has_Controlled_Component on a class-wide
-- equivalent type. See Make_CW_Equivalent_Type.
if not Is_Class_Wide_Equivalent_Type (Rec)
and then
(Has_Controlled_Component (Etype (Comp))
or else
(Chars (Comp) /= Name_uParent
and then Is_Controlled (Etype (Comp)))
or else
(Is_Protected_Type (Etype (Comp))
and then
Present (Corresponding_Record_Type (Etype (Comp)))
and then
Has_Controlled_Component
(Corresponding_Record_Type (Etype (Comp)))))
then
Set_Has_Controlled_Component (Rec);
end if;
if Has_Unchecked_Union (Etype (Comp)) then
Set_Has_Unchecked_Union (Rec);
end if;
-- Scan component declaration for likely misuses of current
-- instance, either in a constraint or a default expression.
if Has_Per_Object_Constraint (Comp) then
Check_Current_Instance (Parent (Comp));
end if;
Next_Component (Comp);
end loop;
end if;
-- Enforce the restriction that access attributes with a current
-- instance prefix can only apply to limited types. This comment
-- is floating here, but does not seem to belong here???
-- Set component alignment if not otherwise already set
Set_Component_Alignment_If_Not_Set (Rec);
-- For first subtypes, check if there are any fixed-point fields with
-- component clauses, where we must check the size. This is not done
-- till the freeze point since for fixed-point types, we do not know
-- the size until the type is frozen. Similar processing applies to
-- bit packed arrays.
if Is_First_Subtype (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Present (Component_Clause (Comp))
and then (Is_Fixed_Point_Type (Etype (Comp))
or else Is_Bit_Packed_Array (Etype (Comp)))
then
Check_Size
(Component_Name (Component_Clause (Comp)),
Etype (Comp),
Esize (Comp),
Junk);
end if;
Next_Component (Comp);
end loop;
end if;
-- Generate warning for applying C or C++ convention to a record
-- with discriminants. This is suppressed for the unchecked union
-- case, since the whole point in this case is interface C. We also
-- do not generate this within instantiations, since we will have
-- generated a message on the template.
if Has_Discriminants (E)
and then not Is_Unchecked_Union (E)
and then (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then Comes_From_Source (E)
and then not In_Instance
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (Base_Type (E))
then
declare
Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
A2 : Node_Id;
begin
if Present (Cprag) then
A2 := Next (First (Pragma_Argument_Associations (Cprag)));
if Convention (E) = Convention_C then
Error_Msg_N
("?x?variant record has no direct equivalent in C",
A2);
else
Error_Msg_N
("?x?variant record has no direct equivalent in C++",
A2);
end if;
Error_Msg_NE
("\?x?use of convention for type& is dubious", A2, E);
end if;
end;
end if;
-- See if Size is too small as is (and implicit packing might help)
if not Is_Packed (Rec)
-- No implicit packing if even one component is explicitly placed
and then not Placed_Component
-- Or even one component is aliased
and then not Aliased_Component
-- Must have size clause and all scalar components
and then Has_Size_Clause (Rec)
and then All_Scalar_Components
-- Do not try implicit packing on records with discriminants, too
-- complicated, especially in the variant record case.
and then not Has_Discriminants (Rec)
-- We can implicitly pack if the specified size of the record is
-- less than the sum of the object sizes (no point in packing if
-- this is not the case).
and then RM_Size (Rec) < Scalar_Component_Total_Esize
-- And the total RM size cannot be greater than the specified size
-- since otherwise packing will not get us where we have to be.
and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
-- Never do implicit packing in CodePeer or SPARK modes since
-- we don't do any packing in these modes, since this generates
-- over-complex code that confuses static analysis, and in
-- general, neither CodePeer not GNATprove care about the
-- internal representation of objects.
and then not (CodePeer_Mode or GNATprove_Mode)
then
-- If implicit packing enabled, do it
if Implicit_Packing then
Set_Is_Packed (Rec);
-- Otherwise flag the size clause
else
declare
Sz : constant Node_Id := Size_Clause (Rec);
begin
Error_Msg_NE -- CODEFIX
("size given for& too small", Sz, Rec);
Error_Msg_N -- CODEFIX
("\use explicit pragma Pack "
& "or use pragma Implicit_Packing", Sz);
end;
end if;
end if;
-- The following checks are only relevant when SPARK_Mode is on as
-- they are not standard Ada legality rules.
if SPARK_Mode = On then
if Is_Effectively_Volatile (Rec) then
-- A discriminated type cannot be effectively volatile
-- (SPARK RM C.6(4)).
if Has_Discriminants (Rec) then
Error_Msg_N ("discriminated type & cannot be volatile", Rec);
-- A tagged type cannot be effectively volatile
-- (SPARK RM C.6(5)).
elsif Is_Tagged_Type (Rec) then
Error_Msg_N ("tagged type & cannot be volatile", Rec);
end if;
-- A non-effectively volatile record type cannot contain
-- effectively volatile components (SPARK RM C.6(2)).
else
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Is_Effectively_Volatile (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of non-volatile type % cannot be "
& "volatile", Comp);
end if;
Next_Component (Comp);
end loop;
end if;
end if;
-- All done if not a full record definition
if Ekind (Rec) /= E_Record_Type then
return;
end if;
-- Finally we need to check the variant part to make sure that
-- all types within choices are properly frozen as part of the
-- freezing of the record type.
Check_Variant_Part : declare
D : constant Node_Id := Declaration_Node (Rec);
T : Node_Id;
C : Node_Id;
begin
-- Find component list
C := Empty;
if Nkind (D) = N_Full_Type_Declaration then
T := Type_Definition (D);
if Nkind (T) = N_Record_Definition then
C := Component_List (T);
elsif Nkind (T) = N_Derived_Type_Definition
and then Present (Record_Extension_Part (T))
then
C := Component_List (Record_Extension_Part (T));
end if;
end if;
-- Case of variant part present
if Present (C) and then Present (Variant_Part (C)) then
Freeze_Choices_In_Variant_Part (Variant_Part (C));
end if;
-- Note: we used to call Check_Choices here, but it is too early,
-- since predicated subtypes are frozen here, but their freezing
-- actions are in Analyze_Freeze_Entity, which has not been called
-- yet for entities frozen within this procedure, so we moved that
-- call to the Analyze_Freeze_Entity for the record type.
end Check_Variant_Part;
-- Check that all the primitives of an interface type are abstract
-- or null procedures.
if Is_Interface (Rec)
and then not Error_Posted (Parent (Rec))
then
declare
Elmt : Elmt_Id;
Subp : Entity_Id;
begin
Elmt := First_Elmt (Primitive_Operations (Rec));
while Present (Elmt) loop
Subp := Node (Elmt);
if not Is_Abstract_Subprogram (Subp)
-- Avoid reporting the error on inherited primitives
and then Comes_From_Source (Subp)
then
Error_Msg_Name_1 := Chars (Subp);
if Ekind (Subp) = E_Procedure then
if not Null_Present (Parent (Subp)) then
Error_Msg_N
("interface procedure % must be abstract or null",
Parent (Subp));
end if;
else
Error_Msg_N
("interface function % must be abstract",
Parent (Subp));
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
end Freeze_Record_Type;
-------------------------------
-- Has_Boolean_Aspect_Import --
-------------------------------
function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
Decl : constant Node_Id := Declaration_Node (E);
Asp : Node_Id;
Expr : Node_Id;
begin
if Has_Aspects (Decl) then
Asp := First (Aspect_Specifications (Decl));
while Present (Asp) loop
Expr := Expression (Asp);
-- The value of aspect Import is True when the expression is
-- either missing or it is explicitly set to True.
if Get_Aspect_Id (Asp) = Aspect_Import
and then (No (Expr)
or else (Compile_Time_Known_Value (Expr)
and then Is_True (Expr_Value (Expr))))
then
return True;
end if;
Next (Asp);
end loop;
end if;
return False;
end Has_Boolean_Aspect_Import;
----------------------------
-- Late_Freeze_Subprogram --
----------------------------
procedure Late_Freeze_Subprogram (E : Entity_Id) is
Spec : constant Node_Id :=
Specification (Unit_Declaration_Node (Scope (E)));
Decls : List_Id;
begin
if Present (Private_Declarations (Spec)) then
Decls := Private_Declarations (Spec);
else
Decls := Visible_Declarations (Spec);
end if;
Append_List (Result, Decls);
end Late_Freeze_Subprogram;
---------------------
-- Restore_Globals --
---------------------
procedure Restore_Globals is
begin
Ghost_Mode := GM;
end Restore_Globals;
------------------------------
-- Wrap_Imported_Subprogram --
------------------------------
-- The issue here is that our normal approach of checking preconditions
-- and postconditions does not work for imported procedures, since we
-- are not generating code for the body. To get around this we create
-- a wrapper, as shown by the following example:
-- procedure K (A : Integer);
-- pragma Import (C, K);
-- The spec is rewritten by removing the effects of pragma Import, but
-- leaving the convention unchanged, as though the source had said:
-- procedure K (A : Integer);
-- pragma Convention (C, K);
-- and we create a body, added to the entity K freeze actions, which
-- looks like:
-- procedure K (A : Integer) is
-- procedure K (A : Integer);
-- pragma Import (C, K);
-- begin