blob: 68cef650aacc2b12c21b7628e1444506e728d962 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . R E G E X P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1999-2013, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with System.Case_Util;
package body System.Regexp is
Initial_Max_States_In_Primary_Table : constant := 100;
-- Initial size for the number of states in the indefinite state
-- machine. The number of states will be increased as needed.
--
-- This is also used as the maximal number of meta states (groups of
-- states) in the secondary table.
Open_Paren : constant Character := '(';
Close_Paren : constant Character := ')';
Open_Bracket : constant Character := '[';
Close_Bracket : constant Character := ']';
type State_Index is new Natural;
type Column_Index is new Natural;
type Regexp_Array is array
(State_Index range <>, Column_Index range <>) of State_Index;
-- First index is for the state number. Second index is for the character
-- type. Contents is the new State.
type Regexp_Array_Access is access Regexp_Array;
-- Use this type through the functions Set below, so that it can grow
-- dynamically depending on the needs.
type Mapping is array (Character'Range) of Column_Index;
-- Mapping between characters and column in the Regexp_Array
type Boolean_Array is array (State_Index range <>) of Boolean;
type Regexp_Value
(Alphabet_Size : Column_Index;
Num_States : State_Index) is
record
Map : Mapping;
States : Regexp_Array (1 .. Num_States, 0 .. Alphabet_Size);
Is_Final : Boolean_Array (1 .. Num_States);
Case_Sensitive : Boolean;
end record;
-- Deterministic finite-state machine
-----------------------
-- Local Subprograms --
-----------------------
procedure Set
(Table : in out Regexp_Array_Access;
State : State_Index;
Column : Column_Index;
Value : State_Index);
-- Sets a value in the table. If the table is too small, reallocate it
-- dynamically so that (State, Column) is a valid index in it.
function Get
(Table : Regexp_Array_Access;
State : State_Index;
Column : Column_Index) return State_Index;
-- Returns the value in the table at (State, Column). If this index does
-- not exist in the table, returns zero.
procedure Free is new Ada.Unchecked_Deallocation
(Regexp_Array, Regexp_Array_Access);
------------
-- Adjust --
------------
procedure Adjust (R : in out Regexp) is
Tmp : Regexp_Access;
begin
if R.R /= null then
Tmp := new Regexp_Value (Alphabet_Size => R.R.Alphabet_Size,
Num_States => R.R.Num_States);
Tmp.all := R.R.all;
R.R := Tmp;
end if;
end Adjust;
-------------
-- Compile --
-------------
function Compile
(Pattern : String;
Glob : Boolean := False;
Case_Sensitive : Boolean := True) return Regexp
is
S : String := Pattern;
-- The pattern which is really compiled (when the pattern is case
-- insensitive, we convert this string to lower-cases
Map : Mapping := (others => 0);
-- Mapping between characters and columns in the tables
Alphabet_Size : Column_Index := 0;
-- Number of significant characters in the regular expression.
-- This total does not include special operators, such as *, (, ...
procedure Check_Well_Formed_Pattern;
-- Check that the pattern to compile is well-formed, so that subsequent
-- code can rely on this without performing each time the checks to
-- avoid accessing the pattern outside its bounds. However, not all
-- well-formedness rules are checked. In particular, rules about special
-- characters not being treated as regular characters are not checked.
procedure Create_Mapping;
-- Creates a mapping between characters in the regexp and columns
-- in the tables representing the regexp. Test that the regexp is
-- well-formed Modifies Alphabet_Size and Map
procedure Create_Primary_Table
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index);
-- Creates the first version of the regexp (this is a non deterministic
-- finite state machine, which is unadapted for a fast pattern
-- matching algorithm). We use a recursive algorithm to process the
-- parenthesis sub-expressions.
--
-- Table : at the end of the procedure : Column 0 is for any character
-- ('.') and the last columns are for no character (closure). Num_States
-- is set to the number of states in the table Start_State is the number
-- of the starting state in the regexp End_State is the number of the
-- final state when the regexp matches.
procedure Create_Primary_Table_Glob
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index);
-- Same function as above, but it deals with the second possible
-- grammar for 'globbing pattern', which is a kind of subset of the
-- whole regular expression grammar.
function Create_Secondary_Table
(First_Table : Regexp_Array_Access;
Start_State : State_Index;
End_State : State_Index) return Regexp;
-- Creates the definitive table representing the regular expression
-- This is actually a transformation of the primary table First_Table,
-- where every state is grouped with the states in its 'no-character'
-- columns. The transitions between the new states are then recalculated
-- and if necessary some new states are created.
--
-- Note that the resulting finite-state machine is not optimized in
-- terms of the number of states : it would be more time-consuming to
-- add a third pass to reduce the number of states in the machine, with
-- no speed improvement...
procedure Raise_Exception (M : String; Index : Integer);
pragma No_Return (Raise_Exception);
-- Raise an exception, indicating an error at character Index in S
-------------------------------
-- Check_Well_Formed_Pattern --
-------------------------------
procedure Check_Well_Formed_Pattern is
J : Integer;
Past_Elmt : Boolean := False;
-- Set to True everywhere an elmt has been parsed, if Glob=False,
-- meaning there can be now an occurrence of '*', '+' and '?'.
Past_Term : Boolean := False;
-- Set to True everywhere a term has been parsed, if Glob=False,
-- meaning there can be now an occurrence of '|'.
Parenthesis_Level : Integer := 0;
Curly_Level : Integer := 0;
Last_Open : Integer := S'First - 1;
-- The last occurrence of an opening parenthesis, if Glob=False,
-- or the last occurrence of an opening curly brace, if Glob=True.
procedure Raise_Exception_If_No_More_Chars (K : Integer := 0);
-- If no more characters are raised, call Raise_Exception
--------------------------------------
-- Raise_Exception_If_No_More_Chars --
--------------------------------------
procedure Raise_Exception_If_No_More_Chars (K : Integer := 0) is
begin
if J + K > S'Last then
Raise_Exception ("Ill-formed pattern while parsing", J);
end if;
end Raise_Exception_If_No_More_Chars;
-- Start of processing for Check_Well_Formed_Pattern
begin
J := S'First;
while J <= S'Last loop
case S (J) is
when Open_Bracket =>
J := J + 1;
Raise_Exception_If_No_More_Chars;
if not Glob then
if S (J) = '^' then
J := J + 1;
Raise_Exception_If_No_More_Chars;
end if;
end if;
-- The first character never has a special meaning
if S (J) = ']' or else S (J) = '-' then
J := J + 1;
Raise_Exception_If_No_More_Chars;
end if;
-- The set of characters cannot be empty
if S (J) = ']' then
Raise_Exception
("Set of characters cannot be empty in regular "
& "expression", J);
end if;
declare
Possible_Range_Start : Boolean := True;
-- Set True everywhere a range character '-' can occur
begin
loop
exit when S (J) = Close_Bracket;
-- The current character should be followed by a
-- closing bracket.
Raise_Exception_If_No_More_Chars (1);
if S (J) = '-'
and then S (J + 1) /= Close_Bracket
then
if not Possible_Range_Start then
Raise_Exception
("No mix of ranges is allowed in "
& "regular expression", J);
end if;
J := J + 1;
Raise_Exception_If_No_More_Chars;
-- Range cannot be followed by '-' character,
-- except as last character in the set.
Possible_Range_Start := False;
else
Possible_Range_Start := True;
end if;
if S (J) = '\' then
J := J + 1;
Raise_Exception_If_No_More_Chars;
end if;
J := J + 1;
end loop;
end;
-- A closing bracket can end an elmt or term
Past_Elmt := True;
Past_Term := True;
when Close_Bracket =>
-- A close bracket must follow a open_bracket, and cannot be
-- found alone on the line.
Raise_Exception
("Incorrect character ']' in regular expression", J);
when '\' =>
if J < S'Last then
J := J + 1;
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
else
-- \ not allowed at the end of the regexp
Raise_Exception
("Incorrect character '\' in regular expression", J);
end if;
when Open_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level + 1;
Last_Open := J;
-- An open parenthesis does not end an elmt or term
Past_Elmt := False;
Past_Term := False;
end if;
when Close_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level - 1;
if Parenthesis_Level < 0 then
Raise_Exception
("')' is not associated with '(' in regular "
& "expression", J);
end if;
if J = Last_Open + 1 then
Raise_Exception
("Empty parentheses not allowed in regular "
& "expression", J);
end if;
if not Past_Term then
Raise_Exception
("Closing parenthesis not allowed here in regular "
& "expression", J);
end if;
-- A closing parenthesis can end an elmt or term
Past_Elmt := True;
Past_Term := True;
end if;
when '{' =>
if Glob then
Curly_Level := Curly_Level + 1;
Last_Open := J;
else
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
end if;
-- No need to check for ',' as the code always accepts them
when '}' =>
if Glob then
Curly_Level := Curly_Level - 1;
if Curly_Level < 0 then
Raise_Exception
("'}' is not associated with '{' in regular "
& "expression", J);
end if;
if J = Last_Open + 1 then
Raise_Exception
("Empty curly braces not allowed in regular "
& "expression", J);
end if;
else
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
end if;
when '*' | '?' | '+' =>
if not Glob then
-- These operators must apply to an elmt sub-expression,
-- and cannot be found if one has not just been parsed.
if not Past_Elmt then
Raise_Exception
("'*', '+' and '?' operators must be "
& "applied to an element in regular expression", J);
end if;
Past_Elmt := False;
Past_Term := True;
end if;
when '|' =>
if not Glob then
-- This operator must apply to a term sub-expression,
-- and cannot be found if one has not just been parsed.
if not Past_Term then
Raise_Exception
("'|' operator must be "
& "applied to a term in regular expression", J);
end if;
Past_Elmt := False;
Past_Term := False;
end if;
when others =>
if not Glob then
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
end if;
end case;
J := J + 1;
end loop;
-- A closing parenthesis must follow an open parenthesis
if Parenthesis_Level /= 0 then
Raise_Exception
("'(' must always be associated with a ')'", J);
end if;
-- A closing curly brace must follow an open curly brace
if Curly_Level /= 0 then
Raise_Exception
("'{' must always be associated with a '}'", J);
end if;
end Check_Well_Formed_Pattern;
--------------------
-- Create_Mapping --
--------------------
procedure Create_Mapping is
procedure Add_In_Map (C : Character);
-- Add a character in the mapping, if it is not already defined
----------------
-- Add_In_Map --
----------------
procedure Add_In_Map (C : Character) is
begin
if Map (C) = 0 then
Alphabet_Size := Alphabet_Size + 1;
Map (C) := Alphabet_Size;
end if;
end Add_In_Map;
J : Integer := S'First;
Parenthesis_Level : Integer := 0;
Curly_Level : Integer := 0;
Last_Open : Integer := S'First - 1;
-- Start of processing for Create_Mapping
begin
while J <= S'Last loop
case S (J) is
when Open_Bracket =>
J := J + 1;
if S (J) = '^' then
J := J + 1;
end if;
if S (J) = ']' or else S (J) = '-' then
J := J + 1;
end if;
-- The first character never has a special meaning
loop
if J > S'Last then
Raise_Exception
("Ran out of characters while parsing ", J);
end if;
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= Close_Bracket
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Add_In_Map (Char);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Add_In_Map (S (J));
end if;
J := J + 1;
end loop;
-- A close bracket must follow a open_bracket and cannot be
-- found alone on the line
when Close_Bracket =>
Raise_Exception
("Incorrect character ']' in regular expression", J);
when '\' =>
if J < S'Last then
J := J + 1;
Add_In_Map (S (J));
else
-- Back slash \ not allowed at the end of the regexp
Raise_Exception
("Incorrect character '\' in regular expression", J);
end if;
when Open_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level + 1;
Last_Open := J;
else
Add_In_Map (Open_Paren);
end if;
when Close_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level - 1;
if Parenthesis_Level < 0 then
Raise_Exception
("')' is not associated with '(' in regular "
& "expression", J);
end if;
if J = Last_Open + 1 then
Raise_Exception
("Empty parenthesis not allowed in regular "
& "expression", J);
end if;
else
Add_In_Map (Close_Paren);
end if;
when '.' =>
if Glob then
Add_In_Map ('.');
end if;
when '{' =>
if not Glob then
Add_In_Map (S (J));
else
Curly_Level := Curly_Level + 1;
end if;
when '}' =>
if not Glob then
Add_In_Map (S (J));
else
Curly_Level := Curly_Level - 1;
end if;
when '*' | '?' =>
if not Glob then
if J = S'First then
Raise_Exception
("'*', '+', '?' and '|' operators cannot be in "
& "first position in regular expression", J);
end if;
end if;
when '|' | '+' =>
if not Glob then
if J = S'First then
-- These operators must apply to a sub-expression,
-- and cannot be found at the beginning of the line
Raise_Exception
("'*', '+', '?' and '|' operators cannot be in "
& "first position in regular expression", J);
end if;
else
Add_In_Map (S (J));
end if;
when others =>
Add_In_Map (S (J));
end case;
J := J + 1;
end loop;
-- A closing parenthesis must follow an open parenthesis
if Parenthesis_Level /= 0 then
Raise_Exception
("'(' must always be associated with a ')'", J);
end if;
if Curly_Level /= 0 then
Raise_Exception
("'{' must always be associated with a '}'", J);
end if;
end Create_Mapping;
--------------------------
-- Create_Primary_Table --
--------------------------
procedure Create_Primary_Table
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index)
is
Empty_Char : constant Column_Index := Alphabet_Size + 1;
Current_State : State_Index := 0;
-- Index of the last created state
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index);
-- Add a empty-character transition from State to To_State
procedure Create_Repetition
(Repetition : Character;
Start_Prev : State_Index;
End_Prev : State_Index;
New_Start : out State_Index;
New_End : in out State_Index);
-- Create the table in case we have a '*', '+' or '?'.
-- Start_Prev .. End_Prev should indicate respectively the start and
-- end index of the previous expression, to which '*', '+' or '?' is
-- applied.
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index);
-- Fill the table for the regexp Simple. This is the recursive
-- procedure called to handle () expressions If End_State = 0, then
-- the call to Create_Simple creates an independent regexp, not a
-- concatenation Start_Index .. End_Index is the starting index in
-- the string S.
--
-- Warning: it may look like we are creating too many empty-string
-- transitions, but they are needed to get the correct regexp.
-- The table is filled as follow ( s means start-state, e means
-- end-state) :
--
-- regexp state_num | a b * empty_string
-- ------- ------------------------------
-- a 1 (s) | 2 - - -
-- 2 (e) | - - - -
--
-- ab 1 (s) | 2 - - -
-- 2 | - - - 3
-- 3 | - 4 - -
-- 4 (e) | - - - -
--
-- a|b 1 | 2 - - -
-- 2 | - - - 6
-- 3 | - 4 - -
-- 4 | - - - 6
-- 5 (s) | - - - 1,3
-- 6 (e) | - - - -
--
-- a* 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1,4
-- 4 (e) | - - - 3
--
-- (a) 1 (s) | 2 - - -
-- 2 (e) | - - - -
--
-- a+ 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1
-- 4 (e) | - - - 3
--
-- a? 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1,4
-- 4 (e) | - - - -
--
-- . 1 (s) | 2 2 2 -
-- 2 (e) | - - - -
function Next_Sub_Expression
(Start_Index : Integer;
End_Index : Integer) return Integer;
-- Returns the index of the last character of the next sub-expression
-- in Simple. Index cannot be greater than End_Index.
--------------------
-- Add_Empty_Char --
--------------------
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index)
is
J : Column_Index := Empty_Char;
begin
while Get (Table, State, J) /= 0 loop
J := J + 1;
end loop;
Set (Table, State, J, To_State);
end Add_Empty_Char;
-----------------------
-- Create_Repetition --
-----------------------
procedure Create_Repetition
(Repetition : Character;
Start_Prev : State_Index;
End_Prev : State_Index;
New_Start : out State_Index;
New_End : in out State_Index)
is
begin
New_Start := Current_State + 1;
if New_End /= 0 then
Add_Empty_Char (New_End, New_Start);
end if;
Current_State := Current_State + 2;
New_End := Current_State;
Add_Empty_Char (End_Prev, New_End);
Add_Empty_Char (New_Start, Start_Prev);
if Repetition /= '+' then
Add_Empty_Char (New_Start, New_End);
end if;
if Repetition /= '?' then
Add_Empty_Char (New_End, New_Start);
end if;
end Create_Repetition;
-------------------
-- Create_Simple --
-------------------
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index)
is
J : Integer := Start_Index;
Last_Start : State_Index := 0;
begin
Start_State := 0;
End_State := 0;
while J <= End_Index loop
case S (J) is
when Open_Paren =>
declare
J_Start : constant Integer := J + 1;
Next_Start : State_Index;
Next_End : State_Index;
begin
J := Next_Sub_Expression (J, End_Index);
Create_Simple (J_Start, J - 1, Next_Start, Next_End);
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Next_Start,
Next_End,
Last_Start,
End_State);
else
Last_Start := Next_Start;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Next_End;
end if;
end;
when '|' =>
declare
Start_Prev : constant State_Index := Start_State;
End_Prev : constant State_Index := End_State;
Start_J : constant Integer := J + 1;
Start_Next : State_Index := 0;
End_Next : State_Index := 0;
begin
J := Next_Sub_Expression (J, End_Index);
-- Create a new state for the start of the alternative
Current_State := Current_State + 1;
Last_Start := Current_State;
Start_State := Last_Start;
-- Create the tree for the second part of alternative
Create_Simple (Start_J, J, Start_Next, End_Next);
-- Create the end state
Add_Empty_Char (Last_Start, Start_Next);
Add_Empty_Char (Last_Start, Start_Prev);
Current_State := Current_State + 1;
End_State := Current_State;
Add_Empty_Char (End_Prev, End_State);
Add_Empty_Char (End_Next, End_State);
end;
when Open_Bracket =>
Current_State := Current_State + 1;
declare
Next_State : State_Index := Current_State + 1;
begin
J := J + 1;
if S (J) = '^' then
J := J + 1;
Next_State := 0;
for Column in 0 .. Alphabet_Size loop
Set (Table, Current_State, Column,
Value => Current_State + 1);
end loop;
end if;
-- Automatically add the first character
if S (J) = '-' or else S (J) = ']' then
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
J := J + 1;
end if;
-- Loop till closing bracket found
loop
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= ']'
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Set (Table, Current_State, Map (Char),
Value => Next_State);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
end if;
J := J + 1;
end loop;
end;
Current_State := Current_State + 1;
-- If the next symbol is a special symbol
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Current_State - 1,
Current_State,
Last_Start,
End_State);
else
Last_Start := Current_State - 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end if;
when '*' | '+' | '?' | Close_Paren | Close_Bracket =>
Raise_Exception
("Incorrect character in regular expression :", J);
when others =>
Current_State := Current_State + 1;
-- Create the state for the symbol S (J)
if S (J) = '.' then
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Current_State + 1);
end if;
Current_State := Current_State + 1;
-- If the next symbol is a special symbol
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Current_State - 1,
Current_State,
Last_Start,
End_State);
else
Last_Start := Current_State - 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end if;
end case;
if Start_State = 0 then
Start_State := Last_Start;
end if;
J := J + 1;
end loop;
end Create_Simple;
-------------------------
-- Next_Sub_Expression --
-------------------------
function Next_Sub_Expression
(Start_Index : Integer;
End_Index : Integer) return Integer
is
J : Integer := Start_Index;
Start_On_Alter : Boolean := False;
begin
if S (J) = '|' then
Start_On_Alter := True;
end if;
loop
exit when J = End_Index;
J := J + 1;
case S (J) is
when '\' =>
J := J + 1;
when Open_Bracket =>
loop
J := J + 1;
exit when S (J) = Close_Bracket;
if S (J) = '\' then
J := J + 1;
end if;
end loop;
when Open_Paren =>
J := Next_Sub_Expression (J, End_Index);
when Close_Paren =>
return J;
when '|' =>
if Start_On_Alter then
return J - 1;
end if;
when others =>
null;
end case;
end loop;
return J;
end Next_Sub_Expression;
-- Start of Create_Primary_Table
begin
Table.all := (others => (others => 0));
Create_Simple (S'First, S'Last, Start_State, End_State);
Num_States := Current_State;
end Create_Primary_Table;
-------------------------------
-- Create_Primary_Table_Glob --
-------------------------------
procedure Create_Primary_Table_Glob
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index)
is
Empty_Char : constant Column_Index := Alphabet_Size + 1;
Current_State : State_Index := 0;
-- Index of the last created state
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index);
-- Add a empty-character transition from State to To_State
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index);
-- Fill the table for the S (Start_Index .. End_Index).
-- This is the recursive procedure called to handle () expressions
--------------------
-- Add_Empty_Char --
--------------------
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index)
is
J : Column_Index;
begin
J := Empty_Char;
while Get (Table, State, J) /= 0 loop
J := J + 1;
end loop;
Set (Table, State, J, Value => To_State);
end Add_Empty_Char;
-------------------
-- Create_Simple --
-------------------
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index)
is
J : Integer;
Last_Start : State_Index := 0;
begin
Start_State := 0;
End_State := 0;
J := Start_Index;
while J <= End_Index loop
case S (J) is
when Open_Bracket =>
Current_State := Current_State + 1;
declare
Next_State : State_Index := Current_State + 1;
begin
J := J + 1;
if S (J) = '^' then
J := J + 1;
Next_State := 0;
for Column in 0 .. Alphabet_Size loop
Set (Table, Current_State, Column,
Value => Current_State + 1);
end loop;
end if;
-- Automatically add the first character
if S (J) = '-' or else S (J) = ']' then
Set (Table, Current_State, Map (S (J)),
Value => Current_State);
J := J + 1;
end if;
-- Loop till closing bracket found
loop
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= ']'
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Set (Table, Current_State, Map (Char),
Value => Next_State);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
end if;
J := J + 1;
end loop;
end;
Last_Start := Current_State;
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
when '{' =>
declare
End_Sub : Integer;
Start_Regexp_Sub : State_Index;
End_Regexp_Sub : State_Index;
Create_Start : State_Index := 0;
Create_End : State_Index := 0;
-- Initialized to avoid junk warning
begin
while S (J) /= '}' loop
-- First step : find sub pattern
End_Sub := J + 1;
while S (End_Sub) /= ','
and then S (End_Sub) /= '}'
loop
End_Sub := End_Sub + 1;
end loop;
-- Second step : create a sub pattern
Create_Simple
(J + 1,
End_Sub - 1,
Start_Regexp_Sub,
End_Regexp_Sub);
J := End_Sub;
-- Third step : create an alternative
if Create_Start = 0 then
Current_State := Current_State + 1;
Create_Start := Current_State;
Add_Empty_Char (Create_Start, Start_Regexp_Sub);
Current_State := Current_State + 1;
Create_End := Current_State;
Add_Empty_Char (End_Regexp_Sub, Create_End);
else
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Create_Start);
Create_Start := Current_State;
Add_Empty_Char (Create_Start, Start_Regexp_Sub);
Add_Empty_Char (End_Regexp_Sub, Create_End);
end if;
end loop;
if End_State /= 0 then
Add_Empty_Char (End_State, Create_Start);
end if;
End_State := Create_End;
Last_Start := Create_Start;
end;
when '*' =>
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Current_State);
end if;
Add_Empty_Char (Current_State, Current_State + 1);
Add_Empty_Char (Current_State, Current_State + 3);
Last_Start := Current_State;
Current_State := Current_State + 1;
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Current_State + 1);
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Last_Start);
End_State := Current_State;
when others =>
Current_State := Current_State + 1;
if S (J) = '?' then
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
else
if S (J) = '\' then
J := J + 1;
end if;
-- Create the state for the symbol S (J)
Set (Table, Current_State, Map (S (J)),
Value => Current_State + 1);
end if;
Last_Start := Current_State;
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end case;
if Start_State = 0 then
Start_State := Last_Start;
end if;
J := J + 1;
end loop;
end Create_Simple;
-- Start of processing for Create_Primary_Table_Glob
begin
Table.all := (others => (others => 0));
Create_Simple (S'First, S'Last, Start_State, End_State);
Num_States := Current_State;
end Create_Primary_Table_Glob;
----------------------------
-- Create_Secondary_Table --
----------------------------
function Create_Secondary_Table
(First_Table : Regexp_Array_Access;
Start_State : State_Index;
End_State : State_Index) return Regexp
is
Last_Index : constant State_Index := First_Table'Last (1);
type Meta_State is array (0 .. Last_Index) of Boolean;
pragma Pack (Meta_State);
-- Whether a state from first_table belongs to a metastate.
No_States : constant Meta_State := (others => False);
type Meta_States_Array is array (State_Index range <>) of Meta_State;
type Meta_States_List is access all Meta_States_Array;
procedure Unchecked_Free is new Ada.Unchecked_Deallocation
(Meta_States_Array, Meta_States_List);
Meta_States : Meta_States_List;
-- Components of meta-states. A given state might belong to
-- several meta-states.
-- This array grows dynamically.
type Char_To_State is array (0 .. Alphabet_Size) of State_Index;
type Meta_States_Transition_Arr is
array (State_Index range <>) of Char_To_State;
type Meta_States_Transition is access all Meta_States_Transition_Arr;
procedure Unchecked_Free is new Ada.Unchecked_Deallocation
(Meta_States_Transition_Arr, Meta_States_Transition);
Table : Meta_States_Transition;
-- Documents the transitions between each meta-state. The
-- first index is the meta-state, the second column is the
-- character seen in the input, the value is the new meta-state.
Temp_State_Not_Null : Boolean;
Current_State : State_Index := 1;
-- The current meta-state we are creating
Nb_State : State_Index := 1;
-- The total number of meta-states created so far.
procedure Closure
(Meta_State : State_Index;
State : State_Index);
-- Compute the closure of the state (that is every other state which
-- has a empty-character transition) and add it to the state
procedure Ensure_Meta_State (Meta : State_Index);
-- grows the Meta_States array as needed to make sure that there
-- is enough space to store the new meta state.
-----------------------
-- Ensure_Meta_State --
-----------------------
procedure Ensure_Meta_State (Meta : State_Index) is
Tmp : Meta_States_List := Meta_States;
Tmp2 : Meta_States_Transition := Table;
begin
if Meta_States = null then
Meta_States := new Meta_States_Array
(1 .. State_Index'Max (Last_Index, Meta) + 1);
Meta_States (Meta_States'Range) := (others => No_States);
Table := new Meta_States_Transition_Arr
(1 .. State_Index'Max (Last_Index, Meta) + 1);
Table.all := (others => (others => 0));
elsif Meta > Meta_States'Last then
Meta_States := new Meta_States_Array
(1 .. State_Index'Max (2 * Tmp'Last, Meta));
Meta_States (Tmp'Range) := Tmp.all;
Meta_States (Tmp'Last + 1 .. Meta_States'Last) :=
(others => No_States);
Unchecked_Free (Tmp);
Table := new Meta_States_Transition_Arr
(1 .. State_Index'Max (2 * Tmp2'Last, Meta) + 1);
Table (Tmp2'Range) := Tmp2.all;
Table (Tmp2'Last + 1 .. Table'Last) :=
(others => (others => 0));
Unchecked_Free (Tmp2);
end if;
end Ensure_Meta_State;
-------------
-- Closure --
-------------
procedure Closure
(Meta_State : State_Index;
State : State_Index)
is
begin
if not Meta_States (Meta_State)(State) then
Meta_States (Meta_State)(State) := True;
-- For each transition on empty-character
for Column in Alphabet_Size + 1 .. First_Table'Last (2) loop
exit when First_Table (State, Column) = 0;
Closure (Meta_State, First_Table (State, Column));
end loop;
end if;
end Closure;
-- Start of processing for Create_Secondary_Table
begin
-- Create a new state
Ensure_Meta_State (Current_State);
Closure (Current_State, Start_State);
while Current_State <= Nb_State loop
-- We will be trying, below, to create the next meta-state
Ensure_Meta_State (Nb_State + 1);
-- For every character in the regexp, calculate the possible
-- transitions from Current_State.
for Column in 0 .. Alphabet_Size loop
Temp_State_Not_Null := False;
for K in Meta_States (Current_State)'Range loop
if Meta_States (Current_State)(K)
and then First_Table (K, Column) /= 0
then
Closure (Nb_State + 1, First_Table (K, Column));
Temp_State_Not_Null := True;
end if;
end loop;
-- If at least one transition existed
if Temp_State_Not_Null then
-- Check if this new state corresponds to an old one
for K in 1 .. Nb_State loop
if Meta_States (K) = Meta_States (Nb_State + 1) then
Table (Current_State)(Column) := K;
-- Reset data, for the next time we try that state
Meta_States (Nb_State + 1) := No_States;
exit;
end if;
end loop;
-- If not, create a new state
if Table (Current_State)(Column) = 0 then
Nb_State := Nb_State + 1;
Ensure_Meta_State (Nb_State + 1);
Table (Current_State)(Column) := Nb_State;
end if;
end if;
end loop;
Current_State := Current_State + 1;
end loop;
-- Returns the regexp
declare
R : Regexp_Access;
begin
R := new Regexp_Value (Alphabet_Size => Alphabet_Size,
Num_States => Nb_State);
R.Map := Map;
R.Case_Sensitive := Case_Sensitive;
for S in 1 .. Nb_State loop
R.Is_Final (S) := Meta_States (S)(End_State);
end loop;
for State in 1 .. Nb_State loop
for K in 0 .. Alphabet_Size loop
R.States (State, K) := Table (State)(K);
end loop;
end loop;
Unchecked_Free (Meta_States);
Unchecked_Free (Table);
return (Ada.Finalization.Controlled with R => R);
end;
end Create_Secondary_Table;
---------------------
-- Raise_Exception --
---------------------
procedure Raise_Exception (M : String; Index : Integer) is
begin
raise Error_In_Regexp with M & " at offset" & Index'Img;
end Raise_Exception;
-- Start of processing for Compile
begin
-- Special case for the empty string: it always matches, and the
-- following processing would fail on it.
if S = "" then
return (Ada.Finalization.Controlled with
R => new Regexp_Value'
(Alphabet_Size => 0,
Num_States => 1,
Map => (others => 0),
States => (others => (others => 1)),
Is_Final => (others => True),
Case_Sensitive => True));
end if;
if not Case_Sensitive then
System.Case_Util.To_Lower (S);
end if;
-- Check the pattern is well-formed before any treatment
Check_Well_Formed_Pattern;
Create_Mapping;
-- Creates the primary table
declare
Table : Regexp_Array_Access;
Num_States : State_Index;
Start_State : State_Index;
End_State : State_Index;
R : Regexp;
begin
Table := new Regexp_Array (1 .. Initial_Max_States_In_Primary_Table,
0 .. Alphabet_Size + 10);
if not Glob then
Create_Primary_Table (Table, Num_States, Start_State, End_State);
else
Create_Primary_Table_Glob
(Table, Num_States, Start_State, End_State);
end if;
-- Creates the secondary table
R := Create_Secondary_Table (Table, Start_State, End_State);
Free (Table);
return R;
end;
end Compile;
--------------
-- Finalize --
--------------
procedure Finalize (R : in out Regexp) is
procedure Free is new
Ada.Unchecked_Deallocation (Regexp_Value, Regexp_Access);
begin
Free (R.R);
end Finalize;
---------
-- Get --
---------
function Get
(Table : Regexp_Array_Access;
State : State_Index;
Column : Column_Index) return State_Index
is
begin
if State <= Table'Last (1)
and then Column <= Table'Last (2)
then
return Table (State, Column);
else
return 0;
end if;
end Get;
-----------
-- Match --
-----------
function Match (S : String; R : Regexp) return Boolean is
Current_State : State_Index := 1;
begin
if R.R = null then
raise Constraint_Error;
end if;
for Char in S'Range loop
if R.R.Case_Sensitive then
Current_State := R.R.States (Current_State, R.R.Map (S (Char)));
else
Current_State :=
R.R.States (Current_State,
R.R.Map (System.Case_Util.To_Lower (S (Char))));
end if;
if Current_State = 0 then
return False;
end if;
end loop;
return R.R.Is_Final (Current_State);
end Match;
---------
-- Set --
---------
procedure Set
(Table : in out Regexp_Array_Access;
State : State_Index;
Column : Column_Index;
Value : State_Index)
is
New_Lines : State_Index;
New_Columns : Column_Index;
New_Table : Regexp_Array_Access;
begin
if State <= Table'Last (1)
and then Column <= Table'Last (2)
then
Table (State, Column) := Value;
else
-- Doubles the size of the table until it is big enough that
-- (State, Column) is a valid index.
New_Lines := Table'Last (1) * (State / Table'Last (1) + 1);
New_Columns := Table'Last (2) * (Column / Table'Last (2) + 1);
New_Table := new Regexp_Array (Table'First (1) .. New_Lines,
Table'First (2) .. New_Columns);
New_Table.all := (others => (others => 0));
for J in Table'Range (1) loop
for K in Table'Range (2) loop
New_Table (J, K) := Table (J, K);
end loop;
end loop;
Free (Table);
Table := New_Table;
Table (State, Column) := Value;
end if;
end Set;
end System.Regexp;