| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS -- |
| -- -- |
| -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNARL is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNARL was developed by the GNARL team at Florida State University. -- |
| -- Extensive contributions were provided by Ada Core Technologies, Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| -- This is a Solaris (native) version of this package |
| |
| -- This package contains all the GNULL primitives that interface directly with |
| -- the underlying OS. |
| |
| pragma Polling (Off); |
| -- Turn off polling, we do not want ATC polling to take place during tasking |
| -- operations. It causes infinite loops and other problems. |
| |
| with Interfaces.C; |
| |
| with System.Multiprocessors; |
| with System.Tasking.Debug; |
| with System.Interrupt_Management; |
| with System.OS_Constants; |
| with System.OS_Primitives; |
| with System.Task_Info; |
| |
| pragma Warnings (Off); |
| with System.OS_Lib; |
| pragma Warnings (On); |
| |
| with System.Soft_Links; |
| -- We use System.Soft_Links instead of System.Tasking.Initialization |
| -- because the later is a higher level package that we shouldn't depend on. |
| -- For example when using the restricted run time, it is replaced by |
| -- System.Tasking.Restricted.Stages. |
| |
| package body System.Task_Primitives.Operations is |
| |
| package OSC renames System.OS_Constants; |
| package SSL renames System.Soft_Links; |
| |
| use System.Tasking.Debug; |
| use System.Tasking; |
| use Interfaces.C; |
| use System.OS_Interface; |
| use System.Parameters; |
| use System.OS_Primitives; |
| |
| ---------------- |
| -- Local Data -- |
| ---------------- |
| |
| -- The following are logically constants, but need to be initialized |
| -- at run time. |
| |
| Environment_Task_Id : Task_Id; |
| -- A variable to hold Task_Id for the environment task. |
| -- If we use this variable to get the Task_Id, we need the following |
| -- ATCB_Key only for non-Ada threads. |
| |
| Unblocked_Signal_Mask : aliased sigset_t; |
| -- The set of signals that should unblocked in all tasks |
| |
| ATCB_Key : aliased thread_key_t; |
| -- Key used to find the Ada Task_Id associated with a thread, |
| -- at least for C threads unknown to the Ada run-time system. |
| |
| Single_RTS_Lock : aliased RTS_Lock; |
| -- This is a lock to allow only one thread of control in the RTS at |
| -- a time; it is used to execute in mutual exclusion from all other tasks. |
| -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List |
| |
| Next_Serial_Number : Task_Serial_Number := 100; |
| -- We start at 100, to reserve some special values for |
| -- using in error checking. |
| -- The following are internal configuration constants needed. |
| |
| Abort_Handler_Installed : Boolean := False; |
| -- True if a handler for the abort signal is installed |
| |
| Null_Thread_Id : constant Thread_Id := Thread_Id'Last; |
| -- Constant to indicate that the thread identifier has not yet been |
| -- initialized. |
| |
| ---------------------- |
| -- Priority Support -- |
| ---------------------- |
| |
| Priority_Ceiling_Emulation : constant Boolean := True; |
| -- controls whether we emulate priority ceiling locking |
| |
| -- To get a scheduling close to annex D requirements, we use the real-time |
| -- class provided for LWPs and map each task/thread to a specific and |
| -- unique LWP (there is 1 thread per LWP, and 1 LWP per thread). |
| |
| -- The real time class can only be set when the process has root |
| -- privileges, so in the other cases, we use the normal thread scheduling |
| -- and priority handling. |
| |
| Using_Real_Time_Class : Boolean := False; |
| -- indicates whether the real time class is being used (i.e. the process |
| -- has root privileges). |
| |
| Prio_Param : aliased struct_pcparms; |
| -- Hold priority info (Real_Time) initialized during the package |
| -- elaboration. |
| |
| ----------------------------------- |
| -- External Configuration Values -- |
| ----------------------------------- |
| |
| Time_Slice_Val : Integer; |
| pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); |
| |
| Locking_Policy : Character; |
| pragma Import (C, Locking_Policy, "__gl_locking_policy"); |
| |
| Dispatching_Policy : Character; |
| pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); |
| |
| Foreign_Task_Elaborated : aliased Boolean := True; |
| -- Used to identified fake tasks (i.e., non-Ada Threads) |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| function sysconf (name : System.OS_Interface.int) return processorid_t; |
| pragma Import (C, sysconf, "sysconf"); |
| |
| SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14; |
| |
| function Num_Procs |
| (name : System.OS_Interface.int := SC_NPROCESSORS_CONF) |
| return processorid_t renames sysconf; |
| |
| procedure Abort_Handler |
| (Sig : Signal; |
| Code : not null access siginfo_t; |
| Context : not null access ucontext_t); |
| -- Target-dependent binding of inter-thread Abort signal to |
| -- the raising of the Abort_Signal exception. |
| -- See also comments in 7staprop.adb |
| |
| ------------ |
| -- Checks -- |
| ------------ |
| |
| function Check_Initialize_Lock |
| (L : Lock_Ptr; |
| Level : Lock_Level) return Boolean; |
| pragma Inline (Check_Initialize_Lock); |
| |
| function Check_Lock (L : Lock_Ptr) return Boolean; |
| pragma Inline (Check_Lock); |
| |
| function Record_Lock (L : Lock_Ptr) return Boolean; |
| pragma Inline (Record_Lock); |
| |
| function Check_Sleep (Reason : Task_States) return Boolean; |
| pragma Inline (Check_Sleep); |
| |
| function Record_Wakeup |
| (L : Lock_Ptr; |
| Reason : Task_States) return Boolean; |
| pragma Inline (Record_Wakeup); |
| |
| function Check_Wakeup |
| (T : Task_Id; |
| Reason : Task_States) return Boolean; |
| pragma Inline (Check_Wakeup); |
| |
| function Check_Unlock (L : Lock_Ptr) return Boolean; |
| pragma Inline (Check_Unlock); |
| |
| function Check_Finalize_Lock (L : Lock_Ptr) return Boolean; |
| pragma Inline (Check_Finalize_Lock); |
| |
| -------------------- |
| -- Local Packages -- |
| -------------------- |
| |
| package Specific is |
| |
| procedure Initialize (Environment_Task : Task_Id); |
| pragma Inline (Initialize); |
| -- Initialize various data needed by this package |
| |
| function Is_Valid_Task return Boolean; |
| pragma Inline (Is_Valid_Task); |
| -- Does executing thread have a TCB? |
| |
| procedure Set (Self_Id : Task_Id); |
| pragma Inline (Set); |
| -- Set the self id for the current task |
| |
| function Self return Task_Id; |
| pragma Inline (Self); |
| -- Return a pointer to the Ada Task Control Block of the calling task |
| |
| end Specific; |
| |
| package body Specific is separate; |
| -- The body of this package is target specific |
| |
| ---------------------------------- |
| -- ATCB allocation/deallocation -- |
| ---------------------------------- |
| |
| package body ATCB_Allocation is separate; |
| -- The body of this package is shared across several targets |
| |
| --------------------------------- |
| -- Support for foreign threads -- |
| --------------------------------- |
| |
| function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id; |
| -- Allocate and Initialize a new ATCB for the current Thread |
| |
| function Register_Foreign_Thread |
| (Thread : Thread_Id) return Task_Id is separate; |
| |
| ------------ |
| -- Checks -- |
| ------------ |
| |
| Check_Count : Integer := 0; |
| Lock_Count : Integer := 0; |
| Unlock_Count : Integer := 0; |
| |
| ------------------- |
| -- Abort_Handler -- |
| ------------------- |
| |
| procedure Abort_Handler |
| (Sig : Signal; |
| Code : not null access siginfo_t; |
| Context : not null access ucontext_t) |
| is |
| pragma Unreferenced (Sig); |
| pragma Unreferenced (Code); |
| pragma Unreferenced (Context); |
| |
| Self_ID : constant Task_Id := Self; |
| Old_Set : aliased sigset_t; |
| |
| Result : Interfaces.C.int; |
| pragma Warnings (Off, Result); |
| |
| begin |
| -- It's not safe to raise an exception when using GCC ZCX mechanism. |
| -- Note that we still need to install a signal handler, since in some |
| -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we |
| -- need to send the Abort signal to a task. |
| |
| if ZCX_By_Default then |
| return; |
| end if; |
| |
| if Self_ID.Deferral_Level = 0 |
| and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level |
| and then not Self_ID.Aborting |
| then |
| Self_ID.Aborting := True; |
| |
| -- Make sure signals used for RTS internal purpose are unmasked |
| |
| Result := |
| thr_sigsetmask |
| (SIG_UNBLOCK, |
| Unblocked_Signal_Mask'Unchecked_Access, |
| Old_Set'Unchecked_Access); |
| pragma Assert (Result = 0); |
| |
| raise Standard'Abort_Signal; |
| end if; |
| end Abort_Handler; |
| |
| ----------------- |
| -- Stack_Guard -- |
| ----------------- |
| |
| -- The underlying thread system sets a guard page at the |
| -- bottom of a thread stack, so nothing is needed. |
| |
| procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is |
| pragma Unreferenced (T); |
| pragma Unreferenced (On); |
| begin |
| null; |
| end Stack_Guard; |
| |
| ------------------- |
| -- Get_Thread_Id -- |
| ------------------- |
| |
| function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is |
| begin |
| return T.Common.LL.Thread; |
| end Get_Thread_Id; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (Environment_Task : ST.Task_Id) is |
| act : aliased struct_sigaction; |
| old_act : aliased struct_sigaction; |
| Tmp_Set : aliased sigset_t; |
| Result : Interfaces.C.int; |
| |
| procedure Configure_Processors; |
| -- Processors configuration |
| -- The user can specify a processor which the program should run |
| -- on to emulate a single-processor system. This can be easily |
| -- done by setting environment variable GNAT_PROCESSOR to one of |
| -- the following : |
| -- |
| -- -2 : use the default configuration (run the program on all |
| -- available processors) - this is the same as having |
| -- GNAT_PROCESSOR unset |
| -- -1 : let the RTS choose one processor and run the program on |
| -- that processor |
| -- 0 .. Last_Proc : run the program on the specified processor |
| -- |
| -- Last_Proc is equal to the value of the system variable |
| -- _SC_NPROCESSORS_CONF, minus one. |
| |
| procedure Configure_Processors is |
| Proc_Acc : constant System.OS_Lib.String_Access := |
| System.OS_Lib.Getenv ("GNAT_PROCESSOR"); |
| Proc : aliased processorid_t; -- User processor # |
| Last_Proc : processorid_t; -- Last processor # |
| |
| begin |
| if Proc_Acc.all'Length /= 0 then |
| |
| -- Environment variable is defined |
| |
| Last_Proc := Num_Procs - 1; |
| |
| if Last_Proc /= -1 then |
| Proc := processorid_t'Value (Proc_Acc.all); |
| |
| if Proc <= -2 or else Proc > Last_Proc then |
| |
| -- Use the default configuration |
| |
| null; |
| |
| elsif Proc = -1 then |
| |
| -- Choose a processor |
| |
| Result := 0; |
| while Proc < Last_Proc loop |
| Proc := Proc + 1; |
| Result := p_online (Proc, PR_STATUS); |
| exit when Result = PR_ONLINE; |
| end loop; |
| |
| pragma Assert (Result = PR_ONLINE); |
| Result := processor_bind (P_PID, P_MYID, Proc, null); |
| pragma Assert (Result = 0); |
| |
| else |
| -- Use user processor |
| |
| Result := processor_bind (P_PID, P_MYID, Proc, null); |
| pragma Assert (Result = 0); |
| end if; |
| end if; |
| end if; |
| |
| exception |
| when Constraint_Error => |
| |
| -- Illegal environment variable GNAT_PROCESSOR - ignored |
| |
| null; |
| end Configure_Processors; |
| |
| function State |
| (Int : System.Interrupt_Management.Interrupt_ID) return Character; |
| pragma Import (C, State, "__gnat_get_interrupt_state"); |
| -- Get interrupt state. Defined in a-init.c |
| -- The input argument is the interrupt number, |
| -- and the result is one of the following: |
| |
| Default : constant Character := 's'; |
| -- 'n' this interrupt not set by any Interrupt_State pragma |
| -- 'u' Interrupt_State pragma set state to User |
| -- 'r' Interrupt_State pragma set state to Runtime |
| -- 's' Interrupt_State pragma set state to System (use "default" |
| -- system handler) |
| |
| -- Start of processing for Initialize |
| |
| begin |
| Environment_Task_Id := Environment_Task; |
| |
| Interrupt_Management.Initialize; |
| |
| -- Prepare the set of signals that should unblocked in all tasks |
| |
| Result := sigemptyset (Unblocked_Signal_Mask'Access); |
| pragma Assert (Result = 0); |
| |
| for J in Interrupt_Management.Interrupt_ID loop |
| if System.Interrupt_Management.Keep_Unmasked (J) then |
| Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); |
| pragma Assert (Result = 0); |
| end if; |
| end loop; |
| |
| if Dispatching_Policy = 'F' then |
| declare |
| Result : Interfaces.C.long; |
| Class_Info : aliased struct_pcinfo; |
| Secs, Nsecs : Interfaces.C.long; |
| |
| begin |
| -- If a pragma Time_Slice is specified, takes the value in account |
| |
| if Time_Slice_Val > 0 then |
| |
| -- Convert Time_Slice_Val (microseconds) to seconds/nanosecs |
| |
| Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000); |
| Nsecs := |
| Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000); |
| |
| -- Otherwise, default to no time slicing (i.e run until blocked) |
| |
| else |
| Secs := RT_TQINF; |
| Nsecs := RT_TQINF; |
| end if; |
| |
| -- Get the real time class id |
| |
| Class_Info.pc_clname (1) := 'R'; |
| Class_Info.pc_clname (2) := 'T'; |
| Class_Info.pc_clname (3) := ASCII.NUL; |
| |
| Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID, |
| Class_Info'Address); |
| |
| -- Request the real time class |
| |
| Prio_Param.pc_cid := Class_Info.pc_cid; |
| Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri); |
| Prio_Param.rt_tqsecs := Secs; |
| Prio_Param.rt_tqnsecs := Nsecs; |
| |
| Result := |
| priocntl |
| (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address); |
| |
| Using_Real_Time_Class := Result /= -1; |
| end; |
| end if; |
| |
| Specific.Initialize (Environment_Task); |
| |
| -- The following is done in Enter_Task, but this is too late for the |
| -- Environment Task, since we need to call Self in Check_Locks when |
| -- the run time is compiled with assertions on. |
| |
| Specific.Set (Environment_Task); |
| |
| -- Initialize the lock used to synchronize chain of all ATCBs |
| |
| Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); |
| |
| -- Make environment task known here because it doesn't go through |
| -- Activate_Tasks, which does it for all other tasks. |
| |
| Known_Tasks (Known_Tasks'First) := Environment_Task; |
| Environment_Task.Known_Tasks_Index := Known_Tasks'First; |
| |
| Enter_Task (Environment_Task); |
| |
| Configure_Processors; |
| |
| if State |
| (System.Interrupt_Management.Abort_Task_Interrupt) /= Default |
| then |
| -- Set sa_flags to SA_NODEFER so that during the handler execution |
| -- we do not change the Signal_Mask to be masked for the Abort_Signal |
| -- This is a temporary fix to the problem that the Signal_Mask is |
| -- not restored after the exception (longjmp) from the handler. |
| -- The right fix should be made in sigsetjmp so that we save |
| -- the Signal_Set and restore it after a longjmp. |
| -- In that case, this field should be changed back to 0. ??? |
| |
| act.sa_flags := 16; |
| |
| act.sa_handler := Abort_Handler'Address; |
| Result := sigemptyset (Tmp_Set'Access); |
| pragma Assert (Result = 0); |
| act.sa_mask := Tmp_Set; |
| |
| Result := |
| sigaction |
| (Signal (System.Interrupt_Management.Abort_Task_Interrupt), |
| act'Unchecked_Access, |
| old_act'Unchecked_Access); |
| pragma Assert (Result = 0); |
| Abort_Handler_Installed := True; |
| end if; |
| end Initialize; |
| |
| --------------------- |
| -- Initialize_Lock -- |
| --------------------- |
| |
| -- Note: mutexes and cond_variables needed per-task basis are initialized |
| -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such |
| -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any |
| -- status change of RTS. Therefore raising Storage_Error in the following |
| -- routines should be able to be handled safely. |
| |
| procedure Initialize_Lock |
| (Prio : System.Any_Priority; |
| L : not null access Lock) |
| is |
| Result : Interfaces.C.int; |
| |
| begin |
| pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level)); |
| |
| if Priority_Ceiling_Emulation then |
| L.Ceiling := Prio; |
| end if; |
| |
| Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address); |
| pragma Assert (Result = 0 or else Result = ENOMEM); |
| |
| if Result = ENOMEM then |
| raise Storage_Error with "Failed to allocate a lock"; |
| end if; |
| end Initialize_Lock; |
| |
| procedure Initialize_Lock |
| (L : not null access RTS_Lock; |
| Level : Lock_Level) |
| is |
| Result : Interfaces.C.int; |
| |
| begin |
| pragma Assert |
| (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level)); |
| Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address); |
| pragma Assert (Result = 0 or else Result = ENOMEM); |
| |
| if Result = ENOMEM then |
| raise Storage_Error with "Failed to allocate a lock"; |
| end if; |
| end Initialize_Lock; |
| |
| ------------------- |
| -- Finalize_Lock -- |
| ------------------- |
| |
| procedure Finalize_Lock (L : not null access Lock) is |
| Result : Interfaces.C.int; |
| begin |
| pragma Assert (Check_Finalize_Lock (Lock_Ptr (L))); |
| Result := mutex_destroy (L.L'Access); |
| pragma Assert (Result = 0); |
| end Finalize_Lock; |
| |
| procedure Finalize_Lock (L : not null access RTS_Lock) is |
| Result : Interfaces.C.int; |
| begin |
| pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); |
| Result := mutex_destroy (L.L'Access); |
| pragma Assert (Result = 0); |
| end Finalize_Lock; |
| |
| ---------------- |
| -- Write_Lock -- |
| ---------------- |
| |
| procedure Write_Lock |
| (L : not null access Lock; |
| Ceiling_Violation : out Boolean) |
| is |
| Result : Interfaces.C.int; |
| |
| begin |
| pragma Assert (Check_Lock (Lock_Ptr (L))); |
| |
| if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then |
| declare |
| Self_Id : constant Task_Id := Self; |
| Saved_Priority : System.Any_Priority; |
| |
| begin |
| if Self_Id.Common.LL.Active_Priority > L.Ceiling then |
| Ceiling_Violation := True; |
| return; |
| end if; |
| |
| Saved_Priority := Self_Id.Common.LL.Active_Priority; |
| |
| if Self_Id.Common.LL.Active_Priority < L.Ceiling then |
| Set_Priority (Self_Id, L.Ceiling); |
| end if; |
| |
| Result := mutex_lock (L.L'Access); |
| pragma Assert (Result = 0); |
| Ceiling_Violation := False; |
| |
| L.Saved_Priority := Saved_Priority; |
| end; |
| |
| else |
| Result := mutex_lock (L.L'Access); |
| pragma Assert (Result = 0); |
| Ceiling_Violation := False; |
| end if; |
| |
| pragma Assert (Record_Lock (Lock_Ptr (L))); |
| end Write_Lock; |
| |
| procedure Write_Lock |
| (L : not null access RTS_Lock; |
| Global_Lock : Boolean := False) |
| is |
| Result : Interfaces.C.int; |
| begin |
| if not Single_Lock or else Global_Lock then |
| pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); |
| Result := mutex_lock (L.L'Access); |
| pragma Assert (Result = 0); |
| pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); |
| end if; |
| end Write_Lock; |
| |
| procedure Write_Lock (T : Task_Id) is |
| Result : Interfaces.C.int; |
| begin |
| if not Single_Lock then |
| pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access))); |
| Result := mutex_lock (T.Common.LL.L.L'Access); |
| pragma Assert (Result = 0); |
| pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access))); |
| end if; |
| end Write_Lock; |
| |
| --------------- |
| -- Read_Lock -- |
| --------------- |
| |
| procedure Read_Lock |
| (L : not null access Lock; |
| Ceiling_Violation : out Boolean) is |
| begin |
| Write_Lock (L, Ceiling_Violation); |
| end Read_Lock; |
| |
| ------------ |
| -- Unlock -- |
| ------------ |
| |
| procedure Unlock (L : not null access Lock) is |
| Result : Interfaces.C.int; |
| |
| begin |
| pragma Assert (Check_Unlock (Lock_Ptr (L))); |
| |
| if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then |
| declare |
| Self_Id : constant Task_Id := Self; |
| |
| begin |
| Result := mutex_unlock (L.L'Access); |
| pragma Assert (Result = 0); |
| |
| if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then |
| Set_Priority (Self_Id, L.Saved_Priority); |
| end if; |
| end; |
| else |
| Result := mutex_unlock (L.L'Access); |
| pragma Assert (Result = 0); |
| end if; |
| end Unlock; |
| |
| procedure Unlock |
| (L : not null access RTS_Lock; |
| Global_Lock : Boolean := False) |
| is |
| Result : Interfaces.C.int; |
| begin |
| if not Single_Lock or else Global_Lock then |
| pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); |
| Result := mutex_unlock (L.L'Access); |
| pragma Assert (Result = 0); |
| end if; |
| end Unlock; |
| |
| procedure Unlock (T : Task_Id) is |
| Result : Interfaces.C.int; |
| begin |
| if not Single_Lock then |
| pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access))); |
| Result := mutex_unlock (T.Common.LL.L.L'Access); |
| pragma Assert (Result = 0); |
| end if; |
| end Unlock; |
| |
| ----------------- |
| -- Set_Ceiling -- |
| ----------------- |
| |
| -- Dynamic priority ceilings are not supported by the underlying system |
| |
| procedure Set_Ceiling |
| (L : not null access Lock; |
| Prio : System.Any_Priority) |
| is |
| pragma Unreferenced (L, Prio); |
| begin |
| null; |
| end Set_Ceiling; |
| |
| -- For the time delay implementation, we need to make sure we |
| -- achieve following criteria: |
| |
| -- 1) We have to delay at least for the amount requested. |
| -- 2) We have to give up CPU even though the actual delay does not |
| -- result in blocking. |
| -- 3) Except for restricted run-time systems that do not support |
| -- ATC or task abort, the delay must be interrupted by the |
| -- abort_task operation. |
| -- 4) The implementation has to be efficient so that the delay overhead |
| -- is relatively cheap. |
| -- (1)-(3) are Ada requirements. Even though (2) is an Annex-D |
| -- requirement we still want to provide the effect in all cases. |
| -- The reason is that users may want to use short delays to implement |
| -- their own scheduling effect in the absence of language provided |
| -- scheduling policies. |
| |
| --------------------- |
| -- Monotonic_Clock -- |
| --------------------- |
| |
| function Monotonic_Clock return Duration is |
| TS : aliased timespec; |
| Result : Interfaces.C.int; |
| begin |
| Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access); |
| pragma Assert (Result = 0); |
| return To_Duration (TS); |
| end Monotonic_Clock; |
| |
| ------------------- |
| -- RT_Resolution -- |
| ------------------- |
| |
| function RT_Resolution return Duration is |
| TS : aliased timespec; |
| Result : Interfaces.C.int; |
| begin |
| Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access); |
| pragma Assert (Result = 0); |
| |
| return To_Duration (TS); |
| end RT_Resolution; |
| |
| ----------- |
| -- Yield -- |
| ----------- |
| |
| procedure Yield (Do_Yield : Boolean := True) is |
| begin |
| if Do_Yield then |
| System.OS_Interface.thr_yield; |
| end if; |
| end Yield; |
| |
| ----------- |
| -- Self --- |
| ----------- |
| |
| function Self return Task_Id renames Specific.Self; |
| |
| ------------------ |
| -- Set_Priority -- |
| ------------------ |
| |
| procedure Set_Priority |
| (T : Task_Id; |
| Prio : System.Any_Priority; |
| Loss_Of_Inheritance : Boolean := False) |
| is |
| pragma Unreferenced (Loss_Of_Inheritance); |
| |
| Result : Interfaces.C.int; |
| pragma Unreferenced (Result); |
| |
| Param : aliased struct_pcparms; |
| |
| use Task_Info; |
| |
| begin |
| T.Common.Current_Priority := Prio; |
| |
| if Priority_Ceiling_Emulation then |
| T.Common.LL.Active_Priority := Prio; |
| end if; |
| |
| if Using_Real_Time_Class then |
| Param.pc_cid := Prio_Param.pc_cid; |
| Param.rt_pri := pri_t (Prio); |
| Param.rt_tqsecs := Prio_Param.rt_tqsecs; |
| Param.rt_tqnsecs := Prio_Param.rt_tqnsecs; |
| |
| Result := Interfaces.C.int ( |
| priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS, |
| Param'Address)); |
| |
| else |
| if T.Common.Task_Info /= null |
| and then not T.Common.Task_Info.Bound_To_LWP |
| then |
| -- The task is not bound to a LWP, so use thr_setprio |
| |
| Result := |
| thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio)); |
| |
| else |
| -- The task is bound to a LWP, use priocntl |
| -- ??? TBD |
| |
| null; |
| end if; |
| end if; |
| end Set_Priority; |
| |
| ------------------ |
| -- Get_Priority -- |
| ------------------ |
| |
| function Get_Priority (T : Task_Id) return System.Any_Priority is |
| begin |
| return T.Common.Current_Priority; |
| end Get_Priority; |
| |
| ---------------- |
| -- Enter_Task -- |
| ---------------- |
| |
| procedure Enter_Task (Self_ID : Task_Id) is |
| begin |
| Self_ID.Common.LL.Thread := thr_self; |
| Self_ID.Common.LL.LWP := lwp_self; |
| |
| Set_Task_Affinity (Self_ID); |
| Specific.Set (Self_ID); |
| |
| -- We need the above code even if we do direct fetch of Task_Id in Self |
| -- for the main task on Sun, x86 Solaris and for gcc 2.7.2. |
| end Enter_Task; |
| |
| ------------------- |
| -- Is_Valid_Task -- |
| ------------------- |
| |
| function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task; |
| |
| ----------------------------- |
| -- Register_Foreign_Thread -- |
| ----------------------------- |
| |
| function Register_Foreign_Thread return Task_Id is |
| begin |
| if Is_Valid_Task then |
| return Self; |
| else |
| return Register_Foreign_Thread (thr_self); |
| end if; |
| end Register_Foreign_Thread; |
| |
| -------------------- |
| -- Initialize_TCB -- |
| -------------------- |
| |
| procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is |
| Result : Interfaces.C.int := 0; |
| |
| begin |
| -- Give the task a unique serial number |
| |
| Self_ID.Serial_Number := Next_Serial_Number; |
| Next_Serial_Number := Next_Serial_Number + 1; |
| pragma Assert (Next_Serial_Number /= 0); |
| |
| Self_ID.Common.LL.Thread := Null_Thread_Id; |
| |
| if not Single_Lock then |
| Result := |
| mutex_init |
| (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address); |
| Self_ID.Common.LL.L.Level := |
| Private_Task_Serial_Number (Self_ID.Serial_Number); |
| pragma Assert (Result = 0 or else Result = ENOMEM); |
| end if; |
| |
| if Result = 0 then |
| Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0); |
| pragma Assert (Result = 0 or else Result = ENOMEM); |
| end if; |
| |
| if Result = 0 then |
| Succeeded := True; |
| else |
| if not Single_Lock then |
| Result := mutex_destroy (Self_ID.Common.LL.L.L'Access); |
| pragma Assert (Result = 0); |
| end if; |
| |
| Succeeded := False; |
| end if; |
| end Initialize_TCB; |
| |
| ----------------- |
| -- Create_Task -- |
| ----------------- |
| |
| procedure Create_Task |
| (T : Task_Id; |
| Wrapper : System.Address; |
| Stack_Size : System.Parameters.Size_Type; |
| Priority : System.Any_Priority; |
| Succeeded : out Boolean) |
| is |
| pragma Unreferenced (Priority); |
| |
| Result : Interfaces.C.int; |
| Adjusted_Stack_Size : Interfaces.C.size_t; |
| Opts : Interfaces.C.int := THR_DETACHED; |
| |
| Page_Size : constant System.Parameters.Size_Type := 4096; |
| -- This constant is for reserving extra space at the |
| -- end of the stack, which can be used by the stack |
| -- checking as guard page. The idea is that we need |
| -- to have at least Stack_Size bytes available for |
| -- actual use. |
| |
| use System.Task_Info; |
| use type System.Multiprocessors.CPU_Range; |
| |
| begin |
| -- Check whether both Dispatching_Domain and CPU are specified for the |
| -- task, and the CPU value is not contained within the range of |
| -- processors for the domain. |
| |
| if T.Common.Domain /= null |
| and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU |
| and then |
| (T.Common.Base_CPU not in T.Common.Domain'Range |
| or else not T.Common.Domain (T.Common.Base_CPU)) |
| then |
| Succeeded := False; |
| return; |
| end if; |
| |
| Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size); |
| |
| -- Since the initial signal mask of a thread is inherited from the |
| -- creator, and the Environment task has all its signals masked, we |
| -- do not need to manipulate caller's signal mask at this point. |
| -- All tasks in RTS will have All_Tasks_Mask initially. |
| |
| if T.Common.Task_Info /= null then |
| if T.Common.Task_Info.New_LWP then |
| Opts := Opts + THR_NEW_LWP; |
| end if; |
| |
| if T.Common.Task_Info.Bound_To_LWP then |
| Opts := Opts + THR_BOUND; |
| end if; |
| |
| else |
| Opts := THR_DETACHED + THR_BOUND; |
| end if; |
| |
| -- Note: the use of Unrestricted_Access in the following call is needed |
| -- because otherwise we have an error of getting a access-to-volatile |
| -- value which points to a non-volatile object. But in this case it is |
| -- safe to do this, since we know we have no problems with aliasing and |
| -- Unrestricted_Access bypasses this check. |
| |
| Result := |
| thr_create |
| (System.Null_Address, |
| Adjusted_Stack_Size, |
| Thread_Body_Access (Wrapper), |
| To_Address (T), |
| Opts, |
| T.Common.LL.Thread'Unrestricted_Access); |
| |
| Succeeded := Result = 0; |
| pragma Assert |
| (Result = 0 |
| or else Result = ENOMEM |
| or else Result = EAGAIN); |
| end Create_Task; |
| |
| ------------------ |
| -- Finalize_TCB -- |
| ------------------ |
| |
| procedure Finalize_TCB (T : Task_Id) is |
| Result : Interfaces.C.int; |
| |
| begin |
| T.Common.LL.Thread := Null_Thread_Id; |
| |
| if not Single_Lock then |
| Result := mutex_destroy (T.Common.LL.L.L'Access); |
| pragma Assert (Result = 0); |
| end if; |
| |
| Result := cond_destroy (T.Common.LL.CV'Access); |
| pragma Assert (Result = 0); |
| |
| if T.Known_Tasks_Index /= -1 then |
| Known_Tasks (T.Known_Tasks_Index) := null; |
| end if; |
| |
| ATCB_Allocation.Free_ATCB (T); |
| end Finalize_TCB; |
| |
| --------------- |
| -- Exit_Task -- |
| --------------- |
| |
| -- This procedure must be called with abort deferred. It can no longer |
| -- call Self or access the current task's ATCB, since the ATCB has been |
| -- deallocated. |
| |
| procedure Exit_Task is |
| begin |
| Specific.Set (null); |
| end Exit_Task; |
| |
| ---------------- |
| -- Abort_Task -- |
| ---------------- |
| |
| procedure Abort_Task (T : Task_Id) is |
| Result : Interfaces.C.int; |
| begin |
| if Abort_Handler_Installed then |
| pragma Assert (T /= Self); |
| Result := |
| thr_kill |
| (T.Common.LL.Thread, |
| Signal (System.Interrupt_Management.Abort_Task_Interrupt)); |
| pragma Assert (Result = 0); |
| end if; |
| end Abort_Task; |
| |
| ----------- |
| -- Sleep -- |
| ----------- |
| |
| procedure Sleep |
| (Self_ID : Task_Id; |
| Reason : Task_States) |
| is |
| Result : Interfaces.C.int; |
| |
| begin |
| pragma Assert (Check_Sleep (Reason)); |
| |
| if Single_Lock then |
| Result := |
| cond_wait |
| (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access); |
| else |
| Result := |
| cond_wait |
| (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access); |
| end if; |
| |
| pragma Assert |
| (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason)); |
| pragma Assert (Result = 0 or else Result = EINTR); |
| end Sleep; |
| |
| -- Note that we are relying heavily here on GNAT representing |
| -- Calendar.Time, System.Real_Time.Time, Duration, |
| -- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of |
| -- nanoseconds. |
| |
| -- This allows us to always pass the timeout value as a Duration |
| |
| -- ??? |
| -- We are taking liberties here with the semantics of the delays. That is, |
| -- we make no distinction between delays on the Calendar clock and delays |
| -- on the Real_Time clock. That is technically incorrect, if the Calendar |
| -- clock happens to be reset or adjusted. To solve this defect will require |
| -- modification to the compiler interface, so that it can pass through more |
| -- information, to tell us here which clock to use. |
| |
| -- cond_timedwait will return if any of the following happens: |
| -- 1) some other task did cond_signal on this condition variable |
| -- In this case, the return value is 0 |
| -- 2) the call just returned, for no good reason |
| -- This is called a "spurious wakeup". |
| -- In this case, the return value may also be 0. |
| -- 3) the time delay expires |
| -- In this case, the return value is ETIME |
| -- 4) this task received a signal, which was handled by some |
| -- handler procedure, and now the thread is resuming execution |
| -- UNIX calls this an "interrupted" system call. |
| -- In this case, the return value is EINTR |
| |
| -- If the cond_timedwait returns 0 or EINTR, it is still possible that the |
| -- time has actually expired, and by chance a signal or cond_signal |
| -- occurred at around the same time. |
| |
| -- We have also observed that on some OS's the value ETIME will be |
| -- returned, but the clock will show that the full delay has not yet |
| -- expired. |
| |
| -- For these reasons, we need to check the clock after return from |
| -- cond_timedwait. If the time has expired, we will set Timedout = True. |
| |
| -- This check might be omitted for systems on which the cond_timedwait() |
| -- never returns early or wakes up spuriously. |
| |
| -- Annex D requires that completion of a delay cause the task to go to the |
| -- end of its priority queue, regardless of whether the task actually was |
| -- suspended by the delay. Since cond_timedwait does not do this on |
| -- Solaris, we add a call to thr_yield at the end. We might do this at the |
| -- beginning, instead, but then the round-robin effect would not be the |
| -- same; the delayed task would be ahead of other tasks of the same |
| -- priority that awoke while it was sleeping. |
| |
| -- For Timed_Sleep, we are expecting possible cond_signals to indicate |
| -- other events (e.g., completion of a RV or completion of the abortable |
| -- part of an async. select), we want to always return if interrupted. The |
| -- caller will be responsible for checking the task state to see whether |
| -- the wakeup was spurious, and to go back to sleep again in that case. We |
| -- don't need to check for pending abort or priority change on the way in |
| -- our out; that is the caller's responsibility. |
| |
| -- For Timed_Delay, we are not expecting any cond_signals or other |
| -- interruptions, except for priority changes and aborts. Therefore, we |
| -- don't want to return unless the delay has actually expired, or the call |
| -- has been aborted. In this case, since we want to implement the entire |
| -- delay statement semantics, we do need to check for pending abort and |
| -- priority changes. We can quietly handle priority changes inside the |
| -- procedure, since there is no entry-queue reordering involved. |
| |
| ----------------- |
| -- Timed_Sleep -- |
| ----------------- |
| |
| procedure Timed_Sleep |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes; |
| Reason : System.Tasking.Task_States; |
| Timedout : out Boolean; |
| Yielded : out Boolean) |
| is |
| Base_Time : constant Duration := Monotonic_Clock; |
| Check_Time : Duration := Base_Time; |
| Abs_Time : Duration; |
| Request : aliased timespec; |
| Result : Interfaces.C.int; |
| |
| begin |
| pragma Assert (Check_Sleep (Reason)); |
| Timedout := True; |
| Yielded := False; |
| |
| Abs_Time := |
| (if Mode = Relative |
| then Duration'Min (Time, Max_Sensible_Delay) + Check_Time |
| else Duration'Min (Check_Time + Max_Sensible_Delay, Time)); |
| |
| if Abs_Time > Check_Time then |
| Request := To_Timespec (Abs_Time); |
| loop |
| exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; |
| |
| if Single_Lock then |
| Result := |
| cond_timedwait |
| (Self_ID.Common.LL.CV'Access, |
| Single_RTS_Lock.L'Access, Request'Access); |
| else |
| Result := |
| cond_timedwait |
| (Self_ID.Common.LL.CV'Access, |
| Self_ID.Common.LL.L.L'Access, Request'Access); |
| end if; |
| |
| Yielded := True; |
| |
| Check_Time := Monotonic_Clock; |
| exit when Abs_Time <= Check_Time or else Check_Time < Base_Time; |
| |
| if Result = 0 or Result = EINTR then |
| |
| -- Somebody may have called Wakeup for us |
| |
| Timedout := False; |
| exit; |
| end if; |
| |
| pragma Assert (Result = ETIME); |
| end loop; |
| end if; |
| |
| pragma Assert |
| (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason)); |
| end Timed_Sleep; |
| |
| ----------------- |
| -- Timed_Delay -- |
| ----------------- |
| |
| procedure Timed_Delay |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes) |
| is |
| Base_Time : constant Duration := Monotonic_Clock; |
| Check_Time : Duration := Base_Time; |
| Abs_Time : Duration; |
| Request : aliased timespec; |
| Result : Interfaces.C.int; |
| Yielded : Boolean := False; |
| |
| begin |
| if Single_Lock then |
| Lock_RTS; |
| end if; |
| |
| Write_Lock (Self_ID); |
| |
| Abs_Time := |
| (if Mode = Relative |
| then Time + Check_Time |
| else Duration'Min (Check_Time + Max_Sensible_Delay, Time)); |
| |
| if Abs_Time > Check_Time then |
| Request := To_Timespec (Abs_Time); |
| Self_ID.Common.State := Delay_Sleep; |
| |
| pragma Assert (Check_Sleep (Delay_Sleep)); |
| |
| loop |
| exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; |
| |
| if Single_Lock then |
| Result := |
| cond_timedwait |
| (Self_ID.Common.LL.CV'Access, |
| Single_RTS_Lock.L'Access, |
| Request'Access); |
| else |
| Result := |
| cond_timedwait |
| (Self_ID.Common.LL.CV'Access, |
| Self_ID.Common.LL.L.L'Access, |
| Request'Access); |
| end if; |
| |
| Yielded := True; |
| |
| Check_Time := Monotonic_Clock; |
| exit when Abs_Time <= Check_Time or else Check_Time < Base_Time; |
| |
| pragma Assert |
| (Result = 0 or else |
| Result = ETIME or else |
| Result = EINTR); |
| end loop; |
| |
| pragma Assert |
| (Record_Wakeup |
| (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep)); |
| |
| Self_ID.Common.State := Runnable; |
| end if; |
| |
| Unlock (Self_ID); |
| |
| if Single_Lock then |
| Unlock_RTS; |
| end if; |
| |
| if not Yielded then |
| thr_yield; |
| end if; |
| end Timed_Delay; |
| |
| ------------ |
| -- Wakeup -- |
| ------------ |
| |
| procedure Wakeup |
| (T : Task_Id; |
| Reason : Task_States) |
| is |
| Result : Interfaces.C.int; |
| begin |
| pragma Assert (Check_Wakeup (T, Reason)); |
| Result := cond_signal (T.Common.LL.CV'Access); |
| pragma Assert (Result = 0); |
| end Wakeup; |
| |
| --------------------------- |
| -- Check_Initialize_Lock -- |
| --------------------------- |
| |
| -- The following code is intended to check some of the invariant assertions |
| -- related to lock usage, on which we depend. |
| |
| function Check_Initialize_Lock |
| (L : Lock_Ptr; |
| Level : Lock_Level) return Boolean |
| is |
| Self_ID : constant Task_Id := Self; |
| |
| begin |
| -- Check that caller is abort-deferred |
| |
| if Self_ID.Deferral_Level = 0 then |
| return False; |
| end if; |
| |
| -- Check that the lock is not yet initialized |
| |
| if L.Level /= 0 then |
| return False; |
| end if; |
| |
| L.Level := Lock_Level'Pos (Level) + 1; |
| return True; |
| end Check_Initialize_Lock; |
| |
| ---------------- |
| -- Check_Lock -- |
| ---------------- |
| |
| function Check_Lock (L : Lock_Ptr) return Boolean is |
| Self_ID : constant Task_Id := Self; |
| P : Lock_Ptr; |
| |
| begin |
| -- Check that the argument is not null |
| |
| if L = null then |
| return False; |
| end if; |
| |
| -- Check that L is not frozen |
| |
| if L.Frozen then |
| return False; |
| end if; |
| |
| -- Check that caller is abort-deferred |
| |
| if Self_ID.Deferral_Level = 0 then |
| return False; |
| end if; |
| |
| -- Check that caller is not holding this lock already |
| |
| if L.Owner = To_Owner_ID (To_Address (Self_ID)) then |
| return False; |
| end if; |
| |
| if Single_Lock then |
| return True; |
| end if; |
| |
| -- Check that TCB lock order rules are satisfied |
| |
| P := Self_ID.Common.LL.Locks; |
| if P /= null then |
| if P.Level >= L.Level |
| and then (P.Level > 2 or else L.Level > 2) |
| then |
| return False; |
| end if; |
| end if; |
| |
| return True; |
| end Check_Lock; |
| |
| ----------------- |
| -- Record_Lock -- |
| ----------------- |
| |
| function Record_Lock (L : Lock_Ptr) return Boolean is |
| Self_ID : constant Task_Id := Self; |
| P : Lock_Ptr; |
| |
| begin |
| Lock_Count := Lock_Count + 1; |
| |
| -- There should be no owner for this lock at this point |
| |
| if L.Owner /= null then |
| return False; |
| end if; |
| |
| -- Record new owner |
| |
| L.Owner := To_Owner_ID (To_Address (Self_ID)); |
| |
| if Single_Lock then |
| return True; |
| end if; |
| |
| -- Check that TCB lock order rules are satisfied |
| |
| P := Self_ID.Common.LL.Locks; |
| |
| if P /= null then |
| L.Next := P; |
| end if; |
| |
| Self_ID.Common.LL.Locking := null; |
| Self_ID.Common.LL.Locks := L; |
| return True; |
| end Record_Lock; |
| |
| ----------------- |
| -- Check_Sleep -- |
| ----------------- |
| |
| function Check_Sleep (Reason : Task_States) return Boolean is |
| pragma Unreferenced (Reason); |
| |
| Self_ID : constant Task_Id := Self; |
| P : Lock_Ptr; |
| |
| begin |
| -- Check that caller is abort-deferred |
| |
| if Self_ID.Deferral_Level = 0 then |
| return False; |
| end if; |
| |
| if Single_Lock then |
| return True; |
| end if; |
| |
| -- Check that caller is holding own lock, on top of list |
| |
| if Self_ID.Common.LL.Locks /= |
| To_Lock_Ptr (Self_ID.Common.LL.L'Access) |
| then |
| return False; |
| end if; |
| |
| -- Check that TCB lock order rules are satisfied |
| |
| if Self_ID.Common.LL.Locks.Next /= null then |
| return False; |
| end if; |
| |
| Self_ID.Common.LL.L.Owner := null; |
| P := Self_ID.Common.LL.Locks; |
| Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next; |
| P.Next := null; |
| return True; |
| end Check_Sleep; |
| |
| ------------------- |
| -- Record_Wakeup -- |
| ------------------- |
| |
| function Record_Wakeup |
| (L : Lock_Ptr; |
| Reason : Task_States) return Boolean |
| is |
| pragma Unreferenced (Reason); |
| |
| Self_ID : constant Task_Id := Self; |
| P : Lock_Ptr; |
| |
| begin |
| -- Record new owner |
| |
| L.Owner := To_Owner_ID (To_Address (Self_ID)); |
| |
| if Single_Lock then |
| return True; |
| end if; |
| |
| -- Check that TCB lock order rules are satisfied |
| |
| P := Self_ID.Common.LL.Locks; |
| |
| if P /= null then |
| L.Next := P; |
| end if; |
| |
| Self_ID.Common.LL.Locking := null; |
| Self_ID.Common.LL.Locks := L; |
| return True; |
| end Record_Wakeup; |
| |
| ------------------ |
| -- Check_Wakeup -- |
| ------------------ |
| |
| function Check_Wakeup |
| (T : Task_Id; |
| Reason : Task_States) return Boolean |
| is |
| Self_ID : constant Task_Id := Self; |
| |
| begin |
| -- Is caller holding T's lock? |
| |
| if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then |
| return False; |
| end if; |
| |
| -- Are reasons for wakeup and sleep consistent? |
| |
| if T.Common.State /= Reason then |
| return False; |
| end if; |
| |
| return True; |
| end Check_Wakeup; |
| |
| ------------------ |
| -- Check_Unlock -- |
| ------------------ |
| |
| function Check_Unlock (L : Lock_Ptr) return Boolean is |
| Self_ID : constant Task_Id := Self; |
| P : Lock_Ptr; |
| |
| begin |
| Unlock_Count := Unlock_Count + 1; |
| |
| if L = null then |
| return False; |
| end if; |
| |
| if L.Buddy /= null then |
| return False; |
| end if; |
| |
| -- Magic constant 4??? |
| |
| if L.Level = 4 then |
| Check_Count := Unlock_Count; |
| end if; |
| |
| -- Magic constant 1000??? |
| |
| if Unlock_Count - Check_Count > 1000 then |
| Check_Count := Unlock_Count; |
| end if; |
| |
| -- Check that caller is abort-deferred |
| |
| if Self_ID.Deferral_Level = 0 then |
| return False; |
| end if; |
| |
| -- Check that caller is holding this lock, on top of list |
| |
| if Self_ID.Common.LL.Locks /= L then |
| return False; |
| end if; |
| |
| -- Record there is no owner now |
| |
| L.Owner := null; |
| P := Self_ID.Common.LL.Locks; |
| Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next; |
| P.Next := null; |
| return True; |
| end Check_Unlock; |
| |
| -------------------- |
| -- Check_Finalize -- |
| -------------------- |
| |
| function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is |
| Self_ID : constant Task_Id := Self; |
| |
| begin |
| -- Check that caller is abort-deferred |
| |
| if Self_ID.Deferral_Level = 0 then |
| return False; |
| end if; |
| |
| -- Check that no one is holding this lock |
| |
| if L.Owner /= null then |
| return False; |
| end if; |
| |
| L.Frozen := True; |
| return True; |
| end Check_Finalize_Lock; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (S : in out Suspension_Object) is |
| Result : Interfaces.C.int; |
| |
| begin |
| -- Initialize internal state (always to zero (RM D.10(6))) |
| |
| S.State := False; |
| S.Waiting := False; |
| |
| -- Initialize internal mutex |
| |
| Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address); |
| pragma Assert (Result = 0 or else Result = ENOMEM); |
| |
| if Result = ENOMEM then |
| raise Storage_Error with "Failed to allocate a lock"; |
| end if; |
| |
| -- Initialize internal condition variable |
| |
| Result := cond_init (S.CV'Access, USYNC_THREAD, 0); |
| pragma Assert (Result = 0 or else Result = ENOMEM); |
| |
| if Result /= 0 then |
| Result := mutex_destroy (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| if Result = ENOMEM then |
| raise Storage_Error; |
| end if; |
| end if; |
| end Initialize; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (S : in out Suspension_Object) is |
| Result : Interfaces.C.int; |
| |
| begin |
| -- Destroy internal mutex |
| |
| Result := mutex_destroy (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| -- Destroy internal condition variable |
| |
| Result := cond_destroy (S.CV'Access); |
| pragma Assert (Result = 0); |
| end Finalize; |
| |
| ------------------- |
| -- Current_State -- |
| ------------------- |
| |
| function Current_State (S : Suspension_Object) return Boolean is |
| begin |
| -- We do not want to use lock on this read operation. State is marked |
| -- as Atomic so that we ensure that the value retrieved is correct. |
| |
| return S.State; |
| end Current_State; |
| |
| --------------- |
| -- Set_False -- |
| --------------- |
| |
| procedure Set_False (S : in out Suspension_Object) is |
| Result : Interfaces.C.int; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := mutex_lock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| S.State := False; |
| |
| Result := mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| end Set_False; |
| |
| -------------- |
| -- Set_True -- |
| -------------- |
| |
| procedure Set_True (S : in out Suspension_Object) is |
| Result : Interfaces.C.int; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := mutex_lock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| -- If there is already a task waiting on this suspension object then |
| -- we resume it, leaving the state of the suspension object to False, |
| -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves |
| -- the state to True. |
| |
| if S.Waiting then |
| S.Waiting := False; |
| S.State := False; |
| |
| Result := cond_signal (S.CV'Access); |
| pragma Assert (Result = 0); |
| |
| else |
| S.State := True; |
| end if; |
| |
| Result := mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| end Set_True; |
| |
| ------------------------ |
| -- Suspend_Until_True -- |
| ------------------------ |
| |
| procedure Suspend_Until_True (S : in out Suspension_Object) is |
| Result : Interfaces.C.int; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := mutex_lock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| if S.Waiting then |
| |
| -- Program_Error must be raised upon calling Suspend_Until_True |
| -- if another task is already waiting on that suspension object |
| -- (RM D.10(10)). |
| |
| Result := mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| |
| raise Program_Error; |
| |
| else |
| -- Suspend the task if the state is False. Otherwise, the task |
| -- continues its execution, and the state of the suspension object |
| -- is set to False (ARM D.10 par. 9). |
| |
| if S.State then |
| S.State := False; |
| else |
| S.Waiting := True; |
| |
| loop |
| -- Loop in case pthread_cond_wait returns earlier than expected |
| -- (e.g. in case of EINTR caused by a signal). |
| |
| Result := cond_wait (S.CV'Access, S.L'Access); |
| pragma Assert (Result = 0 or else Result = EINTR); |
| |
| exit when not S.Waiting; |
| end loop; |
| end if; |
| |
| Result := mutex_unlock (S.L'Access); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| end if; |
| end Suspend_Until_True; |
| |
| ---------------- |
| -- Check_Exit -- |
| ---------------- |
| |
| function Check_Exit (Self_ID : Task_Id) return Boolean is |
| begin |
| -- Check that caller is just holding Global_Task_Lock and no other locks |
| |
| if Self_ID.Common.LL.Locks = null then |
| return False; |
| end if; |
| |
| -- 2 = Global_Task_Level |
| |
| if Self_ID.Common.LL.Locks.Level /= 2 then |
| return False; |
| end if; |
| |
| if Self_ID.Common.LL.Locks.Next /= null then |
| return False; |
| end if; |
| |
| -- Check that caller is abort-deferred |
| |
| if Self_ID.Deferral_Level = 0 then |
| return False; |
| end if; |
| |
| return True; |
| end Check_Exit; |
| |
| -------------------- |
| -- Check_No_Locks -- |
| -------------------- |
| |
| function Check_No_Locks (Self_ID : Task_Id) return Boolean is |
| begin |
| return Self_ID.Common.LL.Locks = null; |
| end Check_No_Locks; |
| |
| ---------------------- |
| -- Environment_Task -- |
| ---------------------- |
| |
| function Environment_Task return Task_Id is |
| begin |
| return Environment_Task_Id; |
| end Environment_Task; |
| |
| -------------- |
| -- Lock_RTS -- |
| -------------- |
| |
| procedure Lock_RTS is |
| begin |
| Write_Lock (Single_RTS_Lock'Access, Global_Lock => True); |
| end Lock_RTS; |
| |
| ---------------- |
| -- Unlock_RTS -- |
| ---------------- |
| |
| procedure Unlock_RTS is |
| begin |
| Unlock (Single_RTS_Lock'Access, Global_Lock => True); |
| end Unlock_RTS; |
| |
| ------------------ |
| -- Suspend_Task -- |
| ------------------ |
| |
| function Suspend_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Thread_Self then |
| return thr_suspend (T.Common.LL.Thread) = 0; |
| else |
| return True; |
| end if; |
| end Suspend_Task; |
| |
| ----------------- |
| -- Resume_Task -- |
| ----------------- |
| |
| function Resume_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Thread_Self then |
| return thr_continue (T.Common.LL.Thread) = 0; |
| else |
| return True; |
| end if; |
| end Resume_Task; |
| |
| -------------------- |
| -- Stop_All_Tasks -- |
| -------------------- |
| |
| procedure Stop_All_Tasks is |
| begin |
| null; |
| end Stop_All_Tasks; |
| |
| --------------- |
| -- Stop_Task -- |
| --------------- |
| |
| function Stop_Task (T : ST.Task_Id) return Boolean is |
| pragma Unreferenced (T); |
| begin |
| return False; |
| end Stop_Task; |
| |
| ------------------- |
| -- Continue_Task -- |
| ------------------- |
| |
| function Continue_Task (T : ST.Task_Id) return Boolean is |
| pragma Unreferenced (T); |
| begin |
| return False; |
| end Continue_Task; |
| |
| ----------------------- |
| -- Set_Task_Affinity -- |
| ----------------------- |
| |
| procedure Set_Task_Affinity (T : ST.Task_Id) is |
| Result : Interfaces.C.int; |
| Proc : processorid_t; -- User processor # |
| Last_Proc : processorid_t; -- Last processor # |
| |
| use System.Task_Info; |
| use type System.Multiprocessors.CPU_Range; |
| |
| begin |
| -- Do nothing if the underlying thread has not yet been created. If the |
| -- thread has not yet been created then the proper affinity will be set |
| -- during its creation. |
| |
| if T.Common.LL.Thread = Null_Thread_Id then |
| null; |
| |
| -- pragma CPU |
| |
| elsif T.Common.Base_CPU /= |
| System.Multiprocessors.Not_A_Specific_CPU |
| then |
| -- The CPU numbering in pragma CPU starts at 1 while the subprogram |
| -- to set the affinity starts at 0, therefore we must substract 1. |
| |
| Result := |
| processor_bind |
| (P_LWPID, id_t (T.Common.LL.LWP), |
| processorid_t (T.Common.Base_CPU) - 1, null); |
| pragma Assert (Result = 0); |
| |
| -- Task_Info |
| |
| elsif T.Common.Task_Info /= null then |
| if T.Common.Task_Info.New_LWP |
| and then T.Common.Task_Info.CPU /= CPU_UNCHANGED |
| then |
| Last_Proc := Num_Procs - 1; |
| |
| if T.Common.Task_Info.CPU = ANY_CPU then |
| Result := 0; |
| |
| Proc := 0; |
| while Proc < Last_Proc loop |
| Result := p_online (Proc, PR_STATUS); |
| exit when Result = PR_ONLINE; |
| Proc := Proc + 1; |
| end loop; |
| |
| Result := |
| processor_bind |
| (P_LWPID, id_t (T.Common.LL.LWP), Proc, null); |
| pragma Assert (Result = 0); |
| |
| else |
| -- Use specified processor |
| |
| if T.Common.Task_Info.CPU < 0 |
| or else T.Common.Task_Info.CPU > Last_Proc |
| then |
| raise Invalid_CPU_Number; |
| end if; |
| |
| Result := |
| processor_bind |
| (P_LWPID, id_t (T.Common.LL.LWP), |
| T.Common.Task_Info.CPU, null); |
| pragma Assert (Result = 0); |
| end if; |
| end if; |
| |
| -- Handle dispatching domains |
| |
| elsif T.Common.Domain /= null |
| and then (T.Common.Domain /= ST.System_Domain |
| or else T.Common.Domain.all /= |
| (Multiprocessors.CPU'First .. |
| Multiprocessors.Number_Of_CPUs => True)) |
| then |
| declare |
| CPU_Set : aliased psetid_t; |
| Result : int; |
| |
| begin |
| Result := pset_create (CPU_Set'Access); |
| pragma Assert (Result = 0); |
| |
| -- Set the affinity to all the processors belonging to the |
| -- dispatching domain. |
| |
| for Proc in T.Common.Domain'Range loop |
| |
| -- The Ada CPU numbering starts at 1 while the subprogram to |
| -- set the affinity starts at 0, therefore we must substract 1. |
| |
| if T.Common.Domain (Proc) then |
| Result := |
| pset_assign (CPU_Set, processorid_t (Proc) - 1, null); |
| pragma Assert (Result = 0); |
| end if; |
| end loop; |
| |
| Result := |
| pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null); |
| pragma Assert (Result = 0); |
| end; |
| end if; |
| end Set_Task_Affinity; |
| |
| end System.Task_Primitives.Operations; |