| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS -- |
| -- -- |
| -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNARL is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNARL was developed by the GNARL team at Florida State University. -- |
| -- Extensive contributions were provided by Ada Core Technologies, Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| -- This is the VxWorks version of this package |
| |
| -- This package contains all the GNULL primitives that interface directly with |
| -- the underlying OS. |
| |
| pragma Polling (Off); |
| -- Turn off polling, we do not want ATC polling to take place during tasking |
| -- operations. It causes infinite loops and other problems. |
| |
| with Ada.Unchecked_Conversion; |
| |
| with Interfaces.C; |
| |
| with System.Multiprocessors; |
| with System.Tasking.Debug; |
| with System.Interrupt_Management; |
| with System.Float_Control; |
| with System.OS_Constants; |
| |
| with System.Soft_Links; |
| -- We use System.Soft_Links instead of System.Tasking.Initialization |
| -- because the later is a higher level package that we shouldn't depend |
| -- on. For example when using the restricted run time, it is replaced by |
| -- System.Tasking.Restricted.Stages. |
| |
| with System.Task_Info; |
| with System.VxWorks.Ext; |
| |
| package body System.Task_Primitives.Operations is |
| |
| package OSC renames System.OS_Constants; |
| package SSL renames System.Soft_Links; |
| |
| use System.Tasking.Debug; |
| use System.Tasking; |
| use System.OS_Interface; |
| use System.Parameters; |
| use type System.VxWorks.Ext.t_id; |
| use type Interfaces.C.int; |
| use type System.OS_Interface.unsigned; |
| |
| subtype int is System.OS_Interface.int; |
| subtype unsigned is System.OS_Interface.unsigned; |
| |
| Relative : constant := 0; |
| |
| ---------------- |
| -- Local Data -- |
| ---------------- |
| |
| -- The followings are logically constants, but need to be initialized at |
| -- run time. |
| |
| Environment_Task_Id : Task_Id; |
| -- A variable to hold Task_Id for the environment task |
| |
| -- The followings are internal configuration constants needed |
| |
| Dispatching_Policy : Character; |
| pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); |
| |
| Foreign_Task_Elaborated : aliased Boolean := True; |
| -- Used to identified fake tasks (i.e., non-Ada Threads) |
| |
| Locking_Policy : Character; |
| pragma Import (C, Locking_Policy, "__gl_locking_policy"); |
| |
| Mutex_Protocol : Priority_Type; |
| |
| Single_RTS_Lock : aliased RTS_Lock; |
| -- This is a lock to allow only one thread of control in the RTS at a |
| -- time; it is used to execute in mutual exclusion from all other tasks. |
| -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List |
| |
| Time_Slice_Val : Integer; |
| pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); |
| |
| Null_Thread_Id : constant Thread_Id := 0; |
| -- Constant to indicate that the thread identifier has not yet been |
| -- initialized. |
| |
| -------------------- |
| -- Local Packages -- |
| -------------------- |
| |
| package Specific is |
| |
| procedure Initialize; |
| pragma Inline (Initialize); |
| -- Initialize task specific data |
| |
| function Is_Valid_Task return Boolean; |
| pragma Inline (Is_Valid_Task); |
| -- Does executing thread have a TCB? |
| |
| procedure Set (Self_Id : Task_Id); |
| pragma Inline (Set); |
| -- Set the self id for the current task, unless Self_Id is null, in |
| -- which case the task specific data is deleted. |
| |
| function Self return Task_Id; |
| pragma Inline (Self); |
| -- Return a pointer to the Ada Task Control Block of the calling task |
| |
| end Specific; |
| |
| package body Specific is separate; |
| -- The body of this package is target specific |
| |
| ---------------------------------- |
| -- ATCB allocation/deallocation -- |
| ---------------------------------- |
| |
| package body ATCB_Allocation is separate; |
| -- The body of this package is shared across several targets |
| |
| --------------------------------- |
| -- Support for foreign threads -- |
| --------------------------------- |
| |
| function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id; |
| -- Allocate and Initialize a new ATCB for the current Thread |
| |
| function Register_Foreign_Thread |
| (Thread : Thread_Id) return Task_Id is separate; |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Abort_Handler (signo : Signal); |
| -- Handler for the abort (SIGABRT) signal to handle asynchronous abort |
| |
| procedure Install_Signal_Handlers; |
| -- Install the default signal handlers for the current task |
| |
| function Is_Task_Context return Boolean; |
| -- This function returns True if the current execution is in the context of |
| -- a task, and False if it is an interrupt context. |
| |
| type Set_Stack_Limit_Proc_Acc is access procedure; |
| pragma Convention (C, Set_Stack_Limit_Proc_Acc); |
| |
| Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc; |
| pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook"); |
| -- Procedure to be called when a task is created to set stack limit. Used |
| -- only for VxWorks 5 and VxWorks MILS guest OS. |
| |
| function To_Address is |
| new Ada.Unchecked_Conversion (Task_Id, System.Address); |
| |
| ------------------- |
| -- Abort_Handler -- |
| ------------------- |
| |
| procedure Abort_Handler (signo : Signal) is |
| pragma Unreferenced (signo); |
| |
| Self_ID : constant Task_Id := Self; |
| Old_Set : aliased sigset_t; |
| Unblocked_Mask : aliased sigset_t; |
| Result : int; |
| pragma Warnings (Off, Result); |
| |
| use System.Interrupt_Management; |
| |
| begin |
| -- It is not safe to raise an exception when using ZCX and the GCC |
| -- exception handling mechanism. |
| |
| if ZCX_By_Default then |
| return; |
| end if; |
| |
| if Self_ID.Deferral_Level = 0 |
| and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level |
| and then not Self_ID.Aborting |
| then |
| Self_ID.Aborting := True; |
| |
| -- Make sure signals used for RTS internal purposes are unmasked |
| |
| Result := sigemptyset (Unblocked_Mask'Access); |
| pragma Assert (Result = 0); |
| Result := |
| sigaddset |
| (Unblocked_Mask'Access, |
| Signal (Abort_Task_Interrupt)); |
| pragma Assert (Result = 0); |
| Result := sigaddset (Unblocked_Mask'Access, SIGBUS); |
| pragma Assert (Result = 0); |
| Result := sigaddset (Unblocked_Mask'Access, SIGFPE); |
| pragma Assert (Result = 0); |
| Result := sigaddset (Unblocked_Mask'Access, SIGILL); |
| pragma Assert (Result = 0); |
| Result := sigaddset (Unblocked_Mask'Access, SIGSEGV); |
| pragma Assert (Result = 0); |
| |
| Result := |
| pthread_sigmask |
| (SIG_UNBLOCK, |
| Unblocked_Mask'Access, |
| Old_Set'Access); |
| pragma Assert (Result = 0); |
| |
| raise Standard'Abort_Signal; |
| end if; |
| end Abort_Handler; |
| |
| ----------------- |
| -- Stack_Guard -- |
| ----------------- |
| |
| procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is |
| pragma Unreferenced (T); |
| pragma Unreferenced (On); |
| |
| begin |
| -- Nothing needed (why not???) |
| |
| null; |
| end Stack_Guard; |
| |
| ------------------- |
| -- Get_Thread_Id -- |
| ------------------- |
| |
| function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is |
| begin |
| return T.Common.LL.Thread; |
| end Get_Thread_Id; |
| |
| ---------- |
| -- Self -- |
| ---------- |
| |
| function Self return Task_Id renames Specific.Self; |
| |
| ----------------------------- |
| -- Install_Signal_Handlers -- |
| ----------------------------- |
| |
| procedure Install_Signal_Handlers is |
| act : aliased struct_sigaction; |
| old_act : aliased struct_sigaction; |
| Tmp_Set : aliased sigset_t; |
| Result : int; |
| |
| begin |
| act.sa_flags := 0; |
| act.sa_handler := Abort_Handler'Address; |
| |
| Result := sigemptyset (Tmp_Set'Access); |
| pragma Assert (Result = 0); |
| act.sa_mask := Tmp_Set; |
| |
| Result := |
| sigaction |
| (Signal (Interrupt_Management.Abort_Task_Interrupt), |
| act'Unchecked_Access, |
| old_act'Unchecked_Access); |
| pragma Assert (Result = 0); |
| |
| Interrupt_Management.Initialize_Interrupts; |
| end Install_Signal_Handlers; |
| |
| --------------------- |
| -- Initialize_Lock -- |
| --------------------- |
| |
| procedure Initialize_Lock |
| (Prio : System.Any_Priority; |
| L : not null access Lock) |
| is |
| begin |
| L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE); |
| L.Prio_Ceiling := int (Prio); |
| L.Protocol := Mutex_Protocol; |
| pragma Assert (L.Mutex /= 0); |
| end Initialize_Lock; |
| |
| procedure Initialize_Lock |
| (L : not null access RTS_Lock; |
| Level : Lock_Level) |
| is |
| pragma Unreferenced (Level); |
| begin |
| L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE); |
| L.Prio_Ceiling := int (System.Any_Priority'Last); |
| L.Protocol := Mutex_Protocol; |
| pragma Assert (L.Mutex /= 0); |
| end Initialize_Lock; |
| |
| ------------------- |
| -- Finalize_Lock -- |
| ------------------- |
| |
| procedure Finalize_Lock (L : not null access Lock) is |
| Result : int; |
| begin |
| Result := semDelete (L.Mutex); |
| pragma Assert (Result = 0); |
| end Finalize_Lock; |
| |
| procedure Finalize_Lock (L : not null access RTS_Lock) is |
| Result : int; |
| begin |
| Result := semDelete (L.Mutex); |
| pragma Assert (Result = 0); |
| end Finalize_Lock; |
| |
| ---------------- |
| -- Write_Lock -- |
| ---------------- |
| |
| procedure Write_Lock |
| (L : not null access Lock; |
| Ceiling_Violation : out Boolean) |
| is |
| Result : int; |
| |
| begin |
| if L.Protocol = Prio_Protect |
| and then int (Self.Common.Current_Priority) > L.Prio_Ceiling |
| then |
| Ceiling_Violation := True; |
| return; |
| else |
| Ceiling_Violation := False; |
| end if; |
| |
| Result := semTake (L.Mutex, WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| end Write_Lock; |
| |
| procedure Write_Lock |
| (L : not null access RTS_Lock; |
| Global_Lock : Boolean := False) |
| is |
| Result : int; |
| begin |
| if not Single_Lock or else Global_Lock then |
| Result := semTake (L.Mutex, WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| end if; |
| end Write_Lock; |
| |
| procedure Write_Lock (T : Task_Id) is |
| Result : int; |
| begin |
| if not Single_Lock then |
| Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| end if; |
| end Write_Lock; |
| |
| --------------- |
| -- Read_Lock -- |
| --------------- |
| |
| procedure Read_Lock |
| (L : not null access Lock; |
| Ceiling_Violation : out Boolean) |
| is |
| begin |
| Write_Lock (L, Ceiling_Violation); |
| end Read_Lock; |
| |
| ------------ |
| -- Unlock -- |
| ------------ |
| |
| procedure Unlock (L : not null access Lock) is |
| Result : int; |
| begin |
| Result := semGive (L.Mutex); |
| pragma Assert (Result = 0); |
| end Unlock; |
| |
| procedure Unlock |
| (L : not null access RTS_Lock; |
| Global_Lock : Boolean := False) |
| is |
| Result : int; |
| begin |
| if not Single_Lock or else Global_Lock then |
| Result := semGive (L.Mutex); |
| pragma Assert (Result = 0); |
| end if; |
| end Unlock; |
| |
| procedure Unlock (T : Task_Id) is |
| Result : int; |
| begin |
| if not Single_Lock then |
| Result := semGive (T.Common.LL.L.Mutex); |
| pragma Assert (Result = 0); |
| end if; |
| end Unlock; |
| |
| ----------------- |
| -- Set_Ceiling -- |
| ----------------- |
| |
| -- Dynamic priority ceilings are not supported by the underlying system |
| |
| procedure Set_Ceiling |
| (L : not null access Lock; |
| Prio : System.Any_Priority) |
| is |
| pragma Unreferenced (L, Prio); |
| begin |
| null; |
| end Set_Ceiling; |
| |
| ----------- |
| -- Sleep -- |
| ----------- |
| |
| procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is |
| pragma Unreferenced (Reason); |
| |
| Result : int; |
| |
| begin |
| pragma Assert (Self_ID = Self); |
| |
| -- Release the mutex before sleeping |
| |
| Result := |
| semGive (if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex); |
| pragma Assert (Result = 0); |
| |
| -- Perform a blocking operation to take the CV semaphore. Note that a |
| -- blocking operation in VxWorks will reenable task scheduling. When we |
| -- are no longer blocked and control is returned, task scheduling will |
| -- again be disabled. |
| |
| Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| |
| -- Take the mutex back |
| |
| Result := |
| semTake ((if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| end Sleep; |
| |
| ----------------- |
| -- Timed_Sleep -- |
| ----------------- |
| |
| -- This is for use within the run-time system, so abort is assumed to be |
| -- already deferred, and the caller should be holding its own ATCB lock. |
| |
| procedure Timed_Sleep |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes; |
| Reason : System.Tasking.Task_States; |
| Timedout : out Boolean; |
| Yielded : out Boolean) |
| is |
| pragma Unreferenced (Reason); |
| |
| Orig : constant Duration := Monotonic_Clock; |
| Absolute : Duration; |
| Ticks : int; |
| Result : int; |
| Wakeup : Boolean := False; |
| |
| begin |
| Timedout := False; |
| Yielded := True; |
| |
| if Mode = Relative then |
| Absolute := Orig + Time; |
| |
| -- Systematically add one since the first tick will delay *at most* |
| -- 1 / Rate_Duration seconds, so we need to add one to be on the |
| -- safe side. |
| |
| Ticks := To_Clock_Ticks (Time); |
| |
| if Ticks > 0 and then Ticks < int'Last then |
| Ticks := Ticks + 1; |
| end if; |
| |
| else |
| Absolute := Time; |
| Ticks := To_Clock_Ticks (Time - Monotonic_Clock); |
| end if; |
| |
| if Ticks > 0 then |
| loop |
| -- Release the mutex before sleeping |
| |
| Result := |
| semGive (if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex); |
| pragma Assert (Result = 0); |
| |
| -- Perform a blocking operation to take the CV semaphore. Note |
| -- that a blocking operation in VxWorks will reenable task |
| -- scheduling. When we are no longer blocked and control is |
| -- returned, task scheduling will again be disabled. |
| |
| Result := semTake (Self_ID.Common.LL.CV, Ticks); |
| |
| if Result = 0 then |
| |
| -- Somebody may have called Wakeup for us |
| |
| Wakeup := True; |
| |
| else |
| if errno /= S_objLib_OBJ_TIMEOUT then |
| Wakeup := True; |
| |
| else |
| -- If Ticks = int'last, it was most probably truncated so |
| -- let's make another round after recomputing Ticks from |
| -- the absolute time. |
| |
| if Ticks /= int'Last then |
| Timedout := True; |
| |
| else |
| Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock); |
| |
| if Ticks < 0 then |
| Timedout := True; |
| end if; |
| end if; |
| end if; |
| end if; |
| |
| -- Take the mutex back |
| |
| Result := |
| semTake ((if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| |
| exit when Timedout or Wakeup; |
| end loop; |
| |
| else |
| Timedout := True; |
| |
| -- Should never hold a lock while yielding |
| |
| if Single_Lock then |
| Result := semGive (Single_RTS_Lock.Mutex); |
| taskDelay (0); |
| Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER); |
| |
| else |
| Result := semGive (Self_ID.Common.LL.L.Mutex); |
| taskDelay (0); |
| Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER); |
| end if; |
| end if; |
| end Timed_Sleep; |
| |
| ----------------- |
| -- Timed_Delay -- |
| ----------------- |
| |
| -- This is for use in implementing delay statements, so we assume the |
| -- caller is holding no locks. |
| |
| procedure Timed_Delay |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes) |
| is |
| Orig : constant Duration := Monotonic_Clock; |
| Absolute : Duration; |
| Ticks : int; |
| Timedout : Boolean; |
| Aborted : Boolean := False; |
| |
| Result : int; |
| pragma Warnings (Off, Result); |
| |
| begin |
| if Mode = Relative then |
| Absolute := Orig + Time; |
| Ticks := To_Clock_Ticks (Time); |
| |
| if Ticks > 0 and then Ticks < int'Last then |
| |
| -- First tick will delay anytime between 0 and 1 / sysClkRateGet |
| -- seconds, so we need to add one to be on the safe side. |
| |
| Ticks := Ticks + 1; |
| end if; |
| |
| else |
| Absolute := Time; |
| Ticks := To_Clock_Ticks (Time - Orig); |
| end if; |
| |
| if Ticks > 0 then |
| |
| -- Modifying State, locking the TCB |
| |
| Result := |
| semTake ((if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER); |
| |
| pragma Assert (Result = 0); |
| |
| Self_ID.Common.State := Delay_Sleep; |
| Timedout := False; |
| |
| loop |
| Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; |
| |
| -- Release the TCB before sleeping |
| |
| Result := |
| semGive (if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex); |
| pragma Assert (Result = 0); |
| |
| exit when Aborted; |
| |
| Result := semTake (Self_ID.Common.LL.CV, Ticks); |
| |
| if Result /= 0 then |
| |
| -- If Ticks = int'last, it was most probably truncated, so make |
| -- another round after recomputing Ticks from absolute time. |
| |
| if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then |
| Timedout := True; |
| else |
| Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock); |
| |
| if Ticks < 0 then |
| Timedout := True; |
| end if; |
| end if; |
| end if; |
| |
| -- Take back the lock after having slept, to protect further |
| -- access to Self_ID. |
| |
| Result := |
| semTake |
| ((if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER); |
| |
| pragma Assert (Result = 0); |
| |
| exit when Timedout; |
| end loop; |
| |
| Self_ID.Common.State := Runnable; |
| |
| Result := |
| semGive |
| (if Single_Lock |
| then Single_RTS_Lock.Mutex |
| else Self_ID.Common.LL.L.Mutex); |
| |
| else |
| taskDelay (0); |
| end if; |
| end Timed_Delay; |
| |
| --------------------- |
| -- Monotonic_Clock -- |
| --------------------- |
| |
| function Monotonic_Clock return Duration is |
| TS : aliased timespec; |
| Result : int; |
| begin |
| Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access); |
| pragma Assert (Result = 0); |
| return To_Duration (TS); |
| end Monotonic_Clock; |
| |
| ------------------- |
| -- RT_Resolution -- |
| ------------------- |
| |
| function RT_Resolution return Duration is |
| begin |
| return 1.0 / Duration (sysClkRateGet); |
| end RT_Resolution; |
| |
| ------------ |
| -- Wakeup -- |
| ------------ |
| |
| procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is |
| pragma Unreferenced (Reason); |
| Result : int; |
| begin |
| Result := semGive (T.Common.LL.CV); |
| pragma Assert (Result = 0); |
| end Wakeup; |
| |
| ----------- |
| -- Yield -- |
| ----------- |
| |
| procedure Yield (Do_Yield : Boolean := True) is |
| pragma Unreferenced (Do_Yield); |
| Result : int; |
| pragma Unreferenced (Result); |
| begin |
| Result := taskDelay (0); |
| end Yield; |
| |
| ------------------ |
| -- Set_Priority -- |
| ------------------ |
| |
| procedure Set_Priority |
| (T : Task_Id; |
| Prio : System.Any_Priority; |
| Loss_Of_Inheritance : Boolean := False) |
| is |
| pragma Unreferenced (Loss_Of_Inheritance); |
| |
| Result : int; |
| |
| begin |
| Result := |
| taskPrioritySet |
| (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio))); |
| pragma Assert (Result = 0); |
| |
| -- Note: in VxWorks 6.6 (or earlier), the task is placed at the end of |
| -- the priority queue instead of the head. This is not the behavior |
| -- required by Annex D (RM D.2.3(5/2)), but we consider it an acceptable |
| -- variation (RM 1.1.3(6)), given this is the built-in behavior of the |
| -- operating system. VxWorks versions starting from 6.7 implement the |
| -- required Annex D semantics. |
| |
| -- In older versions we attempted to better approximate the Annex D |
| -- required behavior, but this simulation was not entirely accurate, |
| -- and it seems better to live with the standard VxWorks semantics. |
| |
| T.Common.Current_Priority := Prio; |
| end Set_Priority; |
| |
| ------------------ |
| -- Get_Priority -- |
| ------------------ |
| |
| function Get_Priority (T : Task_Id) return System.Any_Priority is |
| begin |
| return T.Common.Current_Priority; |
| end Get_Priority; |
| |
| ---------------- |
| -- Enter_Task -- |
| ---------------- |
| |
| procedure Enter_Task (Self_ID : Task_Id) is |
| begin |
| -- Store the user-level task id in the Thread field (to be used |
| -- internally by the run-time system) and the kernel-level task id in |
| -- the LWP field (to be used by the debugger). |
| |
| Self_ID.Common.LL.Thread := taskIdSelf; |
| Self_ID.Common.LL.LWP := getpid; |
| |
| Specific.Set (Self_ID); |
| |
| -- Properly initializes the FPU for PPC/MIPS systems |
| |
| System.Float_Control.Reset; |
| |
| -- Install the signal handlers |
| |
| -- This is called for each task since there is no signal inheritance |
| -- between VxWorks tasks. |
| |
| Install_Signal_Handlers; |
| |
| -- If stack checking is enabled, set the stack limit for this task |
| |
| if Set_Stack_Limit_Hook /= null then |
| Set_Stack_Limit_Hook.all; |
| end if; |
| end Enter_Task; |
| |
| ------------------- |
| -- Is_Valid_Task -- |
| ------------------- |
| |
| function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task; |
| |
| ----------------------------- |
| -- Register_Foreign_Thread -- |
| ----------------------------- |
| |
| function Register_Foreign_Thread return Task_Id is |
| begin |
| if Is_Valid_Task then |
| return Self; |
| else |
| return Register_Foreign_Thread (taskIdSelf); |
| end if; |
| end Register_Foreign_Thread; |
| |
| -------------------- |
| -- Initialize_TCB -- |
| -------------------- |
| |
| procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is |
| begin |
| Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY); |
| Self_ID.Common.LL.Thread := Null_Thread_Id; |
| |
| if Self_ID.Common.LL.CV = 0 then |
| Succeeded := False; |
| |
| else |
| Succeeded := True; |
| |
| if not Single_Lock then |
| Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level); |
| end if; |
| end if; |
| end Initialize_TCB; |
| |
| ----------------- |
| -- Create_Task -- |
| ----------------- |
| |
| procedure Create_Task |
| (T : Task_Id; |
| Wrapper : System.Address; |
| Stack_Size : System.Parameters.Size_Type; |
| Priority : System.Any_Priority; |
| Succeeded : out Boolean) |
| is |
| Adjusted_Stack_Size : size_t; |
| |
| use type System.Multiprocessors.CPU_Range; |
| |
| begin |
| -- Check whether both Dispatching_Domain and CPU are specified for |
| -- the task, and the CPU value is not contained within the range of |
| -- processors for the domain. |
| |
| if T.Common.Domain /= null |
| and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU |
| and then |
| (T.Common.Base_CPU not in T.Common.Domain'Range |
| or else not T.Common.Domain (T.Common.Base_CPU)) |
| then |
| Succeeded := False; |
| return; |
| end if; |
| |
| -- Ask for four extra bytes of stack space so that the ATCB pointer can |
| -- be stored below the stack limit, plus extra space for the frame of |
| -- Task_Wrapper. This is so the user gets the amount of stack requested |
| -- exclusive of the needs. |
| |
| -- We also have to allocate n more bytes for the task name storage and |
| -- enough space for the Wind Task Control Block which is around 0x778 |
| -- bytes. VxWorks also seems to carve out additional space, so use 2048 |
| -- as a nice round number. We might want to increment to the nearest |
| -- page size in case we ever support VxVMI. |
| |
| -- ??? - we should come back and visit this so we can set the task name |
| -- to something appropriate. |
| |
| Adjusted_Stack_Size := size_t (Stack_Size) + 2048; |
| |
| -- Since the initial signal mask of a thread is inherited from the |
| -- creator, and the Environment task has all its signals masked, we do |
| -- not need to manipulate caller's signal mask at this point. All tasks |
| -- in RTS will have All_Tasks_Mask initially. |
| |
| -- We now compute the VxWorks task name and options, then spawn ... |
| |
| declare |
| Name : aliased String (1 .. T.Common.Task_Image_Len + 1); |
| Name_Address : System.Address; |
| -- Task name we are going to hand down to VxWorks |
| |
| function Get_Task_Options return int; |
| pragma Import (C, Get_Task_Options, "__gnat_get_task_options"); |
| -- Function that returns the options to be set for the task that we |
| -- are creating. We fetch the options assigned to the current task, |
| -- so offering some user level control over the options for a task |
| -- hierarchy, and force VX_FP_TASK because it is almost always |
| -- required. |
| |
| begin |
| -- If there is no Ada task name handy, let VxWorks choose one. |
| -- Otherwise, tell VxWorks what the Ada task name is. |
| |
| if T.Common.Task_Image_Len = 0 then |
| Name_Address := System.Null_Address; |
| else |
| Name (1 .. Name'Last - 1) := |
| T.Common.Task_Image (1 .. T.Common.Task_Image_Len); |
| Name (Name'Last) := ASCII.NUL; |
| Name_Address := Name'Address; |
| end if; |
| |
| -- Now spawn the VxWorks task for real |
| |
| T.Common.LL.Thread := |
| taskSpawn |
| (Name_Address, |
| To_VxWorks_Priority (int (Priority)), |
| Get_Task_Options, |
| Adjusted_Stack_Size, |
| Wrapper, |
| To_Address (T)); |
| end; |
| |
| -- Set processor affinity |
| |
| Set_Task_Affinity (T); |
| |
| -- Only case of failure is if taskSpawn returned 0 (aka Null_Thread_Id) |
| |
| if T.Common.LL.Thread = Null_Thread_Id then |
| Succeeded := False; |
| else |
| Succeeded := True; |
| Task_Creation_Hook (T.Common.LL.Thread); |
| Set_Priority (T, Priority); |
| end if; |
| end Create_Task; |
| |
| ------------------ |
| -- Finalize_TCB -- |
| ------------------ |
| |
| procedure Finalize_TCB (T : Task_Id) is |
| Result : int; |
| |
| begin |
| if not Single_Lock then |
| Result := semDelete (T.Common.LL.L.Mutex); |
| pragma Assert (Result = 0); |
| end if; |
| |
| T.Common.LL.Thread := Null_Thread_Id; |
| |
| Result := semDelete (T.Common.LL.CV); |
| pragma Assert (Result = 0); |
| |
| if T.Known_Tasks_Index /= -1 then |
| Known_Tasks (T.Known_Tasks_Index) := null; |
| end if; |
| |
| ATCB_Allocation.Free_ATCB (T); |
| end Finalize_TCB; |
| |
| --------------- |
| -- Exit_Task -- |
| --------------- |
| |
| procedure Exit_Task is |
| begin |
| Specific.Set (null); |
| end Exit_Task; |
| |
| ---------------- |
| -- Abort_Task -- |
| ---------------- |
| |
| procedure Abort_Task (T : Task_Id) is |
| Result : int; |
| begin |
| Result := |
| kill |
| (T.Common.LL.Thread, |
| Signal (Interrupt_Management.Abort_Task_Interrupt)); |
| pragma Assert (Result = 0); |
| end Abort_Task; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (S : in out Suspension_Object) is |
| begin |
| -- Initialize internal state (always to False (RM D.10(6))) |
| |
| S.State := False; |
| S.Waiting := False; |
| |
| -- Initialize internal mutex |
| |
| -- Use simpler binary semaphore instead of VxWorks mutual exclusion |
| -- semaphore, because we don't need the fancier semantics and their |
| -- overhead. |
| |
| S.L := semBCreate (SEM_Q_FIFO, SEM_FULL); |
| |
| -- Initialize internal condition variable |
| |
| S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY); |
| end Initialize; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (S : in out Suspension_Object) is |
| pragma Unmodified (S); |
| -- S may be modified on other targets, but not on VxWorks |
| |
| Result : STATUS; |
| |
| begin |
| -- Destroy internal mutex |
| |
| Result := semDelete (S.L); |
| pragma Assert (Result = OK); |
| |
| -- Destroy internal condition variable |
| |
| Result := semDelete (S.CV); |
| pragma Assert (Result = OK); |
| end Finalize; |
| |
| ------------------- |
| -- Current_State -- |
| ------------------- |
| |
| function Current_State (S : Suspension_Object) return Boolean is |
| begin |
| -- We do not want to use lock on this read operation. State is marked |
| -- as Atomic so that we ensure that the value retrieved is correct. |
| |
| return S.State; |
| end Current_State; |
| |
| --------------- |
| -- Set_False -- |
| --------------- |
| |
| procedure Set_False (S : in out Suspension_Object) is |
| Result : STATUS; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := semTake (S.L, WAIT_FOREVER); |
| pragma Assert (Result = OK); |
| |
| S.State := False; |
| |
| Result := semGive (S.L); |
| pragma Assert (Result = OK); |
| |
| SSL.Abort_Undefer.all; |
| end Set_False; |
| |
| -------------- |
| -- Set_True -- |
| -------------- |
| |
| procedure Set_True (S : in out Suspension_Object) is |
| Result : STATUS; |
| |
| begin |
| -- Set_True can be called from an interrupt context, in which case |
| -- Abort_Defer is undefined. |
| |
| if Is_Task_Context then |
| SSL.Abort_Defer.all; |
| end if; |
| |
| Result := semTake (S.L, WAIT_FOREVER); |
| pragma Assert (Result = OK); |
| |
| -- If there is already a task waiting on this suspension object then we |
| -- resume it, leaving the state of the suspension object to False, as it |
| -- is specified in (RM D.10 (9)). Otherwise, it just leaves the state to |
| -- True. |
| |
| if S.Waiting then |
| S.Waiting := False; |
| S.State := False; |
| |
| Result := semGive (S.CV); |
| pragma Assert (Result = OK); |
| else |
| S.State := True; |
| end if; |
| |
| Result := semGive (S.L); |
| pragma Assert (Result = OK); |
| |
| -- Set_True can be called from an interrupt context, in which case |
| -- Abort_Undefer is undefined. |
| |
| if Is_Task_Context then |
| SSL.Abort_Undefer.all; |
| end if; |
| |
| end Set_True; |
| |
| ------------------------ |
| -- Suspend_Until_True -- |
| ------------------------ |
| |
| procedure Suspend_Until_True (S : in out Suspension_Object) is |
| Result : STATUS; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| Result := semTake (S.L, WAIT_FOREVER); |
| |
| if S.Waiting then |
| |
| -- Program_Error must be raised upon calling Suspend_Until_True |
| -- if another task is already waiting on that suspension object |
| -- (RM D.10(10)). |
| |
| Result := semGive (S.L); |
| pragma Assert (Result = OK); |
| |
| SSL.Abort_Undefer.all; |
| |
| raise Program_Error; |
| |
| else |
| -- Suspend the task if the state is False. Otherwise, the task |
| -- continues its execution, and the state of the suspension object |
| -- is set to False (RM D.10 (9)). |
| |
| if S.State then |
| S.State := False; |
| |
| Result := semGive (S.L); |
| pragma Assert (Result = 0); |
| |
| SSL.Abort_Undefer.all; |
| |
| else |
| S.Waiting := True; |
| |
| -- Release the mutex before sleeping |
| |
| Result := semGive (S.L); |
| pragma Assert (Result = OK); |
| |
| SSL.Abort_Undefer.all; |
| |
| Result := semTake (S.CV, WAIT_FOREVER); |
| pragma Assert (Result = 0); |
| end if; |
| end if; |
| end Suspend_Until_True; |
| |
| ---------------- |
| -- Check_Exit -- |
| ---------------- |
| |
| -- Dummy version |
| |
| function Check_Exit (Self_ID : ST.Task_Id) return Boolean is |
| pragma Unreferenced (Self_ID); |
| begin |
| return True; |
| end Check_Exit; |
| |
| -------------------- |
| -- Check_No_Locks -- |
| -------------------- |
| |
| function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is |
| pragma Unreferenced (Self_ID); |
| begin |
| return True; |
| end Check_No_Locks; |
| |
| ---------------------- |
| -- Environment_Task -- |
| ---------------------- |
| |
| function Environment_Task return Task_Id is |
| begin |
| return Environment_Task_Id; |
| end Environment_Task; |
| |
| -------------- |
| -- Lock_RTS -- |
| -------------- |
| |
| procedure Lock_RTS is |
| begin |
| Write_Lock (Single_RTS_Lock'Access, Global_Lock => True); |
| end Lock_RTS; |
| |
| ---------------- |
| -- Unlock_RTS -- |
| ---------------- |
| |
| procedure Unlock_RTS is |
| begin |
| Unlock (Single_RTS_Lock'Access, Global_Lock => True); |
| end Unlock_RTS; |
| |
| ------------------ |
| -- Suspend_Task -- |
| ------------------ |
| |
| function Suspend_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Null_Thread_Id |
| and then T.Common.LL.Thread /= Thread_Self |
| then |
| return taskSuspend (T.Common.LL.Thread) = 0; |
| else |
| return True; |
| end if; |
| end Suspend_Task; |
| |
| ----------------- |
| -- Resume_Task -- |
| ----------------- |
| |
| function Resume_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Null_Thread_Id |
| and then T.Common.LL.Thread /= Thread_Self |
| then |
| return taskResume (T.Common.LL.Thread) = 0; |
| else |
| return True; |
| end if; |
| end Resume_Task; |
| |
| -------------------- |
| -- Stop_All_Tasks -- |
| -------------------- |
| |
| procedure Stop_All_Tasks |
| is |
| Thread_Self : constant Thread_Id := taskIdSelf; |
| C : Task_Id; |
| |
| Dummy : int; |
| Old : int; |
| |
| begin |
| Old := Int_Lock; |
| |
| C := All_Tasks_List; |
| while C /= null loop |
| if C.Common.LL.Thread /= Null_Thread_Id |
| and then C.Common.LL.Thread /= Thread_Self |
| then |
| Dummy := Task_Stop (C.Common.LL.Thread); |
| end if; |
| |
| C := C.Common.All_Tasks_Link; |
| end loop; |
| |
| Dummy := Int_Unlock (Old); |
| end Stop_All_Tasks; |
| |
| --------------- |
| -- Stop_Task -- |
| --------------- |
| |
| function Stop_Task (T : ST.Task_Id) return Boolean is |
| begin |
| if T.Common.LL.Thread /= Null_Thread_Id then |
| return Task_Stop (T.Common.LL.Thread) = 0; |
| else |
| return True; |
| end if; |
| end Stop_Task; |
| |
| ------------------- |
| -- Continue_Task -- |
| ------------------- |
| |
| function Continue_Task (T : ST.Task_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Null_Thread_Id then |
| return Task_Cont (T.Common.LL.Thread) = 0; |
| else |
| return True; |
| end if; |
| end Continue_Task; |
| |
| --------------------- |
| -- Is_Task_Context -- |
| --------------------- |
| |
| function Is_Task_Context return Boolean is |
| begin |
| return System.OS_Interface.Interrupt_Context /= 1; |
| end Is_Task_Context; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (Environment_Task : Task_Id) is |
| Result : int; |
| pragma Unreferenced (Result); |
| |
| begin |
| Environment_Task_Id := Environment_Task; |
| |
| Interrupt_Management.Initialize; |
| Specific.Initialize; |
| |
| if Locking_Policy = 'C' then |
| Mutex_Protocol := Prio_Protect; |
| elsif Locking_Policy = 'I' then |
| Mutex_Protocol := Prio_Inherit; |
| else |
| Mutex_Protocol := Prio_None; |
| end if; |
| |
| if Time_Slice_Val > 0 then |
| Result := |
| Set_Time_Slice |
| (To_Clock_Ticks |
| (Duration (Time_Slice_Val) / Duration (1_000_000.0))); |
| |
| elsif Dispatching_Policy = 'R' then |
| Result := Set_Time_Slice (To_Clock_Ticks (0.01)); |
| |
| end if; |
| |
| -- Initialize the lock used to synchronize chain of all ATCBs |
| |
| Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); |
| |
| -- Make environment task known here because it doesn't go through |
| -- Activate_Tasks, which does it for all other tasks. |
| |
| Known_Tasks (Known_Tasks'First) := Environment_Task; |
| Environment_Task.Known_Tasks_Index := Known_Tasks'First; |
| |
| Enter_Task (Environment_Task); |
| |
| -- Set processor affinity |
| |
| Set_Task_Affinity (Environment_Task); |
| end Initialize; |
| |
| ----------------------- |
| -- Set_Task_Affinity -- |
| ----------------------- |
| |
| procedure Set_Task_Affinity (T : ST.Task_Id) is |
| Result : int := 0; |
| pragma Unreferenced (Result); |
| |
| use System.Task_Info; |
| use type System.Multiprocessors.CPU_Range; |
| |
| begin |
| -- Do nothing if the underlying thread has not yet been created. If the |
| -- thread has not yet been created then the proper affinity will be set |
| -- during its creation. |
| |
| if T.Common.LL.Thread = Null_Thread_Id then |
| null; |
| |
| -- pragma CPU |
| |
| elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then |
| |
| -- Ada 2012 pragma CPU uses CPU numbers starting from 1, while on |
| -- VxWorks the first CPU is identified by a 0, so we need to adjust. |
| |
| Result := |
| taskCpuAffinitySet |
| (T.Common.LL.Thread, int (T.Common.Base_CPU) - 1); |
| |
| -- Task_Info |
| |
| elsif T.Common.Task_Info /= Unspecified_Task_Info then |
| Result := taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info); |
| |
| -- Handle dispatching domains |
| |
| elsif T.Common.Domain /= null |
| and then (T.Common.Domain /= ST.System_Domain |
| or else T.Common.Domain.all /= |
| (Multiprocessors.CPU'First .. |
| Multiprocessors.Number_Of_CPUs => True)) |
| then |
| declare |
| CPU_Set : unsigned := 0; |
| |
| begin |
| -- Set the affinity to all the processors belonging to the |
| -- dispatching domain. |
| |
| for Proc in T.Common.Domain'Range loop |
| if T.Common.Domain (Proc) then |
| |
| -- The thread affinity mask is a bit vector in which each |
| -- bit represents a logical processor. |
| |
| CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1); |
| end if; |
| end loop; |
| |
| Result := taskMaskAffinitySet (T.Common.LL.Thread, CPU_Set); |
| end; |
| end if; |
| end Set_Task_Affinity; |
| |
| end System.Task_Primitives.Operations; |