;; Copyright (C) 2011-2015 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version. ;; ;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. ;; ;; This file contains ARM instructions that support fixed-point operations.
(define_insn “add3” [(set (match_operand:FIXED 0 “s_register_operand” “=l,r”) (plus:FIXED (match_operand:FIXED 1 “s_register_operand” “l,r”) (match_operand:FIXED 2 “s_register_operand” “l,r”)))] “TARGET_32BIT” “add%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “yes,no”) (set_attr “type” “alu_sreg”)])
(define_insn “add3” [(set (match_operand:ADDSUB 0 “s_register_operand” “=r”) (plus:ADDSUB (match_operand:ADDSUB 1 “s_register_operand” “r”) (match_operand:ADDSUB 2 “s_register_operand” “r”)))] “TARGET_INT_SIMD” “sadd<qaddsub_suf>%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_dsp_reg”)])
(define_insn “usadd3” [(set (match_operand:UQADDSUB 0 “s_register_operand” “=r”) (us_plus:UQADDSUB (match_operand:UQADDSUB 1 “s_register_operand” “r”) (match_operand:UQADDSUB 2 “s_register_operand” “r”)))] “TARGET_INT_SIMD” “uqadd<qaddsub_suf>%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_dsp_reg”)])
(define_insn “ssadd3” [(set (match_operand:QADDSUB 0 “s_register_operand” “=r”) (ss_plus:QADDSUB (match_operand:QADDSUB 1 “s_register_operand” “r”) (match_operand:QADDSUB 2 “s_register_operand” “r”)))] “TARGET_INT_SIMD” “qadd<qaddsub_suf>%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_dsp_reg”)])
(define_insn “sub3” [(set (match_operand:FIXED 0 “s_register_operand” “=l,r”) (minus:FIXED (match_operand:FIXED 1 “s_register_operand” “l,r”) (match_operand:FIXED 2 “s_register_operand” “l,r”)))] “TARGET_32BIT” “sub%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “yes,no”) (set_attr “type” “alu_sreg”)])
(define_insn “sub3” [(set (match_operand:ADDSUB 0 “s_register_operand” “=r”) (minus:ADDSUB (match_operand:ADDSUB 1 “s_register_operand” “r”) (match_operand:ADDSUB 2 “s_register_operand” “r”)))] “TARGET_INT_SIMD” “ssub<qaddsub_suf>%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_dsp_reg”)])
(define_insn “ussub3” [(set (match_operand:UQADDSUB 0 “s_register_operand” “=r”) (us_minus:UQADDSUB (match_operand:UQADDSUB 1 “s_register_operand” “r”) (match_operand:UQADDSUB 2 “s_register_operand” “r”)))] “TARGET_INT_SIMD” “uqsub<qaddsub_suf>%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_dsp_reg”)])
(define_insn “sssub3” [(set (match_operand:QADDSUB 0 “s_register_operand” “=r”) (ss_minus:QADDSUB (match_operand:QADDSUB 1 “s_register_operand” “r”) (match_operand:QADDSUB 2 “s_register_operand” “r”)))] “TARGET_INT_SIMD” “qsub<qaddsub_suf>%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_dsp_reg”)])
;; Fractional multiplies.
; Note: none of these do any rounding.
(define_expand “mulqq3” [(set (match_operand:QQ 0 “s_register_operand” "") (mult:QQ (match_operand:QQ 1 “s_register_operand” "") (match_operand:QQ 2 “s_register_operand” "")))] “TARGET_DSP_MULTIPLY && arm_arch_thumb2” { rtx tmp1 = gen_reg_rtx (HImode); rtx tmp2 = gen_reg_rtx (HImode); rtx tmp3 = gen_reg_rtx (SImode);
emit_insn (gen_extendqihi2 (tmp1, gen_lowpart (QImode, operands[1]))); emit_insn (gen_extendqihi2 (tmp2, gen_lowpart (QImode, operands[2]))); emit_insn (gen_mulhisi3 (tmp3, tmp1, tmp2)); emit_insn (gen_extv (gen_lowpart (SImode, operands[0]), tmp3, GEN_INT (8), GEN_INT (7))); DONE; })
(define_expand “mulhq3” [(set (match_operand:HQ 0 “s_register_operand” "") (mult:HQ (match_operand:HQ 1 “s_register_operand” "") (match_operand:HQ 2 “s_register_operand” "")))] “TARGET_DSP_MULTIPLY && arm_arch_thumb2” { rtx tmp = gen_reg_rtx (SImode);
emit_insn (gen_mulhisi3 (tmp, gen_lowpart (HImode, operands[1]), gen_lowpart (HImode, operands[2]))); /* We‘re doing a s.15 * s.15 multiplication, getting an s.30 result. Extract an s.15 value from that. This won’t overflow/saturate for _Fract values. */ emit_insn (gen_extv (gen_lowpart (SImode, operands[0]), tmp, GEN_INT (16), GEN_INT (15))); DONE; })
(define_expand “mulsq3” [(set (match_operand:SQ 0 “s_register_operand” "") (mult:SQ (match_operand:SQ 1 “s_register_operand” "") (match_operand:SQ 2 “s_register_operand” "")))] “TARGET_32BIT && arm_arch3m” { rtx tmp1 = gen_reg_rtx (DImode); rtx tmp2 = gen_reg_rtx (SImode); rtx tmp3 = gen_reg_rtx (SImode);
/* s.31 * s.31 -> s.62 multiplication. */ emit_insn (gen_mulsidi3 (tmp1, gen_lowpart (SImode, operands[1]), gen_lowpart (SImode, operands[2]))); emit_insn (gen_lshrsi3 (tmp2, gen_lowpart (SImode, tmp1), GEN_INT (31))); emit_insn (gen_ashlsi3 (tmp3, gen_highpart (SImode, tmp1), GEN_INT (1))); emit_insn (gen_iorsi3 (gen_lowpart (SImode, operands[0]), tmp2, tmp3));
DONE; })
;; Accumulator multiplies.
(define_expand “mulsa3” [(set (match_operand:SA 0 “s_register_operand” "") (mult:SA (match_operand:SA 1 “s_register_operand” "") (match_operand:SA 2 “s_register_operand” "")))] “TARGET_32BIT && arm_arch3m” { rtx tmp1 = gen_reg_rtx (DImode); rtx tmp2 = gen_reg_rtx (SImode); rtx tmp3 = gen_reg_rtx (SImode);
emit_insn (gen_mulsidi3 (tmp1, gen_lowpart (SImode, operands[1]), gen_lowpart (SImode, operands[2]))); emit_insn (gen_lshrsi3 (tmp2, gen_lowpart (SImode, tmp1), GEN_INT (15))); emit_insn (gen_ashlsi3 (tmp3, gen_highpart (SImode, tmp1), GEN_INT (17))); emit_insn (gen_iorsi3 (gen_lowpart (SImode, operands[0]), tmp2, tmp3));
DONE; })
(define_expand “mulusa3” [(set (match_operand:USA 0 “s_register_operand” "") (mult:USA (match_operand:USA 1 “s_register_operand” "") (match_operand:USA 2 “s_register_operand” "")))] “TARGET_32BIT && arm_arch3m” { rtx tmp1 = gen_reg_rtx (DImode); rtx tmp2 = gen_reg_rtx (SImode); rtx tmp3 = gen_reg_rtx (SImode);
emit_insn (gen_umulsidi3 (tmp1, gen_lowpart (SImode, operands[1]), gen_lowpart (SImode, operands[2]))); emit_insn (gen_lshrsi3 (tmp2, gen_lowpart (SImode, tmp1), GEN_INT (16))); emit_insn (gen_ashlsi3 (tmp3, gen_highpart (SImode, tmp1), GEN_INT (16))); emit_insn (gen_iorsi3 (gen_lowpart (SImode, operands[0]), tmp2, tmp3));
DONE; })
;; The code sequence emitted by this insn pattern uses the Q flag, which GCC ;; doesn‘t generally know about, so we don’t bother expanding to individual ;; instructions. It may be better to just use an out-of-line asm libcall for ;; this.
(define_insn “ssmulsa3” [(set (match_operand:SA 0 “s_register_operand” “=r”) (ss_mult:SA (match_operand:SA 1 “s_register_operand” “r”) (match_operand:SA 2 “s_register_operand” “r”))) (clobber (match_scratch:DI 3 “=r”)) (clobber (match_scratch:SI 4 “=r”)) (clobber (reg:CC CC_REGNUM))] “TARGET_32BIT && arm_arch6” { /* s16.15 * s16.15 -> s32.30. */ output_asm_insn (“smull\t%Q3, %R3, %1, %2”, operands);
if (TARGET_ARM) output_asm_insn (“msr\tAPSR_nzcvq, #0”, operands); else { output_asm_insn (“mov\t%4, #0”, operands); output_asm_insn (“msr\tAPSR_nzcvq, %4”, operands); }
/* We have: 31 high word 0 31 low word 0
[ S i i .... i i i ] [ i f f f ... f f ] | v [ S i ... i f ... f f ] Need 16 integral bits, so saturate at 15th bit of high word. */
output_asm_insn (“ssat\t%R3, #15, %R3”, operands); output_asm_insn (“mrs\t%4, APSR”, operands); output_asm_insn (“tst\t%4, #1<<27”, operands); if (arm_restrict_it) { output_asm_insn (“mvn\t%4, %R3, asr #32”, operands); output_asm_insn (“it\tne”, operands); output_asm_insn (“movne\t%Q3, %4”, operands); } else { if (TARGET_THUMB2) output_asm_insn (“it\tne”, operands); output_asm_insn (“mvnne\t%Q3, %R3, asr #32”, operands); } output_asm_insn (“mov\t%0, %Q3, lsr #15”, operands); output_asm_insn (“orr\t%0, %0, %R3, asl #17”, operands); return ""; } [(set_attr “conds” “clob”) (set_attr “type” “multiple”) (set (attr “length”) (if_then_else (eq_attr “is_thumb” “yes”) (if_then_else (match_test “arm_restrict_it”) (const_int 40) (const_int 38)) (const_int 32)))])
;; Same goes for this.
(define_insn “usmulusa3” [(set (match_operand:USA 0 “s_register_operand” “=r”) (us_mult:USA (match_operand:USA 1 “s_register_operand” “r”) (match_operand:USA 2 “s_register_operand” “r”))) (clobber (match_scratch:DI 3 “=r”)) (clobber (match_scratch:SI 4 “=r”)) (clobber (reg:CC CC_REGNUM))] “TARGET_32BIT && arm_arch6” { /* 16.16 * 16.16 -> 32.32. */ output_asm_insn (“umull\t%Q3, %R3, %1, %2”, operands);
if (TARGET_ARM) output_asm_insn (“msr\tAPSR_nzcvq, #0”, operands); else { output_asm_insn (“mov\t%4, #0”, operands); output_asm_insn (“msr\tAPSR_nzcvq, %4”, operands); }
/* We have: 31 high word 0 31 low word 0
[ i i i .... i i i ] [ f f f f ... f f ] | v [ i i ... i f ... f f ] Need 16 integral bits, so saturate at 16th bit of high word. */
output_asm_insn (“usat\t%R3, #16, %R3”, operands); output_asm_insn (“mrs\t%4, APSR”, operands); output_asm_insn (“tst\t%4, #1<<27”, operands); if (arm_restrict_it) { output_asm_insn (“sbfx\t%4, %R3, #15, #1”, operands); output_asm_insn (“it\tne”, operands); output_asm_insn (“movne\t%Q3, %4”, operands); } else { if (TARGET_THUMB2) output_asm_insn (“it\tne”, operands); output_asm_insn (“sbfxne\t%Q3, %R3, #15, #1”, operands); } output_asm_insn (“lsr\t%0, %Q3, #16”, operands); output_asm_insn (“orr\t%0, %0, %R3, asl #16”, operands); return ""; } [(set_attr “conds” “clob”) (set_attr “type” “multiple”) (set (attr “length”) (if_then_else (eq_attr “is_thumb” “yes”) (if_then_else (match_test “arm_restrict_it”) (const_int 40) (const_int 38)) (const_int 32)))])
(define_expand “mulha3” [(set (match_operand:HA 0 “s_register_operand” "") (mult:HA (match_operand:HA 1 “s_register_operand” "") (match_operand:HA 2 “s_register_operand” "")))] “TARGET_DSP_MULTIPLY && arm_arch_thumb2” { rtx tmp = gen_reg_rtx (SImode);
emit_insn (gen_mulhisi3 (tmp, gen_lowpart (HImode, operands[1]), gen_lowpart (HImode, operands[2]))); emit_insn (gen_extv (gen_lowpart (SImode, operands[0]), tmp, GEN_INT (16), GEN_INT (7)));
DONE; })
(define_expand “muluha3” [(set (match_operand:UHA 0 “s_register_operand” "") (mult:UHA (match_operand:UHA 1 “s_register_operand” "") (match_operand:UHA 2 “s_register_operand” "")))] “TARGET_DSP_MULTIPLY” { rtx tmp1 = gen_reg_rtx (SImode); rtx tmp2 = gen_reg_rtx (SImode); rtx tmp3 = gen_reg_rtx (SImode);
/* 8.8 * 8.8 -> 16.16 multiply. */ emit_insn (gen_zero_extendhisi2 (tmp1, gen_lowpart (HImode, operands[1]))); emit_insn (gen_zero_extendhisi2 (tmp2, gen_lowpart (HImode, operands[2]))); emit_insn (gen_mulsi3 (tmp3, tmp1, tmp2)); emit_insn (gen_extzv (gen_lowpart (SImode, operands[0]), tmp3, GEN_INT (16), GEN_INT (8)));
DONE; })
(define_expand “ssmulha3” [(set (match_operand:HA 0 “s_register_operand” "") (ss_mult:HA (match_operand:HA 1 “s_register_operand” "") (match_operand:HA 2 “s_register_operand” "")))] “TARGET_32BIT && TARGET_DSP_MULTIPLY && arm_arch6” { rtx tmp = gen_reg_rtx (SImode); rtx rshift;
emit_insn (gen_mulhisi3 (tmp, gen_lowpart (HImode, operands[1]), gen_lowpart (HImode, operands[2])));
rshift = gen_rtx_ASHIFTRT (SImode, tmp, GEN_INT (7));
emit_insn (gen_rtx_SET (VOIDmode, gen_lowpart (HImode, operands[0]), gen_rtx_SS_TRUNCATE (HImode, rshift)));
DONE; })
(define_expand “usmuluha3” [(set (match_operand:UHA 0 “s_register_operand” "") (us_mult:UHA (match_operand:UHA 1 “s_register_operand” "") (match_operand:UHA 2 “s_register_operand” "")))] “TARGET_INT_SIMD” { rtx tmp1 = gen_reg_rtx (SImode); rtx tmp2 = gen_reg_rtx (SImode); rtx tmp3 = gen_reg_rtx (SImode); rtx rshift_tmp = gen_reg_rtx (SImode);
/* Note: there's no smul[bt][bt] equivalent for unsigned multiplies. Use a normal 32x32->32-bit multiply instead. */ emit_insn (gen_zero_extendhisi2 (tmp1, gen_lowpart (HImode, operands[1]))); emit_insn (gen_zero_extendhisi2 (tmp2, gen_lowpart (HImode, operands[2])));
emit_insn (gen_mulsi3 (tmp3, tmp1, tmp2));
/* The operand to “usat” is signed, so we cannot use the “..., asr #8” form of that instruction since the multiplication result TMP3 may have the top bit set, thus be negative and saturate to zero. Use a separate logical right-shift instead. */ emit_insn (gen_lshrsi3 (rshift_tmp, tmp3, GEN_INT (8))); emit_insn (gen_arm_usatsihi (gen_lowpart (HImode, operands[0]), rshift_tmp));
DONE; })
(define_insn “arm_ssatsihi_shift” [(set (match_operand:HI 0 “s_register_operand” “=r”) (ss_truncate:HI (match_operator:SI 1 “sat_shift_operator” [(match_operand:SI 2 “s_register_operand” “r”) (match_operand:SI 3 “immediate_operand” “I”)])))] “TARGET_32BIT && arm_arch6” “ssat%?\t%0, #16, %2%S1” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “shift” “1”) (set_attr “type” “alu_shift_imm”)])
(define_insn “arm_usatsihi” [(set (match_operand:HI 0 “s_register_operand” “=r”) (us_truncate:HI (match_operand:SI 1 “s_register_operand”)))] “TARGET_INT_SIMD” “usat%?\t%0, #16, %1” [(set_attr “predicable” “yes”) (set_attr “predicable_short_it” “no”) (set_attr “type” “alu_imm”)] )