;; ARM Cortex-R4 scheduling description. ;; Copyright (C) 2007-2015 Free Software Foundation, Inc. ;; Contributed by CodeSourcery.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version.
;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details.
;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.
(define_automaton “cortex_r4”)
;; We approximate the dual-issue constraints of this core using four ;; “issue units” and a reservation matrix as follows. The numbers indicate ;; the instruction groups' preferences in order. Multiple entries for ;; the same numbered preference indicate units that must be reserved ;; together. ;; ;; Issue unit: A B C ALU ;; ;; ALU w/o reg shift 1st 2nd 1st and 2nd ;; ALU w/ reg shift 1st 2nd 2nd 1st and 2nd ;; Moves 1st 2nd 2nd ;; Multiplication 1st 1st ;; Division 1st 1st ;; Load/store single 1st 1st ;; Other load/store 1st 1st ;; Branches 1st
(define_cpu_unit “cortex_r4_issue_a” “cortex_r4”) (define_cpu_unit “cortex_r4_issue_b” “cortex_r4”) (define_cpu_unit “cortex_r4_issue_c” “cortex_r4”) (define_cpu_unit “cortex_r4_issue_alu” “cortex_r4”)
(define_reservation “cortex_r4_alu” “(cortex_r4_issue_a+cortex_r4_issue_alu)|
(cortex_r4_issue_b+cortex_r4_issue_alu)”) (define_reservation “cortex_r4_alu_shift_reg” “(cortex_r4_issue_a+cortex_r4_issue_alu)|
(cortex_r4_issue_b+cortex_r4_issue_c+
cortex_r4_issue_alu)”) (define_reservation “cortex_r4_mov” “cortex_r4_issue_a|(cortex_r4_issue_b+
cortex_r4_issue_alu)”) (define_reservation “cortex_r4_mul” “cortex_r4_issue_a+cortex_r4_issue_alu”) (define_reservation “cortex_r4_mul_2” “(cortex_r4_issue_a+cortex_r4_issue_alu)*2”) ;; Division instructions execute out-of-order with respect to the ;; rest of the pipeline and only require reservations on their first and ;; final cycles. (define_reservation “cortex_r4_div_9” “cortex_r4_issue_a+cortex_r4_issue_alu,
nothing*7,
cortex_r4_issue_a+cortex_r4_issue_alu”) (define_reservation “cortex_r4_div_10” “cortex_r4_issue_a+cortex_r4_issue_alu,
nothing*8,
cortex_r4_issue_a+cortex_r4_issue_alu”) (define_reservation “cortex_r4_load_store” “cortex_r4_issue_a+cortex_r4_issue_c”) (define_reservation “cortex_r4_load_store_2” “(cortex_r4_issue_a+cortex_r4_issue_b)*2”) (define_reservation “cortex_r4_branch” “cortex_r4_issue_b”)
;; We assume that all instructions are unconditional.
;; Data processing instructions. Moves without shifts are kept separate ;; for the purposes of the dual-issue constraints above. (define_insn_reservation “cortex_r4_alu” 2 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “alu_imm,alus_imm,logic_imm,logics_imm,
alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
adr,bfm,clz,rbit,rev,
shift_imm,shift_reg,mvn_imm,mvn_reg”)) “cortex_r4_alu”)
(define_insn_reservation “cortex_r4_mov” 2 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “mov_imm,mov_reg”)) “cortex_r4_mov”)
(define_insn_reservation “cortex_r4_alu_shift” 2 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “alu_shift_imm,alus_shift_imm,
logic_shift_imm,logics_shift_imm,
extend,mov_shift,mvn_shift”)) “cortex_r4_alu”)
(define_insn_reservation “cortex_r4_alu_shift_reg” 2 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift_reg,mvn_shift_reg,
mrs,multiple,no_insn”)) “cortex_r4_alu_shift_reg”)
;; An ALU instruction followed by an ALU instruction with no early dep. (define_bypass 1 “cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,
cortex_r4_mov” “cortex_r4_alu”) (define_bypass 1 “cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,
cortex_r4_mov” “cortex_r4_alu_shift” “arm_no_early_alu_shift_dep”) (define_bypass 1 “cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,
cortex_r4_mov” “cortex_r4_alu_shift_reg” “arm_no_early_alu_shift_value_dep”)
;; In terms of availabilities, a consumer mov could theoretically be ;; issued together with a producer ALU instruction, without stalls. ;; In practice this cannot happen because mov;add (in that order) is not ;; eligible for dual issue and furthermore dual issue is not permitted ;; when a dependency is involved. We therefore note it as latency one. ;; A mov followed by another of the same is also latency one. (define_bypass 1 “cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,
cortex_r4_mov” “cortex_r4_mov”)
;; qadd, qdadd, qsub and qdsub are not currently emitted, and neither are ;; media data processing instructions nor sad instructions.
;; Multiplication instructions.
(define_insn_reservation “cortex_r4_mul_4” 4 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “mul,smmul”)) “cortex_r4_mul_2”)
(define_insn_reservation “cortex_r4_mul_3” 3 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “smulxy,smulwy,smuad,smusd”)) “cortex_r4_mul”)
(define_insn_reservation “cortex_r4_mla_4” 4 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “mla,smmla”)) “cortex_r4_mul_2”)
(define_insn_reservation “cortex_r4_mla_3” 3 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “smlaxy,smlawy,smlad,smlsd”)) “cortex_r4_mul”)
(define_insn_reservation “cortex_r4_smlald” 3 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “smlald,smlsld”)) “cortex_r4_mul”)
(define_insn_reservation “cortex_r4_mull” 4 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “smull,umull,umlal,umaal”)) “cortex_r4_mul_2”)
;; A multiply or an MLA with a single-register result, followed by an ;; MLA with an accumulator dependency, has its result forwarded. (define_bypass 2 “cortex_r4_mul_3,cortex_r4_mla_3” “cortex_r4_mla_3,cortex_r4_mla_4” “arm_mac_accumulator_is_mul_result”)
(define_bypass 3 “cortex_r4_mul_4,cortex_r4_mla_4” “cortex_r4_mla_3,cortex_r4_mla_4” “arm_mac_accumulator_is_mul_result”)
;; A multiply followed by an ALU instruction needing the multiply ;; result only at ALU has lower latency than one needing it at Shift. (define_bypass 2 “cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald” “cortex_r4_alu”) (define_bypass 2 “cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald” “cortex_r4_alu_shift” “arm_no_early_alu_shift_dep”) (define_bypass 2 “cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald” “cortex_r4_alu_shift_reg” “arm_no_early_alu_shift_value_dep”) (define_bypass 3 “cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull” “cortex_r4_alu”) (define_bypass 3 “cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull” “cortex_r4_alu_shift” “arm_no_early_alu_shift_dep”) (define_bypass 3 “cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull” “cortex_r4_alu_shift_reg” “arm_no_early_alu_shift_value_dep”)
;; A multiply followed by a mov has one cycle lower latency again. (define_bypass 1 “cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald” “cortex_r4_mov”) (define_bypass 2 “cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull” “cortex_r4_mov”)
;; We guess that division of A/B using sdiv or udiv, on average, ;; is performed with B having ten more leading zeros than A. ;; This gives a latency of nine for udiv and ten for sdiv. (define_insn_reservation “cortex_r4_udiv” 9 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “udiv”)) “cortex_r4_div_9”)
(define_insn_reservation “cortex_r4_sdiv” 10 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “sdiv”)) “cortex_r4_div_10”)
;; Branches. We assume correct prediction.
(define_insn_reservation “cortex_r4_branch” 0 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “branch”)) “cortex_r4_branch”)
;; Call latencies are not predictable. A semi-arbitrary very large ;; number is used as “positive infinity” so that everything should be ;; finished by the time of return. (define_insn_reservation “cortex_r4_call” 32 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “call”)) “nothing”)
;; Status register access instructions are not currently emitted.
;; Load instructions. ;; We do not model the “addr_md_3cycle” cases and assume that ;; accesses following are correctly aligned.
(define_insn_reservation “cortex_r4_load_1_2” 3 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “load1,load2”)) “cortex_r4_load_store”)
(define_insn_reservation “cortex_r4_load_3_4” 4 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “load3,load4”)) “cortex_r4_load_store_2”)
;; If a producing load is followed by an instruction consuming only ;; as a Normal Reg, there is one fewer cycle of latency.
(define_bypass 2 “cortex_r4_load_1_2” “cortex_r4_alu”) (define_bypass 2 “cortex_r4_load_1_2” “cortex_r4_alu_shift” “arm_no_early_alu_shift_dep”) (define_bypass 2 “cortex_r4_load_1_2” “cortex_r4_alu_shift_reg” “arm_no_early_alu_shift_value_dep”)
(define_bypass 3 “cortex_r4_load_3_4” “cortex_r4_alu”) (define_bypass 3 “cortex_r4_load_3_4” “cortex_r4_alu_shift” “arm_no_early_alu_shift_dep”) (define_bypass 3 “cortex_r4_load_3_4” “cortex_r4_alu_shift_reg” “arm_no_early_alu_shift_value_dep”)
;; If a producing load is followed by an instruction consuming only ;; as a Late Reg, there are two fewer cycles of latency. Such consumer ;; instructions are moves and stores.
(define_bypass 1 “cortex_r4_load_1_2” “cortex_r4_mov,cortex_r4_store_1_2,cortex_r4_store_3_4”) (define_bypass 2 “cortex_r4_load_3_4” “cortex_r4_mov,cortex_r4_store_1_2,cortex_r4_store_3_4”)
;; If a producer's result is required as the base or offset of a load, ;; there is an extra cycle latency.
(define_bypass 3 “cortex_r4_alu,cortex_r4_mov,cortex_r4_alu_shift,
cortex_r4_alu_shift_reg” “cortex_r4_load_1_2,cortex_r4_load_3_4”)
(define_bypass 4 “cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald” “cortex_r4_load_1_2,cortex_r4_load_3_4”)
(define_bypass 5 “cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull” “cortex_r4_load_1_2,cortex_r4_load_3_4”)
;; Store instructions.
(define_insn_reservation “cortex_r4_store_1_2” 0 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “store1,store2”)) “cortex_r4_load_store”)
(define_insn_reservation “cortex_r4_store_3_4” 0 (and (eq_attr “tune_cortexr4” “yes”) (eq_attr “type” “store3,store4”)) “cortex_r4_load_store_2”)