blob: 58a7ac63a8983e687dd0c1773c4811f7b151e64b [file] [log] [blame]
/* Target Definitions for TI C6X.
Copyright (C) 2010-2015 Free Software Foundation, Inc.
Contributed by Andrew Jenner <andrew@codesourcery.com>
Contributed by Bernd Schmidt <bernds@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_C6X_H
#define GCC_C6X_H
/* Feature bit definitions that enable specific insns. */
#define C6X_INSNS_C62X 1
#define C6X_INSNS_C64X 2
#define C6X_INSNS_C64XP 4
#define C6X_INSNS_C67X 8
#define C6X_INSNS_C67XP 16
#define C6X_INSNS_C674X 32
#define C6X_INSNS_ATOMIC 64
#define C6X_INSNS_ALL_CPU_BITS 127
#define C6X_DEFAULT_INSN_MASK \
(C6X_INSNS_C62X | C6X_INSNS_C64X | C6X_INSNS_C64XP)
/* A mask of allowed insn types, as defined above. */
extern unsigned long c6x_insn_mask;
/* Value of -march= */
extern c6x_cpu_t c6x_arch;
#define C6X_DEFAULT_ARCH C6X_CPU_C64XP
/* True if the target has C64x instructions. */
#define TARGET_INSNS_64 ((c6x_insn_mask & C6X_INSNS_C64X) != 0)
/* True if the target has C64x+ instructions. */
#define TARGET_INSNS_64PLUS ((c6x_insn_mask & C6X_INSNS_C64XP) != 0)
/* True if the target has C67x instructions. */
#define TARGET_INSNS_67 ((c6x_insn_mask & C6X_INSNS_C67X) != 0)
/* True if the target has C67x+ instructions. */
#define TARGET_INSNS_67PLUS ((c6x_insn_mask & C6X_INSNS_C67XP) != 0)
/* True if the target supports doubleword loads. */
#define TARGET_LDDW (TARGET_INSNS_64 || TARGET_INSNS_67)
/* True if the target supports doubleword loads. */
#define TARGET_STDW TARGET_INSNS_64
/* True if the target supports the MPY32 family of instructions. */
#define TARGET_MPY32 TARGET_INSNS_64PLUS
/* True if the target has floating point hardware. */
#define TARGET_FP TARGET_INSNS_67
/* True if the target has C67x+ floating point extensions. */
#define TARGET_FP_EXT TARGET_INSNS_67PLUS
#define TARGET_DEFAULT 0
/* Run-time Target. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_assert ("machine=tic6x"); \
builtin_assert ("cpu=tic6x"); \
builtin_define ("__TMS320C6X__"); \
builtin_define ("_TMS320C6X"); \
\
if (TARGET_DSBT) \
builtin_define ("__DSBT__"); \
\
if (TARGET_BIG_ENDIAN) \
builtin_define ("_BIG_ENDIAN"); \
else \
builtin_define ("_LITTLE_ENDIAN"); \
\
switch (c6x_arch) \
{ \
case C6X_CPU_C62X: \
builtin_define ("_TMS320C6200"); \
break; \
\
case C6X_CPU_C64XP: \
builtin_define ("_TMS320C6400_PLUS"); \
/* ... fall through ... */ \
case C6X_CPU_C64X: \
builtin_define ("_TMS320C6400"); \
break; \
\
case C6X_CPU_C67XP: \
builtin_define ("_TMS320C6700_PLUS"); \
/* ... fall through ... */ \
case C6X_CPU_C67X: \
builtin_define ("_TMS320C6700"); \
break; \
\
case C6X_CPU_C674X: \
builtin_define ("_TMS320C6740"); \
builtin_define ("_TMS320C6700_PLUS"); \
builtin_define ("_TMS320C6700"); \
builtin_define ("_TMS320C6400_PLUS"); \
builtin_define ("_TMS320C6400"); \
break; \
} \
} while (0)
#define OPTION_DEFAULT_SPECS \
{"arch", "%{!march=*:-march=%(VALUE)}" }
/* Storage Layout. */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
#define REG_WORDS_BIG_ENDIAN 0
#define UNITS_PER_WORD 4
#define PARM_BOUNDARY 8
#define STACK_BOUNDARY 64
#define FUNCTION_BOUNDARY 32
#define BIGGEST_ALIGNMENT 64
#define STRICT_ALIGNMENT 1
/* The ABI requires static arrays must be at least 8 byte aligned.
Really only externally visible arrays must be aligned this way, as
only those are directly visible from another compilation unit. But
we don't have that information available here. */
#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
(((ALIGN) < BITS_PER_UNIT * 8 && TREE_CODE (TYPE) == ARRAY_TYPE) \
? BITS_PER_UNIT * 8 : (ALIGN))
/* Type Layout. */
#define DEFAULT_SIGNED_CHAR 1
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
/* Registers. */
#define FIRST_PSEUDO_REGISTER 67
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1}
#define CALL_USED_REGISTERS \
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1}
/* This lists call-used non-predicate registers first, followed by call-used
registers, followed by predicate registers. We want to avoid allocating
the predicate registers for other uses as much as possible. */
#define REG_ALLOC_ORDER \
{ \
REG_A0, REG_A3, REG_A4, REG_A5, REG_A6, REG_A7, REG_A8, REG_A9, \
REG_A16, REG_A17, REG_A18, REG_A19, REG_A20, REG_A21, REG_A22, REG_A23, \
REG_A24, REG_A25, REG_A26, REG_A27, REG_A28, REG_A29, REG_A30, REG_A31, \
REG_B4, REG_B5, REG_B6, REG_B7, REG_B8, REG_B9, REG_B16, \
REG_B17, REG_B18, REG_B19, REG_B20, REG_B21, REG_B22, REG_B23, REG_B24, \
REG_B25, REG_B26, REG_B27, REG_B28, REG_B29, REG_B30, REG_B31, \
REG_A10, REG_A11, REG_A12, REG_A13, REG_A14, REG_A15, \
REG_B3, REG_B10, REG_B11, REG_B12, REG_B13, REG_B14, REG_B15, \
REG_A1, REG_A2, REG_B0, REG_B1, REG_B2, REG_ILC \
}
#define HARD_REGNO_NREGS(regno, mode) \
((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)
#define HARD_REGNO_MODE_OK(reg, mode) (GET_MODE_SIZE (mode) <= UNITS_PER_WORD \
? 1 : ((reg) & 1) == 0)
#define MODES_TIEABLE_P(mode1, mode2) \
((mode1) == (mode2) || \
(GET_MODE_SIZE (mode1) <= UNITS_PER_WORD && \
GET_MODE_SIZE (mode2) <= UNITS_PER_WORD))
/* Register Classes. */
enum reg_class
{
NO_REGS,
PREDICATE_A_REGS,
PREDICATE_B_REGS,
PREDICATE_REGS,
PICREG,
SPREG,
CALL_USED_B_REGS,
NONPREDICATE_A_REGS,
NONPREDICATE_B_REGS,
NONPREDICATE_REGS,
A_REGS,
B_REGS,
GENERAL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES { \
"NO_REGS", \
"PREDICATE_A_REGS", \
"PREDICATE_B_REGS", \
"PREDICATE_REGS", \
"PICREG", \
"SPREG", \
"CALL_USED_B_REGS", \
"NONPREDICATE_A_REGS", \
"NONPREDICATE_B_REGS", \
"NONPREDICATE_REGS", \
"A_REGS", \
"B_REGS", \
"GENERAL_REGS", \
"ALL_REGS" }
#define REG_CLASS_CONTENTS \
{ \
/* NO_REGS. */ \
{ 0x00000000, 0x00000000, 0 }, \
/* PREDICATE_A_REGS. */ \
{ 0x00000006, 0x00000000, 0 }, \
/* PREDICATE_B_REGS. */ \
{ 0x00000000, 0x00000007, 0 }, \
/* PREDICATE_REGS. */ \
{ 0x00000006, 0x00000007, 0 }, \
/* PICREG. */ \
{ 0x00000000, 0x00004000, 0 }, \
/* SPREG. */ \
{ 0x00000000, 0x00008000, 0 }, \
/* CALL_USED_B_REGS. */ \
{ 0x00000000, 0xFFFF03FF, 0 }, \
/* NONPREDICATE_A_REGS. */ \
{ 0xFFFFFFF9, 0x00000000, 0 }, \
/* NONPREDICATE_B_REGS. */ \
{ 0x00000000, 0xFFFFFFF8, 0 }, \
/* NONPREDICATE_REGS. */ \
{ 0xFFFFFFF9, 0xFFFFFFF8, 0 }, \
/* A_REGS. */ \
{ 0xFFFFFFFF, 0x00000000, 3 }, \
/* B_REGS. */ \
{ 0x00000000, 0xFFFFFFFF, 3 }, \
/* GENERAL_REGS. */ \
{ 0xFFFFFFFF, 0xFFFFFFFF, 3 }, \
/* ALL_REGS. */ \
{ 0xFFFFFFFF, 0xFFFFFFFF, 7 }, \
}
#define A_REGNO_P(N) ((N) <= REG_A31)
#define B_REGNO_P(N) ((N) >= REG_B0 && (N) <= REG_B31)
#define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
#define CROSS_OPERANDS(X0,X1) \
(A_REG_P (X0) == A_REG_P (X1) ? CROSS_N : CROSS_Y)
#define REGNO_REG_CLASS(reg) \
((reg) >= REG_A1 && (reg) <= REG_A2 ? PREDICATE_A_REGS \
: (reg) == REG_A0 && TARGET_INSNS_64 ? PREDICATE_A_REGS \
: (reg) >= REG_B0 && (reg) <= REG_B2 ? PREDICATE_B_REGS \
: A_REGNO_P (reg) ? NONPREDICATE_A_REGS \
: call_used_regs[reg] ? CALL_USED_B_REGS : B_REGS)
#define BASE_REG_CLASS ALL_REGS
#define INDEX_REG_CLASS ALL_REGS
#define REGNO_OK_FOR_BASE_STRICT_P(X) \
((X) < FIRST_PSEUDO_REGISTER \
|| (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
#define REGNO_OK_FOR_BASE_NONSTRICT_P(X) 1
#define REGNO_OK_FOR_INDEX_STRICT_P(X) \
((X) < FIRST_PSEUDO_REGISTER \
|| (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
#define REGNO_OK_FOR_INDEX_NONSTRICT_P(X) 1
#ifdef REG_OK_STRICT
#define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
#define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_STRICT_P (X)
#else
#define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
#define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (X)
#endif
#define CLASS_MAX_NREGS(class, mode) \
((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
#define REGNO_OK_FOR_INDIRECT_JUMP_P(REGNO, MODE) B_REGNO_P (REGNO)
/* Stack and Calling. */
/* SP points to 4 bytes below the first word of the frame. */
#define STACK_POINTER_OFFSET 4
/* Likewise for AP (which is the incoming stack pointer). */
#define FIRST_PARM_OFFSET(fundecl) 4
#define STARTING_FRAME_OFFSET 0
#define FRAME_GROWS_DOWNWARD 1
#define STACK_GROWS_DOWNWARD
#define STACK_POINTER_REGNUM REG_B15
#define HARD_FRAME_POINTER_REGNUM REG_A15
/* These two always get eliminated in favour of the stack pointer
or the hard frame pointer. */
#define FRAME_POINTER_REGNUM REG_FRAME
#define ARG_POINTER_REGNUM REG_ARGP
#define PIC_OFFSET_TABLE_REGNUM REG_B14
/* We keep the stack pointer constant rather than using push/pop
instructions. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Before the prologue, the return address is in the B3 register. */
#define RETURN_ADDR_REGNO REG_B3
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNO)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (RETURN_ADDR_REGNO)
#define RETURN_ADDR_RTX(COUNT, FRAME) c6x_return_addr_rtx (COUNT)
#define INCOMING_FRAME_SP_OFFSET 0
#define ARG_POINTER_CFA_OFFSET(fundecl) 0
#define STATIC_CHAIN_REGNUM REG_A2
struct c6x_args {
/* Number of arguments to pass in registers. */
int nregs;
/* Number of arguments passed in registers so far. */
int count;
};
#define CUMULATIVE_ARGS struct c6x_args
#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
c6x_init_cumulative_args (&cum, fntype, libname, n_named_args)
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
(c6x_block_reg_pad_upward (MODE, TYPE, FIRST) ? upward : downward)
#define FUNCTION_ARG_REGNO_P(r) \
(((r) >= REG_A4 && (r) <= REG_A13) || ((r) >= REG_B4 && (r) <= REG_B13))
#define DEFAULT_PCC_STRUCT_RETURN 0
#define FUNCTION_PROFILER(file, labelno) \
fatal_error (input_location, \
"profiling is not yet implemented for this architecture")
/* Trampolines. */
#define TRAMPOLINE_SIZE 32
#define TRAMPOLINE_ALIGNMENT 256
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
((OFFSET) = c6x_initial_elimination_offset ((FROM), (TO)))
/* Addressing Modes. */
#define CONSTANT_ADDRESS_P(x) (CONSTANT_P(x) && GET_CODE(x) != CONST_DOUBLE)
#define MAX_REGS_PER_ADDRESS 2
#define HAVE_PRE_DECREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_INCREMENT 1
/* Register forms are available, but due to scaling we currently don't
support them. */
#define HAVE_PRE_MODIFY_DISP 1
#define HAVE_POST_MODIFY_DISP 1
#define LEGITIMATE_PIC_OPERAND_P(X) \
(!symbolic_operand (X, SImode))
struct GTY(()) machine_function
{
/* True if we expanded a sibling call. */
int contains_sibcall;
};
/* Costs. */
#define NO_FUNCTION_CSE 1
#define SLOW_BYTE_ACCESS 0
#define BRANCH_COST(speed_p, predictable_p) 6
/* Model costs for the vectorizer. */
/* Cost of conditional branch. */
#ifndef TARG_COND_BRANCH_COST
#define TARG_COND_BRANCH_COST 6
#endif
/* Cost of any scalar operation, excluding load and store. */
#ifndef TARG_SCALAR_STMT_COST
#define TARG_SCALAR_STMT_COST 1
#endif
/* Cost of scalar load. */
#undef TARG_SCALAR_LOAD_COST
#define TARG_SCALAR_LOAD_COST 2 /* load + rotate */
/* Cost of scalar store. */
#undef TARG_SCALAR_STORE_COST
#define TARG_SCALAR_STORE_COST 10
/* Cost of any vector operation, excluding load, store,
or vector to scalar operation. */
#undef TARG_VEC_STMT_COST
#define TARG_VEC_STMT_COST 1
/* Cost of vector to scalar operation. */
#undef TARG_VEC_TO_SCALAR_COST
#define TARG_VEC_TO_SCALAR_COST 1
/* Cost of scalar to vector operation. */
#undef TARG_SCALAR_TO_VEC_COST
#define TARG_SCALAR_TO_VEC_COST 1
/* Cost of aligned vector load. */
#undef TARG_VEC_LOAD_COST
#define TARG_VEC_LOAD_COST 1
/* Cost of misaligned vector load. */
#undef TARG_VEC_UNALIGNED_LOAD_COST
#define TARG_VEC_UNALIGNED_LOAD_COST 2
/* Cost of vector store. */
#undef TARG_VEC_STORE_COST
#define TARG_VEC_STORE_COST 1
/* Cost of vector permutation. */
#ifndef TARG_VEC_PERMUTE_COST
#define TARG_VEC_PERMUTE_COST 1
#endif
/* ttype entries (the only interesting data references used) are
sb-relative got-indirect (aka .ehtype). */
#define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
(((code) == 0 && (data) == 1) ? (DW_EH_PE_datarel | DW_EH_PE_indirect) \
: DW_EH_PE_absptr)
/* This should be the same as the definition in elfos.h, plus the call
to output special unwinding directives. */
#undef ASM_DECLARE_FUNCTION_NAME
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
do \
{ \
c6x_output_file_unwind (FILE); \
ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
ASM_OUTPUT_LABEL (FILE, NAME); \
} \
while (0)
/* This should be the same as the definition in elfos.h, plus the call
to output special unwinding directives. */
#undef ASM_DECLARE_FUNCTION_SIZE
#define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
c6x_function_end (STREAM, NAME)
/* Arbitrarily choose A4/A5. */
#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) + 4 : INVALID_REGNUM)
/* The register that holds the return address in exception handlers. */
#define C6X_EH_STACKADJ_REGNUM 3
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, C6X_EH_STACKADJ_REGNUM)
/* Assembler Format. */
#define DWARF2_ASM_LINE_DEBUG_INFO 1
#undef ASM_APP_ON
#define ASM_APP_ON "\t; #APP \n"
#undef ASM_APP_OFF
#define ASM_APP_OFF "\t; #NO_APP \n"
#define ASM_OUTPUT_COMMON(stream, name, size, rounded)
#define ASM_OUTPUT_LOCAL(stream, name, size, rounded)
#define GLOBAL_ASM_OP "\t.global\t"
#define REGISTER_NAMES \
{ \
"A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", \
"A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15", \
"A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", \
"A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", \
"B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", \
"B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15", \
"B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", \
"B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", \
"FP", "ARGP", "ILC" }
#define DBX_REGISTER_NUMBER(N) (dbx_register_map[(N)])
extern unsigned const dbx_register_map[FIRST_PSEUDO_REGISTER];
#define FINAL_PRESCAN_INSN c6x_final_prescan_insn
#define TEXT_SECTION_ASM_OP ".text;"
#define DATA_SECTION_ASM_OP ".data;"
#define ASM_OUTPUT_ALIGN(stream, power) \
do \
{ \
if (power) \
fprintf ((stream), "\t.align\t%d\n", power); \
} \
while (0)
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { char __buf[256]; \
fprintf (FILE, "\t.long\t"); \
ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
assemble_name (FILE, __buf); \
fputc ('\n', FILE); \
} while (0)
/* Determine whether to place EXP (an expression or a decl) should be
placed into one of the small data sections. */
#define PLACE_IN_SDATA_P(EXP) \
(c6x_sdata_mode == C6X_SDATA_NONE ? false \
: c6x_sdata_mode == C6X_SDATA_ALL ? true \
: !AGGREGATE_TYPE_P (TREE_TYPE (EXP)))
#define SCOMMON_ASM_OP "\t.scomm\t"
#undef ASM_OUTPUT_ALIGNED_DECL_COMMON
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
do \
{ \
if (DECL != NULL && PLACE_IN_SDATA_P (DECL)) \
fprintf ((FILE), "%s", SCOMMON_ASM_OP); \
else \
fprintf ((FILE), "%s", COMMON_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
} \
while (0)
/* This says how to output assembler code to declare an
uninitialized internal linkage data object. */
#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
do { \
if (PLACE_IN_SDATA_P (DECL)) \
switch_to_section (sbss_section); \
else \
switch_to_section (bss_section); \
ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object"); \
if (!flag_inhibit_size_directive) \
ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
ASM_OUTPUT_ALIGN ((FILE), exact_log2((ALIGN) / BITS_PER_UNIT)); \
ASM_OUTPUT_LABEL(FILE, NAME); \
ASM_OUTPUT_SKIP((FILE), (SIZE) ? (SIZE) : 1); \
} while (0)
#define CASE_VECTOR_PC_RELATIVE flag_pic
#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
#define ADDR_VEC_ALIGN(VEC) (JUMP_TABLES_IN_TEXT_SECTION ? 5 : 2)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { char buf[100]; \
fputs ("\t.long ", FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
assemble_name (FILE, buf); \
putc ('-', FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
assemble_name (FILE, buf); \
putc ('\n', FILE); \
} while (0)
/* Misc. */
#define CASE_VECTOR_MODE SImode
#define MOVE_MAX 4
#define MOVE_RATIO(SPEED) 4
#define TRULY_NOOP_TRUNCATION(outprec, inprec) 1
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
#define Pmode SImode
#define FUNCTION_MODE QImode
#define CPU_UNITS_QUERY 1
extern int c6x_initial_flag_pic;
#endif /* GCC_C6X_H */