blob: e00802df2dc59f696668e85f569ccbab51209772 [file] [log] [blame]
/* Definitions of target machine for GNU compiler, for CR16.
Copyright (C) 2012-2015 Free Software Foundation, Inc.
Contributed by KPIT Cummins Infosystems Limited.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_CR16_H
#define GCC_CR16_H
#define OBJECT_FORMAT_ELF
/* Controlling the driver. */
/* The GNU C++ standard library requires that these macros be defined. */
#undef CPLUSPLUS_CPP_SPEC
#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crt1.o%s crti.o%s crtbegin.o%s crtlibid.o%s"
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "crtend.o%s crtn.o%s"
#undef MATH_LIBRARY
#define MATH_LIBRARY ""
#undef LIB_SPEC
#define LIB_SPEC "-( -lc %{msim*:-lsim}%{!msim*:-lnosys} -) \
%{msim*:%{!T*:-Tsim.ld}} \
%{!T*:%{!msim*: %{-Telf32cr16.x}}}"
/* Run-time target specification. */
#ifndef TARGET_CPU_CPP_BUILTINS
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__CR__"); \
builtin_define ("__CR16__"); \
builtin_define ("__CR16C__"); \
if (TARGET_CR16CP) \
builtin_define ("__CR16CP__"); \
else \
builtin_define ("__CR16CSTD__"); \
if (CR16_TARGET_DATA_NEAR) \
builtin_define ("__DATA_NEAR__"); \
if (CR16_TARGET_DATA_MEDIUM) \
builtin_define ("__DATA_MEDIUM__"); \
if (CR16_TARGET_DATA_FAR) \
builtin_define ("__DATA_FAR__"); \
if (TARGET_INT32) \
builtin_define ("__INT32__"); \
} \
while (0)
#endif
/* Force the generation of dwarf .debug_frame sections even if not
compiling -g. This guarantees that we can unwind the stack. */
#define DWARF2_FRAME_INFO 1
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
/* Generate .file/.loc directives, so that the assembler generates the
line table. */
#define DWARF2_ASM_LINE_DEBUG_INFO 1
#define CR16_TARGET_DATA_NEAR cr16_is_data_model (DM_NEAR)
#define CR16_TARGET_DATA_MEDIUM cr16_is_data_model (DM_DEFAULT)
#define CR16_TARGET_DATA_FAR cr16_is_data_model (DM_FAR)
/* Storage layout. */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 0
#define WORDS_BIG_ENDIAN 0
#define UNITS_PER_WORD 2
/* Units per 32-bit (DWORD). */
#define CR16_UNITS_PER_DWORD 4
#define POINTER_SIZE 32
#define PARM_BOUNDARY 16
#define STACK_BOUNDARY (MAX (BIGGEST_ALIGNMENT, PARM_BOUNDARY))
#define FUNCTION_BOUNDARY BIGGEST_ALIGNMENT
/* Biggest alignment on CR16C+ is 32-bit as internal bus is AMBA based
where as CR16C is proprietary internal bus architecture. */
#define BIGGEST_ALIGNMENT ((TARGET_CR16CP) ? 32 : 16)
#define MAX_FIXED_MODE_SIZE 64
/* In CR16 arrays of chars are word-aligned, so strcpy () will be faster. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(((TREE_CODE (TYPE) == ARRAY_TYPE) \
&& (TYPE_MODE (TREE_TYPE (TYPE)) == QImode) \
&& ((ALIGN) < BITS_PER_WORD)) \
? (BITS_PER_WORD) : (ALIGN))
/* In CR16 strings are word-aligne; strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(CONSTANT, ALIGN) \
(((TREE_CODE (CONSTANT) == STRING_CST) && ((ALIGN) < BITS_PER_WORD)) \
? (BITS_PER_WORD) : (ALIGN))
#define STRICT_ALIGNMENT 0
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Layout of source language data types. */
#define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
#define DEFAULT_SIGNED_CHAR 1
#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long int"
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
/* By default, the C++ compiler will use the lowest bit of the pointer
to function to indicate a pointer-to-member-function points to a
virtual member function. However, in CR architecture FUNCTION_BOUNDARY
indicates function addresses are always even, but function pointers can be
odd (after right-shifting them when loading them into a register), and the
default doesn't work. In that case, the lowest bit of the delta
field will be used (the remainder of the field is shifted to the left). */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
values must be in memory. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Register usage. */
/* First 32-bit register is R12. */
#define CR16_FIRST_DWORD_REGISTER 12
#define FIRST_PSEUDO_REGISTER 16
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the CR16, only the stack pointer (r15) is such. */
#define FIXED_REGISTERS \
{ \
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* r11 r12 r13 ra sp. */ \
0, 0, 0, 0, 1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
On the CR16, calls clobbers r0-r6 (scratch registers),
ra (the return address) and sp (the stack pointer). */
#define CALL_USED_REGISTERS \
{ \
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10. */ \
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
/* r11 r12 r13 ra sp. */ \
0, 0, 0, 1, 1 \
}
/* Returns 1 if the register is longer than word size, 0 otherwise. */
#define LONG_REG_P(REGNO) \
(HARD_REGNO_NREGS (REGNO, \
GET_MODE_WIDER_MODE (smallest_mode_for_size \
(BITS_PER_WORD, MODE_INT))) == 1)
#define HARD_REGNO_NREGS(REGNO, MODE) \
((REGNO >= CR16_FIRST_DWORD_REGISTER) \
? ((GET_MODE_SIZE (MODE) + CR16_UNITS_PER_DWORD - 1) / CR16_UNITS_PER_DWORD)\
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Nonzero if it is permissible to store a value of mode @var{mode} in hard
register number @var{regno} (or in several registers starting with that
one). On the CR16 architecture, all registers can hold all modes,
except that double precision floats (and double ints) must fall on
even-register boundaries. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) cr16_hard_regno_mode_ok (REGNO, MODE)
#define NOTICE_UPDATE_CC(EXP, INSN) \
notice_update_cc ((EXP))
/* Interrupt functions can only use registers that have already been
saved by the prologue, even if they would normally be call-clobbered
Check if sizes are same and then check if it is possible to rename. */
#define HARD_REGNO_RENAME_OK(SRC, DEST) \
(!cr16_interrupt_function_p () || (df_regs_ever_live_p (DEST)))
/* Exception handling stuff. */
/*To ensure correct dwarf unwinding. */
#define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((optimize ("no-gcse","no-dse")))
#define gen_rtx_RA gen_rtx_REG (Pmode, RETURN_ADDRESS_REGNUM)
/* Use (r8,r7) and (r10,r9) to pass exception handling information. */
#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N*2 + 7) : INVALID_REGNUM)
#define DWARF2_UNWIND_INFO 1
/* (r5,r4) holds a stack adjustment for returning to a handler. */
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 4)
#define EH_RETURN_HANDLER_RTX \
gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, -4))
#define INCOMING_RETURN_ADDR_RTX gen_rtx_RA
#define DWARF_FRAME_RETURN_COLUMN \
DWARF_FRAME_REGNUM (RETURN_ADDRESS_REGNUM)
#define INCOMING_FRAME_SP_OFFSET 0
#define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(0 == COUNT) ? gen_rtx_PLUS (Pmode, gen_rtx_RA, gen_rtx_RA) \
: const0_rtx
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
enum reg_class
{
NO_REGS,
SHORT_REGS,
LONG_REGS,
NOSP_REGS,
DOUBLE_BASE_REGS,
GENERAL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"SHORT_REGS", \
"LONG_REGS", \
"NOSP_REGS", \
"DOUBLE_BASE_REGS", \
"GENERAL_REGS", \
"ALL_REGS" \
}
#define REG_CLASS_CONTENTS \
{ \
{0x00000000}, /* NO_REGS */ \
{0x00000FFF}, /* SHORT_REGS : 0 - 11 */ \
{0x0000F000}, /* LONG_REGS : 12 - 15 */ \
{0x00007FFF}, /* NOSP_REGS : 0 - 14 */ \
{0x0000F555}, /* DOUBLE_BASE_REGS : 2,4,6,8,10 */ \
{0x0000FFFF}, /* GENERAL_REGS : 0 - 15 */ \
{0x0000FFFF} /* ALL_REGS : 0 - 15 */ \
}
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
#define REGNO_REG_CLASS(REGNO) cr16_regno_reg_class (REGNO)
#define BASE_REG_CLASS GENERAL_REGS
#define MODE_BASE_REG_CLASS(MODE) \
(GET_MODE_SIZE (MODE) <= 4 ? (BASE_REG_CLASS) : (DOUBLE_BASE_REGS))
#define INDEX_REG_CLASS LONG_REGS
#define CR16_REGNO_OK_FOR_BASE_P(REGNO) \
(((REGNO) < FIRST_PSEUDO_REGISTER) \
|| (reg_renumber && ((unsigned) reg_renumber[REGNO] \
< FIRST_PSEUDO_REGISTER)))
/* Use even-numbered reg for 64-bit accesses. */
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
(CR16_REGNO_OK_FOR_BASE_P(REGNO) && \
((GET_MODE_SIZE (MODE) > 4 && \
(REGNO) < CR16_FIRST_DWORD_REGISTER) \
? (0 == ((REGNO) & 1)) \
: 1))
/* TODO: For now lets not support index addressing mode. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
(((REGNO >= CR16_FIRST_DWORD_REGISTER) \
&& ((REGNO) < FIRST_PSEUDO_REGISTER)) \
|| (reg_renumber \
&& (((unsigned) reg_renumber[REGNO] >= CR16_FIRST_DWORD_REGISTER) \
&& ((unsigned) reg_renumber[REGNO] < FIRST_PSEUDO_REGISTER))) \
)
#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
/* The maximum number of consecutive registers of class CLASS needed to
hold a value of mode MODE.
On the CompactRISC architecture, the size of MODE in words.
The size of MODE in double words for the class LONG_REGS.
The following check assumes if the class is not LONG_REGS, then
all (NO_REGS, SHORT_REGS, NOSP_REGS and GENERAL_REGS) other classes are
short. We may have to check if this can cause any degradation in
performance. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(CLASS == LONG_REGS \
? (GET_MODE_SIZE (MODE) + CR16_UNITS_PER_DWORD - 1) / CR16_UNITS_PER_DWORD\
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Macros to check the range of integers . These macros were used across
the port, majorly in constraints.md, predicates.md files. */
#define SIGNED_INT_FITS_N_BITS(imm, N) \
((((imm) < ((HOST_WIDE_INT) 1 << ((N) - 1))) \
&& ((imm) >= -((HOST_WIDE_INT) 1 << ((N) - 1)))) ? 1 : 0)
#define UNSIGNED_INT_FITS_N_BITS(imm, N) \
(((imm) < ((HOST_WIDE_INT) 1 << (N)) && (imm) >= (HOST_WIDE_INT) 0) ? 1 : 0)
#define IN_RANGE_P(VALUE, LOW, HIGH) \
((((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
&& (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
#define IN_RAN(VALUE, LOW, HIGH) \
(((((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
&& (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH)))) ? 1 : 0)
/* This check is for sbit/cbit instruction. */
#define OK_FOR_Z(OP) \
((GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == CONST_INT) \
|| (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG) \
|| (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == PLUS \
&& GET_CODE (XEXP ((XEXP (OP, 0)), 0)) == REG \
&& GET_CODE (XEXP ((XEXP (OP, 0)), 1)) == CONST_INT))
/* Stack layout and calling conventions. */
#define STACK_GROWS_DOWNWARD
#define STARTING_FRAME_OFFSET 0
#define STACK_POINTER_REGNUM 15
#define FRAME_POINTER_REGNUM 13
#define ARG_POINTER_REGNUM 12
#define STATIC_CHAIN_REGNUM 1
#define RETURN_ADDRESS_REGNUM 14
#define FIRST_PARM_OFFSET(FNDECL) 0
#define ELIMINABLE_REGS \
{ \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
}
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
do \
{ \
(OFFSET) = cr16_initial_elimination_offset ((FROM), (TO)); \
} \
while (0)
/* Passing function arguments. */
#define ACCUMULATE_OUTGOING_ARGS 0
#define PUSH_ARGS 1
#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
#ifndef CUMULATIVE_ARGS
struct cumulative_args
{
int ints;
int last_parm_in_reg;
};
#define CUMULATIVE_ARGS struct cumulative_args
#endif
/* On the CR16 architecture, Varargs routines should receive their parameters
on the stack. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
cr16_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
#define FUNCTION_ARG_REGNO_P(REGNO) cr16_function_arg_regno_p (REGNO)
/* Generating code for profiling - NOT IMPLEMENTED. */
#undef FUNCTION_PROFILER
#define FUNCTION_PROFILER(STREAM, LABELNO) \
{ \
sorry ("profiler support for CR16"); \
}
/* Trampolines for nested functions - NOT SUPPORTED. */
#define TRAMPOLINE_SIZE 16
/* ADDRESSING MODES. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF \
|| GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST \
|| GET_CODE (X) == CONST_INT)
#define MAX_REGS_PER_ADDRESS 2
#define HAVE_POST_INCREMENT 0
#define HAVE_POST_DECREMENT 0
#define HAVE_POST_MODIFY_DISP 0
#define HAVE_POST_MODIFY_REG 0
#ifdef REG_OK_STRICT
#define CR16_REG_OK_FOR_BASE_P(X) CR16_REGNO_OK_FOR_BASE_P (REGNO (X))
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
REGNO_MODE_OK_FOR_BASE_P (REGNO(X), MODE)
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#else /* not REG_OK_STRICT. */
#define CR16_REG_OK_FOR_BASE_P(X) 1
#define REG_MODE_OK_FOR_BASE_P(X, MODE) 1
#define REG_OK_FOR_INDEX_P(X) 1
#endif /* not REG_OK_STRICT. */
/* Assume best case (branch predicted). */
#define BRANCH_COST(speed_p, predictable_p) 2
#define SLOW_BYTE_ACCESS 1
/* It is as good or better to call a constant function address than to
call an address kept in a register. */
#define NO_FUNCTION_CSE
/* Dividing the output into sections. */
#define TEXT_SECTION_ASM_OP "\t.section\t.text"
#define DATA_SECTION_ASM_OP "\t.section\t.data"
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
/* Position independent code (PIC). */
/* NEAR_PIC for -fpic option. */
#define NEAR_PIC 1
/* FAR_PIC for -fPIC option. */
#define FAR_PIC 2
#define PIC_OFFSET_TABLE_REGNUM 12
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
/* Assembler format. */
/* Character to start a comment. */
#define ASM_COMMENT_START "#"
#define GLOBAL_ASM_OP "\t.globl\t"
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
asm_fprintf (STREAM, "%U%s", (*targetm.strip_name_encoding) (NAME));
#define ASM_OUTPUT_SYMBOL_REF(STREAM, SYMBOL) \
do \
{ \
const char *rn = XSTR (SYMBOL, 0); \
assemble_name (STREAM, rn); \
if (SYMBOL_REF_FUNCTION_P (SYMBOL)) \
{ \
fprintf ((STREAM), "@c"); \
} \
} \
while (0)
#undef ASM_APP_ON
#define ASM_APP_ON "#APP\n"
#undef ASM_APP_OFF
#define ASM_APP_OFF "#NO_APP\n"
/* Switch into a generic section. */
#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
#undef INIT_SECTION_ASM_OP
#define INIT_SECTION_ASM_OP "\t.section\t.init"
#undef FINI_SECTION_ASM_OP
#define FINI_SECTION_ASM_OP "\t.section\t.fini"
/* Instruction output. */
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "ra", "sp" \
}
/* Output of dispatch tables. */
/* Revisit. No PC relative case as label expressions are not
properly supported in binutils else we could have done this:
#define CASE_VECTOR_PC_RELATIVE (optimize_size ? 1 : 0). */
#define CASE_VECTOR_PC_RELATIVE 0
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
((GET_MODE (BODY) == QImode) \
? fprintf ((FILE), "\t.byte (.L%d-.L%d) >> 1\n", \
VALUE, REL) \
: fprintf ((FILE), "\t.word (.L%d-.L%d) >> 1\n", \
VALUE, REL))
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
asm_fprintf ((STREAM), "\t.long\t.L%d@c\n", (VALUE))
/* Alignment in assembler file. */
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
asm_fprintf ((STREAM), "\t.align\t%d\n", 1 << (POWER))
/* Miscellaneous parameters. */
#define CASE_VECTOR_MODE Pmode
#define MOVE_MAX 4
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
#define STORE_FLAG_VALUE 1
#define Pmode SImode
#define FUNCTION_MODE QImode
/* Define this boolean macro(s) to indicate whether or not your architecture
has (un)conditional branches that can span all of memory. It is used in
conjunction with an optimization that partitions hot and cold basic blocks
into separate sections of the executable.
CR16 contains branch instructions that span whole address space. */
#define HAS_LONG_COND_BRANCH 1
#define HAS_LONG_UNCOND_BRANCH 1
#endif /* End of GCC_CR16_H. */