;; Predicate definitions for IA-32 and x86-64. ;; Copyright (C) 2004-2015 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.
;; Return true if OP is either a i387 or SSE fp register. (define_predicate “any_fp_register_operand” (and (match_code “reg”) (match_test “ANY_FP_REGNO_P (REGNO (op))”)))
;; Return true if OP is an i387 fp register. (define_predicate “fp_register_operand” (and (match_code “reg”) (match_test “STACK_REGNO_P (REGNO (op))”)))
;; Return true if OP is a non-fp register_operand. (define_predicate “register_and_not_any_fp_reg_operand” (and (match_code “reg”) (not (match_test “ANY_FP_REGNO_P (REGNO (op))”))))
;; True if the operand is a GENERAL class register. (define_predicate “general_reg_operand” (and (match_code “reg”) (match_test “GENERAL_REG_P (op)”)))
;; True if the operand is a nonimmediate operand with GENERAL class register. (define_predicate “nonimmediate_gr_operand” (if_then_else (match_code “reg”) (match_test “GENERAL_REGNO_P (REGNO (op))”) (match_operand 0 “nonimmediate_operand”)))
;; Return true if OP is a register operand other than an i387 fp register. (define_predicate “register_and_not_fp_reg_operand” (and (match_code “reg”) (not (match_test “STACK_REGNO_P (REGNO (op))”))))
;; True if the operand is an MMX register. (define_predicate “mmx_reg_operand” (and (match_code “reg”) (match_test “MMX_REGNO_P (REGNO (op))”)))
;; True if the operand is an SSE register. (define_predicate “sse_reg_operand” (and (match_code “reg”) (match_test “SSE_REGNO_P (REGNO (op))”)))
;; True if the operand is an AVX-512 new register. (define_predicate “ext_sse_reg_operand” (and (match_code “reg”) (match_test “EXT_REX_SSE_REGNO_P (REGNO (op))”)))
;; True if the operand is an AVX-512 mask register. (define_predicate “mask_reg_operand” (and (match_code “reg”) (match_test “MASK_REGNO_P (REGNO (op))”)))
;; True if the operand is a Q_REGS class register. (define_predicate “q_regs_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return ANY_QI_REG_P (op); })
;; Return true if OP is a memory operands that can be used in sibcalls. (define_predicate “sibcall_memory_operand” (and (match_operand 0 “memory_operand”) (match_test “CONSTANT_P (XEXP (op, 0))”)))
;; Match an SI or HImode register for a zero_extract. (define_special_predicate “ext_register_operand” (match_operand 0 “register_operand”) { if ((!TARGET_64BIT || GET_MODE (op) != DImode) && GET_MODE (op) != SImode && GET_MODE (op) != HImode) return false; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);
/* Be careful to accept only registers having upper parts. */ return (REG_P (op) && (REGNO (op) > LAST_VIRTUAL_REGISTER || REGNO (op) <= BX_REG)); })
;; Match nonimmediate operands, but exclude memory operands on 64bit targets. (define_predicate “nonimmediate_x64nomem_operand” (if_then_else (match_test “TARGET_64BIT”) (match_operand 0 “register_operand”) (match_operand 0 “nonimmediate_operand”)))
;; Match general operands, but exclude memory operands on 64bit targets. (define_predicate “general_x64nomem_operand” (if_then_else (match_test “TARGET_64BIT”) (match_operand 0 “nonmemory_operand”) (match_operand 0 “general_operand”)))
;; Return true if op is the AX register. (define_predicate “ax_reg_operand” (and (match_code “reg”) (match_test “REGNO (op) == AX_REG”)))
;; Return true if op is the flags register. (define_predicate “flags_reg_operand” (and (match_code “reg”) (match_test “REGNO (op) == FLAGS_REG”)))
;; Return true if op is one of QImode registers: %[abcd][hl]. (define_predicate “QIreg_operand” (match_test “QI_REG_P (op)”))
;; Return true if op is a QImode register operand other than ;; %[abcd][hl]. (define_predicate “ext_QIreg_operand” (and (match_code “reg”) (match_test “TARGET_64BIT”) (match_test “REGNO (op) > BX_REG”)))
;; Return true if VALUE is symbol reference (define_predicate “symbol_operand” (match_code “symbol_ref”))
;; Return true if VALUE can be stored in a sign extended immediate field. (define_predicate “x86_64_immediate_operand” (match_code “const_int,symbol_ref,label_ref,const”) { if (!TARGET_64BIT) return immediate_operand (op, mode);
switch (GET_CODE (op)) { case CONST_INT: /* CONST_DOUBLES never match, since HOST_BITS_PER_WIDE_INT is known to be at least 32 and this all acceptable constants are represented as CONST_INT. */ if (HOST_BITS_PER_WIDE_INT == 32) return true; else { HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (op), DImode); return trunc_int_for_mode (val, SImode) == val; } break;
case SYMBOL_REF: /* For certain code models, the symbolic references are known to fit. in CM_SMALL_PIC model we know it fits if it is local to the shared library. Don't count TLS SYMBOL_REFs here, since they should fit only if inside of UNSPEC handled below. */ /* TLS symbols are not constant. */ if (SYMBOL_REF_TLS_MODEL (op)) return false; return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_KERNEL || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op))); case LABEL_REF: /* For certain code models, the code is near as well. */ return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_KERNEL); case CONST: /* We also may accept the offsetted memory references in certain special cases. */ if (GET_CODE (XEXP (op, 0)) == UNSPEC) switch (XINT (XEXP (op, 0), 1)) { case UNSPEC_GOTPCREL: case UNSPEC_DTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_NTPOFF: return true; default: break; } if (GET_CODE (XEXP (op, 0)) == PLUS) { rtx op1 = XEXP (XEXP (op, 0), 0); rtx op2 = XEXP (XEXP (op, 0), 1); HOST_WIDE_INT offset; if (ix86_cmodel == CM_LARGE) return false; if (!CONST_INT_P (op2)) return false; offset = trunc_int_for_mode (INTVAL (op2), DImode); switch (GET_CODE (op1)) { case SYMBOL_REF: /* TLS symbols are not constant. */ if (SYMBOL_REF_TLS_MODEL (op1)) return false; /* For CM_SMALL assume that latest object is 16MB before end of 31bits boundary. We may also accept pretty large negative constants knowing that all objects are in the positive half of address space. */ if ((ix86_cmodel == CM_SMALL || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op1))) && offset < 16*1024*1024 && trunc_int_for_mode (offset, SImode) == offset) return true; /* For CM_KERNEL we know that all object resist in the negative half of 32bits address space. We may not accept negative offsets, since they may be just off and we may accept pretty large positive ones. */ if (ix86_cmodel == CM_KERNEL && offset > 0 && trunc_int_for_mode (offset, SImode) == offset) return true; break; case LABEL_REF: /* These conditions are similar to SYMBOL_REF ones, just the constraints for code models differ. */ if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM) && offset < 16*1024*1024 && trunc_int_for_mode (offset, SImode) == offset) return true; if (ix86_cmodel == CM_KERNEL && offset > 0 && trunc_int_for_mode (offset, SImode) == offset) return true; break; case UNSPEC: switch (XINT (op1, 1)) { case UNSPEC_DTPOFF: case UNSPEC_NTPOFF: if (trunc_int_for_mode (offset, SImode) == offset) return true; } break; default: break; } } break; default: gcc_unreachable (); }
return false; })
;; Return true if VALUE can be stored in the zero extended immediate field. (define_predicate “x86_64_zext_immediate_operand” (match_code “const_double,const_int,symbol_ref,label_ref,const”) { switch (GET_CODE (op)) { case CONST_DOUBLE: if (HOST_BITS_PER_WIDE_INT == 32) return (GET_MODE (op) == VOIDmode && !CONST_DOUBLE_HIGH (op)); else return false;
case CONST_INT: if (HOST_BITS_PER_WIDE_INT == 32) return INTVAL (op) >= 0; else return !(INTVAL (op) & ~(HOST_WIDE_INT) 0xffffffff); case SYMBOL_REF: /* For certain code models, the symbolic references are known to fit. */ /* TLS symbols are not constant. */ if (SYMBOL_REF_TLS_MODEL (op)) return false; return (ix86_cmodel == CM_SMALL || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op))); case LABEL_REF: /* For certain code models, the code is near as well. */ return ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM; case CONST: /* We also may accept the offsetted memory references in certain special cases. */ if (GET_CODE (XEXP (op, 0)) == PLUS) { rtx op1 = XEXP (XEXP (op, 0), 0); rtx op2 = XEXP (XEXP (op, 0), 1); if (ix86_cmodel == CM_LARGE) return false; switch (GET_CODE (op1)) { case SYMBOL_REF: /* TLS symbols are not constant. */ if (SYMBOL_REF_TLS_MODEL (op1)) return false; /* For small code model we may accept pretty large positive offsets, since one bit is available for free. Negative offsets are limited by the size of NULL pointer area specified by the ABI. */ if ((ix86_cmodel == CM_SMALL || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op1))) && CONST_INT_P (op2) && trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000 && trunc_int_for_mode (INTVAL (op2), SImode) == INTVAL (op2)) return true; /* ??? For the kernel, we may accept adjustment of -0x10000000, since we know that it will just convert negative address space to positive, but perhaps this is not worthwhile. */ break; case LABEL_REF: /* These conditions are similar to SYMBOL_REF ones, just the constraints for code models differ. */ if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM) && CONST_INT_P (op2) && trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000 && trunc_int_for_mode (INTVAL (op2), SImode) == INTVAL (op2)) return true; break; default: return false; } } break; default: gcc_unreachable (); }
return false; })
;; Return true if size of VALUE can be stored in a sign ;; extended immediate field. (define_predicate “x86_64_immediate_size_operand” (and (match_code “symbol_ref”) (ior (not (match_test “TARGET_64BIT”)) (match_test “ix86_cmodel == CM_SMALL”) (match_test “ix86_cmodel == CM_KERNEL”))))
;; Return true if OP is general operand representable on x86_64. (define_predicate “x86_64_general_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “nonimmediate_operand”) (match_operand 0 “x86_64_immediate_operand”)) (match_operand 0 “general_operand”)))
;; Return true if OP is non-VOIDmode general operand representable ;; on x86_64. This predicate is used in sign-extending conversion ;; operations that require non-VOIDmode immediate operands. (define_predicate “x86_64_sext_operand” (and (match_test “GET_MODE (op) != VOIDmode”) (match_operand 0 “x86_64_general_operand”)))
;; Return true if OP is non-VOIDmode general operand. This predicate ;; is used in sign-extending conversion operations that require ;; non-VOIDmode immediate operands. (define_predicate “sext_operand” (and (match_test “GET_MODE (op) != VOIDmode”) (match_operand 0 “general_operand”)))
;; Return true if OP is representable on x86_64 as zero-extended operand. ;; This predicate is used in zero-extending conversion operations that ;; require non-VOIDmode immediate operands. (define_predicate “x86_64_zext_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “nonimmediate_operand”) (and (match_operand 0 “x86_64_zext_immediate_operand”) (match_test “GET_MODE (op) != VOIDmode”))) (match_operand 0 “nonimmediate_operand”)))
;; Return true if OP is general operand representable on x86_64 ;; as either sign extended or zero extended constant. (define_predicate “x86_64_szext_general_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “nonimmediate_operand”) (match_operand 0 “x86_64_immediate_operand”) (match_operand 0 “x86_64_zext_immediate_operand”)) (match_operand 0 “general_operand”)))
;; Return true if OP is nonmemory operand representable on x86_64. (define_predicate “x86_64_nonmemory_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “register_operand”) (match_operand 0 “x86_64_immediate_operand”)) (match_operand 0 “nonmemory_operand”)))
;; Return true if OP is nonmemory operand representable on x86_64. (define_predicate “x86_64_szext_nonmemory_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “register_operand”) (match_operand 0 “x86_64_immediate_operand”) (match_operand 0 “x86_64_zext_immediate_operand”)) (match_operand 0 “nonmemory_operand”)))
;; Return true when operand is PIC expression that can be computed by lea ;; operation. (define_predicate “pic_32bit_operand” (match_code “const,symbol_ref,label_ref”) { if (!flag_pic) return false;
/* Rule out relocations that translate into 64bit constants. */ if (TARGET_64BIT && GET_CODE (op) == CONST) { op = XEXP (op, 0); if (GET_CODE (op) == PLUS && CONST_INT_P (XEXP (op, 1))) op = XEXP (op, 0); if (GET_CODE (op) == UNSPEC && (XINT (op, 1) == UNSPEC_GOTOFF || XINT (op, 1) == UNSPEC_GOT)) return false; }
return symbolic_operand (op, mode); })
;; Return true if OP is nonmemory operand acceptable by movabs patterns. (define_predicate “x86_64_movabs_operand” (and (match_operand 0 “nonmemory_operand”) (not (match_operand 0 “pic_32bit_operand”))))
;; Return true if OP is either a symbol reference or a sum of a symbol ;; reference and a constant. (define_predicate “symbolic_operand” (match_code “symbol_ref,label_ref,const”) { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return true;
case CONST: op = XEXP (op, 0); if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF || (GET_CODE (op) == UNSPEC && (XINT (op, 1) == UNSPEC_GOT || XINT (op, 1) == UNSPEC_GOTOFF || XINT (op, 1) == UNSPEC_PCREL || XINT (op, 1) == UNSPEC_GOTPCREL))) return true; if (GET_CODE (op) != PLUS || !CONST_INT_P (XEXP (op, 1))) return false; op = XEXP (op, 0); if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return true; /* Only @GOTOFF gets offsets. */ if (GET_CODE (op) != UNSPEC || XINT (op, 1) != UNSPEC_GOTOFF) return false; op = XVECEXP (op, 0, 0); if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return true; return false; default: gcc_unreachable (); }
})
;; Return true if OP is a symbolic operand that resolves locally. (define_predicate “local_symbolic_operand” (match_code “const,label_ref,symbol_ref”) { if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (op, 0), 1))) op = XEXP (XEXP (op, 0), 0);
if (GET_CODE (op) == LABEL_REF) return true;
if (GET_CODE (op) != SYMBOL_REF) return false;
if (SYMBOL_REF_TLS_MODEL (op)) return false;
/* Dll-imported symbols are always external. */ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op)) return false; if (SYMBOL_REF_LOCAL_P (op)) return true;
/* There is, however, a not insubstantial body of code in the rest of the compiler that assumes it can just stick the results of ASM_GENERATE_INTERNAL_LABEL in a symbol_ref and have done. / / ??? This is a hack. Should update the body of the compiler to always create a DECL an invoke targetm.encode_section_info. */ if (strncmp (XSTR (op, 0), internal_label_prefix, internal_label_prefix_len) == 0) return true;
return false; })
;; Test for a legitimate @GOTOFF operand. ;; ;; VxWorks does not impose a fixed gap between segments; the run-time ;; gap can be different from the object-file gap. We therefore can‘t ;; use @GOTOFF unless we are absolutely sure that the symbol is in the ;; same segment as the GOT. Unfortunately, the flexibility of linker ;; scripts means that we can’t be sure of that in general, so assume ;; that @GOTOFF is never valid on VxWorks. (define_predicate “gotoff_operand” (and (not (match_test “TARGET_VXWORKS_RTP”)) (match_operand 0 “local_symbolic_operand”)))
;; Test for various thread-local symbols. (define_special_predicate “tls_symbolic_operand” (and (match_code “symbol_ref”) (match_test “SYMBOL_REF_TLS_MODEL (op)”)))
(define_special_predicate “tls_modbase_operand” (and (match_code “symbol_ref”) (match_test “op == ix86_tls_module_base ()”)))
;; Test for a pc-relative call operand (define_predicate “constant_call_address_operand” (match_code “symbol_ref”) { if (ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC) return false; if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op)) return false; return true; })
;; P6 processors will jump to the address after the decrement when %esp ;; is used as a call operand, so they will execute return address as a code. ;; See Pentium Pro errata 70, Pentium 2 errata A33 and Pentium 3 errata E17.
(define_predicate “call_register_no_elim_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);
if (!TARGET_64BIT && op == stack_pointer_rtx) return false;
return register_no_elim_operand (op, mode); })
;; True for any non-virtual or eliminable register. Used in places where ;; instantiation of such a register may cause the pattern to not be recognized. (define_predicate “register_no_elim_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return !(op == arg_pointer_rtx || op == frame_pointer_rtx || IN_RANGE (REGNO (op), FIRST_PSEUDO_REGISTER, LAST_VIRTUAL_REGISTER)); })
;; Similarly, but include the stack pointer. This is used to prevent esp ;; from being used as an index reg. (define_predicate “index_register_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (reload_in_progress || reload_completed) return REG_OK_FOR_INDEX_STRICT_P (op); else return REG_OK_FOR_INDEX_NONSTRICT_P (op); })
;; Return false if this is any eliminable register. Otherwise general_operand. (define_predicate “general_no_elim_operand” (if_then_else (match_code “reg,subreg”) (match_operand 0 “register_no_elim_operand”) (match_operand 0 “general_operand”)))
;; Return false if this is any eliminable register. Otherwise ;; register_operand or a constant. (define_predicate “nonmemory_no_elim_operand” (ior (match_operand 0 “register_no_elim_operand”) (match_operand 0 “immediate_operand”)))
;; Test for a valid operand for indirect branch. (define_predicate “indirect_branch_operand” (ior (match_operand 0 “register_operand”) (and (not (match_test “TARGET_X32”)) (match_operand 0 “memory_operand”))))
;; Test for a valid operand for a call instruction. ;; Allow constant call address operands in Pmode only. (define_special_predicate “call_insn_operand” (ior (match_test “constant_call_address_operand (op, mode == VOIDmode ? mode : Pmode)”) (match_operand 0 “call_register_no_elim_operand”) (and (not (match_test “TARGET_X32”)) (match_operand 0 “memory_operand”))))
;; Similarly, but for tail calls, in which we cannot allow memory references. (define_special_predicate “sibcall_insn_operand” (ior (match_test “constant_call_address_operand (op, mode == VOIDmode ? mode : Pmode)”) (match_operand 0 “register_no_elim_operand”) (and (not (match_test “TARGET_X32”)) (match_operand 0 “sibcall_memory_operand”))))
;; Match exactly zero. (define_predicate “const0_operand” (match_code “const_int,const_double,const_vector”) { if (mode == VOIDmode) mode = GET_MODE (op); return op == CONST0_RTX (mode); })
;; Match -1. (define_predicate “constm1_operand” (match_code “const_int,const_double,const_vector”) { if (mode == VOIDmode) mode = GET_MODE (op); return op == CONSTM1_RTX (mode); })
;; Match one or vector filled with ones. (define_predicate “const1_operand” (match_code “const_int,const_double,const_vector”) { if (mode == VOIDmode) mode = GET_MODE (op); return op == CONST1_RTX (mode); })
;; Match exactly eight. (define_predicate “const8_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 8”)))
;; Match exactly 128. (define_predicate “const128_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 128”)))
;; Match exactly 0x0FFFFFFFF in anddi as a zero-extension operation (define_predicate “const_32bit_mask” (and (match_code “const_int”) (match_test “trunc_int_for_mode (INTVAL (op), DImode) == (HOST_WIDE_INT) 0xffffffff”)))
;; Match 2, 4, or 8. Used for leal multiplicands. (define_predicate “const248_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 2 || i == 4 || i == 8; })
;; Match 2, 3, 6, or 7 (define_predicate “const2367_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 2 || i == 3 || i == 6 || i == 7; })
;; Match 1, 2, 4, or 8 (define_predicate “const1248_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 1 || i == 2 || i == 4 || i == 8; })
;; Match 3, 5, or 9. Used for leal multiplicands. (define_predicate “const359_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 3 || i == 5 || i == 9; })
;; Match 4 or 8 to 11. Used for embeded rounding. (define_predicate “const_4_or_8_to_11_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 4 || (i >= 8 && i <= 11); })
;; Match 4 or 8. Used for SAE. (define_predicate “const48_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 4 || i == 8; })
;; Match 0 or 1. (define_predicate “const_0_to_1_operand” (and (match_code “const_int”) (ior (match_test “op == const0_rtx”) (match_test “op == const1_rtx”))))
;; Match 0 to 3. (define_predicate “const_0_to_3_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 3)”)))
;; Match 0 to 4. (define_predicate “const_0_to_4_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 4)”)))
;; Match 0 to 5. (define_predicate “const_0_to_5_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 5)”)))
;; Match 0 to 7. (define_predicate “const_0_to_7_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 7)”)))
;; Match 0 to 15. (define_predicate “const_0_to_15_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 15)”)))
;; Match 0 to 31. (define_predicate “const_0_to_31_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 31)”)))
;; Match 0 to 63. (define_predicate “const_0_to_63_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 63)”)))
;; Match 0 to 255. (define_predicate “const_0_to_255_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 0, 255)”)))
;; Match (0 to 255) * 8 (define_predicate “const_0_to_255_mul_8_operand” (match_code “const_int”) { unsigned HOST_WIDE_INT val = INTVAL (op); return val <= 255*8 && val % 8 == 0; })
;; Return true if OP is CONST_INT >= 1 and <= 31 (a valid operand ;; for shift & compare patterns, as shifting by 0 does not change flags). (define_predicate “const_1_to_31_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 1, 31)”)))
;; Return true if OP is CONST_INT >= 1 and <= 63 (a valid operand ;; for 64bit shift & compare patterns, as shifting by 0 does not change flags). (define_predicate “const_1_to_63_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 1, 63)”)))
;; Match 2 or 3. (define_predicate “const_2_to_3_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 2, 3)”)))
;; Match 4 to 5. (define_predicate “const_4_to_5_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 4, 5)”)))
;; Match 4 to 7. (define_predicate “const_4_to_7_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 4, 7)”)))
;; Match 6 to 7. (define_predicate “const_6_to_7_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 6, 7)”)))
;; Match 8 to 9. (define_predicate “const_8_to_9_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 8, 9)”)))
;; Match 8 to 11. (define_predicate “const_8_to_11_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 8, 11)”)))
;; Match 8 to 15. (define_predicate “const_8_to_15_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 8, 15)”)))
;; Match 10 to 11. (define_predicate “const_10_to_11_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 10, 11)”)))
;; Match 12 to 13. (define_predicate “const_12_to_13_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 12, 13)”)))
;; Match 12 to 15. (define_predicate “const_12_to_15_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 12, 15)”)))
;; Match 14 to 15. (define_predicate “const_14_to_15_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 14, 15)”)))
;; Match 16 to 19. (define_predicate “const_16_to_19_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 16, 19)”)))
;; Match 16 to 31. (define_predicate “const_16_to_31_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 16, 31)”)))
;; Match 20 to 23. (define_predicate “const_20_to_23_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 20, 23)”)))
;; Match 24 to 27. (define_predicate “const_24_to_27_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 24, 27)”)))
;; Match 28 to 31. (define_predicate “const_28_to_31_operand” (and (match_code “const_int”) (match_test “IN_RANGE (INTVAL (op), 28, 31)”)))
;; True if this is a constant appropriate for an increment or decrement. (define_predicate “incdec_operand” (match_code “const_int”) { /* On Pentium4, the inc and dec operations causes extra dependency on flag registers, since carry flag is not set. */ if (!TARGET_USE_INCDEC && !optimize_insn_for_size_p ()) return false; return op == const1_rtx || op == constm1_rtx; })
;; True for registers, or 1 or -1. Used to optimize double-word shifts. (define_predicate “reg_or_pm1_operand” (ior (match_operand 0 “register_operand”) (and (match_code “const_int”) (ior (match_test “op == const1_rtx”) (match_test “op == constm1_rtx”)))))
;; True if OP is acceptable as operand of DImode shift expander. (define_predicate “shiftdi_operand” (if_then_else (match_test “TARGET_64BIT”) (match_operand 0 “nonimmediate_operand”) (match_operand 0 “register_operand”)))
(define_predicate “ashldi_input_operand” (if_then_else (match_test “TARGET_64BIT”) (match_operand 0 “nonimmediate_operand”) (match_operand 0 “reg_or_pm1_operand”)))
;; Return true if OP is a vector load from the constant pool with just ;; the first element nonzero. (define_predicate “zero_extended_scalar_load_operand” (match_code “mem”) { unsigned n_elts; op = maybe_get_pool_constant (op);
if (!(op && GET_CODE (op) == CONST_VECTOR)) return false;
n_elts = CONST_VECTOR_NUNITS (op);
for (n_elts--; n_elts > 0; n_elts--) { rtx elt = CONST_VECTOR_ELT (op, n_elts); if (elt != CONST0_RTX (GET_MODE_INNER (GET_MODE (op)))) return false; } return true; })
/* Return true if operand is a vector constant that is all ones. */ (define_predicate “vector_all_ones_operand” (match_code “const_vector”) { int nunits = GET_MODE_NUNITS (mode);
if (GET_CODE (op) == CONST_VECTOR && CONST_VECTOR_NUNITS (op) == nunits) { int i; for (i = 0; i < nunits; ++i) { rtx x = CONST_VECTOR_ELT (op, i); if (x != constm1_rtx) return false; } return true; }
return false; })
; Return true when OP is operand acceptable for standard SSE move. (define_predicate “vector_move_operand” (ior (match_operand 0 “nonimmediate_operand”) (match_operand 0 “const0_operand”)))
;; Return true when OP is either nonimmediate operand, or any ;; CONST_VECTOR. (define_predicate “nonimmediate_or_const_vector_operand” (ior (match_operand 0 “nonimmediate_operand”) (match_code “const_vector”)))
;; Return true when OP is nonimmediate or standard SSE constant. (define_predicate “nonimmediate_or_sse_const_operand” (match_operand 0 “general_operand”) { if (nonimmediate_operand (op, mode)) return true; if (standard_sse_constant_p (op) > 0) return true; return false; })
;; Return true if OP is a register or a zero. (define_predicate “reg_or_0_operand” (ior (match_operand 0 “register_operand”) (match_operand 0 “const0_operand”)))
;; Return true for RTX codes that force SImode address. (define_predicate “SImode_address_operand” (match_code “subreg,zero_extend,and”))
;; Return true if op if a valid address for LEA, and does not contain ;; a segment override. Defined as a special predicate to allow ;; mode-less const_int operands pass to address_operand. (define_special_predicate “address_no_seg_operand” (match_test “address_operand (op, VOIDmode)”) { struct ix86_address parts; int ok;
if (!CONST_INT_P (op) && mode != VOIDmode && GET_MODE (op) != mode) return false;
ok = ix86_decompose_address (op, &parts); gcc_assert (ok); return parts.seg == SEG_DEFAULT; })
;; Return true if op if a valid base register, displacement or ;; sum of base register and displacement for VSIB addressing. (define_predicate “vsib_address_operand” (match_test “address_operand (op, VOIDmode)”) { struct ix86_address parts; int ok; rtx disp;
ok = ix86_decompose_address (op, &parts); gcc_assert (ok); if (parts.index || parts.seg != SEG_DEFAULT) return false;
/* VSIB addressing doesn't support (%rip). */ if (parts.disp) { disp = parts.disp; if (GET_CODE (disp) == CONST) { disp = XEXP (disp, 0); if (GET_CODE (disp) == PLUS) disp = XEXP (disp, 0); if (GET_CODE (disp) == UNSPEC) switch (XINT (disp, 1)) { case UNSPEC_GOTPCREL: case UNSPEC_PCREL: case UNSPEC_GOTNTPOFF: return false; } } if (TARGET_64BIT && flag_pic && (GET_CODE (disp) == SYMBOL_REF || GET_CODE (disp) == LABEL_REF)) return false; }
return true; })
;; Return true if op is valid MPX address operand without base (define_predicate “address_mpx_no_base_operand” (match_test “address_operand (op, VOIDmode)”) { struct ix86_address parts; int ok;
ok = ix86_decompose_address (op, &parts); gcc_assert (ok);
if (parts.index && parts.base) return false;
if (parts.seg != SEG_DEFAULT) return false;
/* Do not support (%rip). */ if (parts.disp && flag_pic && TARGET_64BIT && SYMBOLIC_CONST (parts.disp)) { if (GET_CODE (parts.disp) != CONST || GET_CODE (XEXP (parts.disp, 0)) != PLUS || GET_CODE (XEXP (XEXP (parts.disp, 0), 0)) != UNSPEC || !CONST_INT_P (XEXP (XEXP (parts.disp, 0), 1)) || (XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_DTPOFF && XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_NTPOFF)) return false; }
return true; })
;; Return true if op is valid MPX address operand without index (define_predicate “address_mpx_no_index_operand” (match_test “address_operand (op, VOIDmode)”) { struct ix86_address parts; int ok;
ok = ix86_decompose_address (op, &parts); gcc_assert (ok);
if (parts.index) return false;
if (parts.seg != SEG_DEFAULT) return false;
/* Do not support (%rip). */ if (parts.disp && flag_pic && TARGET_64BIT && SYMBOLIC_CONST (parts.disp) && (GET_CODE (parts.disp) != CONST || GET_CODE (XEXP (parts.disp, 0)) != PLUS || GET_CODE (XEXP (XEXP (parts.disp, 0), 0)) != UNSPEC || !CONST_INT_P (XEXP (XEXP (parts.disp, 0), 1)) || (XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_DTPOFF && XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_NTPOFF))) return false;
return true; })
(define_predicate “vsib_mem_operator” (match_code “mem”))
(define_predicate “bnd_mem_operator” (match_code “mem”))
;; Return true if the rtx is known to be at least 32 bits aligned. (define_predicate “aligned_operand” (match_operand 0 “general_operand”) { struct ix86_address parts; int ok;
/* Registers and immediate operands are always “aligned”. */ if (!MEM_P (op)) return true;
/* All patterns using aligned_operand on memory operands ends up in promoting memory operand to 64bit and thus causing memory mismatch. */ if (TARGET_MEMORY_MISMATCH_STALL && !optimize_insn_for_size_p ()) return false;
/* Don't even try to do any aligned optimizations with volatiles. */ if (MEM_VOLATILE_P (op)) return false;
if (MEM_ALIGN (op) >= 32) return true;
op = XEXP (op, 0);
/* Pushes and pops are only valid on the stack pointer. */ if (GET_CODE (op) == PRE_DEC || GET_CODE (op) == POST_INC) return true;
/* Decode the address. */ ok = ix86_decompose_address (op, &parts); gcc_assert (ok);
if (parts.base && GET_CODE (parts.base) == SUBREG) parts.base = SUBREG_REG (parts.base); if (parts.index && GET_CODE (parts.index) == SUBREG) parts.index = SUBREG_REG (parts.index);
/* Look for some component that isn't known to be aligned. */ if (parts.index) { if (REGNO_POINTER_ALIGN (REGNO (parts.index)) * parts.scale < 32) return false; } if (parts.base) { if (REGNO_POINTER_ALIGN (REGNO (parts.base)) < 32) return false; } if (parts.disp) { if (!CONST_INT_P (parts.disp) || (INTVAL (parts.disp) & 3)) return false; }
/* Didn't find one -- this must be an aligned address. */ return true; })
;; Return true if OP is memory operand with a displacement. (define_predicate “memory_displacement_operand” (match_operand 0 “memory_operand”) { struct ix86_address parts; int ok;
ok = ix86_decompose_address (XEXP (op, 0), &parts); gcc_assert (ok); return parts.disp != NULL_RTX; })
;; Return true if OP is memory operand with a displacement only. (define_predicate “memory_displacement_only_operand” (match_operand 0 “memory_operand”) { struct ix86_address parts; int ok;
if (TARGET_64BIT) return false;
ok = ix86_decompose_address (XEXP (op, 0), &parts); gcc_assert (ok);
if (parts.base || parts.index) return false;
return parts.disp != NULL_RTX; })
;; Return true if OP is memory operand that cannot be represented ;; by the modRM array. (define_predicate “long_memory_operand” (and (match_operand 0 “memory_operand”) (match_test “memory_address_length (op, false)”)))
;; Return true if OP is a comparison operator that can be issued by fcmov. (define_predicate “fcmov_comparison_operator” (match_operand 0 “comparison_operator”) { machine_mode inmode = GET_MODE (XEXP (op, 0)); enum rtx_code code = GET_CODE (op);
if (inmode == CCFPmode || inmode == CCFPUmode) { if (!ix86_trivial_fp_comparison_operator (op, mode)) return false; code = ix86_fp_compare_code_to_integer (code); } /* i387 supports just limited amount of conditional codes. */ switch (code) { case LTU: case GTU: case LEU: case GEU: if (inmode == CCmode || inmode == CCFPmode || inmode == CCFPUmode || inmode == CCCmode) return true; return false; case ORDERED: case UNORDERED: case EQ: case NE: return true; default: return false; } })
;; Return true if OP is a comparison that can be used in the CMPSS/CMPPS insns. ;; The first set are supported directly; the second set can't be done with ;; full IEEE support, i.e. NaNs.
(define_predicate “sse_comparison_operator” (ior (match_code “eq,ne,lt,le,unordered,unge,ungt,ordered”) (and (match_test “TARGET_AVX”) (match_code “ge,gt,uneq,unle,unlt,ltgt”))))
(define_predicate “ix86_comparison_int_operator” (match_code “ne,eq,ge,gt,le,lt”))
(define_predicate “ix86_comparison_uns_operator” (match_code “ne,eq,geu,gtu,leu,ltu”))
(define_predicate “bt_comparison_operator” (match_code “ne,eq”))
;; Return true if OP is a valid comparison operator in valid mode. (define_predicate “ix86_comparison_operator” (match_operand 0 “comparison_operator”) { machine_mode inmode = GET_MODE (XEXP (op, 0)); enum rtx_code code = GET_CODE (op);
if (inmode == CCFPmode || inmode == CCFPUmode) return ix86_trivial_fp_comparison_operator (op, mode);
switch (code) { case EQ: case NE: return true; case LT: case GE: if (inmode == CCmode || inmode == CCGCmode || inmode == CCGOCmode || inmode == CCNOmode) return true; return false; case LTU: case GTU: case LEU: case GEU: if (inmode == CCmode || inmode == CCCmode) return true; return false; case ORDERED: case UNORDERED: if (inmode == CCmode) return true; return false; case GT: case LE: if (inmode == CCmode || inmode == CCGCmode || inmode == CCNOmode) return true; return false; default: return false; } })
;; Return true if OP is a valid comparison operator ;; testing carry flag to be set. (define_predicate “ix86_carry_flag_operator” (match_code “ltu,lt,unlt,gtu,gt,ungt,le,unle,ge,unge,ltgt,uneq”) { machine_mode inmode = GET_MODE (XEXP (op, 0)); enum rtx_code code = GET_CODE (op);
if (inmode == CCFPmode || inmode == CCFPUmode) { if (!ix86_trivial_fp_comparison_operator (op, mode)) return false; code = ix86_fp_compare_code_to_integer (code); } else if (inmode == CCCmode) return code == LTU || code == GTU; else if (inmode != CCmode) return false;
return code == LTU; })
;; Return true if this comparison only requires testing one flag bit. (define_predicate “ix86_trivial_fp_comparison_operator” (match_code “gt,ge,unlt,unle,uneq,ltgt,ordered,unordered”))
;; Return true if we know how to do this comparison. Others require ;; testing more than one flag bit, and we let the generic middle-end ;; code do that. (define_predicate “ix86_fp_comparison_operator” (if_then_else (match_test “ix86_fp_comparison_strategy (GET_CODE (op)) == IX86_FPCMP_ARITH”) (match_operand 0 “comparison_operator”) (match_operand 0 “ix86_trivial_fp_comparison_operator”)))
;; Same as above, but for swapped comparison used in *jcc__i387. (define_predicate “ix86_swapped_fp_comparison_operator” (match_operand 0 “comparison_operator”) { enum rtx_code code = GET_CODE (op); bool ret;
PUT_CODE (op, swap_condition (code)); ret = ix86_fp_comparison_operator (op, mode); PUT_CODE (op, code); return ret; })
;; Nearly general operand, but accept any const_double, since we wish ;; to be able to drop them into memory rather than have them get pulled ;; into registers. (define_predicate “cmp_fp_expander_operand” (ior (match_code “const_double”) (match_operand 0 “general_operand”)))
;; Return true if this is a valid binary floating-point operation. (define_predicate “binary_fp_operator” (match_code “plus,minus,mult,div”))
;; Return true if this is a multiply operation. (define_predicate “mult_operator” (match_code “mult”))
;; Return true if this is a division operation. (define_predicate “div_operator” (match_code “div”))
;; Return true if this is a plus, minus, and, ior or xor operation. (define_predicate “plusminuslogic_operator” (match_code “plus,minus,and,ior,xor”))
;; Return true if this is a float extend operation. (define_predicate “float_operator” (match_code “float”))
;; Return true for ARITHMETIC_P. (define_predicate “arith_or_logical_operator” (match_code “plus,mult,and,ior,xor,smin,smax,umin,umax,compare,minus,div, mod,udiv,umod,ashift,rotate,ashiftrt,lshiftrt,rotatert”))
;; Return true for COMMUTATIVE_P. (define_predicate “commutative_operator” (match_code “plus,mult,and,ior,xor,smin,smax,umin,umax”))
;; Return true if OP is a binary operator that can be promoted to wider mode. (define_predicate “promotable_binary_operator” (ior (match_code “plus,minus,and,ior,xor,ashift”) (and (match_code “mult”) (match_test “TARGET_TUNE_PROMOTE_HIMODE_IMUL”))))
(define_predicate “compare_operator” (match_code “compare”))
(define_predicate “absneg_operator” (match_code “abs,neg”))
;; Return true if OP is misaligned memory operand (define_predicate “misaligned_operand” (and (match_code “mem”) (match_test “MEM_ALIGN (op) < GET_MODE_ALIGNMENT (mode)”)))
;; Return true if OP is a emms operation, known to be a PARALLEL. (define_predicate “emms_operation” (match_code “parallel”) { unsigned i;
if (XVECLEN (op, 0) != 17) return false;
for (i = 0; i < 8; i++) { rtx elt = XVECEXP (op, 0, i+1);
if (GET_CODE (elt) != CLOBBER || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != XFmode || REGNO (SET_DEST (elt)) != FIRST_STACK_REG + i) return false; elt = XVECEXP (op, 0, i+9); if (GET_CODE (elt) != CLOBBER || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != DImode || REGNO (SET_DEST (elt)) != FIRST_MMX_REG + i) return false; }
return true; })
;; Return true if OP is a vzeroall operation, known to be a PARALLEL. (define_predicate “vzeroall_operation” (match_code “parallel”) { unsigned i, nregs = TARGET_64BIT ? 16 : 8;
if ((unsigned) XVECLEN (op, 0) != 1 + nregs) return false;
for (i = 0; i < nregs; i++) { rtx elt = XVECEXP (op, 0, i+1);
if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != V8SImode || REGNO (SET_DEST (elt)) != SSE_REGNO (i) || SET_SRC (elt) != CONST0_RTX (V8SImode)) return false; }
return true; })
;; return true if OP is a vzeroupper operation. (define_predicate “vzeroupper_operation” (and (match_code “unspec_volatile”) (match_test “XINT (op, 1) == UNSPECV_VZEROUPPER”)))
;; Return true if OP is a parallel for a vbroadcast permute.
(define_predicate “avx_vbroadcast_operand” (and (match_code “parallel”) (match_code “const_int” “a”)) { rtx elt = XVECEXP (op, 0, 0); int i, nelt = XVECLEN (op, 0);
/* Don‘t bother checking there are the right number of operands, merely that they’re all identical. */ for (i = 1; i < nelt; ++i) if (XVECEXP (op, 0, i) != elt) return false; return true; })
;; Return true if OP is a parallel for a palignr permute. (define_predicate “palignr_operand” (and (match_code “parallel”) (match_code “const_int” “a”)) { int elt = INTVAL (XVECEXP (op, 0, 0)); int i, nelt = XVECLEN (op, 0);
/* Check that an order in the permutation is suitable for palignr. For example, {5 6 7 0 1 2 3 4} is “palignr 5, xmm, xmm”. */ for (i = 1; i < nelt; ++i) if (INTVAL (XVECEXP (op, 0, i)) != ((elt + i) % nelt)) return false; return true; })
;; Return true if OP is a proper third operand to vpblendw256. (define_predicate “avx2_pblendw_operand” (match_code “const_int”) { HOST_WIDE_INT val = INTVAL (op); HOST_WIDE_INT low = val & 0xff; return val == ((low << 8) | low); })
;; Return true if OP is nonimmediate_operand or CONST_VECTOR. (define_predicate “general_vector_operand” (ior (match_operand 0 “nonimmediate_operand”) (match_code “const_vector”)))
;; Return true if OP is either -1 constant or stored in register. (define_predicate “register_or_constm1_operand” (ior (match_operand 0 “register_operand”) (and (match_code “const_int”) (match_test “op == constm1_rtx”))))