;; Predicate definitions for Vitesse IQ2000. ;; Copyright (C) 2005-2015 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; Return 1 if OP can be used as an operand where a register or 16-bit ;; unsigned integer is needed.

(define_predicate “uns_arith_operand” (match_code “reg,const_int,subreg”) { if (GET_CODE (op) == CONST_INT && SMALL_INT_UNSIGNED (op)) return 1;

return register_operand (op, mode); })

;; Return 1 if OP can be used as an operand where a 16-bit integer is ;; needed.

(define_predicate “arith_operand” (match_code “reg,const_int,subreg”) { if (GET_CODE (op) == CONST_INT && SMALL_INT (op)) return 1;

return register_operand (op, mode); })

;; Return 1 if OP is a register or a constant. gen_int_relational ;; takes care of forcing out-of-range constants into a register.

(define_predicate “reg_or_const_operand” (ior (match_code “const_int”) (and (match_code “reg,subreg”) (match_operand 0 “register_operand”))))

;; Return 1 if OP is a integer which fits in 16 bits.

(define_predicate “small_int” (match_code “const_int”) { return (GET_CODE (op) == CONST_INT && SMALL_INT (op)); })

;; Return 1 if OP is a 32-bit integer which is too big to be loaded ;; with one instruction.

(define_predicate “large_int” (match_code “const_int”) { HOST_WIDE_INT value;

if (GET_CODE (op) != CONST_INT) return 0;

value = INTVAL (op);

/* IOR reg,$r0,value. */ if ((value & ~ ((HOST_WIDE_INT) 0x0000ffff)) == 0) return 0;

/* SUBU reg,$r0,value. */ if (((unsigned HOST_WIDE_INT) (value + 32768)) <= 32767) return 0;

/* LUI reg,value >> 16. */ if ((value & 0x0000ffff) == 0) return 0;

return 1; })

;; Return 1 if OP is a register or the constant 0.

(define_predicate “reg_or_0_operand” (match_code “reg,const_int,const_double,subreg”) { switch (GET_CODE (op)) { case CONST_INT: return INTVAL (op) == 0;

case CONST_DOUBLE:
  return op == CONST0_RTX (mode);

case REG:
case SUBREG:
  return register_operand (op, mode);

default:
  break;
}

return 0; })

;; Return 1 if OP is a memory operand that fits in a single ;; instruction (i.e., register + small offset).

(define_predicate “simple_memory_operand” (match_code “mem,subreg”) { rtx addr, plus0, plus1;

/* Eliminate non-memory operations. */ if (GET_CODE (op) != MEM) return 0;

/* Dword operations really put out 2 instructions, so eliminate them. */ if (GET_MODE_SIZE (GET_MODE (op)) > (unsigned) UNITS_PER_WORD) return 0;

/* Decode the address now. */ addr = XEXP (op, 0); switch (GET_CODE (addr)) { case REG: case LO_SUM: return 1;

case CONST_INT:
  return SMALL_INT (addr);

case PLUS:
  plus0 = XEXP (addr, 0);
  plus1 = XEXP (addr, 1);
  if (GET_CODE (plus0) == REG
  && GET_CODE (plus1) == CONST_INT && SMALL_INT (plus1)
  && SMALL_INT_UNSIGNED (plus1) /* No negative offsets.  */)
return 1;

  else if (GET_CODE (plus1) == REG
       && GET_CODE (plus0) == CONST_INT && SMALL_INT (plus0)
       && SMALL_INT_UNSIGNED (plus1) /* No negative offsets.  */)
return 1;

  else
return 0;

case SYMBOL_REF:
  return 0;

default:
  break;
}

return 0; })

;; Return nonzero if the code of this rtx pattern is EQ or NE.

(define_predicate “equality_op” (match_code “eq,ne”) { if (mode != GET_MODE (op)) return 0;

return GET_CODE (op) == EQ || GET_CODE (op) == NE; })

;; Return nonzero if the code is a relational operations (EQ, LE, ;; etc).

(define_predicate “cmp_op” (match_code “eq,ne,gt,ge,gtu,geu,lt,le,ltu,leu”) { if (mode != GET_MODE (op)) return 0;

return COMPARISON_P (op); })

;; Return nonzero if the operand is either the PC or a label_ref.

(define_special_predicate “pc_or_label_operand” (match_code “pc,label_ref”) { if (op == pc_rtx) return 1;

if (GET_CODE (op) == LABEL_REF) return 1;

return 0; })

;; Return nonzero if OP is a valid operand for a call instruction.

(define_predicate “call_insn_operand” (match_code “const_int,const,symbol_ref,reg”) { return (CONSTANT_ADDRESS_P (op) || (GET_CODE (op) == REG && op != arg_pointer_rtx && ! (REGNO (op) >= FIRST_PSEUDO_REGISTER && REGNO (op) <= LAST_VIRTUAL_REGISTER))); })

;; Return nonzero if OP is valid as a source operand for a move ;; instruction.

(define_predicate “move_operand” (match_code “const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem”) { /* Accept any general operand after reload has started; doing so avoids losing if reload does an in-place replacement of a register with a SYMBOL_REF or CONST. */ return (general_operand (op, mode) && (! (iq2000_check_split (op, mode)) || reload_in_progress || reload_completed)); })

;; Return nonzero if OP is a constant power of 2.

(define_predicate “power_of_2_operand” (match_code “const_int”) { int intval;

if (GET_CODE (op) != CONST_INT) return 0; else intval = INTVAL (op);

return ((intval & ((unsigned)(intval) - 1)) == 0); })