;; Machine description of the Renesas M32R cpu for GNU C compiler ;; Copyright (C) 1996-2015 Free Software Foundation, Inc.

;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version.

;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details.

;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; See file “rtl.def” for documentation on define_insn, match_*, et. al. ;; UNSPEC_VOLATILE usage (define_constants [(UNSPECV_BLOCKAGE 0) (UNSPECV_FLUSH_ICACHE 1)])

;; UNSPEC usage (define_constants [(UNSPEC_LOAD_SDA_BASE 2) (UNSPEC_SET_CBIT 3) (UNSPEC_PIC_LOAD_ADDR 4) (UNSPEC_GET_PC 5) (UNSPEC_GOTOFF 6) ])

;; Insn type. Used to default other attribute values. (define_attr “type” “int2,int4,load2,load4,load8,store2,store4,store8,shift2,shift4,mul2,div4,uncond_branch,branch,call,multi,misc” (const_string “misc”))

;; Length in bytes. (define_attr “length” "" (cond [(eq_attr “type” “int2,load2,store2,shift2,mul2”) (const_int 2)

 (eq_attr "type" "int4,load4,store4,shift4,div4")
 (const_int 4)

 (eq_attr "type" "multi")
 (const_int 8)

 (eq_attr "type" "uncond_branch,branch,call")
 (const_int 4)]

 (const_int 4)))

;; The length here is the length of a single asm. Unfortunately it might be ;; 2 or 4 so we must allow for 4. That's ok though. (define_asm_attributes [(set_attr “length” “4”) (set_attr “type” “multi”)])

;; Whether an instruction is short (16-bit) or long (32-bit). (define_attr “insn_size” “short,long” (if_then_else (eq_attr “type” “int2,load2,store2,shift2,mul2”) (const_string “short”) (const_string “long”)))

;; The target CPU we're compiling for. (define_attr “cpu” “m32r,m32r2,m32rx” (cond [(match_test “TARGET_M32RX”) (const_string “m32rx”) (match_test “TARGET_M32R2”) (const_string “m32r2”)] (const_string “m32r”)))

;; Defines the pipeline where an instruction can be executed on. ;; For the M32R, a short instruction can execute one of the two pipes. ;; For the M32Rx, the restrictions are modelled in the second ;; condition of this attribute definition. (define_attr “m32r_pipeline” “either,s,o,long” (cond [(and (eq_attr “cpu” “m32r”) (eq_attr “insn_size” “short”)) (const_string “either”) (eq_attr “insn_size” “!short”) (const_string “long”)] (cond [(eq_attr “type” “int2”) (const_string “either”) (eq_attr “type” “load2,store2,shift2,uncond_branch,branch,call”) (const_string “o”) (eq_attr “type” “mul2”) (const_string “s”)] (const_string “long”)))) ;; :::::::::::::::::::: ;; :: ;; :: Pipeline description ;; :: ;; ::::::::::::::::::::

;; This model is based on Chapter 2, Appendix 3 and Appendix 4 of the ;; “M32R-FPU Software Manual”, Revision 1.01, plus additional information ;; obtained by our best friend and mine, Google. ;; ;; The pipeline is modelled as a fetch unit, and a core with a memory unit, ;; two execution units, where “fetch” models IF and D, “memory” for MEM1 ;; and MEM2, and “EXEC” for E, E1, E2, EM, and EA. Writeback and ;; bypasses are not modelled. (define_automaton “m32r”)

;; We pretend there are two short (16 bits) instruction fetchers. The ;; “s” short fetcher cannot be reserved until the “o” short fetcher is ;; reserved. Some instructions reserve both the left and right fetchers. ;; These fetch units are a hack to get GCC to better pack the instructions ;; for the M32Rx processor, which has two execution pipes. ;; ;; In reality there is only one decoder, which can decode either two 16-bit ;; instructions, or a single 32-bit instruction. ;; ;; Note, “fetch” models both the IF and the D pipeline stages. ;; ;; The m32rx core has two execution pipes. We name them o_E and s_E. ;; In addition, there's a memory unit.

(define_cpu_unit “o_IF,s_IF,o_E,s_E,memory” “m32r”)

;; Prevent the s pipe from being reserved before the o pipe. (absence_set “s_IF” “o_IF”) (absence_set “s_E” “o_E”)

;; On the M32Rx, long instructions execute on both pipes, so reserve ;; both fetch slots and both pipes. (define_reservation “long_IF” “o_IF+s_IF”) (define_reservation “long_E” “o_E+s_E”)

;; ::::::::::::::::::::

;; Simple instructions do 4 stages: IF D E WB. WB is not modelled. ;; Hence, ready latency is 1. (define_insn_reservation “short_left” 1 (and (eq_attr “m32r_pipeline” “o”) (and (eq_attr “insn_size” “short”) (eq_attr “type” “!load2”))) “o_IF,o_E”)

(define_insn_reservation “short_right” 1 (and (eq_attr “m32r_pipeline” “s”) (and (eq_attr “insn_size” “short”) (eq_attr “type” “!load2”))) “s_IF,s_E”)

(define_insn_reservation “short_either” 1 (and (eq_attr “m32r_pipeline” “either”) (and (eq_attr “insn_size” “short”) (eq_attr “type” “!load2”))) “o_IF|s_IF,o_E|s_E”)

(define_insn_reservation “long_m32r” 1 (and (eq_attr “cpu” “m32r”) (and (eq_attr “insn_size” “long”) (eq_attr “type” “!load4,load8”))) “long_IF,long_E”)

(define_insn_reservation “long_m32rx” 2 (and (eq_attr “m32r_pipeline” “long”) (and (eq_attr “insn_size” “long”) (eq_attr “type” “!load4,load8”))) “long_IF,long_E”)

;; Load/store instructions do 6 stages: IF D E MEM1 MEM2 WB. ;; MEM1 may require more than one cycle depending on locality. We ;; optimistically assume all memory is nearby, i.e. MEM1 takes only ;; one cycle. Hence, ready latency is 3.

;; The M32Rx can do short load/store only on the left pipe. (define_insn_reservation “short_load_left” 3 (and (eq_attr “m32r_pipeline” “o”) (and (eq_attr “insn_size” “short”) (eq_attr “type” “load2”))) “o_IF,o_E,memory*2”)

(define_insn_reservation “short_load” 3 (and (eq_attr “m32r_pipeline” “either”) (and (eq_attr “insn_size” “short”) (eq_attr “type” “load2”))) “s_IF|o_IF,s_E|o_E,memory*2”)

(define_insn_reservation “long_load” 3 (and (eq_attr “cpu” “m32r”) (and (eq_attr “insn_size” “long”) (eq_attr “type” “load4,load8”))) “long_IF,long_E,memory*2”)

(define_insn_reservation “long_load_m32rx” 3 (and (eq_attr “m32r_pipeline” “long”) (eq_attr “type” “load4,load8”)) “long_IF,long_E,memory*2”)

(include “predicates.md”) (include “constraints.md”)

;; Expand prologue as RTL (define_expand “prologue” [(const_int 1)] "" " { m32r_expand_prologue (); DONE; }")

;; Expand epilogue as RTL (define_expand “epilogue” [(return)] "" " { m32r_expand_epilogue (); emit_jump_insn (gen_return_normal ()); DONE; }") ;; Move instructions. ;; ;; For QI and HI moves, the register must contain the full properly ;; sign-extended value. nonzero_bits assumes this [otherwise ;; SHORT_IMMEDIATES_SIGN_EXTEND must be used, but the comment for it ;; says it's a kludge and the .md files should be fixed instead].

(define_expand “movqi” [(set (match_operand:QI 0 “general_operand” "") (match_operand:QI 1 “general_operand” ""))] "" " { /* Fixup PIC cases. */ if (flag_pic) { if (symbolic_operand (operands[1], QImode)) { if (reload_in_progress || reload_completed) operands[1] = m32r_legitimize_pic_address (operands[1], operands[0]); else operands[1] = m32r_legitimize_pic_address (operands[1], NULL_RTX); } }

/* Everything except mem = const or mem = mem can be done easily. Objects in the small data area are handled too. */

if (MEM_P (operands[0])) operands[1] = force_reg (QImode, operands[1]); }")

(define_insn “*movqi_insn” [(set (match_operand:QI 0 “move_dest_operand” “=r,r,r,r,r,T,m”) (match_operand:QI 1 “move_src_operand” “r,I,JQR,T,m,r,r”))] “register_operand (operands[0], QImode) || register_operand (operands[1], QImode)” “@ mv %0,%1 ldi %0,%#%1 ldi %0,%#%1 ldub %0,%1 ldub %0,%1 stb %1,%0 stb %1,%0” [(set_attr “type” “int2,int2,int4,load2,load4,store2,store4”) (set_attr “length” “2,2,4,2,4,2,4”)])

(define_expand “movhi” [(set (match_operand:HI 0 “general_operand” "") (match_operand:HI 1 “general_operand” ""))] "" " { /* Fixup PIC cases. */ if (flag_pic) { if (symbolic_operand (operands[1], HImode)) { if (reload_in_progress || reload_completed) operands[1] = m32r_legitimize_pic_address (operands[1], operands[0]); else operands[1] = m32r_legitimize_pic_address (operands[1], NULL_RTX); } }

/* Everything except mem = const or mem = mem can be done easily. */

if (MEM_P (operands[0])) operands[1] = force_reg (HImode, operands[1]); }")

(define_insn “*movhi_insn” [(set (match_operand:HI 0 “move_dest_operand” “=r,r,r,r,r,r,T,m”) (match_operand:HI 1 “move_src_operand” “r,I,JQR,K,T,m,r,r”))] “register_operand (operands[0], HImode) || register_operand (operands[1], HImode)” “@ mv %0,%1 ldi %0,%#%1 ldi %0,%#%1 ld24 %0,%#%1 lduh %0,%1 lduh %0,%1 sth %1,%0 sth %1,%0” [(set_attr “type” “int2,int2,int4,int4,load2,load4,store2,store4”) (set_attr “length” “2,2,4,4,2,4,2,4”)])

(define_expand “movsi_push” [(set (mem:SI (pre_dec:SI (match_operand:SI 0 “register_operand” ""))) (match_operand:SI 1 “register_operand” ""))] "" "")

(define_expand “movsi_pop” [(set (match_operand:SI 0 “register_operand” "") (mem:SI (post_inc:SI (match_operand:SI 1 “register_operand” ""))))] "" "")

(define_expand “movsi” [(set (match_operand:SI 0 “general_operand” "") (match_operand:SI 1 “general_operand” ""))] "" " { /* Fixup PIC cases. */ if (flag_pic) { if (symbolic_operand (operands[1], SImode)) { if (reload_in_progress || reload_completed) operands[1] = m32r_legitimize_pic_address (operands[1], operands[0]); else operands[1] = m32r_legitimize_pic_address (operands[1], NULL_RTX); } }

/* Everything except mem = const or mem = mem can be done easily. */

if (MEM_P (operands[0])) operands[1] = force_reg (SImode, operands[1]);

/* Small Data Area reference? */ if (small_data_operand (operands[1], SImode)) { emit_insn (gen_movsi_sda (operands[0], operands[1])); DONE; }

/* If medium or large code model, symbols have to be loaded with seth/add3. */ if (addr32_operand (operands[1], SImode)) { emit_insn (gen_movsi_addr32 (operands[0], operands[1])); DONE; } }")

;; ??? Do we need a const_double constraint here for large unsigned values? (define_insn “*movsi_insn” [(set (match_operand:SI 0 “move_dest_operand” “=r,r,r,r,r,r,r,r,r,T,S,m”) (match_operand:SI 1 “move_src_operand” “r,I,J,MQ,L,n,T,U,m,r,r,r”))] “register_operand (operands[0], SImode) || register_operand (operands[1], SImode)” "* { if (REG_P (operands[0]) || GET_CODE (operands[1]) == SUBREG) { switch (GET_CODE (operands[1])) { default: break;

  case REG:
  case SUBREG:
    return \"mv %0,%1\";

  case MEM:
    if (GET_CODE (XEXP (operands[1], 0)) == POST_INC
	&& XEXP (XEXP (operands[1], 0), 0) == stack_pointer_rtx)
      return \"pop %0\";

    return \"ld %0,%1\";

  case CONST_INT:
    if (satisfies_constraint_J (operands[1]))
      return \"ldi %0,%#%1\\t; %X1\";

    if (satisfies_constraint_M (operands[1]))
      return \"ld24 %0,%#%1\\t; %X1\";

    if (satisfies_constraint_L (operands[1]))
      return \"seth %0,%#%T1\\t; %X1\";

    return \"#\";

  case CONST:
  case SYMBOL_REF:
  case LABEL_REF:
    if (TARGET_ADDR24)
      return \"ld24 %0,%#%1\";

    return \"#\";
}
}

else if (MEM_P (operands[0]) && (REG_P (operands[1]) || GET_CODE (operands[1]) == SUBREG)) { if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx) return "push %1";

  return \"st %1,%0\";
}

gcc_unreachable (); }" [(set_attr “type” “int2,int2,int4,int4,int4,multi,load2,load2,load4,store2,store2,store4”) (set_attr “length” “2,2,4,4,4,8,2,2,4,2,2,4”)])

; Try to use a four byte / two byte pair for constants not loadable with ; ldi, ld24, seth.

(define_split [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “two_insn_const_operand” ""))] "" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))] " { unsigned HOST_WIDE_INT val = INTVAL (operands[1]); unsigned HOST_WIDE_INT tmp; int shift;

/* In all cases we will emit two instructions. However we try to use 2 byte instructions wherever possible. We can assume the constant isn't loadable with any of ldi, ld24, or seth. */

/* See if we can load a 24-bit unsigned value and invert it. */ if (UINT24_P (~ val)) { emit_insn (gen_movsi (operands[0], GEN_INT (~ val))); emit_insn (gen_one_cmplsi2 (operands[0], operands[0])); DONE; }

/* See if we can load a 24-bit unsigned value and shift it into place. 0x01fffffe is just beyond ld24's range. */ for (shift = 1, tmp = 0x01fffffe; shift < 8; ++shift, tmp <<= 1) { if ((val & ~tmp) == 0) { emit_insn (gen_movsi (operands[0], GEN_INT (val >> shift))); emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (shift))); DONE; } }

/* Can't use any two byte insn, fall back to seth/or3. Use ~0xffff instead of 0xffff0000, since the later fails on a 64-bit host. */ operands[2] = GEN_INT ((val) & ~0xffff); operands[3] = GEN_INT ((val) & 0xffff); }")

(define_split [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “seth_add3_operand” ""))] “TARGET_ADDR32” [(set (match_dup 0) (high:SI (match_dup 1))) (set (match_dup 0) (lo_sum:SI (match_dup 0) (match_dup 1)))] "")

;; Small data area support. ;; The address of SDA_BASE is loaded into a register and all objects in ;; the small data area are indexed off that. This is done for each reference ;; but cse will clean things up for us. We let the compiler choose the ;; register to use so we needn't allocate (and maybe even fix) a special ;; register to use. Since the load and store insns have a 16-bit offset the ;; total size of the data area can be 64K. However, if the data area lives ;; above 16M (24 bits), SDA_BASE will have to be loaded with seth/add3 which ;; would then yield 3 instructions to reference an object [though there would ;; be no net loss if two or more objects were referenced]. The 3 insns can be ;; reduced back to 2 if the size of the small data area were reduced to 32K ;; [then seth + ld/st would work for any object in the area]. Doing this ;; would require special handling of SDA_BASE (its value would be ;; (.sdata + 32K) & 0xffff0000) and reloc computations would be different ;; [I think]. What to do about this is deferred until later and for now we ;; require .sdata to be in the first 16M.

(define_expand “movsi_sda” [(set (match_dup 2) (unspec:SI [(const_int 0)] UNSPEC_LOAD_SDA_BASE)) (set (match_operand:SI 0 “register_operand” "") (lo_sum:SI (match_dup 2) (match_operand:SI 1 “small_data_operand” "“)))] "" " { if (reload_in_progress || reload_completed) operands[2] = operands[0]; else operands[2] = gen_reg_rtx (SImode); }”)

(define_insn “*load_sda_base_32” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(const_int 0)] UNSPEC_LOAD_SDA_BASE))] “TARGET_ADDR32” “seth %0,%#shigh(SDA_BASE);add3 %0,%0,%#low(SDA_BASE)” [(set_attr “type” “multi”) (set_attr “length” “8”)])

(define_insn “*load_sda_base” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(const_int 0)] UNSPEC_LOAD_SDA_BASE))] "" “ld24 %0,#SDA_BASE” [(set_attr “type” “int4”) (set_attr “length” “4”)])

;; 32-bit address support.

(define_expand “movsi_addr32” [(set (match_dup 2) ; addr32_operand isn‘t used because it’s too restrictive, ; seth_add3_operand is more general and thus safer. (high:SI (match_operand:SI 1 “seth_add3_operand” ""))) (set (match_operand:SI 0 “register_operand” "“) (lo_sum:SI (match_dup 2) (match_dup 1)))] "" " { if (reload_in_progress || reload_completed) operands[2] = operands[0]; else operands[2] = gen_reg_rtx (SImode); }”)

(define_insn “set_hi_si” [(set (match_operand:SI 0 “register_operand” “=r”) (high:SI (match_operand 1 “symbolic_operand” "")))] "" “seth %0,%#shigh(%1)” [(set_attr “type” “int4”) (set_attr “length” “4”)])

(define_insn “lo_sum_si” [(set (match_operand:SI 0 “register_operand” “=r”) (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “immediate_operand” “in”)))] "" “add3 %0,%1,%#%B2” [(set_attr “type” “int4”) (set_attr “length” “4”)])

(define_expand “movdi” [(set (match_operand:DI 0 “general_operand” "") (match_operand:DI 1 “general_operand” ""))] "" " { /* Fixup PIC cases. */ if (flag_pic) { if (symbolic_operand (operands[1], DImode)) { if (reload_in_progress || reload_completed) operands[1] = m32r_legitimize_pic_address (operands[1], operands[0]); else operands[1] = m32r_legitimize_pic_address (operands[1], NULL_RTX); } }

/* Everything except mem = const or mem = mem can be done easily. */

if (MEM_P (operands[0])) operands[1] = force_reg (DImode, operands[1]); }")

(define_insn “*movdi_insn” [(set (match_operand:DI 0 “move_dest_operand” “=r,r,r,r,m”) (match_operand:DI 1 “move_double_src_operand” “r,nG,F,m,r”))] “register_operand (operands[0], DImode) || register_operand (operands[1], DImode)” “#” [(set_attr “type” “multi,multi,multi,load8,store8”) (set_attr “length” “4,4,16,6,6”)])

(define_split [(set (match_operand:DI 0 “move_dest_operand” "") (match_operand:DI 1 “move_double_src_operand” ""))] “reload_completed” [(match_dup 2)] “operands[2] = gen_split_move_double (operands);”) ;; Floating point move insns.

(define_expand “movsf” [(set (match_operand:SF 0 “general_operand” "") (match_operand:SF 1 “general_operand” ""))] "" " { /* Fixup PIC cases. */ if (flag_pic) { if (symbolic_operand (operands[1], SFmode)) { if (reload_in_progress || reload_completed) operands[1] = m32r_legitimize_pic_address (operands[1], operands[0]); else operands[1] = m32r_legitimize_pic_address (operands[1], NULL_RTX); } }

/* Everything except mem = const or mem = mem can be done easily. */

if (MEM_P (operands[0])) operands[1] = force_reg (SFmode, operands[1]); }")

(define_insn “*movsf_insn” [(set (match_operand:SF 0 “move_dest_operand” “=r,r,r,r,r,T,S,m”) (match_operand:SF 1 “move_src_operand” “r,F,U,S,m,r,r,r”))] “register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode)” "@ mv %0,%1

ld %0,%1 ld %0,%1 ld %0,%1 st %1,%0 st %1,%0 st %1,%0" ;; ??? Length of alternative 1 is either 2, 4 or 8. [(set_attr “type” “int2,multi,load2,load2,load4,store2,store2,store4”) (set_attr “length” “2,8,2,2,4,2,2,4”)])

(define_split [(set (match_operand:SF 0 “register_operand” "") (match_operand:SF 1 “const_double_operand” "“))] “reload_completed” [(set (match_dup 2) (match_dup 3))] " { operands[2] = operand_subword (operands[0], 0, 0, SFmode); operands[3] = operand_subword (operands[1], 0, 0, SFmode); }”)

(define_expand “movdf” [(set (match_operand:DF 0 “general_operand” "") (match_operand:DF 1 “general_operand” ""))] "" " { /* Fixup PIC cases. */ if (flag_pic) { if (symbolic_operand (operands[1], DFmode)) { if (reload_in_progress || reload_completed) operands[1] = m32r_legitimize_pic_address (operands[1], operands[0]); else operands[1] = m32r_legitimize_pic_address (operands[1], NULL_RTX); } }

/* Everything except mem = const or mem = mem can be done easily. */

if (MEM_P (operands[0])) operands[1] = force_reg (DFmode, operands[1]); }")

(define_insn “*movdf_insn” [(set (match_operand:DF 0 “move_dest_operand” “=r,r,r,m”) (match_operand:DF 1 “move_double_src_operand” “r,F,m,r”))] “register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode)” “#” [(set_attr “type” “multi,multi,load8,store8”) (set_attr “length” “4,16,6,6”)])

(define_split [(set (match_operand:DF 0 “move_dest_operand” "") (match_operand:DF 1 “move_double_src_operand” ""))] “reload_completed” [(match_dup 2)] “operands[2] = gen_split_move_double (operands);”) ;; Zero extension instructions.

(define_insn “zero_extendqihi2” [(set (match_operand:HI 0 “register_operand” “=r,r,r”) (zero_extend:HI (match_operand:QI 1 “extend_operand” “r,T,m”)))] "" “@ and3 %0,%1,%#255 ldub %0,%1 ldub %0,%1” [(set_attr “type” “int4,load2,load4”) (set_attr “length” “4,2,4”)])

(define_insn “zero_extendqisi2” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (zero_extend:SI (match_operand:QI 1 “extend_operand” “r,T,m”)))] "" “@ and3 %0,%1,%#255 ldub %0,%1 ldub %0,%1” [(set_attr “type” “int4,load2,load4”) (set_attr “length” “4,2,4”)])

(define_insn “zero_extendhisi2” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (zero_extend:SI (match_operand:HI 1 “extend_operand” “r,T,m”)))] "" “@ and3 %0,%1,%#65535 lduh %0,%1 lduh %0,%1” [(set_attr “type” “int4,load2,load4”) (set_attr “length” “4,2,4”)]) ;; Signed conversions from a smaller integer to a larger integer (define_insn “extendqihi2” [(set (match_operand:HI 0 “register_operand” “=r,r,r”) (sign_extend:HI (match_operand:QI 1 “extend_operand” “0,T,m”)))] "" “@ # ldb %0,%1 ldb %0,%1” [(set_attr “type” “multi,load2,load4”) (set_attr “length” “2,2,4”)])

(define_split [(set (match_operand:HI 0 “register_operand” "") (sign_extend:HI (match_operand:QI 1 “register_operand” "")))] “reload_completed” [(match_dup 2) (match_dup 3)] " { rtx op0 = gen_lowpart (SImode, operands[0]); rtx shift = GEN_INT (24);

operands[2] = gen_ashlsi3 (op0, op0, shift); operands[3] = gen_ashrsi3 (op0, op0, shift); }")

(define_insn “extendqisi2” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (sign_extend:SI (match_operand:QI 1 “extend_operand” “0,T,m”)))] "" “@ # ldb %0,%1 ldb %0,%1” [(set_attr “type” “multi,load2,load4”) (set_attr “length” “4,2,4”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:QI 1 “register_operand” "")))] “reload_completed” [(match_dup 2) (match_dup 3)] " { rtx shift = GEN_INT (24);

operands[2] = gen_ashlsi3 (operands[0], operands[0], shift); operands[3] = gen_ashrsi3 (operands[0], operands[0], shift); }")

(define_insn “extendhisi2” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (sign_extend:SI (match_operand:HI 1 “extend_operand” “0,T,m”)))] "" “@ # ldh %0,%1 ldh %0,%1” [(set_attr “type” “multi,load2,load4”) (set_attr “length” “4,2,4”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:HI 1 “register_operand” "")))] “reload_completed” [(match_dup 2) (match_dup 3)] " { rtx shift = GEN_INT (16);

operands[2] = gen_ashlsi3 (operands[0], operands[0], shift); operands[3] = gen_ashrsi3 (operands[0], operands[0], shift); }") ;; Arithmetic instructions.

; ??? Adding an alternative to split add3 of small constants into two ; insns yields better instruction packing but slower code. Adds of small ; values is done a lot.

(define_insn “addsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (plus:SI (match_operand:SI 1 “register_operand” “%0,0,r”) (match_operand:SI 2 “nonmemory_operand” “r,I,J”)))] "" “@ add %0,%2 addi %0,%#%2 add3 %0,%1,%#%2” [(set_attr “type” “int2,int2,int4”) (set_attr “length” “2,2,4”)])

;(define_split ; [(set (match_operand:SI 0 “register_operand” "") ; (plus:SI (match_operand:SI 1 “register_operand” "") ; (match_operand:SI 2 “int8_operand” "")))] ; “reload_completed ; && REGNO (operands[0]) != REGNO (operands[1]) ; && satisfies_constraint_I (operands[2]) ; && INTVAL (operands[2]) != 0” ; [(set (match_dup 0) (match_dup 1)) ; (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))] ; "")

(define_insn “adddi3” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (match_operand:DI 1 “register_operand” “%0”) (match_operand:DI 2 “register_operand” “r”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])

;; ??? The cmp clears the condition bit. Can we speed up somehow? (define_split [(set (match_operand:DI 0 “register_operand” "") (plus:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” "“))) (clobber (reg:CC 17))] “reload_completed” [(parallel [(set (reg:CC 17) (const_int 0)) (use (match_dup 4))]) (parallel [(set (match_dup 4) (plus:SI (match_dup 4) (plus:SI (match_dup 5) (ne:SI (reg:CC 17) (const_int 0))))) (set (reg:CC 17) (unspec:CC [(const_int 0)] UNSPEC_SET_CBIT))]) (parallel [(set (match_dup 6) (plus:SI (match_dup 6) (plus:SI (match_dup 7) (ne:SI (reg:CC 17) (const_int 0))))) (set (reg:CC 17) (unspec:CC [(const_int 0)] UNSPEC_SET_CBIT))])] " { operands[4] = operand_subword (operands[0], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[5] = operand_subword (operands[2], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[6] = operand_subword (operands[0], (WORDS_BIG_ENDIAN == 0), 0, DImode); operands[7] = operand_subword (operands[2], (WORDS_BIG_ENDIAN == 0), 0, DImode); }”)

(define_insn “*clear_c” [(set (reg:CC 17) (const_int 0)) (use (match_operand:SI 0 “register_operand” “r”))] "" “cmp %0,%0” [(set_attr “type” “int2”) (set_attr “length” “2”)])

(define_insn “*add_carry” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (match_operand:SI 1 “register_operand” “%0”) (plus:SI (match_operand:SI 2 “register_operand” “r”) (ne:SI (reg:CC 17) (const_int 0))))) (set (reg:CC 17) (unspec:CC [(const_int 0)] UNSPEC_SET_CBIT))] "" “addx %0,%2” [(set_attr “type” “int2”) (set_attr “length” “2”)])

(define_insn “subsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “sub %0,%2” [(set_attr “type” “int2”) (set_attr “length” “2”)])

(define_insn “subdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 1 “register_operand” “0”) (match_operand:DI 2 “register_operand” “r”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])

;; ??? The cmp clears the condition bit. Can we speed up somehow? (define_split [(set (match_operand:DI 0 “register_operand” "") (minus:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” "“))) (clobber (reg:CC 17))] “reload_completed” [(parallel [(set (reg:CC 17) (const_int 0)) (use (match_dup 4))]) (parallel [(set (match_dup 4) (minus:SI (match_dup 4) (minus:SI (match_dup 5) (ne:SI (reg:CC 17) (const_int 0))))) (set (reg:CC 17) (unspec:CC [(const_int 0)] UNSPEC_SET_CBIT))]) (parallel [(set (match_dup 6) (minus:SI (match_dup 6) (minus:SI (match_dup 7) (ne:SI (reg:CC 17) (const_int 0))))) (set (reg:CC 17) (unspec:CC [(const_int 0)] UNSPEC_SET_CBIT))])] " { operands[4] = operand_subword (operands[0], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[5] = operand_subword (operands[2], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[6] = operand_subword (operands[0], (WORDS_BIG_ENDIAN == 0), 0, DImode); operands[7] = operand_subword (operands[2], (WORDS_BIG_ENDIAN == 0), 0, DImode); }”)

(define_insn “*sub_carry” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “register_operand” “%0”) (minus:SI (match_operand:SI 2 “register_operand” “r”) (ne:SI (reg:CC 17) (const_int 0))))) (set (reg:CC 17) (unspec:CC [(const_int 0)] UNSPEC_SET_CBIT))] "" “subx %0,%2” [(set_attr “type” “int2”) (set_attr “length” “2”)]) ; Multiply/Divide instructions.

(define_insn “mulhisi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mult:SI (sign_extend:SI (match_operand:HI 1 “register_operand” “r”)) (sign_extend:SI (match_operand:HI 2 “register_operand” “r”))))] "" “mullo %1,%2;mvfacmi %0” [(set_attr “type” “multi”) (set_attr “length” “4”)])

(define_insn “mulsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mult:SI (match_operand:SI 1 “register_operand” “%0”) (match_operand:SI 2 “register_operand” “r”)))] "" “mul %0,%2” [(set_attr “type” “mul2”) (set_attr “length” “2”)])

(define_insn “divsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (div:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “div %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)])

(define_insn “udivsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (udiv:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “divu %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)])

(define_insn “modsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mod:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “rem %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)])

(define_insn “umodsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (umod:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “remu %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)]) ;; Boolean instructions. ;; ;; We don‘t define the DImode versions as expand_binop does a good enough job. ;; And if it doesn’t it should be fixed.

(define_insn “andsi3” [(set (match_operand:SI 0 “register_operand” “=r,r”) (and:SI (match_operand:SI 1 “register_operand” “%0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,K”)))] "" "* { /* If we are worried about space, see if we can break this up into two short instructions, which might eliminate a NOP being inserted. */ if (optimize_size && m32r_not_same_reg (operands[0], operands[1]) && satisfies_constraint_I (operands[2])) return "#";

else if (CONST_INT_P (operands[2])) return "and3 %0,%1,%#%X2";

return "and %0,%2"; }" [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (and:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “int8_operand” "")))] “optimize_size && m32r_not_same_reg (operands[0], operands[1])” [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (and:SI (match_dup 0) (match_dup 1)))] "")

(define_insn “iorsi3” [(set (match_operand:SI 0 “register_operand” “=r,r”) (ior:SI (match_operand:SI 1 “register_operand” “%0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,K”)))] "" "* { /* If we are worried about space, see if we can break this up into two short instructions, which might eliminate a NOP being inserted. */ if (optimize_size && m32r_not_same_reg (operands[0], operands[1]) && satisfies_constraint_I (operands[2])) return "#";

else if (CONST_INT_P (operands[2])) return "or3 %0,%1,%#%X2";

return "or %0,%2"; }" [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ior:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “int8_operand” "")))] “optimize_size && m32r_not_same_reg (operands[0], operands[1])” [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 1)))] "")

(define_insn “xorsi3” [(set (match_operand:SI 0 “register_operand” “=r,r”) (xor:SI (match_operand:SI 1 “register_operand” “%0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,K”)))] "" "* { /* If we are worried about space, see if we can break this up into two short instructions, which might eliminate a NOP being inserted. */ if (optimize_size && m32r_not_same_reg (operands[0], operands[1]) && satisfies_constraint_I (operands[2])) return "#";

else if (CONST_INT_P (operands[2])) return "xor3 %0,%1,%#%X2";

return "xor %0,%2"; }" [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “int8_operand” "")))] “optimize_size && m32r_not_same_reg (operands[0], operands[1])” [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (xor:SI (match_dup 0) (match_dup 1)))] "")

(define_insn “negsi2” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (match_operand:SI 1 “register_operand” “r”)))] "" “neg %0,%1” [(set_attr “type” “int2”) (set_attr “length” “2”)])

(define_insn “one_cmplsi2” [(set (match_operand:SI 0 “register_operand” “=r”) (not:SI (match_operand:SI 1 “register_operand” “r”)))] "" “not %0,%1” [(set_attr “type” “int2”) (set_attr “length” “2”)]) ;; Shift instructions.

(define_insn “ashlsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (ashift:SI (match_operand:SI 1 “register_operand” “0,0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,O,K”)))] "" “@ sll %0,%2 slli %0,%#%2 sll3 %0,%1,%#%2” [(set_attr “type” “shift2,shift2,shift4”) (set_attr “length” “2,2,4”)])

(define_insn “ashrsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (ashiftrt:SI (match_operand:SI 1 “register_operand” “0,0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,O,K”)))] "" “@ sra %0,%2 srai %0,%#%2 sra3 %0,%1,%#%2” [(set_attr “type” “shift2,shift2,shift4”) (set_attr “length” “2,2,4”)])

(define_insn “lshrsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (lshiftrt:SI (match_operand:SI 1 “register_operand” “0,0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,O,K”)))] "" “@ srl %0,%2 srli %0,%#%2 srl3 %0,%1,%#%2” [(set_attr “type” “shift2,shift2,shift4”) (set_attr “length” “2,2,4”)]) ;; Compare instructions. ;; This controls RTL generation and register allocation.

;; We generate RTL for comparisons and branches by having the cmpxx ;; patterns store away the operands. Then the bcc patterns ;; emit RTL for both the compare and the branch. ;; ;; On the m32r it is more efficient to use the bxxz instructions and ;; thus merge the compare and branch into one instruction, so they are ;; preferred.

(define_insn “cmp_eqsi_zero_insn” [(set (reg:CC 17) (eq:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_zero_operand” “r,P”)))] “TARGET_M32RX || TARGET_M32R2” “@ cmpeq %0, %1 cmpz %0” [(set_attr “type” “int4”) (set_attr “length” “4”)])

;; The cmp_xxx_insn patterns set the condition bit to the result of the ;; comparison. There isn't a “compare equal” instruction so cmp_eqsi_insn ;; is quite inefficient. However, it is rarely used.

(define_insn “cmp_eqsi_insn” [(set (reg:CC 17) (eq:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_cmp_int16_operand” “r,P”))) (clobber (match_scratch:SI 2 “=&r,&r”))] "" “* { if (which_alternative == 0) { return "mv %2,%0;sub %2,%1;cmpui %2,#1"; } else { if (INTVAL (operands [1]) == 0) return "cmpui %0, #1"; else if (REGNO (operands [2]) == REGNO (operands [0])) return "addi %0,%#%N1;cmpui %2,#1"; else return "add3 %2,%0,%#%N1;cmpui %2,#1"; } }” [(set_attr “type” “multi,multi”) (set_attr “length” “8,8”)])

(define_insn “cmp_ltsi_insn” [(set (reg:CC 17) (lt:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_int16_operand” “r,J”)))] "" “@ cmp %0,%1 cmpi %0,%#%1” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])

(define_insn “cmp_ltusi_insn” [(set (reg:CC 17) (ltu:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_int16_operand” “r,J”)))] "" “@ cmpu %0,%1 cmpui %0,%#%1” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)]) ;; These control RTL generation for conditional jump insns.

(define_expand “cbranchsi4” ; the comparison is emitted by gen_compare if needed. [(set (pc) (if_then_else (match_operator 0 “ordered_comparison_operator” [(match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_cmp_int16_operand” "")]) (label_ref (match_operand 3 "" "“)) (pc)))] "" " { operands[0] = gen_compare (GET_CODE (operands[0]), operands[1], operands[2], FALSE); operands[1] = XEXP (operands[0], 0); operands[2] = XEXP (operands[0], 1); }”)

;; Now match both normal and inverted jump.

(define_insn “*branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(reg 17) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "" “* { static char instruction[40]; sprintf (instruction, "%s%s %%l0", (GET_CODE (operands[1]) == NE) ? "bc" : "bnc", (get_attr_length (insn) == 2) ? ".s" : ""); return instruction; }” [(set_attr “type” “branch”) ; cf PR gcc/28508 ; We use 300/600 instead of 512,1024 to account for inaccurate insn ; lengths and insn alignments that are complex to track. ; It's not important that we be hyper-precise here. It may be more ; important blah blah blah when the chip supports parallel execution ; blah blah blah but until then blah blah blah this is simple and ; suffices. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 300)) (const_int 600)) (const_int 2) (const_int 4)))])

(define_insn “*rev_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(reg 17) (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] ;“REVERSIBLE_CC_MODE (GET_MODE (XEXP (operands[1], 0)))” "" “* { static char instruction[40]; sprintf (instruction, "%s%s %%l0", (GET_CODE (operands[1]) == EQ) ? "bc" : "bnc", (get_attr_length (insn) == 2) ? ".s" : ""); return instruction; }” [(set_attr “type” “branch”) ; cf PR gcc/28508 ; We use 300/600 instead of 512,1024 to account for inaccurate insn ; lengths and insn alignments that are complex to track. ; It's not important that we be hyper-precise here. It may be more ; important blah blah blah when the chip supports parallel execution ; blah blah blah but until then blah blah blah this is simple and ; suffices. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 300)) (const_int 600)) (const_int 2) (const_int 4)))])

; reg/reg compare and branch insns

(define_insn “*reg_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (match_operand:SI 3 “register_operand” “r”)]) (label_ref (match_operand 0 "" "")) (pc)))] "" “* { /* Is branch target reachable with beq/bne? */ if (get_attr_length (insn) == 4) { if (GET_CODE (operands[1]) == EQ) return "beq %2,%3,%l0"; else return "bne %2,%3,%l0"; } else { if (GET_CODE (operands[1]) == EQ) return "bne %2,%3,1f;bra %l0;1:"; else return "beq %2,%3,1f;bra %l0;1:"; } }” [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))])

(define_insn “*rev_reg_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (match_operand:SI 3 “register_operand” “r”)]) (pc) (label_ref (match_operand 0 "" ""))))] "" “* { /* Is branch target reachable with beq/bne? */ if (get_attr_length (insn) == 4) { if (GET_CODE (operands[1]) == NE) return "beq %2,%3,%l0"; else return "bne %2,%3,%l0"; } else { if (GET_CODE (operands[1]) == NE) return "bne %2,%3,1f;bra %l0;1:"; else return "beq %2,%3,1f;bra %l0;1:"; } }” [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))])

; reg/zero compare and branch insns

(define_insn “*zero_branch_insn” [(set (pc) (if_then_else (match_operator 1 “signed_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { const char *br,*invbr; char asmtext[40];

switch (GET_CODE (operands[1])) { case EQ : br = "eq"; invbr = "ne"; break; case NE : br = "ne"; invbr = "eq"; break; case LE : br = "le"; invbr = "gt"; break; case GT : br = "gt"; invbr = "le"; break; case LT : br = "lt"; invbr = "ge"; break; case GE : br = "ge"; invbr = "lt"; break;

  default: gcc_unreachable ();
}

/* Is branch target reachable with bxxz? */ if (get_attr_length (insn) == 4) { sprintf (asmtext, "b%sz %%2,%%l0", br); output_asm_insn (asmtext, operands); } else { sprintf (asmtext, "b%sz %%2,1f;bra %%l0;1:", invbr); output_asm_insn (asmtext, operands); } return ""; }" [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))])

(define_insn “*rev_zero_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { const char *br,*invbr; char asmtext[40];

switch (GET_CODE (operands[1])) { case EQ : br = "eq"; invbr = "ne"; break; case NE : br = "ne"; invbr = "eq"; break; case LE : br = "le"; invbr = "gt"; break; case GT : br = "gt"; invbr = "le"; break; case LT : br = "lt"; invbr = "ge"; break; case GE : br = "ge"; invbr = "lt"; break;

  default: gcc_unreachable ();
}

/* Is branch target reachable with bxxz? */ if (get_attr_length (insn) == 4) { sprintf (asmtext, "b%sz %%2,%%l0", invbr); output_asm_insn (asmtext, operands); } else { sprintf (asmtext, "b%sz %%2,1f;bra %%l0;1:", br); output_asm_insn (asmtext, operands); } return ""; }" [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))]) ;; S operations to set a register to 1/0 based on a comparison

(define_expand “cstoresi4” [(match_operand:SI 0 “register_operand” "") (match_operator:SI 1 “ordered_comparison_operator” [(match_operand:SI 2 “register_operand” "") (match_operand:SI 3 “reg_or_cmp_int16_operand” "")])] "" " { if (GET_MODE (operands[0]) != SImode) FAIL;

if (!gen_cond_store (GET_CODE (operands[1]), operands[0], operands[2], operands[3])) FAIL;

DONE; }")

(define_insn “seq_insn_m32rx” [(set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (match_operand:SI 1 “register_operand” “%r”) (match_operand:SI 2 “reg_or_zero_operand” “rP”))) (clobber (reg:CC 17))] “TARGET_M32RX || TARGET_M32R2” “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (eq:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_zero_operand” ""))) (clobber (reg:CC 17))] “TARGET_M32RX || TARGET_M32R2” [(set (reg:CC 17) (eq:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0)))] "")

(define_insn “seq_zero_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0))) (clobber (reg:CC 17))] “TARGET_M32R” “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (eq:SI (match_operand:SI 1 “register_operand” "") (const_int 0))) (clobber (reg:CC 17))] “TARGET_M32R” [(match_dup 3)] " { rtx op0 = operands[0]; rtx op1 = operands[1];

start_sequence (); emit_insn (gen_cmp_ltusi_insn (op1, const1_rtx)); emit_insn (gen_movcc_insn (op0)); operands[3] = get_insns (); end_sequence (); }")

(define_insn “seq_insn” [(set (match_operand:SI 0 “register_operand” “=r,r,??r,r”) (eq:SI (match_operand:SI 1 “register_operand” “r,r,r,r”) (match_operand:SI 2 “reg_or_eq_int16_operand” “r,r,r,PK”))) (clobber (reg:CC 17)) (clobber (match_scratch:SI 3 “=1,2,&r,r”))] “TARGET_M32R” “#” [(set_attr “type” “multi”) (set_attr “length” “8,8,10,10”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (eq:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_eq_int16_operand” ""))) (clobber (reg:CC 17)) (clobber (match_scratch:SI 3 ""))] “TARGET_M32R && reload_completed” [(match_dup 4)] " { rtx op0 = operands[0]; rtx op1 = operands[1]; rtx op2 = operands[2]; rtx op3 = operands[3]; HOST_WIDE_INT value;

if (REG_P (op2) && REG_P (op3) && REGNO (op2) == REGNO (op3)) { op1 = operands[2]; op2 = operands[1]; }

start_sequence (); if (REG_P (op1) && REG_P (op3) && REGNO (op1) != REGNO (op3)) { emit_move_insn (op3, op1); op1 = op3; }

if (satisfies_constraint_P (op2) && (value = INTVAL (op2)) != 0) emit_insn (gen_addsi3 (op3, op1, GEN_INT (-value))); else emit_insn (gen_xorsi3 (op3, op1, op2));

emit_insn (gen_cmp_ltusi_insn (op3, const1_rtx)); emit_insn (gen_movcc_insn (op0)); operands[4] = get_insns (); end_sequence (); }")

(define_insn “sne_zero_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (ne:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0))) (clobber (reg:CC 17)) (clobber (match_scratch:SI 2 “=&r”))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ne:SI (match_operand:SI 1 “register_operand” "") (const_int 0))) (clobber (reg:CC 17)) (clobber (match_scratch:SI 2 ""))] “reload_completed” [(set (match_dup 2) (const_int 0)) (set (reg:CC 17) (ltu:CC (match_dup 2) (match_dup 1))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0)))] "")

(define_insn “slt_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (lt:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:SI 2 “reg_or_int16_operand” “r,J”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “4,6”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (lt:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_int16_operand” ""))) (clobber (reg:CC 17))] "" [(set (reg:CC 17) (lt:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0)))] "")

(define_insn “sle_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (le:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “8”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (le:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (clobber (reg:CC 17))] “!optimize_size” [(set (reg:CC 17) (lt:CC (match_dup 2) (match_dup 1))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")

;; If optimizing for space, use -(reg - 1) to invert the comparison rather than ;; xor reg,reg,1 which might eliminate a NOP being inserted. (define_split [(set (match_operand:SI 0 “register_operand” "") (le:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (clobber (reg:CC 17))] “optimize_size” [(set (reg:CC 17) (lt:CC (match_dup 2) (match_dup 1))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1))) (set (match_dup 0) (neg:SI (match_dup 0)))] "")

(define_insn “sge_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (ge:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:SI 2 “reg_or_int16_operand” “r,J”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “8,10”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ge:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_int16_operand” ""))) (clobber (reg:CC 17))] “!optimize_size” [(set (reg:CC 17) (lt:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")

;; If optimizing for space, use -(reg - 1) to invert the comparison rather than ;; xor reg,reg,1 which might eliminate a NOP being inserted. (define_split [(set (match_operand:SI 0 “register_operand” "") (ge:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_int16_operand” ""))) (clobber (reg:CC 17))] “optimize_size” [(set (reg:CC 17) (lt:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1))) (set (match_dup 0) (neg:SI (match_dup 0)))] "")

(define_insn “sltu_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (ltu:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:SI 2 “reg_or_int16_operand” “r,J”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “6,8”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ltu:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_int16_operand” ""))) (clobber (reg:CC 17))] "" [(set (reg:CC 17) (ltu:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0)))] "")

(define_insn “sleu_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (leu:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “register_operand” “r”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “8”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (leu:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (clobber (reg:CC 17))] “!optimize_size” [(set (reg:CC 17) (ltu:CC (match_dup 2) (match_dup 1))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")

;; If optimizing for space, use -(reg - 1) to invert the comparison rather than ;; xor reg,reg,1 which might eliminate a NOP being inserted. (define_split [(set (match_operand:SI 0 “register_operand” "") (leu:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (clobber (reg:CC 17))] “optimize_size” [(set (reg:CC 17) (ltu:CC (match_dup 2) (match_dup 1))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1))) (set (match_dup 0) (neg:SI (match_dup 0)))] "")

(define_insn “sgeu_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (geu:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:SI 2 “reg_or_int16_operand” “r,J”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “8,10”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (geu:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_int16_operand” ""))) (clobber (reg:CC 17))] “!optimize_size” [(set (reg:CC 17) (ltu:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")

;; If optimizing for space, use -(reg - 1) to invert the comparison rather than ;; xor reg,reg,1 which might eliminate a NOP being inserted. (define_split [(set (match_operand:SI 0 “register_operand” "") (geu:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “reg_or_int16_operand” ""))) (clobber (reg:CC 17))] “optimize_size” [(set (reg:CC 17) (ltu:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (ne:SI (reg:CC 17) (const_int 0))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1))) (set (match_dup 0) (neg:SI (match_dup 0)))] "")

(define_insn “movcc_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (ne:SI (reg:CC 17) (const_int 0)))] "" “mvfc %0, cbr” [(set_attr “type” “misc”) (set_attr “length” “2”)])

;; Unconditional and other jump instructions.

(define_insn “jump” [(set (pc) (label_ref (match_operand 0 "" "")))] "" “bra %l0” [(set_attr “type” “uncond_branch”) (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 400)) (const_int 800)) (const_int 2) (const_int 4)))])

(define_insn “indirect_jump” [(set (pc) (match_operand:SI 0 “address_operand” “p”))] "" “jmp %a0” [(set_attr “type” “uncond_branch”) (set_attr “length” “2”)])

(define_insn “return_lr” [(parallel [(return) (use (reg:SI 14))])] "" “jmp lr” [(set_attr “type” “uncond_branch”) (set_attr “length” “2”)])

(define_insn “return_rte” [(return)] "" “rte” [(set_attr “type” “uncond_branch”) (set_attr “length” “2”)])

(define_expand “return” [(return)] “direct_return ()” " { emit_jump_insn (gen_return_lr ()); DONE; }")

(define_expand “return_normal” [(return)] “!direct_return ()” " { enum m32r_function_type fn_type;

fn_type = m32r_compute_function_type (current_function_decl); if (M32R_INTERRUPT_P (fn_type)) { emit_jump_insn (gen_return_rte ()); DONE; }

emit_jump_insn (gen_return_lr ()); DONE; }")

(define_expand “tablejump” [(parallel [(set (pc) (match_operand 0 “register_operand” “r”)) (use (label_ref (match_operand 1 "" "")))])] "" " { /* In pic mode, our address differences are against the base of the table. Add that base value back in; CSE ought to be able to combine the two address loads. */ if (flag_pic) { rtx tmp, tmp2;

  tmp = gen_rtx_LABEL_REF (Pmode, operands[1]);
  tmp2 = operands[0];
  tmp = gen_rtx_PLUS (Pmode, tmp2, tmp);
  operands[0] = memory_address (Pmode, tmp);
}

}")

(define_insn “*tablejump_insn” [(set (pc) (match_operand:SI 0 “address_operand” “p”)) (use (label_ref (match_operand 1 "" "")))] "" “jmp %a0” [(set_attr “type” “uncond_branch”) (set_attr “length” “2”)])

(define_expand “call” ;; operands[1] is stack_size_rtx ;; operands[2] is next_arg_register [(parallel [(call (match_operand:SI 0 “call_operand” "") (match_operand 1 "" "“)) (clobber (reg:SI 14))])] "" " { if (flag_pic) crtl->uses_pic_offset_table = 1; }”)

(define_insn “*call_via_reg” [(call (mem:SI (match_operand:SI 0 “register_operand” “r”)) (match_operand 1 "" "")) (clobber (reg:SI 14))] "" “jl %0” [(set_attr “type” “call”) (set_attr “length” “2”)])

(define_insn “*call_via_label” [(call (mem:SI (match_operand:SI 0 “call_address_operand” "")) (match_operand 1 "" "")) (clobber (reg:SI 14))] "" "* { int call26_p = call26_operand (operands[0], FUNCTION_MODE);

if (! call26_p) { /* We may not be able to reach with a `bl' insn so punt and leave it to the linker. We do this here, rather than doing a force_reg in the define_expand so these insns won‘t be separated, say by scheduling, thus simplifying the linker. */ return "seth r14,%T0;add3 r14,r14,%B0;jl r14"; } else return "bl %0"; }" [(set_attr “type” “call”) (set (attr “length”) (if_then_else (not (match_test “call26_operand (operands[0], FUNCTION_MODE)”)) (const_int 12) ; 10 + 2 for nop filler ; The return address must be on a 4 byte boundary so ; there’s no point in using a value of 2 here. A 2 byte ; insn may go in the left slot but we currently can't ; use such knowledge. (const_int 4)))])

(define_expand “call_value” ;; operand 2 is stack_size_rtx ;; operand 3 is next_arg_register [(parallel [(set (match_operand 0 “register_operand” “=r”) (call (match_operand:SI 1 “call_operand” "") (match_operand 2 "" "“))) (clobber (reg:SI 14))])] "" " { if (flag_pic) crtl->uses_pic_offset_table = 1; }”)

(define_insn “*call_value_via_reg” [(set (match_operand 0 “register_operand” “=r”) (call (mem:SI (match_operand:SI 1 “register_operand” “r”)) (match_operand 2 "" ""))) (clobber (reg:SI 14))] "" “jl %1” [(set_attr “type” “call”) (set_attr “length” “2”)])

(define_insn “*call_value_via_label” [(set (match_operand 0 “register_operand” “=r”) (call (mem:SI (match_operand:SI 1 “call_address_operand” "")) (match_operand 2 "" ""))) (clobber (reg:SI 14))] "" "* { int call26_p = call26_operand (operands[1], FUNCTION_MODE);

if (flag_pic) crtl->uses_pic_offset_table = 1;

if (! call26_p) { /* We may not be able to reach with a `bl' insn so punt and leave it to the linker. We do this here, rather than doing a force_reg in the define_expand so these insns won‘t be separated, say by scheduling, thus simplifying the linker. */ return "seth r14,%T1;add3 r14,r14,%B1;jl r14"; } else return "bl %1"; }" [(set_attr “type” “call”) (set (attr “length”) (if_then_else (not (match_test “call26_operand (operands[1], FUNCTION_MODE)”)) (const_int 12) ; 10 + 2 for nop filler ; The return address must be on a 4 byte boundary so ; there’s no point in using a value of 2 here. A 2 byte ; insn may go in the left slot but we currently can't ; use such knowledge. (const_int 4)))]) (define_insn “nop” [(const_int 0)] "" “nop” [(set_attr “type” “int2”) (set_attr “length” “2”)])

;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point.

(define_insn “blockage” [(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)] "" "")

;; Special pattern to flush the icache.

(define_insn “flush_icache” [(unspec_volatile [(match_operand 0 “memory_operand” “m”)] UNSPECV_FLUSH_ICACHE) (match_operand 1 "" "") (clobber (reg:SI 17))] "" “* return "trap %#%1 ; flush-icache";” [(set_attr “type” “int4”) (set_attr “length” “4”)]) ;; Speed up fabs and provide correct sign handling for -0

(define_insn “absdf2” [(set (match_operand:DF 0 “register_operand” “=r”) (abs:DF (match_operand:DF 1 “register_operand” “0”)))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “4”)])

(define_split [(set (match_operand:DF 0 “register_operand” "") (abs:DF (match_operand:DF 1 “register_operand” "")))] “reload_completed” [(set (match_dup 2) (ashift:SI (match_dup 2) (const_int 1))) (set (match_dup 2) (lshiftrt:SI (match_dup 2) (const_int 1)))] “operands[2] = gen_highpart (SImode, operands[0]);”)

(define_insn “abssf2” [(set (match_operand:SF 0 “register_operand” “=r”) (abs:SF (match_operand:SF 1 “register_operand” “0”)))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “4”)])

(define_split [(set (match_operand:SF 0 “register_operand” "") (abs:SF (match_operand:SF 1 “register_operand” "")))] “reload_completed” [(set (match_dup 2) (ashift:SI (match_dup 2) (const_int 1))) (set (match_dup 2) (lshiftrt:SI (match_dup 2) (const_int 1)))] “operands[2] = gen_highpart (SImode, operands[0]);”) ;; Conditional move instructions ;; Based on those done for the d10v

(define_expand “movsicc” [ (set (match_operand:SI 0 “register_operand” “r”) (if_then_else:SI (match_operand 1 "" "") (match_operand:SI 2 “conditional_move_operand” “O”) (match_operand:SI 3 “conditional_move_operand” “O”) ) ) ] "" " { if (! zero_and_one (operands [2], operands [3])) FAIL;

/* Generate the comparison that will set the carry flag. */ operands[1] = gen_compare (GET_CODE (operands[1]), XEXP (operands[1], 0), XEXP (operands[1], 1), TRUE);

/* See other movsicc pattern below for reason why. */ emit_insn (gen_blockage ()); }")

;; Generate the conditional instructions based on how the carry flag is examined. (define_insn “*movsicc_internal” [(set (match_operand:SI 0 “register_operand” “=r”) (if_then_else:SI (match_operand 1 “carry_compare_operand” "") (match_operand:SI 2 “conditional_move_operand” “O”) (match_operand:SI 3 “conditional_move_operand” “O”) ) )] “zero_and_one (operands [2], operands[3])” “* return emit_cond_move (operands, insn);” [(set_attr “type” “multi”) (set_attr “length” “8”) ] )

;; Block moves, see m32r.c for more details. ;; Argument 0 is the destination ;; Argument 1 is the source ;; Argument 2 is the length ;; Argument 3 is the alignment

(define_expand “movmemsi” [(parallel [(set (match_operand:BLK 0 “general_operand” "") (match_operand:BLK 1 “general_operand” "")) (use (match_operand:SI 2 “immediate_operand” "")) (use (match_operand:SI 3 “immediate_operand” "“))])] "" " { if (operands[0]) /* Avoid unused code messages. */ { if (m32r_expand_block_move (operands)) DONE; else FAIL; } }”)

;; Insn generated by block moves

(define_insn “movmemsi_internal” [(set (mem:BLK (match_operand:SI 0 “register_operand” “r”)) ;; destination (mem:BLK (match_operand:SI 1 “register_operand” “r”))) ;; source (use (match_operand:SI 2 “m32r_block_immediate_operand” “J”));; # bytes to move (set (match_operand:SI 3 “register_operand” “=0”) (plus:SI (minus (match_dup 2) (const_int 4)) (match_dup 0))) (set (match_operand:SI 4 “register_operand” “=1”) (plus:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 5 “=&r”)) ;; temp1 (clobber (match_scratch:SI 6 “=&r”))] ;; temp2 "" "* m32r_output_block_move (insn, operands); return ""; " [(set_attr “type” “store8”) (set_attr “length” “72”)]) ;; Maximum

;; PIC

/* When generating pic, we need to load the symbol offset into a register. So that the optimizer does not confuse this with a normal symbol load we use an unspec. The offset will be loaded from a constant pool entry, since that is the only type of relocation we can use. */

(define_insn “pic_load_addr” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(match_operand 1 "" "")] UNSPEC_PIC_LOAD_ADDR))] “flag_pic” “ld24 %0,%#%1” [(set_attr “type” “int4”)])

(define_insn “gotoff_load_addr” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec:SI [(match_operand 1 "" "")] UNSPEC_GOTOFF))] “flag_pic” “seth %0, %#shigh(%1@GOTOFF);add3 %0, %0, low(%1@GOTOFF)” [(set_attr “type” “int4”) (set_attr “length” “8”)])

;; Load program counter insns.

(define_insn “get_pc” [(clobber (reg:SI 14)) (set (match_operand 0 “register_operand” “=r,r”) (unspec [(match_operand 1 "" "")] UNSPEC_GET_PC)) (use (match_operand:SI 2 “immediate_operand” “W,i”))] “flag_pic” “@ bl.s .+4;seth %0,%#shigh(%1);add3 %0,%0,%#low(%1+4);add %0,lr bl.s .+4;ld24 %0,%#%1;add %0,lr” [(set_attr “length” “12,8”)])

(define_expand “builtin_setjmp_receiver” [(label_ref (match_operand 0 "" "“))] “flag_pic” " { m32r_load_pic_register (); DONE; }”)