blob: fb82105a9a72dcec76fee0cb4f2af583c86f6f28 [file] [log] [blame]
/* Subroutines for insn-output.c for Motorola 68000 family.
Copyright (C) 1987-2015 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hash-set.h"
#include "machmode.h"
#include "vec.h"
#include "double-int.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "wide-int.h"
#include "inchash.h"
#include "tree.h"
#include "fold-const.h"
#include "calls.h"
#include "stor-layout.h"
#include "varasm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "function.h"
#include "regs.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "hashtab.h"
#include "flags.h"
#include "statistics.h"
#include "real.h"
#include "fixed-value.h"
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "emit-rtl.h"
#include "stmt.h"
#include "expr.h"
#include "reload.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "debug.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "predict.h"
#include "basic-block.h"
#include "df.h"
/* ??? Need to add a dependency between m68k.o and sched-int.h. */
#include "sched-int.h"
#include "insn-codes.h"
#include "ggc.h"
#include "opts.h"
#include "optabs.h"
#include "builtins.h"
#include "rtl-iter.h"
enum reg_class regno_reg_class[] =
{
DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
ADDR_REGS
};
/* The minimum number of integer registers that we want to save with the
movem instruction. Using two movel instructions instead of a single
moveml is about 15% faster for the 68020 and 68030 at no expense in
code size. */
#define MIN_MOVEM_REGS 3
/* The minimum number of floating point registers that we want to save
with the fmovem instruction. */
#define MIN_FMOVEM_REGS 1
/* Structure describing stack frame layout. */
struct m68k_frame
{
/* Stack pointer to frame pointer offset. */
HOST_WIDE_INT offset;
/* Offset of FPU registers. */
HOST_WIDE_INT foffset;
/* Frame size in bytes (rounded up). */
HOST_WIDE_INT size;
/* Data and address register. */
int reg_no;
unsigned int reg_mask;
/* FPU registers. */
int fpu_no;
unsigned int fpu_mask;
/* Offsets relative to ARG_POINTER. */
HOST_WIDE_INT frame_pointer_offset;
HOST_WIDE_INT stack_pointer_offset;
/* Function which the above information refers to. */
int funcdef_no;
};
/* Current frame information calculated by m68k_compute_frame_layout(). */
static struct m68k_frame current_frame;
/* Structure describing an m68k address.
If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
with null fields evaluating to 0. Here:
- BASE satisfies m68k_legitimate_base_reg_p
- INDEX satisfies m68k_legitimate_index_reg_p
- OFFSET satisfies m68k_legitimate_constant_address_p
INDEX is either HImode or SImode. The other fields are SImode.
If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
the address is (BASE)+. */
struct m68k_address {
enum rtx_code code;
rtx base;
rtx index;
rtx offset;
int scale;
};
static int m68k_sched_adjust_cost (rtx_insn *, rtx, rtx_insn *, int);
static int m68k_sched_issue_rate (void);
static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
static void m68k_sched_md_init_global (FILE *, int, int);
static void m68k_sched_md_finish_global (FILE *, int);
static void m68k_sched_md_init (FILE *, int, int);
static void m68k_sched_dfa_pre_advance_cycle (void);
static void m68k_sched_dfa_post_advance_cycle (void);
static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
static bool m68k_can_eliminate (const int, const int);
static void m68k_conditional_register_usage (void);
static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
static void m68k_option_override (void);
static void m68k_override_options_after_change (void);
static rtx find_addr_reg (rtx);
static const char *singlemove_string (rtx *);
static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static rtx m68k_struct_value_rtx (tree, int);
static tree m68k_handle_fndecl_attribute (tree *node, tree name,
tree args, int flags,
bool *no_add_attrs);
static void m68k_compute_frame_layout (void);
static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
static bool m68k_ok_for_sibcall_p (tree, tree);
static bool m68k_tls_symbol_p (rtx);
static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
static bool m68k_rtx_costs (rtx, int, int, int, int *, bool);
#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
static bool m68k_return_in_memory (const_tree, const_tree);
#endif
static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static void m68k_trampoline_init (rtx, tree, rtx);
static int m68k_return_pops_args (tree, tree, int);
static rtx m68k_delegitimize_address (rtx);
static void m68k_function_arg_advance (cumulative_args_t, machine_mode,
const_tree, bool);
static rtx m68k_function_arg (cumulative_args_t, machine_mode,
const_tree, bool);
static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
static bool m68k_output_addr_const_extra (FILE *, rtx);
static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
/* Initialize the GCC target structure. */
#if INT_OP_GROUP == INT_OP_DOT_WORD
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#endif
#if INT_OP_GROUP == INT_OP_NO_DOT
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tbyte\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
#endif
#if INT_OP_GROUP == INT_OP_DC
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tdc.b\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
#endif
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#undef TARGET_ASM_FILE_START_APP_OFF
#define TARGET_ASM_FILE_START_APP_OFF true
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
#undef TARGET_SCHED_INIT_GLOBAL
#define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
#undef TARGET_SCHED_FINISH_GLOBAL
#define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT m68k_sched_md_init
#undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
#define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
#undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
#define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
m68k_sched_first_cycle_multipass_dfa_lookahead
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE m68k_option_override
#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS m68k_rtx_costs
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
#endif
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS (true)
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
#endif
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE m68k_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
#undef TARGET_RETURN_POPS_ARGS
#define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG m68k_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
/* The value stored by TAS. */
#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
static const struct attribute_spec m68k_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
affects_type_identity } */
{ "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
false },
{ "interrupt_handler", 0, 0, true, false, false,
m68k_handle_fndecl_attribute, false },
{ "interrupt_thread", 0, 0, true, false, false,
m68k_handle_fndecl_attribute, false },
{ NULL, 0, 0, false, false, false, NULL, false }
};
struct gcc_target targetm = TARGET_INITIALIZER;
/* Base flags for 68k ISAs. */
#define FL_FOR_isa_00 FL_ISA_68000
#define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
/* FL_68881 controls the default setting of -m68881. gcc has traditionally
generated 68881 code for 68020 and 68030 targets unless explicitly told
not to. */
#define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
| FL_BITFIELD | FL_68881 | FL_CAS)
#define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
#define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
/* Base flags for ColdFire ISAs. */
#define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
#define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
/* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
#define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
/* ISA_C is not upwardly compatible with ISA_B. */
#define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
enum m68k_isa
{
/* Traditional 68000 instruction sets. */
isa_00,
isa_10,
isa_20,
isa_40,
isa_cpu32,
/* ColdFire instruction set variants. */
isa_a,
isa_aplus,
isa_b,
isa_c,
isa_max
};
/* Information about one of the -march, -mcpu or -mtune arguments. */
struct m68k_target_selection
{
/* The argument being described. */
const char *name;
/* For -mcpu, this is the device selected by the option.
For -mtune and -march, it is a representative device
for the microarchitecture or ISA respectively. */
enum target_device device;
/* The M68K_DEVICE fields associated with DEVICE. See the comment
in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
const char *family;
enum uarch_type microarch;
enum m68k_isa isa;
unsigned long flags;
};
/* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
static const struct m68k_target_selection all_devices[] =
{
#define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
{ NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
#include "m68k-devices.def"
#undef M68K_DEVICE
{ NULL, unk_device, NULL, unk_arch, isa_max, 0 }
};
/* A list of all ISAs, mapping each one to a representative device.
Used for -march selection. */
static const struct m68k_target_selection all_isas[] =
{
#define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
{ NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
#include "m68k-isas.def"
#undef M68K_ISA
{ NULL, unk_device, NULL, unk_arch, isa_max, 0 }
};
/* A list of all microarchitectures, mapping each one to a representative
device. Used for -mtune selection. */
static const struct m68k_target_selection all_microarchs[] =
{
#define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
{ NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
#include "m68k-microarchs.def"
#undef M68K_MICROARCH
{ NULL, unk_device, NULL, unk_arch, isa_max, 0 }
};
/* The entries associated with the -mcpu, -march and -mtune settings,
or null for options that have not been used. */
const struct m68k_target_selection *m68k_cpu_entry;
const struct m68k_target_selection *m68k_arch_entry;
const struct m68k_target_selection *m68k_tune_entry;
/* Which CPU we are generating code for. */
enum target_device m68k_cpu;
/* Which microarchitecture to tune for. */
enum uarch_type m68k_tune;
/* Which FPU to use. */
enum fpu_type m68k_fpu;
/* The set of FL_* flags that apply to the target processor. */
unsigned int m68k_cpu_flags;
/* The set of FL_* flags that apply to the processor to be tuned for. */
unsigned int m68k_tune_flags;
/* Asm templates for calling or jumping to an arbitrary symbolic address,
or NULL if such calls or jumps are not supported. The address is held
in operand 0. */
const char *m68k_symbolic_call;
const char *m68k_symbolic_jump;
/* Enum variable that corresponds to m68k_symbolic_call values. */
enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
/* Implement TARGET_OPTION_OVERRIDE. */
static void
m68k_option_override (void)
{
const struct m68k_target_selection *entry;
unsigned long target_mask;
if (global_options_set.x_m68k_arch_option)
m68k_arch_entry = &all_isas[m68k_arch_option];
if (global_options_set.x_m68k_cpu_option)
m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
if (global_options_set.x_m68k_tune_option)
m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
/* User can choose:
-mcpu=
-march=
-mtune=
-march=ARCH should generate code that runs any processor
implementing architecture ARCH. -mcpu=CPU should override -march
and should generate code that runs on processor CPU, making free
use of any instructions that CPU understands. -mtune=UARCH applies
on top of -mcpu or -march and optimizes the code for UARCH. It does
not change the target architecture. */
if (m68k_cpu_entry)
{
/* Complain if the -march setting is for a different microarchitecture,
or includes flags that the -mcpu setting doesn't. */
if (m68k_arch_entry
&& (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
|| (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
warning (0, "-mcpu=%s conflicts with -march=%s",
m68k_cpu_entry->name, m68k_arch_entry->name);
entry = m68k_cpu_entry;
}
else
entry = m68k_arch_entry;
if (!entry)
entry = all_devices + TARGET_CPU_DEFAULT;
m68k_cpu_flags = entry->flags;
/* Use the architecture setting to derive default values for
certain flags. */
target_mask = 0;
/* ColdFire is lenient about alignment. */
if (!TARGET_COLDFIRE)
target_mask |= MASK_STRICT_ALIGNMENT;
if ((m68k_cpu_flags & FL_BITFIELD) != 0)
target_mask |= MASK_BITFIELD;
if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
target_mask |= MASK_CF_HWDIV;
if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
target_mask |= MASK_HARD_FLOAT;
target_flags |= target_mask & ~target_flags_explicit;
/* Set the directly-usable versions of the -mcpu and -mtune settings. */
m68k_cpu = entry->device;
if (m68k_tune_entry)
{
m68k_tune = m68k_tune_entry->microarch;
m68k_tune_flags = m68k_tune_entry->flags;
}
#ifdef M68K_DEFAULT_TUNE
else if (!m68k_cpu_entry && !m68k_arch_entry)
{
enum target_device dev;
dev = all_microarchs[M68K_DEFAULT_TUNE].device;
m68k_tune_flags = all_devices[dev].flags;
}
#endif
else
{
m68k_tune = entry->microarch;
m68k_tune_flags = entry->flags;
}
/* Set the type of FPU. */
m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
: (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
: FPUTYPE_68881);
/* Sanity check to ensure that msep-data and mid-sahred-library are not
* both specified together. Doing so simply doesn't make sense.
*/
if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
error ("cannot specify both -msep-data and -mid-shared-library");
/* If we're generating code for a separate A5 relative data segment,
* we've got to enable -fPIC as well. This might be relaxable to
* -fpic but it hasn't been tested properly.
*/
if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
flag_pic = 2;
/* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
error if the target does not support them. */
if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
error ("-mpcrel -fPIC is not currently supported on selected cpu");
/* ??? A historic way of turning on pic, or is this intended to
be an embedded thing that doesn't have the same name binding
significance that it does on hosted ELF systems? */
if (TARGET_PCREL && flag_pic == 0)
flag_pic = 1;
if (!flag_pic)
{
m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
m68k_symbolic_jump = "jra %a0";
}
else if (TARGET_ID_SHARED_LIBRARY)
/* All addresses must be loaded from the GOT. */
;
else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
{
if (TARGET_PCREL)
m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
else
m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
if (TARGET_ISAC)
/* No unconditional long branch */;
else if (TARGET_PCREL)
m68k_symbolic_jump = "bra%.l %c0";
else
m68k_symbolic_jump = "bra%.l %p0";
/* Turn off function cse if we are doing PIC. We always want
function call to be done as `bsr foo@PLTPC'. */
/* ??? It's traditional to do this for -mpcrel too, but it isn't
clear how intentional that is. */
flag_no_function_cse = 1;
}
switch (m68k_symbolic_call_var)
{
case M68K_SYMBOLIC_CALL_JSR:
m68k_symbolic_call = "jsr %a0";
break;
case M68K_SYMBOLIC_CALL_BSR_C:
m68k_symbolic_call = "bsr%.l %c0";
break;
case M68K_SYMBOLIC_CALL_BSR_P:
m68k_symbolic_call = "bsr%.l %p0";
break;
case M68K_SYMBOLIC_CALL_NONE:
gcc_assert (m68k_symbolic_call == NULL);
break;
default:
gcc_unreachable ();
}
#ifndef ASM_OUTPUT_ALIGN_WITH_NOP
if (align_labels > 2)
{
warning (0, "-falign-labels=%d is not supported", align_labels);
align_labels = 0;
}
if (align_loops > 2)
{
warning (0, "-falign-loops=%d is not supported", align_loops);
align_loops = 0;
}
#endif
if (stack_limit_rtx != NULL_RTX && !TARGET_68020)
{
warning (0, "-fstack-limit- options are not supported on this cpu");
stack_limit_rtx = NULL_RTX;
}
SUBTARGET_OVERRIDE_OPTIONS;
/* Setup scheduling options. */
if (TUNE_CFV1)
m68k_sched_cpu = CPU_CFV1;
else if (TUNE_CFV2)
m68k_sched_cpu = CPU_CFV2;
else if (TUNE_CFV3)
m68k_sched_cpu = CPU_CFV3;
else if (TUNE_CFV4)
m68k_sched_cpu = CPU_CFV4;
else
{
m68k_sched_cpu = CPU_UNKNOWN;
flag_schedule_insns = 0;
flag_schedule_insns_after_reload = 0;
flag_modulo_sched = 0;
flag_live_range_shrinkage = 0;
}
if (m68k_sched_cpu != CPU_UNKNOWN)
{
if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
m68k_sched_mac = MAC_CF_EMAC;
else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
m68k_sched_mac = MAC_CF_MAC;
else
m68k_sched_mac = MAC_NO;
}
}
/* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
static void
m68k_override_options_after_change (void)
{
if (m68k_sched_cpu == CPU_UNKNOWN)
{
flag_schedule_insns = 0;
flag_schedule_insns_after_reload = 0;
flag_modulo_sched = 0;
flag_live_range_shrinkage = 0;
}
}
/* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
given argument and NAME is the argument passed to -mcpu. Return NULL
if -mcpu was not passed. */
const char *
m68k_cpp_cpu_ident (const char *prefix)
{
if (!m68k_cpu_entry)
return NULL;
return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
}
/* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
given argument and NAME is the name of the representative device for
the -mcpu argument's family. Return NULL if -mcpu was not passed. */
const char *
m68k_cpp_cpu_family (const char *prefix)
{
if (!m68k_cpu_entry)
return NULL;
return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
}
/* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
"interrupt_handler" attribute and interrupt_thread if FUNC has an
"interrupt_thread" attribute. Otherwise, return
m68k_fk_normal_function. */
enum m68k_function_kind
m68k_get_function_kind (tree func)
{
tree a;
gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
if (a != NULL_TREE)
return m68k_fk_interrupt_handler;
a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
if (a != NULL_TREE)
return m68k_fk_interrupt_handler;
a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
if (a != NULL_TREE)
return m68k_fk_interrupt_thread;
return m68k_fk_normal_function;
}
/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
struct attribute_spec.handler. */
static tree
m68k_handle_fndecl_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (TREE_CODE (*node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
*no_add_attrs = true;
}
if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
{
error ("multiple interrupt attributes not allowed");
*no_add_attrs = true;
}
if (!TARGET_FIDOA
&& !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
{
error ("interrupt_thread is available only on fido");
*no_add_attrs = true;
}
return NULL_TREE;
}
static void
m68k_compute_frame_layout (void)
{
int regno, saved;
unsigned int mask;
enum m68k_function_kind func_kind =
m68k_get_function_kind (current_function_decl);
bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
/* Only compute the frame once per function.
Don't cache information until reload has been completed. */
if (current_frame.funcdef_no == current_function_funcdef_no
&& reload_completed)
return;
current_frame.size = (get_frame_size () + 3) & -4;
mask = saved = 0;
/* Interrupt thread does not need to save any register. */
if (!interrupt_thread)
for (regno = 0; regno < 16; regno++)
if (m68k_save_reg (regno, interrupt_handler))
{
mask |= 1 << (regno - D0_REG);
saved++;
}
current_frame.offset = saved * 4;
current_frame.reg_no = saved;
current_frame.reg_mask = mask;
current_frame.foffset = 0;
mask = saved = 0;
if (TARGET_HARD_FLOAT)
{
/* Interrupt thread does not need to save any register. */
if (!interrupt_thread)
for (regno = 16; regno < 24; regno++)
if (m68k_save_reg (regno, interrupt_handler))
{
mask |= 1 << (regno - FP0_REG);
saved++;
}
current_frame.foffset = saved * TARGET_FP_REG_SIZE;
current_frame.offset += current_frame.foffset;
}
current_frame.fpu_no = saved;
current_frame.fpu_mask = mask;
/* Remember what function this frame refers to. */
current_frame.funcdef_no = current_function_funcdef_no;
}
/* Worker function for TARGET_CAN_ELIMINATE. */
bool
m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
}
HOST_WIDE_INT
m68k_initial_elimination_offset (int from, int to)
{
int argptr_offset;
/* The arg pointer points 8 bytes before the start of the arguments,
as defined by FIRST_PARM_OFFSET. This makes it coincident with the
frame pointer in most frames. */
argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
return argptr_offset;
m68k_compute_frame_layout ();
gcc_assert (to == STACK_POINTER_REGNUM);
switch (from)
{
case ARG_POINTER_REGNUM:
return current_frame.offset + current_frame.size - argptr_offset;
case FRAME_POINTER_REGNUM:
return current_frame.offset + current_frame.size;
default:
gcc_unreachable ();
}
}
/* Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This function is responsible for
knowing which registers should not be saved even if used.
Return true if we need to save REGNO. */
static bool
m68k_save_reg (unsigned int regno, bool interrupt_handler)
{
if (flag_pic && regno == PIC_REG)
{
if (crtl->saves_all_registers)
return true;
if (crtl->uses_pic_offset_table)
return true;
/* Reload may introduce constant pool references into a function
that thitherto didn't need a PIC register. Note that the test
above will not catch that case because we will only set
crtl->uses_pic_offset_table when emitting
the address reloads. */
if (crtl->uses_const_pool)
return true;
}
if (crtl->calls_eh_return)
{
unsigned int i;
for (i = 0; ; i++)
{
unsigned int test = EH_RETURN_DATA_REGNO (i);
if (test == INVALID_REGNUM)
break;
if (test == regno)
return true;
}
}
/* Fixed regs we never touch. */
if (fixed_regs[regno])
return false;
/* The frame pointer (if it is such) is handled specially. */
if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
return false;
/* Interrupt handlers must also save call_used_regs
if they are live or when calling nested functions. */
if (interrupt_handler)
{
if (df_regs_ever_live_p (regno))
return true;
if (!crtl->is_leaf && call_used_regs[regno])
return true;
}
/* Never need to save registers that aren't touched. */
if (!df_regs_ever_live_p (regno))
return false;
/* Otherwise save everything that isn't call-clobbered. */
return !call_used_regs[regno];
}
/* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
the lowest memory address. COUNT is the number of registers to be
moved, with register REGNO + I being moved if bit I of MASK is set.
STORE_P specifies the direction of the move and ADJUST_STACK_P says
whether or not this is pre-decrement (if STORE_P) or post-increment
(if !STORE_P) operation. */
static rtx_insn *
m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
unsigned int count, unsigned int regno,
unsigned int mask, bool store_p, bool adjust_stack_p)
{
int i;
rtx body, addr, src, operands[2];
machine_mode mode;
body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
mode = reg_raw_mode[regno];
i = 0;
if (adjust_stack_p)
{
src = plus_constant (Pmode, base,
(count
* GET_MODE_SIZE (mode)
* (HOST_WIDE_INT) (store_p ? -1 : 1)));
XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
}
for (; mask != 0; mask >>= 1, regno++)
if (mask & 1)
{
addr = plus_constant (Pmode, base, offset);
operands[!store_p] = gen_frame_mem (mode, addr);
operands[store_p] = gen_rtx_REG (mode, regno);
XVECEXP (body, 0, i++)
= gen_rtx_SET (VOIDmode, operands[0], operands[1]);
offset += GET_MODE_SIZE (mode);
}
gcc_assert (i == XVECLEN (body, 0));
return emit_insn (body);
}
/* Make INSN a frame-related instruction. */
static void
m68k_set_frame_related (rtx_insn *insn)
{
rtx body;
int i;
RTX_FRAME_RELATED_P (insn) = 1;
body = PATTERN (insn);
if (GET_CODE (body) == PARALLEL)
for (i = 0; i < XVECLEN (body, 0); i++)
RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
}
/* Emit RTL for the "prologue" define_expand. */
void
m68k_expand_prologue (void)
{
HOST_WIDE_INT fsize_with_regs;
rtx limit, src, dest;
m68k_compute_frame_layout ();
if (flag_stack_usage_info)
current_function_static_stack_size
= current_frame.size + current_frame.offset;
/* If the stack limit is a symbol, we can check it here,
before actually allocating the space. */
if (crtl->limit_stack
&& GET_CODE (stack_limit_rtx) == SYMBOL_REF)
{
limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
if (!m68k_legitimate_constant_p (Pmode, limit))
{
emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
limit = gen_rtx_REG (Pmode, D0_REG);
}
emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
stack_pointer_rtx, limit),
stack_pointer_rtx, limit,
const1_rtx));
}
fsize_with_regs = current_frame.size;
if (TARGET_COLDFIRE)
{
/* ColdFire's move multiple instructions do not allow pre-decrement
addressing. Add the size of movem saves to the initial stack
allocation instead. */
if (current_frame.reg_no >= MIN_MOVEM_REGS)
fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
}
if (frame_pointer_needed)
{
if (fsize_with_regs == 0 && TUNE_68040)
{
/* On the 68040, two separate moves are faster than link.w 0. */
dest = gen_frame_mem (Pmode,
gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
stack_pointer_rtx));
}
else if (fsize_with_regs < 0x8000 || TARGET_68020)
m68k_set_frame_related
(emit_insn (gen_link (frame_pointer_rtx,
GEN_INT (-4 - fsize_with_regs))));
else
{
m68k_set_frame_related
(emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
m68k_set_frame_related
(emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-fsize_with_regs))));
}
/* If the frame pointer is needed, emit a special barrier that
will prevent the scheduler from moving stores to the frame
before the stack adjustment. */
emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
}
else if (fsize_with_regs != 0)
m68k_set_frame_related
(emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-fsize_with_regs))));
if (current_frame.fpu_mask)
{
gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
if (TARGET_68881)
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx,
current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, true, true));
else
{
int offset;
/* If we're using moveml to save the integer registers,
the stack pointer will point to the bottom of the moveml
save area. Find the stack offset of the first FP register. */
if (current_frame.reg_no < MIN_MOVEM_REGS)
offset = 0;
else
offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx, offset,
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, true, false));
}
}
/* If the stack limit is not a symbol, check it here.
This has the disadvantage that it may be too late... */
if (crtl->limit_stack)
{
if (REG_P (stack_limit_rtx))
emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
stack_limit_rtx),
stack_pointer_rtx, stack_limit_rtx,
const1_rtx));
else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
warning (0, "stack limit expression is not supported");
}
if (current_frame.reg_no < MIN_MOVEM_REGS)
{
/* Store each register separately in the same order moveml does. */
int i;
for (i = 16; i-- > 0; )
if (current_frame.reg_mask & (1 << i))
{
src = gen_rtx_REG (SImode, D0_REG + i);
dest = gen_frame_mem (SImode,
gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
}
}
else
{
if (TARGET_COLDFIRE)
/* The required register save space has already been allocated.
The first register should be stored at (%sp). */
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx, 0,
current_frame.reg_no, D0_REG,
current_frame.reg_mask, true, false));
else
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx,
current_frame.reg_no * -GET_MODE_SIZE (SImode),
current_frame.reg_no, D0_REG,
current_frame.reg_mask, true, true));
}
if (!TARGET_SEP_DATA
&& crtl->uses_pic_offset_table)
emit_insn (gen_load_got (pic_offset_table_rtx));
}
/* Return true if a simple (return) instruction is sufficient for this
instruction (i.e. if no epilogue is needed). */
bool
m68k_use_return_insn (void)
{
if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
return false;
m68k_compute_frame_layout ();
return current_frame.offset == 0;
}
/* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
SIBCALL_P says which.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only, if there is a frame pointer.
This is mandatory because of alloca; we also take advantage of it to
omit stack adjustments before returning. */
void
m68k_expand_epilogue (bool sibcall_p)
{
HOST_WIDE_INT fsize, fsize_with_regs;
bool big, restore_from_sp;
m68k_compute_frame_layout ();
fsize = current_frame.size;
big = false;
restore_from_sp = false;
/* FIXME : crtl->is_leaf below is too strong.
What we really need to know there is if there could be pending
stack adjustment needed at that point. */
restore_from_sp = (!frame_pointer_needed
|| (!cfun->calls_alloca && crtl->is_leaf));
/* fsize_with_regs is the size we need to adjust the sp when
popping the frame. */
fsize_with_regs = fsize;
if (TARGET_COLDFIRE && restore_from_sp)
{
/* ColdFire's move multiple instructions do not allow post-increment
addressing. Add the size of movem loads to the final deallocation
instead. */
if (current_frame.reg_no >= MIN_MOVEM_REGS)
fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
}
if (current_frame.offset + fsize >= 0x8000
&& !restore_from_sp
&& (current_frame.reg_mask || current_frame.fpu_mask))
{
if (TARGET_COLDFIRE
&& (current_frame.reg_no >= MIN_MOVEM_REGS
|| current_frame.fpu_no >= MIN_FMOVEM_REGS))
{
/* ColdFire's move multiple instructions do not support the
(d8,Ax,Xi) addressing mode, so we're as well using a normal
stack-based restore. */
emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
GEN_INT (-(current_frame.offset + fsize)));
emit_insn (gen_addsi3 (stack_pointer_rtx,
gen_rtx_REG (Pmode, A1_REG),
frame_pointer_rtx));
restore_from_sp = true;
}
else
{
emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
fsize = 0;
big = true;
}
}
if (current_frame.reg_no < MIN_MOVEM_REGS)
{
/* Restore each register separately in the same order moveml does. */
int i;
HOST_WIDE_INT offset;
offset = current_frame.offset + fsize;
for (i = 0; i < 16; i++)
if (current_frame.reg_mask & (1 << i))
{
rtx addr;
if (big)
{
/* Generate the address -OFFSET(%fp,%a1.l). */
addr = gen_rtx_REG (Pmode, A1_REG);
addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
addr = plus_constant (Pmode, addr, -offset);
}
else if (restore_from_sp)
addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
else
addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
gen_frame_mem (SImode, addr));
offset -= GET_MODE_SIZE (SImode);
}
}
else if (current_frame.reg_mask)
{
if (big)
m68k_emit_movem (gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, A1_REG),
frame_pointer_rtx),
-(current_frame.offset + fsize),
current_frame.reg_no, D0_REG,
current_frame.reg_mask, false, false);
else if (restore_from_sp)
m68k_emit_movem (stack_pointer_rtx, 0,
current_frame.reg_no, D0_REG,
current_frame.reg_mask, false,
!TARGET_COLDFIRE);
else
m68k_emit_movem (frame_pointer_rtx,
-(current_frame.offset + fsize),
current_frame.reg_no, D0_REG,
current_frame.reg_mask, false, false);
}
if (current_frame.fpu_no > 0)
{
if (big)
m68k_emit_movem (gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, A1_REG),
frame_pointer_rtx),
-(current_frame.foffset + fsize),
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, false);
else if (restore_from_sp)
{
if (TARGET_COLDFIRE)
{
int offset;
/* If we used moveml to restore the integer registers, the
stack pointer will still point to the bottom of the moveml
save area. Find the stack offset of the first FP
register. */
if (current_frame.reg_no < MIN_MOVEM_REGS)
offset = 0;
else
offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
m68k_emit_movem (stack_pointer_rtx, offset,
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, false);
}
else
m68k_emit_movem (stack_pointer_rtx, 0,
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, true);
}
else
m68k_emit_movem (frame_pointer_rtx,
-(current_frame.foffset + fsize),
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, false);
}
if (frame_pointer_needed)
emit_insn (gen_unlink (frame_pointer_rtx));
else if (fsize_with_regs)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (fsize_with_regs)));
if (crtl->calls_eh_return)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
if (!sibcall_p)
emit_jump_insn (ret_rtx);
}
/* Return true if X is a valid comparison operator for the dbcc
instruction.
Note it rejects floating point comparison operators.
(In the future we could use Fdbcc).
It also rejects some comparisons when CC_NO_OVERFLOW is set. */
int
valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
{
switch (GET_CODE (x))
{
case EQ: case NE: case GTU: case LTU:
case GEU: case LEU:
return 1;
/* Reject some when CC_NO_OVERFLOW is set. This may be over
conservative */
case GT: case LT: case GE: case LE:
return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
default:
return 0;
}
}
/* Return nonzero if flags are currently in the 68881 flag register. */
int
flags_in_68881 (void)
{
/* We could add support for these in the future */
return cc_status.flags & CC_IN_68881;
}
/* Return true if PARALLEL contains register REGNO. */
static bool
m68k_reg_present_p (const_rtx parallel, unsigned int regno)
{
int i;
if (REG_P (parallel) && REGNO (parallel) == regno)
return true;
if (GET_CODE (parallel) != PARALLEL)
return false;
for (i = 0; i < XVECLEN (parallel, 0); ++i)
{
const_rtx x;
x = XEXP (XVECEXP (parallel, 0, i), 0);
if (REG_P (x) && REGNO (x) == regno)
return true;
}
return false;
}
/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
static bool
m68k_ok_for_sibcall_p (tree decl, tree exp)
{
enum m68k_function_kind kind;
/* We cannot use sibcalls for nested functions because we use the
static chain register for indirect calls. */
if (CALL_EXPR_STATIC_CHAIN (exp))
return false;
if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
{
/* Check that the return value locations are the same. For
example that we aren't returning a value from the sibling in
a D0 register but then need to transfer it to a A0 register. */
rtx cfun_value;
rtx call_value;
cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
cfun->decl);
call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
/* Check that the values are equal or that the result the callee
function returns is superset of what the current function returns. */
if (!(rtx_equal_p (cfun_value, call_value)
|| (REG_P (cfun_value)
&& m68k_reg_present_p (call_value, REGNO (cfun_value)))))
return false;
}
kind = m68k_get_function_kind (current_function_decl);
if (kind == m68k_fk_normal_function)
/* We can always sibcall from a normal function, because it's
undefined if it is calling an interrupt function. */
return true;
/* Otherwise we can only sibcall if the function kind is known to be
the same. */
if (decl && m68k_get_function_kind (decl) == kind)
return true;
return false;
}
/* On the m68k all args are always pushed. */
static rtx
m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
const_tree type ATTRIBUTE_UNUSED,
bool named ATTRIBUTE_UNUSED)
{
return NULL_RTX;
}
static void
m68k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
const_tree type, bool named ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
*cum += (mode != BLKmode
? (GET_MODE_SIZE (mode) + 3) & ~3
: (int_size_in_bytes (type) + 3) & ~3);
}
/* Convert X to a legitimate function call memory reference and return the
result. */
rtx
m68k_legitimize_call_address (rtx x)
{
gcc_assert (MEM_P (x));
if (call_operand (XEXP (x, 0), VOIDmode))
return x;
return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
}
/* Likewise for sibling calls. */
rtx
m68k_legitimize_sibcall_address (rtx x)
{
gcc_assert (MEM_P (x));
if (sibcall_operand (XEXP (x, 0), VOIDmode))
return x;
emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
}
/* Convert X to a legitimate address and return it if successful. Otherwise
return X.
For the 68000, we handle X+REG by loading X into a register R and
using R+REG. R will go in an address reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in an address reg. */
static rtx
m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
{
if (m68k_tls_symbol_p (x))
return m68k_legitimize_tls_address (x);
if (GET_CODE (x) == PLUS)
{
int ch = (x) != (oldx);
int copied = 0;
#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
if (GET_CODE (XEXP (x, 0)) == MULT)
{
COPY_ONCE (x);
XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
}
if (GET_CODE (XEXP (x, 1)) == MULT)
{
COPY_ONCE (x);
XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
}
if (ch)
{
if (GET_CODE (XEXP (x, 1)) == REG
&& GET_CODE (XEXP (x, 0)) == REG)
{
if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
{
COPY_ONCE (x);
x = force_operand (x, 0);
}
return x;
}
if (memory_address_p (mode, x))
return x;
}
if (GET_CODE (XEXP (x, 0)) == REG
|| (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
{
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (XEXP (x, 1), 0);
emit_move_insn (temp, val);
COPY_ONCE (x);
XEXP (x, 1) = temp;
if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_CODE (XEXP (x, 0)) == REG)
x = force_operand (x, 0);
}
else if (GET_CODE (XEXP (x, 1)) == REG
|| (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
&& GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
&& GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
{
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (XEXP (x, 0), 0);
emit_move_insn (temp, val);
COPY_ONCE (x);
XEXP (x, 0) = temp;
if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_CODE (XEXP (x, 1)) == REG)
x = force_operand (x, 0);
}
}
return x;
}
/* Output a dbCC; jCC sequence. Note we do not handle the
floating point version of this sequence (Fdbcc). We also
do not handle alternative conditions when CC_NO_OVERFLOW is
set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
kick those out before we get here. */
void
output_dbcc_and_branch (rtx *operands)
{
switch (GET_CODE (operands[3]))
{
case EQ:
output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
break;
case NE:
output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
break;
case GT:
output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
break;
case GTU:
output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
break;
case LT:
output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
break;
case LTU:
output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
break;
case GE:
output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
break;
case GEU:
output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
break;
case LE:
output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
break;
case LEU:
output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
break;
default:
gcc_unreachable ();
}
/* If the decrement is to be done in SImode, then we have
to compensate for the fact that dbcc decrements in HImode. */
switch (GET_MODE (operands[0]))
{
case SImode:
output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
break;
case HImode:
break;
default:
gcc_unreachable ();
}
}
const char *
output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
{
rtx loperands[7];
enum rtx_code op_code = GET_CODE (op);
/* This does not produce a useful cc. */
CC_STATUS_INIT;
/* The m68k cmp.l instruction requires operand1 to be a reg as used
below. Swap the operands and change the op if these requirements
are not fulfilled. */
if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
{
rtx tmp = operand1;
operand1 = operand2;
operand2 = tmp;
op_code = swap_condition (op_code);
}
loperands[0] = operand1;
if (GET_CODE (operand1) == REG)
loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
else
loperands[1] = adjust_address (operand1, SImode, 4);
if (operand2 != const0_rtx)
{
loperands[2] = operand2;
if (GET_CODE (operand2) == REG)
loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
else
loperands[3] = adjust_address (operand2, SImode, 4);
}
loperands[4] = gen_label_rtx ();
if (operand2 != const0_rtx)
output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
else
{
if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
output_asm_insn ("tst%.l %0", loperands);
else
output_asm_insn ("cmp%.w #0,%0", loperands);
output_asm_insn ("jne %l4", loperands);
if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
output_asm_insn ("tst%.l %1", loperands);
else
output_asm_insn ("cmp%.w #0,%1", loperands);
}
loperands[5] = dest;
switch (op_code)
{
case EQ:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("seq %5", loperands);
break;
case NE:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sne %5", loperands);
break;
case GT:
loperands[6] = gen_label_rtx ();
output_asm_insn ("shi %5\n\tjra %l6", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sgt %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case GTU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("shi %5", loperands);
break;
case LT:
loperands[6] = gen_label_rtx ();
output_asm_insn ("scs %5\n\tjra %l6", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("slt %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case LTU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("scs %5", loperands);
break;
case GE:
loperands[6] = gen_label_rtx ();
output_asm_insn ("scc %5\n\tjra %l6", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sge %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case GEU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("scc %5", loperands);
break;
case LE:
loperands[6] = gen_label_rtx ();
output_asm_insn ("sls %5\n\tjra %l6", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sle %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case LEU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sls %5", loperands);
break;
default:
gcc_unreachable ();
}
return "";
}
const char *
output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
{
operands[0] = countop;
operands[1] = dataop;
if (GET_CODE (countop) == CONST_INT)
{
register int count = INTVAL (countop);
/* If COUNT is bigger than size of storage unit in use,
advance to the containing unit of same size. */
if (count > signpos)
{
int offset = (count & ~signpos) / 8;
count = count & signpos;
operands[1] = dataop = adjust_address (dataop, QImode, offset);
}
if (count == signpos)
cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
else
cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
/* These three statements used to use next_insns_test_no...
but it appears that this should do the same job. */
if (count == 31
&& next_insn_tests_no_inequality (insn))
return "tst%.l %1";
if (count == 15
&& next_insn_tests_no_inequality (insn))
return "tst%.w %1";
if (count == 7
&& next_insn_tests_no_inequality (insn))
return "tst%.b %1";
/* Try to use `movew to ccr' followed by the appropriate branch insn.
On some m68k variants unfortunately that's slower than btst.
On 68000 and higher, that should also work for all HImode operands. */
if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
{
if (count == 3 && DATA_REG_P (operands[1])
&& next_insn_tests_no_inequality (insn))
{
cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
return "move%.w %1,%%ccr";
}
if (count == 2 && DATA_REG_P (operands[1])
&& next_insn_tests_no_inequality (insn))
{
cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
return "move%.w %1,%%ccr";
}
/* count == 1 followed by bvc/bvs and
count == 0 followed by bcc/bcs are also possible, but need
m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
}
cc_status.flags = CC_NOT_NEGATIVE;
}
return "btst %0,%1";
}
/* Return true if X is a legitimate base register. STRICT_P says
whether we need strict checking. */
bool
m68k_legitimate_base_reg_p (rtx x, bool strict_p)
{
/* Allow SUBREG everywhere we allow REG. This results in better code. */
if (!strict_p && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (REG_P (x)
&& (strict_p
? REGNO_OK_FOR_BASE_P (REGNO (x))
: REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
}
/* Return true if X is a legitimate index register. STRICT_P says
whether we need strict checking. */
bool
m68k_legitimate_index_reg_p (rtx x, bool strict_p)
{
if (!strict_p && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (REG_P (x)
&& (strict_p
? REGNO_OK_FOR_INDEX_P (REGNO (x))
: REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
}
/* Return true if X is a legitimate index expression for a (d8,An,Xn) or
(bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
ADDRESS if so. STRICT_P says whether we need strict checking. */
static bool
m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
{
int scale;
/* Check for a scale factor. */
scale = 1;
if ((TARGET_68020 || TARGET_COLDFIRE)
&& GET_CODE (x) == MULT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) == 2
|| INTVAL (XEXP (x, 1)) == 4
|| (INTVAL (XEXP (x, 1)) == 8
&& (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
{
scale = INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
/* Check for a word extension. */
if (!TARGET_COLDFIRE
&& GET_CODE (x) == SIGN_EXTEND
&& GET_MODE (XEXP (x, 0)) == HImode)
x = XEXP (x, 0);
if (m68k_legitimate_index_reg_p (x, strict_p))
{
address->scale = scale;
address->index = x;
return true;
}
return false;
}
/* Return true if X is an illegitimate symbolic constant. */
bool
m68k_illegitimate_symbolic_constant_p (rtx x)
{
rtx base, offset;
if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
{
split_const (x, &base, &offset);
if (GET_CODE (base) == SYMBOL_REF
&& !offset_within_block_p (base, INTVAL (offset)))
return true;
}
return m68k_tls_reference_p (x, false);
}
/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
static bool
m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
return m68k_illegitimate_symbolic_constant_p (x);
}
/* Return true if X is a legitimate constant address that can reach
bytes in the range [X, X + REACH). STRICT_P says whether we need
strict checking. */
static bool
m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
{
rtx base, offset;
if (!CONSTANT_ADDRESS_P (x))
return false;
if (flag_pic
&& !(strict_p && TARGET_PCREL)
&& symbolic_operand (x, VOIDmode))
return false;
if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
{
split_const (x, &base, &offset);
if (GET_CODE (base) == SYMBOL_REF
&& !offset_within_block_p (base, INTVAL (offset) + reach - 1))
return false;
}
return !m68k_tls_reference_p (x, false);
}
/* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
labels will become jump tables. */
static bool
m68k_jump_table_ref_p (rtx x)
{
if (GET_CODE (x) != LABEL_REF)
return false;
rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
if (!NEXT_INSN (insn) && !PREV_INSN (insn))
return true;
insn = next_nonnote_insn (insn);
return insn && JUMP_TABLE_DATA_P (insn);
}
/* Return true if X is a legitimate address for values of mode MODE.
STRICT_P says whether strict checking is needed. If the address
is valid, describe its components in *ADDRESS. */
static bool
m68k_decompose_address (machine_mode mode, rtx x,
bool strict_p, struct m68k_address *address)
{
unsigned int reach;
memset (address, 0, sizeof (*address));
if (mode == BLKmode)
reach = 1;
else
reach = GET_MODE_SIZE (mode);
/* Check for (An) (mode 2). */
if (m68k_legitimate_base_reg_p (x, strict_p))
{
address->base = x;
return true;
}
/* Check for -(An) and (An)+ (modes 3 and 4). */
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
&& m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
{
address->code = GET_CODE (x);
address->base = XEXP (x, 0);
return true;
}
/* Check for (d16,An) (mode 5). */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
&& m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
{
address->base = XEXP (x, 0);
address->offset = XEXP (x, 1);
return true;
}
/* Check for GOT loads. These are (bd,An,Xn) addresses if
TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
addresses. */
if (GET_CODE (x) == PLUS
&& XEXP (x, 0) == pic_offset_table_rtx)
{
/* As we are processing a PLUS, do not unwrap RELOC32 symbols --
they are invalid in this context. */
if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
{
address->base = XEXP (x, 0);
address->offset = XEXP (x, 1);
return true;
}
}
/* The ColdFire FPU only accepts addressing modes 2-5. */
if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
return false;
/* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
All these modes are variations of mode 7. */
if (m68k_legitimate_constant_address_p (x, reach, strict_p))
{
address->offset = x;
return true;
}
/* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
tablejumps.
??? do_tablejump creates these addresses before placing the target
label, so we have to assume that unplaced labels are jump table
references. It seems unlikely that we would ever generate indexed
accesses to unplaced labels in other cases. */
if (GET_CODE (x) == PLUS
&& m68k_jump_table_ref_p (XEXP (x, 1))
&& m68k_decompose_index (XEXP (x, 0), strict_p, address))
{
address->offset = XEXP (x, 1);
return true;
}
/* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
(bd,An,Xn.SIZE*SCALE) addresses. */
if (TARGET_68020)
{
/* Check for a nonzero base displacement. */
if (GET_CODE (x) == PLUS
&& m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
{
address->offset = XEXP (x, 1);
x = XEXP (x, 0);
}
/* Check for a suppressed index register. */
if (m68k_legitimate_base_reg_p (x, strict_p))
{
address->base = x;
return true;
}
/* Check for a suppressed base register. Do not allow this case
for non-symbolic offsets as it effectively gives gcc freedom
to treat data registers as base registers, which can generate
worse code. */
if (address->offset
&& symbolic_operand (address->offset, VOIDmode)
&& m68k_decompose_index (x, strict_p, address))
return true;
}
else
{
/* Check for a nonzero base displacement. */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
{
address->offset = XEXP (x, 1);
x = XEXP (x, 0);
}
}
/* We now expect the sum of a base and an index. */
if (GET_CODE (x) == PLUS)
{
if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
&& m68k_decompose_index (XEXP (x, 1), strict_p, address))
{
address->base = XEXP (x, 0);
return true;
}
if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
&& m68k_decompose_index (XEXP (x, 0), strict_p, address))
{
address->base = XEXP (x, 1);
return true;
}
}
return false;
}
/* Return true if X is a legitimate address for values of mode MODE.
STRICT_P says whether strict checking is needed. */
bool
m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
{
struct m68k_address address;
return m68k_decompose_address (mode, x, strict_p, &address);
}
/* Return true if X is a memory, describing its address in ADDRESS if so.
Apply strict checking if called during or after reload. */
static bool
m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
{
return (MEM_P (x)
&& m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
reload_in_progress || reload_completed,
address));
}
/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
bool
m68k_legitimate_constant_p (machine_mode mode, rtx x)
{
return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
}
/* Return true if X matches the 'Q' constraint. It must be a memory
with a base address and no constant offset or index. */
bool
m68k_matches_q_p (rtx x)
{
struct m68k_address address;
return (m68k_legitimate_mem_p (x, &address)
&& address.code == UNKNOWN
&& address.base
&& !address.offset
&& !address.index);
}
/* Return true if X matches the 'U' constraint. It must be a base address
with a constant offset and no index. */
bool
m68k_matches_u_p (rtx x)
{
struct m68k_address address;
return (m68k_legitimate_mem_p (x, &address)
&& address.code == UNKNOWN
&& address.base
&& address.offset
&& !address.index);
}
/* Return GOT pointer. */
static rtx
m68k_get_gp (void)
{
if (pic_offset_table_rtx == NULL_RTX)
pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
crtl->uses_pic_offset_table = 1;
return pic_offset_table_rtx;
}
/* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
wrappers. */
enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
RELOC_TLSIE, RELOC_TLSLE };
#define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
/* Wrap symbol X into unspec representing relocation RELOC.
BASE_REG - register that should be added to the result.
TEMP_REG - if non-null, temporary register. */
static rtx
m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
{
bool use_x_p;
use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
if (TARGET_COLDFIRE && use_x_p)
/* When compiling with -mx{got, tls} switch the code will look like this:
move.l <X>@<RELOC>,<TEMP_REG>
add.l <BASE_REG>,<TEMP_REG> */
{
/* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
to put @RELOC after reference. */
x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
UNSPEC_RELOC32);
x = gen_rtx_CONST (Pmode, x);
if (temp_reg == NULL)
{
gcc_assert (can_create_pseudo_p ());
temp_reg = gen_reg_rtx (Pmode);
}
emit_move_insn (temp_reg, x);
emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
x = temp_reg;
}
else
{
x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
UNSPEC_RELOC16);
x = gen_rtx_CONST (Pmode, x);
x = gen_rtx_PLUS (Pmode, base_reg, x);
}
return x;
}
/* Helper for m68k_unwrap_symbol.
Also, if unwrapping was successful (that is if (ORIG != <return value>)),
sets *RELOC_PTR to relocation type for the symbol. */
static rtx
m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
enum m68k_reloc *reloc_ptr)
{
if (GET_CODE (orig) == CONST)
{
rtx x;
enum m68k_reloc dummy;
x = XEXP (orig, 0);
if (reloc_ptr == NULL)
reloc_ptr = &dummy;
/* Handle an addend. */
if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
&& CONST_INT_P (XEXP (x, 1)))
x = XEXP (x, 0);
if (GET_CODE (x) == UNSPEC)
{
switch (XINT (x, 1))
{
case UNSPEC_RELOC16:
orig = XVECEXP (x, 0, 0);
*reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
break;
case UNSPEC_RELOC32:
if (unwrap_reloc32_p)
{
orig = XVECEXP (x, 0, 0);
*reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
}
break;
default:
break;
}
}
}
return orig;
}
/* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
UNSPEC_RELOC32 wrappers. */
rtx
m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
{
return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
}
/* Prescan insn before outputing assembler for it. */
void
m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
rtx *operands, int n_operands)
{
int i;
/* Combine and, possibly, other optimizations may do good job
converting
(const (unspec [(symbol)]))
into
(const (plus (unspec [(symbol)])
(const_int N))).
The problem with this is emitting @TLS or @GOT decorations.
The decoration is emitted when processing (unspec), so the
result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
It seems that the easiest solution to this is to convert such
operands to
(const (unspec [(plus (symbol)
(const_int N))])).
Note, that the top level of operand remains intact, so we don't have
to patch up anything outside of the operand. */
subrtx_var_iterator::array_type array;
for (i = 0; i < n_operands; ++i)
{
rtx op;
op = operands[i];
FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
{
rtx x = *iter;
if (m68k_unwrap_symbol (x, true) != x)
{
rtx plus;
gcc_assert (GET_CODE (x) == CONST);
plus = XEXP (x, 0);
if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
{
rtx unspec;
rtx addend;
unspec = XEXP (plus, 0);
gcc_assert (GET_CODE (unspec) == UNSPEC);
addend = XEXP (plus, 1);
gcc_assert (CONST_INT_P (addend));
/* We now have all the pieces, rearrange them. */
/* Move symbol to plus. */
XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
/* Move plus inside unspec. */
XVECEXP (unspec, 0, 0) = plus;
/* Move unspec to top level of const. */
XEXP (x, 0) = unspec;
}
iter.skip_subrtxes ();
}
}
}
}
/* Move X to a register and add REG_EQUAL note pointing to ORIG.
If REG is non-null, use it; generate new pseudo otherwise. */
static rtx
m68k_move_to_reg (rtx x, rtx orig, rtx reg)
{
rtx_insn *insn;
if (reg == NULL_RTX)
{
gcc_assert (can_create_pseudo_p ());
reg = gen_reg_rtx (Pmode);
}
insn = emit_move_insn (reg, x);
/* Put a REG_EQUAL note on this insn, so that it can be optimized
by loop. */
set_unique_reg_note (insn, REG_EQUAL, orig);
return reg;
}
/* Does the same as m68k_wrap_symbol, but returns a memory reference to
GOT slot. */
static rtx
m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
{
x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
x = gen_rtx_MEM (Pmode, x);
MEM_READONLY_P (x) = 1;
return x;
}
/* Legitimize PIC addresses. If the address is already
position-independent, we return ORIG. Newly generated
position-independent addresses go to REG. If we need more
than one register, we lose.
An address is legitimized by making an indirect reference
through the Global Offset Table with the name of the symbol
used as an offset.
The assembler and linker are responsible for placing the
address of the symbol in the GOT. The function prologue
is responsible for initializing a5 to the starting address
of the GOT.
The assembler is also responsible for translating a symbol name
into a constant displacement from the start of the GOT.
A quick example may make things a little clearer:
When not generating PIC code to store the value 12345 into _foo
we would generate the following code:
movel #12345, _foo
When generating PIC two transformations are made. First, the compiler
loads the address of foo into a register. So the first transformation makes:
lea _foo, a0
movel #12345, a0@
The code in movsi will intercept the lea instruction and call this
routine which will transform the instructions into:
movel a5@(_foo:w), a0
movel #12345, a0@
That (in a nutshell) is how *all* symbol and label references are
handled. */
rtx
legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
rtx reg)
{
rtx pic_ref = orig;
/* First handle a simple SYMBOL_REF or LABEL_REF */
if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
{
gcc_assert (reg);
pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
}
else if (GET_CODE (orig) == CONST)
{
rtx base;
/* Make sure this has not already been legitimized. */
if (m68k_unwrap_symbol (orig, true) != orig)
return orig;
gcc_assert (reg);
/* legitimize both operands of the PLUS */
gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg);
if (GET_CODE (orig) == CONST_INT)
pic_ref = plus_constant (Pmode, base, INTVAL (orig));
else
pic_ref = gen_rtx_PLUS (Pmode, base, orig);
}
return pic_ref;
}
/* The __tls_get_addr symbol. */
static GTY(()) rtx m68k_tls_get_addr;
/* Return SYMBOL_REF for __tls_get_addr. */
static rtx
m68k_get_tls_get_addr (void)
{
if (m68k_tls_get_addr == NULL_RTX)
m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
return m68k_tls_get_addr;
}
/* Return libcall result in A0 instead of usual D0. */
static bool m68k_libcall_value_in_a0_p = false;
/* Emit instruction sequence that calls __tls_get_addr. X is
the TLS symbol we are referencing and RELOC is the symbol type to use
(either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
emitted. A pseudo register with result of __tls_get_addr call is
returned. */
static rtx
m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
{
rtx a0;
rtx_insn *insns;
rtx dest;
/* Emit the call sequence. */
start_sequence ();
/* FIXME: Unfortunately, emit_library_call_value does not
consider (plus (%a5) (const (unspec))) to be a good enough
operand for push, so it forces it into a register. The bad
thing about this is that combiner, due to copy propagation and other
optimizations, sometimes can not later fix this. As a consequence,
additional register may be allocated resulting in a spill.
For reference, see args processing loops in
calls.c:emit_library_call_value_1.
For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
/* __tls_get_addr() is not a libcall, but emitting a libcall_value
is the simpliest way of generating a call. The difference between
__tls_get_addr() and libcall is that the result is returned in D0
instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
which temporarily switches returning the result to A0. */
m68k_libcall_value_in_a0_p = true;
a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
Pmode, 1, x, Pmode);
m68k_libcall_value_in_a0_p = false;
insns = get_insns ();
end_sequence ();
gcc_assert (can_create_pseudo_p ());
dest = gen_reg_rtx (Pmode);
emit_libcall_block (insns, dest, a0, eqv);
return dest;
}
/* The __tls_get_addr symbol. */
static GTY(()) rtx m68k_read_tp;
/* Return SYMBOL_REF for __m68k_read_tp. */
static rtx
m68k_get_m68k_read_tp (void)
{
if (m68k_read_tp == NULL_RTX)
m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
return m68k_read_tp;
}
/* Emit instruction sequence that calls __m68k_read_tp.
A pseudo register with result of __m68k_read_tp call is returned. */
static rtx
m68k_call_m68k_read_tp (void)
{
rtx a0;
rtx eqv;
rtx_insn *insns;
rtx dest;
start_sequence ();
/* __m68k_read_tp() is not a libcall, but emitting a libcall_value
is the simpliest way of generating a call. The difference between
__m68k_read_tp() and libcall is that the result is returned in D0
instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
which temporarily switches returning the result to A0. */
/* Emit the call sequence. */
m68k_libcall_value_in_a0_p = true;
a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
Pmode, 0);
m68k_libcall_value_in_a0_p = false;
insns = get_insns ();
end_sequence ();
/* Attach a unique REG_EQUIV, to allow the RTL optimizers to
share the m68k_read_tp result with other IE/LE model accesses. */
eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
gcc_assert (can_create_pseudo_p ());
dest = gen_reg_rtx (Pmode);
emit_libcall_block (insns, dest, a0, eqv);
return dest;
}
/* Return a legitimized address for accessing TLS SYMBOL_REF X.
For explanations on instructions sequences see TLS/NPTL ABI for m68k and
ColdFire. */
rtx
m68k_legitimize_tls_address (rtx orig)
{
switch (SYMBOL_REF_TLS_MODEL (orig))
{
case TLS_MODEL_GLOBAL_DYNAMIC:
orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
{
rtx eqv;
rtx a0;
rtx x;
/* Attach a unique REG_EQUIV, to allow the RTL optimizers to
share the LDM result with other LD model accesses. */
eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_RELOC32);
a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
if (can_create_pseudo_p ())
x = m68k_move_to_reg (x, orig, NULL_RTX);
orig = x;
break;
}
case TLS_MODEL_INITIAL_EXEC:
{
rtx a0;
rtx x;
a0 = m68k_call_m68k_read_tp ();
x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
x = gen_rtx_PLUS (Pmode, x, a0);
if (can_create_pseudo_p ())
x = m68k_move_to_reg (x, orig, NULL_RTX);
orig = x;
break;
}
case TLS_MODEL_LOCAL_EXEC:
{
rtx a0;
rtx x;
a0 = m68k_call_m68k_read_tp ();
x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
if (can_create_pseudo_p ())
x = m68k_move_to_reg (x, orig, NULL_RTX);
orig = x;
break;
}
default:
gcc_unreachable ();
}
return orig;
}
/* Return true if X is a TLS symbol. */
static bool
m68k_tls_symbol_p (rtx x)
{
if (!TARGET_HAVE_TLS)
return false;
if (GET_CODE (x) != SYMBOL_REF)
return false;
return SYMBOL_REF_TLS_MODEL (x) != 0;
}
/* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
though illegitimate one.
If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
bool
m68k_tls_reference_p (rtx x, bool legitimate_p)
{
if (!TARGET_HAVE_TLS)
return false;
if (!legitimate_p)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
{
rtx x = *iter;
/* Note: this is not the same as m68k_tls_symbol_p. */
if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
return true;
/* Don't recurse into legitimate TLS references. */
if (m68k_tls_reference_p (x, true))
iter.skip_subrtxes ();
}
return false;
}
else
{
enum m68k_reloc reloc = RELOC_GOT;
return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
&& TLS_RELOC_P (reloc));
}
}
#define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
/* Return the type of move that should be used for integer I. */
M68K_CONST_METHOD
m68k_const_method (HOST_WIDE_INT i)
{
unsigned u;
if (USE_MOVQ (i))
return MOVQ;
/* The ColdFire doesn't have byte or word operations. */
/* FIXME: This may not be useful for the m68060 either. */
if (!TARGET_COLDFIRE)
{
/* if -256 < N < 256 but N is not in range for a moveq
N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
if (USE_MOVQ (i ^ 0xff))
return NOTB;
/* Likewise, try with not.w */
if (USE_MOVQ (i ^ 0xffff))
return NOTW;
/* This is the only value where neg.w is useful */
if (i == -65408)
return NEGW;
}
/* Try also with swap. */
u = i;
if (USE_MOVQ ((u >> 16) | (u << 16)))
return SWAP;
if (TARGET_ISAB)
{
/* Try using MVZ/MVS with an immediate value to load constants. */
if (i >= 0 && i <= 65535)
return MVZ;
if (i >= -32768 && i <= 32767)
return MVS;
}
/* Otherwise, use move.l */
return MOVL;
}
/* Return the cost of moving constant I into a data register. */
static int
const_int_cost (HOST_WIDE_INT i)
{
switch (m68k_const_method (i))
{
case MOVQ:
/* Constants between -128 and 127 are cheap due to moveq. */
return 0;
case MVZ:
case MVS:
case NOTB:
case NOTW:
case NEGW:
case SWAP:
/* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
return 1;
case MOVL:
return 2;
default:
gcc_unreachable ();
}
}
static bool
m68k_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
int *total, bool speed ATTRIBUTE_UNUSED)
{
switch (code)
{
case CONST_INT:
/* Constant zero is super cheap due to clr instruction. */
if (x == const0_rtx)
*total = 0;
else
*total = const_int_cost (INTVAL (x));
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 3;
return true;
case CONST_DOUBLE:
/* Make 0.0 cheaper than other floating constants to
encourage creating tstsf and tstdf insns. */
if (outer_code == COMPARE
&& (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
*total = 4;
else
*total = 5;
return true;
/* These are vaguely right for a 68020. */
/* The costs for long multiply have been adjusted to work properly
in synth_mult on the 68020, relative to an average of the time
for add and the time for shift, taking away a little more because
sometimes move insns are needed. */
/* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
terms. */
#define MULL_COST \
(TUNE_68060 ? 2 \
: TUNE_68040 ? 5 \
: (TUNE_CFV2 && TUNE_EMAC) ? 3 \
: (TUNE_CFV2 && TUNE_MAC) ? 4 \
: TUNE_CFV2 ? 8 \
: TARGET_COLDFIRE ? 3 : 13)
#define MULW_COST \
(TUNE_68060 ? 2 \
: TUNE_68040 ? 3 \
: TUNE_68000_10 ? 5 \
: (TUNE_CFV2 && TUNE_EMAC) ? 3 \
: (TUNE_CFV2 && TUNE_MAC) ? 2 \
: TUNE_CFV2 ? 8 \
: TARGET_COLDFIRE ? 2 : 8)
#define DIVW_COST \
(TARGET_CF_HWDIV ? 11 \
: TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
case PLUS:
/* An lea costs about three times as much as a simple add. */
if (GET_MODE (x) == SImode
&& GET_CODE (XEXP (x, 1)) == REG
&& GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
|| INTVAL (XEXP (XEXP (x, 0), 1)) == 4
|| INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
{
/* lea an@(dx:l:i),am */
*total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
return true;
}
return false;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (TUNE_68060)
{
*total = COSTS_N_INSNS(1);
return true;
}
if (TUNE_68000_10)
{
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
if (INTVAL (XEXP (x, 1)) < 16)
*total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
else
/* We're using clrw + swap for these cases. */
*total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
}
else
*total = COSTS_N_INSNS (10); /* Worst case. */
return true;
}
/* A shift by a big integer takes an extra instruction. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) == 16))
{
*total = COSTS_N_INSNS (2); /* clrw;swap */
return true;
}
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& !(INTVAL (XEXP (x, 1)) > 0
&& INTVAL (XEXP (x, 1)) <= 8))
{
*total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
return true;
}
return false;
case MULT:
if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
&& GET_MODE (x) == SImode)
*total = COSTS_N_INSNS (MULW_COST);
else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
*total = COSTS_N_INSNS (MULW_COST);
else
*total = COSTS_N_INSNS (MULL_COST);
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
*total = COSTS_N_INSNS (DIVW_COST); /* div.w */
else if (TARGET_CF_HWDIV)
*total = COSTS_N_INSNS (18);
else
*total = COSTS_N_INSNS (43); /* div.l */
return true;
case ZERO_EXTRACT:
if (outer_code == COMPARE)
*total = 0;
return false;
default:
return false;
}
}
/* Return an instruction to move CONST_INT OPERANDS[1] into data register
OPERANDS[0]. */
static const char *
output_move_const_into_data_reg (rtx *operands)
{
HOST_WIDE_INT i;
i = INTVAL (operands[1]);
switch (m68k_const_method (i))
{
case MVZ:
return "mvzw %1,%0";
case MVS:
return "mvsw %1,%0";
case MOVQ:
return "moveq %1,%0";
case NOTB:
CC_STATUS_INIT;
operands[1] = GEN_INT (i ^ 0xff);
return "moveq %1,%0\n\tnot%.b %0";
case NOTW:
CC_STATUS_INIT;
operands[1] = GEN_INT (i ^ 0xffff);
return "moveq %1,%0\n\tnot%.w %0";
case NEGW:
CC_STATUS_INIT;
return "moveq #-128,%0\n\tneg%.w %0";
case SWAP:
{
unsigned u = i;
operands[1] = GEN_INT ((u << 16) | (u >> 16));
return "moveq %1,%0\n\tswap %0";
}
case MOVL:
return "move%.l %1,%0";
default:
gcc_unreachable ();
}
}
/* Return true if I can be handled by ISA B's mov3q instruction. */
bool
valid_mov3q_const (HOST_WIDE_INT i)
{
return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
}
/* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
I is the value of OPERANDS[1]. */
static const char *
output_move_simode_const (rtx *operands)
{
rtx dest;
HOST_WIDE_INT src;
dest = operands[0];
src = INTVAL (operands[1]);
if (src == 0
&& (DATA_REG_P (dest) || MEM_P (dest))
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
return "clr%.l %0";
else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
return "mov3q%.l %1,%0";
else if (src == 0 && ADDRESS_REG_P (dest))
return "sub%.l %0,%0";
else if (DATA_REG_P (dest))
return output_move_const_into_data_reg (operands);
else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
{
if (valid_mov3q_const (src))
return "mov3q%.l %1,%0";
return "move%.w %1,%0";
}
else if (MEM_P (dest)
&& GET_CODE (XEXP (dest, 0)) == PRE_DEC
&& REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
&& IN_RANGE (src, -0x8000, 0x7fff))
{
if (valid_mov3q_const (src))
return "mov3q%.l %1,%-";
return "pea %a1";
}
return "move%.l %1,%0";
}
const char *
output_move_simode (rtx *operands)
{
if (GET_CODE (operands[1]) == CONST_INT)
return output_move_simode_const (operands);
else if ((GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == CONST)
&& push_operand (operands[0], SImode))
return "pea %a1";
else if ((GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == CONST)
&& ADDRESS_REG_P (operands[0]))
return "lea %a1,%0";
return "move%.l %1,%0";
}
const char *
output_move_himode (rtx *operands)
{
if (GET_CODE (operands[1]) == CONST_INT)
{
if (operands[1] == const0_rtx
&& (DATA_REG_P (operands[0])
|| GET_CODE (operands[0]) == MEM)
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM
&& MEM_VOLATILE_P (operands[0]))))
return "clr%.w %0";
else if (operands[1] == const0_rtx
&& ADDRESS_REG_P (operands[0]))
return "sub%.l %0,%0";
else if (DATA_REG_P (operands[0])
&& INTVAL (operands[1]) < 128
&& INTVAL (operands[1]) >= -128)
return "moveq %1,%0";
else if (INTVAL (operands[1]) < 0x8000
&& INTVAL (operands[1]) >= -0x8000)
return "move%.w %1,%0";
}
else if (CONSTANT_P (operands[1]))
return "move%.l %1,%0";
return "move%.w %1,%0";
}
const char *
output_move_qimode (rtx *operands)
{
/* 68k family always modifies the stack pointer by at least 2, even for
byte pushes. The 5200 (ColdFire) does not do this. */
/* This case is generated by pushqi1 pattern now. */
gcc_assert (!(GET_CODE (operands[0]) == MEM
&& GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
&& XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
&& ! ADDRESS_REG_P (operands[1])
&& ! TARGET_COLDFIRE));
/* clr and st insns on 68000 read before writing. */
if (!ADDRESS_REG_P (operands[0])
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
{
if (operands[1] == const0_rtx)
return "clr%.b %0";
if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
&& GET_CODE (operands[1]) == CONST_INT
&& (INTVAL (operands[1]) & 255) == 255)
{
CC_STATUS_INIT;
return "st %0";
}
}
if (GET_CODE (operands[1]) == CONST_INT
&& DATA_REG_P (operands[0])
&& INTVAL (operands[1]) < 128
&& INTVAL (operands[1]) >= -128)
return "moveq %1,%0";
if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
return "sub%.l %0,%0";
if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
return "move%.l %1,%0";
/* 68k family (including the 5200 ColdFire) does not support byte moves to
from address registers. */
if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
return "move%.w %1,%0";
return "move%.b %1,%0";
}
const char *
output_move_stricthi (rtx *operands)
{
if (operands[1] == const0_rtx
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
return "clr%.w %0";
return "move%.w %1,%0";
}
const char *
output_move_strictqi (rtx *operands)
{
if (operands[1] == const0_rtx
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
return "clr%.b %0";
return "move%.b %1,%0";
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static const char *
singlemove_string (rtx *operands)
{
if (GET_CODE (operands[1]) == CONST_INT)
return output_move_simode_const (operands);
return "move%.l %1,%0";
}
/* Output assembler or rtl code to perform a doubleword move insn
with operands OPERANDS.
Pointers to 3 helper functions should be specified:
HANDLE_REG_ADJUST to adjust a register by a small value,
HANDLE_COMPADR to compute an address and
HANDLE_MOVSI to move 4 bytes. */
static void
handle_move_double (rtx operands[2],
void (*handle_reg_adjust) (rtx, int),
void (*handle_compadr) (rtx [2]),
void (*handle_movsi) (rtx [2]))
{
enum
{
REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
} optype0, optype1;
rtx latehalf[2];
rtx middlehalf[2];
rtx xops[2];
rtx addreg0 = 0, addreg1 = 0;
int dest_overlapped_low = 0;
int size = GET_MODE_SIZE (GET_MODE (operands[0]));
middlehalf[0] = 0;
middlehalf[1] = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0