;; Scheduling description for z990 (cpu 2084). ;; Copyright (C) 2003-2015 Free Software Foundation, Inc. ;; Contributed by Hartmut Penner (hpenner@de.ibm.com) and ;; Ulrich Weigand (uweigand@de.ibm.com).

;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify it under ;; the terms of the GNU General Public License as published by the Free ;; Software Foundation; either version 3, or (at your option) any later ;; version.

;; GCC is distributed in the hope that it will be useful, but WITHOUT ANY ;; WARRANTY; without even the implied warranty of MERCHANTABILITY or ;; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ;; for more details.

;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

(define_automaton “x_ipu”)

(define_cpu_unit “x_e1_r,x_e1_s,x_e1_t” “x_ipu”) (define_cpu_unit “x_wr_r,x_wr_s,x_wr_t,x_wr_fp” “x_ipu”) (define_cpu_unit “x_s1,x_s2,x_s3,x_s4” “x_ipu”) (define_cpu_unit “x_t1,x_t2,x_t3,x_t4” “x_ipu”) (define_cpu_unit “x_f1,x_f2,x_f3,x_f4,x_f5,x_f6” “x_ipu”) (define_cpu_unit “x_store_tok” “x_ipu”) (define_cpu_unit “x_ms,x_mt” “x_ipu”)

(define_reservation “x-e1-st” “(x_e1_s | x_e1_t)”)

(define_reservation “x-e1-np” “(x_e1_r + x_e1_s + x_e1_t)”)

(absence_set “x_e1_r” “x_e1_s,x_e1_t”) (absence_set “x_e1_s” “x_e1_t”)

;; Try to avoid int <-> fp transitions.

(define_reservation “x-x” “x_s1|x_t1,x_s2|x_t2,x_s3|x_t3,x_s4|x_t4”) (define_reservation “x-f” “x_f1,x_f2,x_f3,x_f4,x_f5,x_f6”) (define_reservation “x-wr-st” “((x_wr_s | x_wr_t),x-x)”) (define_reservation “x-wr-np” “((x_wr_r + x_wr_s + x_wr_t),x-x)”) (define_reservation “x-wr-fp” “x_wr_fp,x-f”) (define_reservation “x-mem” “x_ms|x_mt”)

(absence_set “x_wr_fp” “x_s1,x_s2,x_s3,x_s4,x_t1,x_t2,x_t3,x_t4,x_wr_s,x_wr_t”)

(absence_set “x_e1_r,x_wr_r,x_wr_s,x_wr_t” “x_f1,x_f2,x_f3,x_f4,x_f5,x_f6,x_wr_fp”)

;; Don't have any load type insn in same group as store

(absence_set “x_ms,x_mt” “x_store_tok”)

;; ;; Simple insns ;;

(define_insn_reservation “x_int” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (and (eq_attr “type” “integer”) (eq_attr “atype” “reg”))) “x-e1-st,x-wr-st”)

(define_insn_reservation “x_agen” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (and (eq_attr “type” “integer”) (eq_attr “atype” “agen”))) “x-e1-st,x-wr-st”)

(define_insn_reservation “x_lr” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “lr”)) “x-e1-st,x-wr-st”)

(define_insn_reservation “x_la” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “la”)) “x-e1-st,x-wr-st”)

(define_insn_reservation “x_larl” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “larl”)) “x-e1-st,x-wr-st”)

(define_insn_reservation “x_load” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “load”)) “x-e1-st+x-mem,x-wr-st”)

(define_insn_reservation “x_store” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “store”)) “x-e1-st+x_store_tok,x-wr-st”)

(define_insn_reservation “x_branch” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “branch”)) “x_e1_r,x_wr_r”)

(define_insn_reservation “x_call” 5 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “jsr”)) “x-e1-np*5,x-wr-np”)

(define_insn_reservation “x_mul_hi” 2 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “imulhi”)) “x-e1-np*2,x-wr-np”)

(define_insn_reservation “x_mul_sidi” 4 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “imulsi,imuldi”)) “x-e1-np*4,x-wr-np”)

(define_insn_reservation “x_div” 10 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “idiv”)) “x-e1-np*10,x-wr-np”)

(define_insn_reservation “x_sem” 17 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “sem”)) “x-e1-np+x-mem,x-e1-np*16,x-wr-st”)

;; ;; Multicycle insns ;;

(define_insn_reservation “x_cs” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “cs”)) “x-e1-np,x-wr-np”)

(define_insn_reservation “x_vs” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “vs”)) “x-e1-np*10,x-wr-np”)

(define_insn_reservation “x_stm” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “stm”)) “(x-e1-np+x_store_tok)*10,x-wr-np”)

(define_insn_reservation “x_lm” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “lm”)) “x-e1-np*10,x-wr-np”)

(define_insn_reservation “x_other” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “other”)) “x-e1-np,x-wr-np”)

;; ;; Floating point insns ;;

(define_insn_reservation “x_fsimptf” 7 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fsimptf,fhex”)) “x_e1_t*2,x-wr-fp”)

(define_insn_reservation “x_fsimpdf” 6 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fsimpdf,fmuldf,fmadddf,fhex”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_fsimpsf” 6 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fsimpsf,fmulsf,fmaddsf,fhex”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_fmultf” 33 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fmultf”)) “x_e1_t*27,x-wr-fp”)

(define_insn_reservation “x_fdivtf” 82 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fdivtf,fsqrttf”)) “x_e1_t*76,x-wr-fp”)

(define_insn_reservation “x_fdivdf” 36 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fdivdf,fsqrtdf”)) “x_e1_t*30,x-wr-fp”)

(define_insn_reservation “x_fdivsf” 36 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fdivsf,fsqrtsf”)) “x_e1_t*30,x-wr-fp”)

(define_insn_reservation “x_floadtf” 6 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “floadtf”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_floaddf” 6 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “floaddf”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_floadsf” 6 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “floadsf”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_fstoredf” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fstoredf”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_fstoresf” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “fstoresf”)) “x_e1_t,x-wr-fp”)

(define_insn_reservation “x_ftrunctf” 16 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “ftrunctf”)) “x_e1_t*10,x-wr-fp”)

(define_insn_reservation “x_ftruncdf” 11 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “ftruncdf”)) “x_e1_t*5,x-wr-fp”)

(define_insn_reservation “x_ftoi” 1 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “ftoi”)) “x_e1_t*3,x-wr-fp”)

(define_insn_reservation “x_itof” 7 (and (eq_attr “cpu” “z990,z9_109,z9_ec”) (eq_attr “type” “itoftf,itofdf,itofsf”)) “x_e1_t*3,x-wr-fp”)

(define_bypass 1 “x_fsimpdf” “x_fstoredf”)

(define_bypass 1 “x_fsimpsf” “x_fstoresf”)

(define_bypass 1 “x_floaddf” “x_fsimpdf,x_fstoredf,x_floaddf”)

(define_bypass 1 “x_floadsf” “x_fsimpsf,x_fstoresf,x_floadsf”)

;; ;; s390_agen_dep_p returns 1, if a register is set in the ;; first insn and used in the dependent insn to form a address. ;;

;; ;; If an instruction uses a register to address memory, it needs ;; to be set 5 cycles in advance. ;;

(define_bypass 5 “x_int,x_agen,x_lr” “x_agen,x_la,x_branch,x_call,x_load,x_store,x_cs,x_stm,x_lm,x_other” “s390_agen_dep_p”)

(define_bypass 9 “x_int,x_agen,x_lr” “x_floadtf, x_floaddf, x_floadsf, x_fstoredf, x_fstoresf,
x_fsimpdf, x_fsimpsf, x_fdivdf, x_fdivsf” “s390_agen_dep_p”) ;; ;; A load type instruction uses a bypass to feed the result back ;; to the address generation pipeline stage. ;;

(define_bypass 4 “x_load” “x_agen,x_la,x_branch,x_call,x_load,x_store,x_cs,x_stm,x_lm,x_other” “s390_agen_dep_p”)

(define_bypass 5 “x_load” “x_floadtf, x_floaddf, x_floadsf, x_fstoredf, x_fstoresf,
x_fsimpdf, x_fsimpsf, x_fdivdf, x_fdivsf” “s390_agen_dep_p”)

;; ;; A load address type instruction uses a bypass to feed the ;; result back to the address generation pipeline stage. ;;

(define_bypass 3 “x_larl,x_la” “x_agen,x_la,x_branch,x_call,x_load,x_store,x_cs,x_stm,x_lm,x_other” “s390_agen_dep_p”)

(define_bypass 5 “x_larl, x_la” “x_floadtf, x_floaddf, x_floadsf, x_fstoredf, x_fstoresf,
x_fsimpdf, x_fsimpsf, x_fdivdf, x_fdivsf” “s390_agen_dep_p”)

;; ;; Operand forwarding ;;

(define_bypass 0 “x_lr,x_la,x_load” “x_int,x_lr”)