| /* Definitions of target machine for GNU compiler, for IBM S/390 |
| Copyright (C) 1999-2015 Free Software Foundation, Inc. |
| Contributed by Hartmut Penner (hpenner@de.ibm.com) and |
| Ulrich Weigand (uweigand@de.ibm.com). |
| Andreas Krebbel (Andreas.Krebbel@de.ibm.com) |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef _S390_H |
| #define _S390_H |
| |
| /* Optional architectural facilities supported by the processor. */ |
| |
| enum processor_flags |
| { |
| PF_IEEE_FLOAT = 1, |
| PF_ZARCH = 2, |
| PF_LONG_DISPLACEMENT = 4, |
| PF_EXTIMM = 8, |
| PF_DFP = 16, |
| PF_Z10 = 32, |
| PF_Z196 = 64, |
| PF_ZEC12 = 128, |
| PF_TX = 256, |
| PF_Z13 = 512, |
| PF_VX = 1024 |
| }; |
| |
| /* This is necessary to avoid a warning about comparing different enum |
| types. */ |
| #define s390_tune_attr ((enum attr_cpu)s390_tune) |
| |
| /* These flags indicate that the generated code should run on a cpu |
| providing the respective hardware facility regardless of the |
| current cpu mode (ESA or z/Architecture). */ |
| |
| #define TARGET_CPU_IEEE_FLOAT \ |
| (s390_arch_flags & PF_IEEE_FLOAT) |
| #define TARGET_CPU_ZARCH \ |
| (s390_arch_flags & PF_ZARCH) |
| #define TARGET_CPU_LONG_DISPLACEMENT \ |
| (s390_arch_flags & PF_LONG_DISPLACEMENT) |
| #define TARGET_CPU_EXTIMM \ |
| (s390_arch_flags & PF_EXTIMM) |
| #define TARGET_CPU_DFP \ |
| (s390_arch_flags & PF_DFP) |
| #define TARGET_CPU_Z10 \ |
| (s390_arch_flags & PF_Z10) |
| #define TARGET_CPU_Z196 \ |
| (s390_arch_flags & PF_Z196) |
| #define TARGET_CPU_ZEC12 \ |
| (s390_arch_flags & PF_ZEC12) |
| #define TARGET_CPU_HTM \ |
| (s390_arch_flags & PF_TX) |
| #define TARGET_CPU_Z13 \ |
| (s390_arch_flags & PF_Z13) |
| #define TARGET_CPU_VX \ |
| (s390_arch_flags & PF_VX) |
| |
| /* These flags indicate that the generated code should run on a cpu |
| providing the respective hardware facility when run in |
| z/Architecture mode. */ |
| |
| #define TARGET_LONG_DISPLACEMENT \ |
| (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT) |
| #define TARGET_EXTIMM \ |
| (TARGET_ZARCH && TARGET_CPU_EXTIMM) |
| #define TARGET_DFP \ |
| (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT) |
| #define TARGET_Z10 \ |
| (TARGET_ZARCH && TARGET_CPU_Z10) |
| #define TARGET_Z196 \ |
| (TARGET_ZARCH && TARGET_CPU_Z196) |
| #define TARGET_ZEC12 \ |
| (TARGET_ZARCH && TARGET_CPU_ZEC12) |
| #define TARGET_HTM (TARGET_OPT_HTM) |
| #define TARGET_Z13 \ |
| (TARGET_ZARCH && TARGET_CPU_Z13) |
| #define TARGET_VX \ |
| (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT) |
| |
| /* Use the ABI introduced with IBM z13: |
| - pass vector arguments <= 16 bytes in VRs |
| - align *all* vector types to 8 bytes */ |
| #define TARGET_VX_ABI TARGET_VX |
| |
| #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196) |
| |
| /* Run-time target specification. */ |
| |
| /* Defaults for option flags defined only on some subtargets. */ |
| #ifndef TARGET_TPF_PROFILING |
| #define TARGET_TPF_PROFILING 0 |
| #endif |
| |
| /* This will be overridden by OS headers. */ |
| #define TARGET_TPF 0 |
| |
| /* Target CPU builtins. */ |
| #define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile) |
| |
| #ifdef DEFAULT_TARGET_64BIT |
| #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \ |
| | MASK_OPT_HTM | MASK_OPT_VX) |
| #else |
| #define TARGET_DEFAULT 0 |
| #endif |
| |
| /* Support for configure-time defaults. */ |
| #define OPTION_DEFAULT_SPECS \ |
| { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \ |
| { "arch", "%{!march=*:-march=%(VALUE)}" }, \ |
| { "tune", "%{!mtune=*:-mtune=%(VALUE)}" } |
| |
| /* Defaulting rules. */ |
| #ifdef DEFAULT_TARGET_64BIT |
| #define DRIVER_SELF_SPECS \ |
| "%{!m31:%{!m64:-m64}}", \ |
| "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \ |
| "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}" |
| #else |
| #define DRIVER_SELF_SPECS \ |
| "%{!m31:%{!m64:-m31}}", \ |
| "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \ |
| "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}" |
| #endif |
| |
| /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */ |
| #define S390_TDC_POSITIVE_ZERO (1 << 11) |
| #define S390_TDC_NEGATIVE_ZERO (1 << 10) |
| #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9) |
| #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8) |
| #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7) |
| #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6) |
| #define S390_TDC_POSITIVE_INFINITY (1 << 5) |
| #define S390_TDC_NEGATIVE_INFINITY (1 << 4) |
| #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3) |
| #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2) |
| #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1) |
| #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0) |
| |
| /* The following values are different for DFP. */ |
| #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9) |
| #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8) |
| #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7) |
| #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6) |
| |
| /* For signbit, the BFP-DFP-difference makes no difference. */ |
| #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \ |
| | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \ |
| | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\ |
| | S390_TDC_NEGATIVE_INFINITY \ |
| | S390_TDC_NEGATIVE_QUIET_NAN \ |
| | S390_TDC_NEGATIVE_SIGNALING_NAN ) |
| |
| #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \ |
| | S390_TDC_NEGATIVE_INFINITY ) |
| |
| /* This is used by float.h to define the float_t and double_t data |
| types. For historical reasons both are double on s390 what cannot |
| be changed anymore. */ |
| #define TARGET_FLT_EVAL_METHOD 1 |
| |
| /* Target machine storage layout. */ |
| |
| /* Everything is big-endian. */ |
| #define BITS_BIG_ENDIAN 1 |
| #define BYTES_BIG_ENDIAN 1 |
| #define WORDS_BIG_ENDIAN 1 |
| |
| #define STACK_SIZE_MODE (Pmode) |
| |
| /* Vector arguments are left-justified when placed on the stack during |
| parameter passing. */ |
| #define FUNCTION_ARG_PADDING(MODE, TYPE) \ |
| (s390_function_arg_vector ((MODE), (TYPE)) \ |
| ? upward \ |
| : DEFAULT_FUNCTION_ARG_PADDING ((MODE), (TYPE))) |
| |
| #ifndef IN_LIBGCC2 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4) |
| |
| /* Width of a pointer. To be used instead of UNITS_PER_WORD in |
| ABI-relevant contexts. This always matches |
| GET_MODE_SIZE (Pmode). */ |
| #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4) |
| #define MIN_UNITS_PER_WORD 4 |
| #define MAX_BITS_PER_WORD 64 |
| #else |
| |
| /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether |
| the library should export TImode functions or not. Thus, we have |
| to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */ |
| #ifdef __s390x__ |
| #define UNITS_PER_WORD 8 |
| #else |
| #define UNITS_PER_WORD 4 |
| #endif |
| #endif |
| |
| /* Width of a pointer, in bits. */ |
| #define POINTER_SIZE (TARGET_64BIT ? 64 : 32) |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32) |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY 64 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 64 |
| |
| /* There is no point aligning anything to a rounder boundary than this. */ |
| #define BIGGEST_ALIGNMENT 64 |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Alignment on even addresses for LARL instruction. */ |
| #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN) |
| #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN) |
| |
| /* Alignment is not required by the hardware. */ |
| #define STRICT_ALIGNMENT 0 |
| |
| /* Mode of stack savearea. |
| FUNCTION is VOIDmode because calling convention maintains SP. |
| BLOCK needs Pmode for SP. |
| NONLOCAL needs twice Pmode to maintain both backchain and SP. */ |
| #define STACK_SAVEAREA_MODE(LEVEL) \ |
| (LEVEL == SAVE_FUNCTION ? VOIDmode \ |
| : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode) |
| |
| |
| /* Type layout. */ |
| |
| /* Sizes in bits of the source language data types. */ |
| #define SHORT_TYPE_SIZE 16 |
| #define INT_TYPE_SIZE 32 |
| #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32) |
| #define LONG_LONG_TYPE_SIZE 64 |
| #define FLOAT_TYPE_SIZE 32 |
| #define DOUBLE_TYPE_SIZE 64 |
| #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64) |
| |
| /* Work around target_flags dependency in ada/targtyps.c. */ |
| #define WIDEST_HARDWARE_FP_SIZE 64 |
| |
| /* We use "unsigned char" as default. */ |
| #define DEFAULT_SIGNED_CHAR 0 |
| |
| |
| /* Register usage. */ |
| |
| /* We have 16 general purpose registers (registers 0-15), |
| and 16 floating point registers (registers 16-31). |
| (On non-IEEE machines, we have only 4 fp registers.) |
| |
| Amongst the general purpose registers, some are used |
| for specific purposes: |
| GPR 11: Hard frame pointer (if needed) |
| GPR 12: Global offset table pointer (if needed) |
| GPR 13: Literal pool base register |
| GPR 14: Return address register |
| GPR 15: Stack pointer |
| |
| Registers 32-35 are 'fake' hard registers that do not |
| correspond to actual hardware: |
| Reg 32: Argument pointer |
| Reg 33: Condition code |
| Reg 34: Frame pointer |
| Reg 35: Return address pointer |
| |
| Registers 36 and 37 are mapped to access registers |
| 0 and 1, used to implement thread-local storage. |
| |
| Reg 38-53: Vector registers v16-v31 */ |
| |
| #define FIRST_PSEUDO_REGISTER 54 |
| |
| /* Standard register usage. */ |
| #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16) |
| #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16) |
| #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32) |
| #define CC_REGNO_P(N) ((N) == 33) |
| #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35) |
| #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37) |
| #define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53) |
| #define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N)) |
| |
| #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) |
| #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X))) |
| #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) |
| #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) |
| #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X))) |
| #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X))) |
| #define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X))) |
| #define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X))) |
| |
| /* Set up fixed registers and calling convention: |
| |
| GPRs 0-5 are always call-clobbered, |
| GPRs 6-15 are always call-saved. |
| GPR 12 is fixed if used as GOT pointer. |
| GPR 13 is always fixed (as literal pool pointer). |
| GPR 14 is always fixed on S/390 machines (as return address). |
| GPR 15 is always fixed (as stack pointer). |
| The 'fake' hard registers are call-clobbered and fixed. |
| The access registers are call-saved and fixed. |
| |
| On 31-bit, FPRs 18-19 are call-clobbered; |
| on 64-bit, FPRs 24-31 are call-clobbered. |
| The remaining FPRs are call-saved. |
| |
| All non-FP vector registers are call-clobbered v16-v31. */ |
| |
| #define FIXED_REGISTERS \ |
| { 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 1, 1, 1, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 1, 1, 1, 1, \ |
| 1, 1, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0 } |
| |
| #define CALL_USED_REGISTERS \ |
| { 1, 1, 1, 1, \ |
| 1, 1, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1 } |
| |
| #define CALL_REALLY_USED_REGISTERS \ |
| { 1, 1, 1, 1, /* r0 - r15 */ \ |
| 1, 1, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \ |
| 0, 0, /* a0 (36), a1 (37) */ \ |
| 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \ |
| 1, 1, 1, 1 } |
| |
| /* Preferred register allocation order. */ |
| #define REG_ALLOC_ORDER \ |
| { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \ |
| 16, 17, 18, 19, 20, 21, 22, 23, \ |
| 24, 25, 26, 27, 28, 29, 30, 31, \ |
| 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \ |
| 15, 32, 33, 34, 35, 36, 37 } |
| |
| |
| /* Fitting values into registers. */ |
| |
| /* Integer modes <= word size fit into any GPR. |
| Integer modes > word size fit into successive GPRs, starting with |
| an even-numbered register. |
| SImode and DImode fit into FPRs as well. |
| |
| Floating point modes <= word size fit into any FPR or GPR. |
| Floating point modes > word size (i.e. DFmode on 32-bit) fit |
| into any FPR, or an even-odd GPR pair. |
| TFmode fits only into an even-odd FPR pair. |
| |
| Complex floating point modes fit either into two FPRs, or into |
| successive GPRs (again starting with an even number). |
| TCmode fits only into two successive even-odd FPR pairs. |
| |
| Condition code modes fit only into the CC register. */ |
| |
| /* Because all registers in a class have the same size HARD_REGNO_NREGS |
| is equivalent to CLASS_MAX_NREGS. */ |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE)) |
| |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
| s390_hard_regno_mode_ok ((REGNO), (MODE)) |
| |
| #define HARD_REGNO_RENAME_OK(FROM, TO) \ |
| s390_hard_regno_rename_ok (FROM, TO) |
| |
| #define MODES_TIEABLE_P(MODE1, MODE2) \ |
| (((MODE1) == SFmode || (MODE1) == DFmode) \ |
| == ((MODE2) == SFmode || (MODE2) == DFmode)) |
| |
| /* When generating code that runs in z/Architecture mode, |
| but conforms to the 31-bit ABI, GPRs can hold 8 bytes; |
| the ABI guarantees only that the lower 4 bytes are |
| saved across calls, however. */ |
| #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \ |
| ((!TARGET_64BIT && TARGET_ZARCH \ |
| && GET_MODE_SIZE (MODE) > 4 \ |
| && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32)) \ |
| || (TARGET_VX \ |
| && GET_MODE_SIZE (MODE) > 8 \ |
| && (((TARGET_64BIT && (REGNO) >= 24 && (REGNO) <= 31)) \ |
| || (!TARGET_64BIT && ((REGNO) == 18 || (REGNO) == 19))))) |
| |
| /* Maximum number of registers to represent a value of mode MODE |
| in a register of class CLASS. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) \ |
| s390_class_max_nregs ((CLASS), (MODE)) |
| |
| #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ |
| s390_cannot_change_mode_class ((FROM), (TO), (CLASS)) |
| |
| /* Register classes. */ |
| |
| /* We use the following register classes: |
| GENERAL_REGS All general purpose registers |
| ADDR_REGS All general purpose registers except %r0 |
| (These registers can be used in address generation) |
| FP_REGS All floating point registers |
| CC_REGS The condition code register |
| ACCESS_REGS The access registers |
| |
| GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS |
| ADDR_FP_REGS Union of ADDR_REGS and FP_REGS |
| GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS |
| ADDR_CC_REGS Union of ADDR_REGS and CC_REGS |
| |
| NO_REGS No registers |
| ALL_REGS All registers |
| |
| Note that the 'fake' frame pointer and argument pointer registers |
| are included amongst the address registers here. */ |
| |
| enum reg_class |
| { |
| NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS, |
| ADDR_CC_REGS, GENERAL_CC_REGS, |
| FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS, |
| VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS, |
| ALL_REGS, LIM_REG_CLASSES |
| }; |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| #define REG_CLASS_NAMES \ |
| { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \ |
| "ADDR_CC_REGS", "GENERAL_CC_REGS", \ |
| "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \ |
| "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \ |
| "ALL_REGS" } |
| |
| /* Class -> register mapping. */ |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| { 0x00000000, 0x00000000 }, /* NO_REGS */ \ |
| { 0x00000000, 0x00000002 }, /* CC_REGS */ \ |
| { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \ |
| { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \ |
| { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \ |
| { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \ |
| { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \ |
| { 0xffff0000, 0x00000000 }, /* FP_REGS */ \ |
| { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \ |
| { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \ |
| { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \ |
| { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \ |
| { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \ |
| { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \ |
| } |
| |
| /* In some case register allocation order is not enough for IRA to |
| generate a good code. The following macro (if defined) increases |
| cost of REGNO for a pseudo approximately by pseudo usage frequency |
| multiplied by the macro value. |
| |
| We avoid usage of BASE_REGNUM by nonzero macro value because the |
| reload can decide not to use the hard register because some |
| constant was forced to be in memory. */ |
| #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \ |
| (regno == BASE_REGNUM ? 0.0 : 0.5) |
| |
| /* Register -> class mapping. */ |
| extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; |
| #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) |
| |
| /* ADDR_REGS can be used as base or index register. */ |
| #define INDEX_REG_CLASS ADDR_REGS |
| #define BASE_REG_CLASS ADDR_REGS |
| |
| /* Check whether REGNO is a hard register of the suitable class |
| or a pseudo register currently allocated to one such. */ |
| #define REGNO_OK_FOR_INDEX_P(REGNO) \ |
| (((REGNO) < FIRST_PSEUDO_REGISTER \ |
| && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \ |
| || ADDR_REGNO_P (reg_renumber[REGNO])) |
| #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO) |
| |
| |
| /* We need secondary memory to move data between GPRs and FPRs. |
| |
| - With DFP the ldgr lgdr instructions are available. Due to the |
| different alignment we cannot use them for SFmode. For 31 bit a |
| 64 bit value in GPR would be a register pair so here we still |
| need to go via memory. |
| |
| - With z13 we can do the SF/SImode moves with vlgvf. Due to the |
| overlapping of FPRs and VRs we still disallow TF/TD modes to be |
| in full VRs so as before also on z13 we do these moves via |
| memory. |
| |
| FIXME: Should we try splitting it into two vlgvg's/vlvg's instead? */ |
| #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ |
| (((reg_classes_intersect_p (CLASS1, VEC_REGS) \ |
| && reg_classes_intersect_p (CLASS2, GENERAL_REGS)) \ |
| || (reg_classes_intersect_p (CLASS1, GENERAL_REGS) \ |
| && reg_classes_intersect_p (CLASS2, VEC_REGS))) \ |
| && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8) \ |
| && (!TARGET_VX || (SCALAR_FLOAT_MODE_P (MODE) \ |
| && GET_MODE_SIZE (MODE) > 8))) |
| |
| /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit |
| because the movsi and movsf patterns don't handle r/f moves. */ |
| #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ |
| (GET_MODE_BITSIZE (MODE) < 32 \ |
| ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ |
| : MODE) |
| |
| |
| /* Stack layout and calling conventions. */ |
| |
| /* Our stack grows from higher to lower addresses. However, local variables |
| are accessed by positive offsets, and function arguments are stored at |
| increasing addresses. */ |
| #define STACK_GROWS_DOWNWARD |
| #define FRAME_GROWS_DOWNWARD 1 |
| /* #undef ARGS_GROW_DOWNWARD */ |
| |
| /* The basic stack layout looks like this: the stack pointer points |
| to the register save area for called functions. Above that area |
| is the location to place outgoing arguments. Above those follow |
| dynamic allocations (alloca), and finally the local variables. */ |
| |
| /* Offset from stack-pointer to first location of outgoing args. */ |
| #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96) |
| |
| /* Offset within stack frame to start allocating local variables at. */ |
| #define STARTING_FRAME_OFFSET 0 |
| |
| /* Offset from the stack pointer register to an item dynamically |
| allocated on the stack, e.g., by `alloca'. */ |
| #define STACK_DYNAMIC_OFFSET(FUNDECL) \ |
| (STACK_POINTER_OFFSET + crtl->outgoing_args_size) |
| |
| /* Offset of first parameter from the argument pointer register value. |
| We have a fake argument pointer register that points directly to |
| the argument area. */ |
| #define FIRST_PARM_OFFSET(FNDECL) 0 |
| |
| /* Defining this macro makes __builtin_frame_address(0) and |
| __builtin_return_address(0) work with -fomit-frame-pointer. */ |
| #define INITIAL_FRAME_ADDRESS_RTX \ |
| (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET)) |
| |
| /* The return address of the current frame is retrieved |
| from the initial value of register RETURN_REGNUM. |
| For frames farther back, we use the stack slot where |
| the corresponding RETURN_REGNUM register was saved. */ |
| #define DYNAMIC_CHAIN_ADDRESS(FRAME) \ |
| (TARGET_PACKED_STACK ? \ |
| plus_constant (Pmode, (FRAME), \ |
| STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME)) |
| |
| /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of |
| builtin_frame_address. Otherwise arg pointer - |
| STACK_POINTER_OFFSET would be returned for |
| __builtin_frame_address(0) what might result in an address pointing |
| somewhere into the middle of the local variables since the packed |
| stack layout generally does not need all the bytes in the register |
| save area. */ |
| #define FRAME_ADDR_RTX(FRAME) \ |
| DYNAMIC_CHAIN_ADDRESS ((FRAME)) |
| |
| #define RETURN_ADDR_RTX(COUNT, FRAME) \ |
| s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME))) |
| |
| /* In 31-bit mode, we need to mask off the high bit of return addresses. */ |
| #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff)) |
| |
| |
| /* Exception handling. */ |
| |
| /* Describe calling conventions for DWARF-2 exception handling. */ |
| #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM) |
| #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET |
| #define DWARF_FRAME_RETURN_COLUMN 14 |
| |
| /* Describe how we implement __builtin_eh_return. */ |
| #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM) |
| #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx) |
| |
| /* Select a format to encode pointers in exception handling data. */ |
| #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ |
| (flag_pic \ |
| ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \ |
| : DW_EH_PE_absptr) |
| |
| /* Register save slot alignment. */ |
| #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG) |
| |
| /* Let the assembler generate debug line info. */ |
| #define DWARF2_ASM_LINE_DEBUG_INFO 1 |
| |
| /* Define the dwarf register mapping. |
| v16-v31 -> 68-83 |
| rX -> X otherwise */ |
| #define DBX_REGISTER_NUMBER(regno) \ |
| ((regno >= 38 && regno <= 53) ? regno + 30 : regno) |
| |
| /* Frame registers. */ |
| |
| #define STACK_POINTER_REGNUM 15 |
| #define FRAME_POINTER_REGNUM 34 |
| #define HARD_FRAME_POINTER_REGNUM 11 |
| #define ARG_POINTER_REGNUM 32 |
| #define RETURN_ADDRESS_POINTER_REGNUM 35 |
| |
| /* The static chain must be call-clobbered, but not used for |
| function argument passing. As register 1 is clobbered by |
| the trampoline code, we only have one option. */ |
| #define STATIC_CHAIN_REGNUM 0 |
| |
| /* Number of hardware registers that go into the DWARF-2 unwind info. |
| To avoid ABI incompatibility, this number must not change even as |
| 'fake' hard registers are added or removed. */ |
| #define DWARF_FRAME_REGISTERS 34 |
| |
| |
| /* Frame pointer and argument pointer elimination. */ |
| |
| #define ELIMINABLE_REGS \ |
| {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ |
| { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ |
| { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ |
| { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ |
| { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ |
| { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ |
| { BASE_REGNUM, BASE_REGNUM }} |
| |
| #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ |
| (OFFSET) = s390_initial_elimination_offset ((FROM), (TO)) |
| |
| |
| /* Stack arguments. */ |
| |
| /* We need current_function_outgoing_args to be valid. */ |
| #define ACCUMULATE_OUTGOING_ARGS 1 |
| |
| |
| /* Register arguments. */ |
| |
| typedef struct s390_arg_structure |
| { |
| int gprs; /* gpr so far */ |
| int fprs; /* fpr so far */ |
| int vrs; /* vr so far */ |
| } |
| CUMULATIVE_ARGS; |
| |
| #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \ |
| ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0) |
| |
| #define FIRST_VEC_ARG_REGNO 46 |
| #define LAST_VEC_ARG_REGNO 53 |
| |
| /* Arguments can be placed in general registers 2 to 6, or in floating |
| point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64 |
| bit. */ |
| #define FUNCTION_ARG_REGNO_P(N) \ |
| (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \ |
| || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \ |
| || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO))) |
| |
| |
| /* Only gpr 2, fpr 0, and v24 are ever used as return registers. */ |
| #define FUNCTION_VALUE_REGNO_P(N) \ |
| ((N) == 2 || (N) == 16 \ |
| || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO)) |
| |
| |
| /* Function entry and exit. */ |
| |
| /* When returning from a function, the stack pointer does not matter. */ |
| #define EXIT_IGNORE_STACK 1 |
| |
| |
| /* Profiling. */ |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| s390_function_profiler ((FILE), ((LABELNO))) |
| |
| #define PROFILE_BEFORE_PROLOGUE 1 |
| |
| |
| /* Trampolines for nested functions. */ |
| |
| #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16) |
| #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| /* Recognize any constant value that is a valid address. */ |
| #define CONSTANT_ADDRESS_P(X) 0 |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* This definition replaces the formerly used 'm' constraint with a |
| different constraint letter in order to avoid changing semantics of |
| the 'm' constraint when accepting new address formats in |
| TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here |
| must not be used in insn definitions or inline assemblies. */ |
| #define TARGET_MEM_CONSTRAINT 'e' |
| |
| /* Try a machine-dependent way of reloading an illegitimate address |
| operand. If we find one, push the reload and jump to WIN. This |
| macro is used in only one place: `find_reloads_address' in reload.c. */ |
| #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \ |
| do { \ |
| rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \ |
| if (new_rtx) \ |
| { \ |
| (AD) = new_rtx; \ |
| goto WIN; \ |
| } \ |
| } while (0) |
| |
| /* Helper macro for s390.c and s390.md to check for symbolic constants. */ |
| #define SYMBOLIC_CONST(X) \ |
| (GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == LABEL_REF \ |
| || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) |
| |
| #define TLS_SYMBOLIC_CONST(X) \ |
| ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \ |
| || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X))) |
| |
| |
| /* Condition codes. */ |
| |
| /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, |
| return the mode to be used for the comparison. */ |
| #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y)) |
| |
| /* Relative costs of operations. */ |
| |
| /* A C expression for the cost of a branch instruction. A value of 1 |
| is the default; other values are interpreted relative to that. */ |
| #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost |
| |
| /* Nonzero if access to memory by bytes is slow and undesirable. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* An integer expression for the size in bits of the largest integer machine |
| mode that should actually be used. We allow pairs of registers. */ |
| #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode) |
| |
| /* The maximum number of bytes that a single instruction can move quickly |
| between memory and registers or between two memory locations. */ |
| #define MOVE_MAX (TARGET_ZARCH ? 16 : 8) |
| #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4) |
| #define MAX_MOVE_MAX 16 |
| |
| /* Don't perform CSE on function addresses. */ |
| #define NO_FUNCTION_CSE |
| |
| /* This value is used in tree-sra to decide whether it might benefical |
| to split a struct move into several word-size moves. For S/390 |
| only small values make sense here since struct moves are relatively |
| cheap thanks to mvc so the small default value chosen for archs |
| with memmove patterns should be ok. But this value is multiplied |
| in tree-sra with UNITS_PER_WORD to make a decision so we adjust it |
| here to compensate for that factor since mvc costs exactly the same |
| on 31 and 64 bit. */ |
| #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4) |
| |
| |
| /* Sections. */ |
| |
| /* Output before read-only data. */ |
| #define TEXT_SECTION_ASM_OP ".text" |
| |
| /* Output before writable (initialized) data. */ |
| #define DATA_SECTION_ASM_OP ".data" |
| |
| /* Output before writable (uninitialized) data. */ |
| #define BSS_SECTION_ASM_OP ".bss" |
| |
| /* S/390 constant pool breaks the devices in crtstuff.c to control section |
| in where code resides. We have to write it as asm code. */ |
| #ifndef __s390x__ |
| #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ |
| asm (SECTION_OP "\n\ |
| bras\t%r2,1f\n\ |
| 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\ |
| 1: l\t%r3,0(%r2)\n\ |
| bas\t%r14,0(%r3,%r2)\n\ |
| .previous"); |
| #endif |
| |
| |
| /* Position independent code. */ |
| |
| #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM) |
| |
| #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) |
| |
| |
| /* Assembler file format. */ |
| |
| /* Character to start a comment. */ |
| #define ASM_COMMENT_START "#" |
| |
| /* Declare an uninitialized external linkage data object. */ |
| #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ |
| asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN) |
| |
| /* Globalizing directive for a label. */ |
| #define GLOBAL_ASM_OP ".globl " |
| |
| /* Advance the location counter to a multiple of 2**LOG bytes. */ |
| #define ASM_OUTPUT_ALIGN(FILE, LOG) \ |
| if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG)) |
| |
| /* Advance the location counter by SIZE bytes. */ |
| #define ASM_OUTPUT_SKIP(FILE, SIZE) \ |
| fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)) |
| |
| /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */ |
| #define LOCAL_LABEL_PREFIX "." |
| |
| #define LABEL_ALIGN(LABEL) \ |
| s390_label_align (LABEL) |
| |
| /* How to refer to registers in assembler output. This sequence is |
| indexed by compiler's hard-register-number (see above). */ |
| #define REGISTER_NAMES \ |
| { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \ |
| "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \ |
| "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \ |
| "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \ |
| "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \ |
| "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \ |
| "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \ |
| } |
| |
| #define ADDITIONAL_REGISTER_NAMES \ |
| { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \ |
| { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \ |
| { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \ |
| { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } }; |
| |
| /* Print operand X (an rtx) in assembler syntax to file FILE. */ |
| #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) |
| |
| /* Output an element of a case-vector that is absolute. */ |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| do { \ |
| char buf[32]; \ |
| fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \ |
| assemble_name ((FILE), buf); \ |
| fputc ('\n', (FILE)); \ |
| } while (0) |
| |
| /* Output an element of a case-vector that is relative. */ |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ |
| do { \ |
| char buf[32]; \ |
| fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \ |
| assemble_name ((FILE), buf); \ |
| fputc ('-', (FILE)); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \ |
| assemble_name ((FILE), buf); \ |
| fputc ('\n', (FILE)); \ |
| } while (0) |
| |
| /* Mark the return register as used by the epilogue so that we can |
| use it in unadorned (return) and (simple_return) instructions. */ |
| #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM) |
| |
| #undef ASM_OUTPUT_FUNCTION_LABEL |
| #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \ |
| s390_asm_output_function_label (FILE, NAME, DECL) |
| |
| /* Miscellaneous parameters. */ |
| |
| /* Specify the machine mode that this machine uses for the index in the |
| tablejump instruction. */ |
| #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode) |
| |
| /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
| is done just by pretending it is already truncated. */ |
| #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode ((machine_mode) (TARGET_64BIT ? DImode : SImode)) |
| |
| /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */ |
| #define POINTERS_EXTEND_UNSIGNED -1 |
| |
| /* A function address in a call instruction is a byte address (for |
| indexing purposes) so give the MEM rtx a byte's mode. */ |
| #define FUNCTION_MODE QImode |
| |
| /* Specify the value which is used when clz operand is zero. */ |
| #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1) |
| |
| /* Machine-specific symbol_ref flags. */ |
| #define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0) |
| #define SYMBOL_REF_ALIGN1_P(X) \ |
| ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1)) |
| #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1) |
| #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \ |
| ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED)) |
| |
| /* Check whether integer displacement is in range for a short displacement. */ |
| #define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095) |
| |
| /* Check whether integer displacement is in range. */ |
| #define DISP_IN_RANGE(d) \ |
| (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \ |
| : SHORT_DISP_IN_RANGE(d)) |
| |
| /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */ |
| #define READ_CAN_USE_WRITE_PREFETCH 1 |
| |
| extern const int processor_flags_table[]; |
| |
| /* The truth element value for vector comparisons. Our instructions |
| always generate -1 in that case. */ |
| #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE)) |
| |
| /* Target pragma. */ |
| |
| /* resolve_overloaded_builtin can not be defined the normal way since |
| it is defined in code which technically belongs to the |
| front-end. */ |
| #define REGISTER_TARGET_PRAGMAS() \ |
| do { \ |
| s390_register_target_pragmas (); \ |
| } while (0) |
| |
| #endif /* S390_H */ |