| /* Helper routines for memory move and comparison insns. |
| Copyright (C) 2013-2015 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "machmode.h" |
| #include "rtl.h" |
| #include "hash-set.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "tree.h" |
| #include "hashtab.h" |
| #include "hard-reg-set.h" |
| #include "function.h" |
| #include "flags.h" |
| #include "statistics.h" |
| #include "real.h" |
| #include "fixed-value.h" |
| #include "insn-config.h" |
| #include "expmed.h" |
| #include "dojump.h" |
| #include "explow.h" |
| #include "calls.h" |
| #include "emit-rtl.h" |
| #include "varasm.h" |
| #include "stmt.h" |
| #include "expr.h" |
| #include "tm_p.h" |
| #include "predict.h" |
| #include "dominance.h" |
| #include "cfg.h" |
| #include "cfgrtl.h" |
| #include "cfganal.h" |
| #include "lcm.h" |
| #include "cfgbuild.h" |
| #include "cfgcleanup.h" |
| #include "basic-block.h" |
| |
| /* Like force_operand, but guarantees that VALUE ends up in TARGET. */ |
| static void |
| force_into (rtx value, rtx target) |
| { |
| value = force_operand (value, target); |
| if (! rtx_equal_p (value, target)) |
| emit_insn (gen_move_insn (target, value)); |
| } |
| |
| /* Emit code to perform a block move. Choose the best method. |
| |
| OPERANDS[0] is the destination. |
| OPERANDS[1] is the source. |
| OPERANDS[2] is the size. |
| OPERANDS[3] is the alignment safe to use. */ |
| bool |
| expand_block_move (rtx *operands) |
| { |
| int align = INTVAL (operands[3]); |
| int constp = (CONST_INT_P (operands[2])); |
| int bytes = (constp ? INTVAL (operands[2]) : 0); |
| |
| if (! constp) |
| return false; |
| |
| /* If we could use mov.l to move words and dest is word-aligned, we |
| can use movua.l for loads and still generate a relatively short |
| and efficient sequence. */ |
| if (TARGET_SH4A && align < 4 |
| && MEM_ALIGN (operands[0]) >= 32 |
| && can_move_by_pieces (bytes, 32)) |
| { |
| rtx dest = copy_rtx (operands[0]); |
| rtx src = copy_rtx (operands[1]); |
| /* We could use different pseudos for each copied word, but |
| since movua can only load into r0, it's kind of |
| pointless. */ |
| rtx temp = gen_reg_rtx (SImode); |
| rtx src_addr = copy_addr_to_reg (XEXP (src, 0)); |
| int copied = 0; |
| |
| while (copied + 4 <= bytes) |
| { |
| rtx to = adjust_address (dest, SImode, copied); |
| rtx from = adjust_automodify_address (src, BLKmode, |
| src_addr, copied); |
| |
| set_mem_size (from, 4); |
| emit_insn (gen_movua (temp, from)); |
| emit_move_insn (src_addr, plus_constant (Pmode, src_addr, 4)); |
| emit_move_insn (to, temp); |
| copied += 4; |
| } |
| |
| if (copied < bytes) |
| move_by_pieces (adjust_address (dest, BLKmode, copied), |
| adjust_automodify_address (src, BLKmode, |
| src_addr, copied), |
| bytes - copied, align, 0); |
| |
| return true; |
| } |
| |
| /* If it isn't a constant number of bytes, or if it doesn't have 4 byte |
| alignment, or if it isn't a multiple of 4 bytes, then fail. */ |
| if (align < 4 || (bytes % 4 != 0)) |
| return false; |
| |
| if (TARGET_HARD_SH4) |
| { |
| if (bytes < 12) |
| return false; |
| else if (bytes == 12) |
| { |
| rtx func_addr_rtx = gen_reg_rtx (Pmode); |
| rtx r4 = gen_rtx_REG (SImode, 4); |
| rtx r5 = gen_rtx_REG (SImode, 5); |
| |
| function_symbol (func_addr_rtx, "__movmemSI12_i4", SFUNC_STATIC); |
| force_into (XEXP (operands[0], 0), r4); |
| force_into (XEXP (operands[1], 0), r5); |
| emit_insn (gen_block_move_real_i4 (func_addr_rtx)); |
| return true; |
| } |
| else if (! optimize_size) |
| { |
| const char *entry_name; |
| rtx func_addr_rtx = gen_reg_rtx (Pmode); |
| int dwords; |
| rtx r4 = gen_rtx_REG (SImode, 4); |
| rtx r5 = gen_rtx_REG (SImode, 5); |
| rtx r6 = gen_rtx_REG (SImode, 6); |
| |
| entry_name = (bytes & 4 ? "__movmem_i4_odd" : "__movmem_i4_even"); |
| function_symbol (func_addr_rtx, entry_name, SFUNC_STATIC); |
| force_into (XEXP (operands[0], 0), r4); |
| force_into (XEXP (operands[1], 0), r5); |
| |
| dwords = bytes >> 3; |
| emit_insn (gen_move_insn (r6, GEN_INT (dwords - 1))); |
| emit_insn (gen_block_lump_real_i4 (func_addr_rtx)); |
| return true; |
| } |
| else |
| return false; |
| } |
| if (bytes < 64) |
| { |
| char entry[30]; |
| rtx func_addr_rtx = gen_reg_rtx (Pmode); |
| rtx r4 = gen_rtx_REG (SImode, 4); |
| rtx r5 = gen_rtx_REG (SImode, 5); |
| |
| sprintf (entry, "__movmemSI%d", bytes); |
| function_symbol (func_addr_rtx, entry, SFUNC_STATIC); |
| force_into (XEXP (operands[0], 0), r4); |
| force_into (XEXP (operands[1], 0), r5); |
| emit_insn (gen_block_move_real (func_addr_rtx)); |
| return true; |
| } |
| |
| /* This is the same number of bytes as a memcpy call, but to a different |
| less common function name, so this will occasionally use more space. */ |
| if (! optimize_size) |
| { |
| rtx func_addr_rtx = gen_reg_rtx (Pmode); |
| int final_switch, while_loop; |
| rtx r4 = gen_rtx_REG (SImode, 4); |
| rtx r5 = gen_rtx_REG (SImode, 5); |
| rtx r6 = gen_rtx_REG (SImode, 6); |
| |
| function_symbol (func_addr_rtx, "__movmem", SFUNC_STATIC); |
| force_into (XEXP (operands[0], 0), r4); |
| force_into (XEXP (operands[1], 0), r5); |
| |
| /* r6 controls the size of the move. 16 is decremented from it |
| for each 64 bytes moved. Then the negative bit left over is used |
| as an index into a list of move instructions. e.g., a 72 byte move |
| would be set up with size(r6) = 14, for one iteration through the |
| big while loop, and a switch of -2 for the last part. */ |
| |
| final_switch = 16 - ((bytes / 4) % 16); |
| while_loop = ((bytes / 4) / 16 - 1) * 16; |
| emit_insn (gen_move_insn (r6, GEN_INT (while_loop + final_switch))); |
| emit_insn (gen_block_lump_real (func_addr_rtx)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static const int prob_unlikely = REG_BR_PROB_BASE / 10; |
| static const int prob_likely = REG_BR_PROB_BASE / 4; |
| |
| /* Emit code to perform a strcmp. |
| |
| OPERANDS[0] is the destination. |
| OPERANDS[1] is the first string. |
| OPERANDS[2] is the second string. |
| OPERANDS[3] is the known alignment. */ |
| bool |
| sh_expand_cmpstr (rtx *operands) |
| { |
| rtx addr1 = operands[1]; |
| rtx addr2 = operands[2]; |
| rtx s1_addr = copy_addr_to_reg (XEXP (addr1, 0)); |
| rtx s2_addr = copy_addr_to_reg (XEXP (addr2, 0)); |
| rtx tmp0 = gen_reg_rtx (SImode); |
| rtx tmp1 = gen_reg_rtx (SImode); |
| rtx tmp2 = gen_reg_rtx (SImode); |
| rtx tmp3 = gen_reg_rtx (SImode); |
| |
| rtx jump; |
| rtx_code_label *L_return = gen_label_rtx (); |
| rtx_code_label *L_loop_byte = gen_label_rtx (); |
| rtx_code_label *L_end_loop_byte = gen_label_rtx (); |
| rtx_code_label *L_loop_long = gen_label_rtx (); |
| rtx_code_label *L_end_loop_long = gen_label_rtx (); |
| |
| int align = INTVAL (operands[3]); |
| |
| emit_move_insn (tmp0, const0_rtx); |
| |
| if (align < 4) |
| { |
| emit_insn (gen_iorsi3 (tmp1, s1_addr, s2_addr)); |
| emit_insn (gen_tstsi_t (tmp1, GEN_INT (3))); |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| } |
| |
| addr1 = adjust_automodify_address (addr1, SImode, s1_addr, 0); |
| addr2 = adjust_automodify_address (addr2, SImode, s2_addr, 0); |
| |
| /* tmp2 is aligned, OK to load. */ |
| emit_move_insn (tmp3, addr2); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, 4)); |
| |
| /* start long loop. */ |
| emit_label (L_loop_long); |
| |
| emit_move_insn (tmp2, tmp3); |
| |
| /* tmp1 is aligned, OK to load. */ |
| emit_move_insn (tmp1, addr1); |
| emit_move_insn (s1_addr, plus_constant (Pmode, s1_addr, 4)); |
| |
| /* Is there a 0 byte ? */ |
| emit_insn (gen_andsi3 (tmp3, tmp3, tmp1)); |
| |
| emit_insn (gen_cmpstr_t (tmp0, tmp3)); |
| jump = emit_jump_insn (gen_branch_true (L_end_loop_long)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, tmp2)); |
| |
| /* tmp2 is aligned, OK to load. */ |
| emit_move_insn (tmp3, addr2); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, 4)); |
| |
| jump = emit_jump_insn (gen_branch_true (L_loop_long)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| /* end loop. */ |
| |
| /* Fallthu, substract words. */ |
| if (TARGET_LITTLE_ENDIAN) |
| { |
| rtx low_1 = gen_lowpart (HImode, tmp1); |
| rtx low_2 = gen_lowpart (HImode, tmp2); |
| |
| emit_insn (gen_rotlhi3_8 (low_1, low_1)); |
| emit_insn (gen_rotlhi3_8 (low_2, low_2)); |
| emit_insn (gen_rotlsi3_16 (tmp1, tmp1)); |
| emit_insn (gen_rotlsi3_16 (tmp2, tmp2)); |
| emit_insn (gen_rotlhi3_8 (low_1, low_1)); |
| emit_insn (gen_rotlhi3_8 (low_2, low_2)); |
| } |
| |
| jump = emit_jump_insn (gen_jump_compact (L_return)); |
| emit_barrier_after (jump); |
| |
| emit_label (L_end_loop_long); |
| |
| emit_move_insn (s1_addr, plus_constant (Pmode, s1_addr, -4)); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, -4)); |
| |
| /* start byte loop. */ |
| addr1 = adjust_address (addr1, QImode, 0); |
| addr2 = adjust_address (addr2, QImode, 0); |
| |
| emit_label (L_loop_byte); |
| |
| emit_insn (gen_extendqisi2 (tmp2, addr2)); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, 1)); |
| |
| emit_insn (gen_extendqisi2 (tmp1, addr1)); |
| emit_move_insn (s1_addr, plus_constant (Pmode, s1_addr, 1)); |
| |
| emit_insn (gen_cmpeqsi_t (tmp2, const0_rtx)); |
| jump = emit_jump_insn (gen_branch_true (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, tmp2)); |
| if (flag_delayed_branch) |
| emit_insn (gen_zero_extendqisi2 (tmp2, gen_lowpart (QImode, tmp2))); |
| jump = emit_jump_insn (gen_branch_true (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| /* end loop. */ |
| |
| emit_label (L_end_loop_byte); |
| |
| if (! flag_delayed_branch) |
| emit_insn (gen_zero_extendqisi2 (tmp2, gen_lowpart (QImode, tmp2))); |
| emit_insn (gen_zero_extendqisi2 (tmp1, gen_lowpart (QImode, tmp1))); |
| |
| emit_label (L_return); |
| |
| emit_insn (gen_subsi3 (operands[0], tmp1, tmp2)); |
| |
| return true; |
| } |
| |
| /* Emit code to perform a strncmp. |
| |
| OPERANDS[0] is the destination. |
| OPERANDS[1] is the first string. |
| OPERANDS[2] is the second string. |
| OPERANDS[3] is the length. |
| OPERANDS[4] is the known alignment. */ |
| bool |
| sh_expand_cmpnstr (rtx *operands) |
| { |
| rtx addr1 = operands[1]; |
| rtx addr2 = operands[2]; |
| rtx s1_addr = copy_addr_to_reg (XEXP (addr1, 0)); |
| rtx s2_addr = copy_addr_to_reg (XEXP (addr2, 0)); |
| rtx tmp1 = gen_reg_rtx (SImode); |
| rtx tmp2 = gen_reg_rtx (SImode); |
| |
| rtx jump; |
| rtx_code_label *L_return = gen_label_rtx (); |
| rtx_code_label *L_loop_byte = gen_label_rtx (); |
| rtx_code_label *L_end_loop_byte = gen_label_rtx (); |
| |
| rtx len = copy_to_mode_reg (SImode, operands[3]); |
| int constp = CONST_INT_P (operands[3]); |
| |
| /* Loop on a register count. */ |
| if (constp) |
| { |
| rtx tmp0 = gen_reg_rtx (SImode); |
| rtx tmp3 = gen_reg_rtx (SImode); |
| rtx lenw = gen_reg_rtx (SImode); |
| |
| rtx_code_label *L_loop_long = gen_label_rtx (); |
| rtx_code_label *L_end_loop_long = gen_label_rtx (); |
| |
| int align = INTVAL (operands[4]); |
| int bytes = INTVAL (operands[3]); |
| int witers = bytes / 4; |
| |
| if (witers > 1) |
| { |
| addr1 = adjust_automodify_address (addr1, SImode, s1_addr, 0); |
| addr2 = adjust_automodify_address (addr2, SImode, s2_addr, 0); |
| |
| emit_move_insn (tmp0, const0_rtx); |
| |
| if (align < 4) |
| { |
| emit_insn (gen_iorsi3 (tmp1, s1_addr, s2_addr)); |
| emit_insn (gen_tstsi_t (tmp1, GEN_INT (3))); |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| } |
| |
| /* word count. Do we have iterations ? */ |
| emit_insn (gen_lshrsi3 (lenw, len, GEN_INT (2))); |
| |
| /* start long loop. */ |
| emit_label (L_loop_long); |
| |
| /* tmp2 is aligned, OK to load. */ |
| emit_move_insn (tmp2, addr2); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, |
| GET_MODE_SIZE (SImode))); |
| |
| /* tmp1 is aligned, OK to load. */ |
| emit_move_insn (tmp1, addr1); |
| emit_move_insn (s1_addr, plus_constant (Pmode, s1_addr, |
| GET_MODE_SIZE (SImode))); |
| |
| /* Is there a 0 byte ? */ |
| emit_insn (gen_andsi3 (tmp3, tmp2, tmp1)); |
| |
| emit_insn (gen_cmpstr_t (tmp0, tmp3)); |
| jump = emit_jump_insn (gen_branch_true (L_end_loop_long)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, tmp2)); |
| jump = emit_jump_insn (gen_branch_false (L_end_loop_long)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| if (TARGET_SH2) |
| emit_insn (gen_dect (lenw, lenw)); |
| else |
| { |
| emit_insn (gen_addsi3 (lenw, lenw, GEN_INT (-1))); |
| emit_insn (gen_tstsi_t (lenw, lenw)); |
| } |
| |
| jump = emit_jump_insn (gen_branch_false (L_loop_long)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| |
| int sbytes = bytes % 4; |
| |
| /* end loop. Reached max iterations. */ |
| if (sbytes == 0) |
| { |
| emit_insn (gen_subsi3 (operands[0], tmp1, tmp2)); |
| jump = emit_jump_insn (gen_jump_compact (L_return)); |
| emit_barrier_after (jump); |
| } |
| else |
| { |
| /* Remaining bytes to check. */ |
| |
| addr1 = adjust_automodify_address (addr1, QImode, s1_addr, 0); |
| addr2 = adjust_automodify_address (addr2, QImode, s2_addr, 0); |
| |
| while (sbytes--) |
| { |
| emit_insn (gen_extendqisi2 (tmp1, addr1)); |
| emit_insn (gen_extendqisi2 (tmp2, addr2)); |
| |
| emit_insn (gen_cmpeqsi_t (tmp2, const0_rtx)); |
| jump = emit_jump_insn (gen_branch_true (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, tmp2)); |
| if (flag_delayed_branch) |
| emit_insn (gen_zero_extendqisi2 (tmp2, |
| gen_lowpart (QImode, |
| tmp2))); |
| jump = emit_jump_insn (gen_branch_false (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| addr1 = adjust_address (addr1, QImode, |
| GET_MODE_SIZE (QImode)); |
| addr2 = adjust_address (addr2, QImode, |
| GET_MODE_SIZE (QImode)); |
| } |
| |
| jump = emit_jump_insn (gen_jump_compact( L_end_loop_byte)); |
| emit_barrier_after (jump); |
| } |
| |
| emit_label (L_end_loop_long); |
| |
| /* Found last word. Restart it byte per byte. */ |
| |
| emit_move_insn (s1_addr, plus_constant (Pmode, s1_addr, |
| -GET_MODE_SIZE (SImode))); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, |
| -GET_MODE_SIZE (SImode))); |
| |
| /* fall thru. */ |
| } |
| |
| addr1 = adjust_automodify_address (addr1, QImode, s1_addr, 0); |
| addr2 = adjust_automodify_address (addr2, QImode, s2_addr, 0); |
| |
| while (bytes--) |
| { |
| emit_insn (gen_extendqisi2 (tmp1, addr1)); |
| emit_insn (gen_extendqisi2 (tmp2, addr2)); |
| |
| emit_insn (gen_cmpeqsi_t (tmp2, const0_rtx)); |
| jump = emit_jump_insn (gen_branch_true (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, tmp2)); |
| if (flag_delayed_branch) |
| emit_insn (gen_zero_extendqisi2 (tmp2, |
| gen_lowpart (QImode, tmp2))); |
| jump = emit_jump_insn (gen_branch_false (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| addr1 = adjust_address (addr1, QImode, GET_MODE_SIZE (QImode)); |
| addr2 = adjust_address (addr2, QImode, GET_MODE_SIZE (QImode)); |
| } |
| |
| jump = emit_jump_insn (gen_jump_compact( L_end_loop_byte)); |
| emit_barrier_after (jump); |
| } |
| else |
| { |
| emit_insn (gen_cmpeqsi_t (len, const0_rtx)); |
| emit_move_insn (operands[0], const0_rtx); |
| jump = emit_jump_insn (gen_branch_true (L_return)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| } |
| |
| addr1 = adjust_automodify_address (addr1, QImode, s1_addr, 0); |
| addr2 = adjust_automodify_address (addr2, QImode, s2_addr, 0); |
| |
| emit_label (L_loop_byte); |
| |
| emit_insn (gen_extendqisi2 (tmp2, addr2)); |
| emit_move_insn (s2_addr, plus_constant (Pmode, s2_addr, 1)); |
| |
| emit_insn (gen_extendqisi2 (tmp1, addr1)); |
| emit_move_insn (s1_addr, plus_constant (Pmode, s1_addr, 1)); |
| |
| emit_insn (gen_cmpeqsi_t (tmp2, const0_rtx)); |
| jump = emit_jump_insn (gen_branch_true (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, tmp2)); |
| if (flag_delayed_branch) |
| emit_insn (gen_zero_extendqisi2 (tmp2, gen_lowpart (QImode, tmp2))); |
| jump = emit_jump_insn (gen_branch_false (L_end_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_unlikely); |
| |
| if (TARGET_SH2) |
| emit_insn (gen_dect (len, len)); |
| else |
| { |
| emit_insn (gen_addsi3 (len, len, GEN_INT (-1))); |
| emit_insn (gen_tstsi_t (len, len)); |
| } |
| |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| /* end byte loop. */ |
| |
| emit_label (L_end_loop_byte); |
| |
| if (! flag_delayed_branch) |
| emit_insn (gen_zero_extendqisi2 (tmp2, gen_lowpart (QImode, tmp2))); |
| emit_insn (gen_zero_extendqisi2 (tmp1, gen_lowpart (QImode, tmp1))); |
| |
| emit_insn (gen_subsi3 (operands[0], tmp1, tmp2)); |
| |
| emit_label (L_return); |
| |
| return true; |
| } |
| |
| /* Emit code to perform a strlen. |
| |
| OPERANDS[0] is the destination. |
| OPERANDS[1] is the string. |
| OPERANDS[2] is the char to search. |
| OPERANDS[3] is the alignment. */ |
| bool |
| sh_expand_strlen (rtx *operands) |
| { |
| rtx addr1 = operands[1]; |
| rtx current_addr = copy_addr_to_reg (XEXP (addr1, 0)); |
| rtx start_addr = gen_reg_rtx (Pmode); |
| rtx tmp0 = gen_reg_rtx (SImode); |
| rtx tmp1 = gen_reg_rtx (SImode); |
| rtx_code_label *L_return = gen_label_rtx (); |
| rtx_code_label *L_loop_byte = gen_label_rtx (); |
| |
| rtx jump; |
| rtx_code_label *L_loop_long = gen_label_rtx (); |
| rtx_code_label *L_end_loop_long = gen_label_rtx (); |
| |
| int align = INTVAL (operands[3]); |
| |
| emit_move_insn (operands[0], GEN_INT (-1)); |
| |
| /* remember start of string. */ |
| emit_move_insn (start_addr, current_addr); |
| |
| if (align < 4) |
| { |
| emit_insn (gen_tstsi_t (current_addr, GEN_INT (3))); |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| } |
| |
| emit_move_insn (tmp0, operands[2]); |
| |
| addr1 = adjust_automodify_address (addr1, SImode, current_addr, 0); |
| |
| /* start long loop. */ |
| emit_label (L_loop_long); |
| |
| /* tmp1 is aligned, OK to load. */ |
| emit_move_insn (tmp1, addr1); |
| emit_move_insn (current_addr, plus_constant (Pmode, current_addr, 4)); |
| |
| /* Is there a 0 byte ? */ |
| emit_insn (gen_cmpstr_t (tmp0, tmp1)); |
| |
| jump = emit_jump_insn (gen_branch_false (L_loop_long)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| /* end loop. */ |
| |
| emit_label (L_end_loop_long); |
| |
| emit_move_insn (current_addr, plus_constant (Pmode, current_addr, -4)); |
| |
| addr1 = adjust_address (addr1, QImode, 0); |
| |
| /* unroll remaining bytes. */ |
| for (int i = 0; i < 4; ++i) |
| { |
| emit_insn (gen_extendqisi2 (tmp1, addr1)); |
| emit_move_insn (current_addr, plus_constant (Pmode, current_addr, 1)); |
| emit_insn (gen_cmpeqsi_t (tmp1, const0_rtx)); |
| jump = emit_jump_insn (gen_branch_true (L_return)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| } |
| |
| emit_barrier_after (jump); |
| |
| /* start byte loop. */ |
| emit_label (L_loop_byte); |
| |
| emit_insn (gen_extendqisi2 (tmp1, addr1)); |
| emit_move_insn (current_addr, plus_constant (Pmode, current_addr, 1)); |
| |
| emit_insn (gen_cmpeqsi_t (tmp1, const0_rtx)); |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| |
| /* end loop. */ |
| |
| emit_label (L_return); |
| |
| emit_insn (gen_addsi3 (start_addr, start_addr, GEN_INT (1))); |
| emit_insn (gen_subsi3 (operands[0], current_addr, start_addr)); |
| |
| return true; |
| } |
| |
| /* Emit code to perform a memset. |
| |
| OPERANDS[0] is the destination. |
| OPERANDS[1] is the size; |
| OPERANDS[2] is the char to search. |
| OPERANDS[3] is the alignment. */ |
| void |
| sh_expand_setmem (rtx *operands) |
| { |
| rtx_code_label *L_loop_byte = gen_label_rtx (); |
| rtx_code_label *L_loop_word = gen_label_rtx (); |
| rtx_code_label *L_return = gen_label_rtx (); |
| rtx jump; |
| rtx dest = copy_rtx (operands[0]); |
| rtx dest_addr = copy_addr_to_reg (XEXP (dest, 0)); |
| rtx val = copy_to_mode_reg (SImode, operands[2]); |
| int align = INTVAL (operands[3]); |
| rtx len = copy_to_mode_reg (SImode, operands[1]); |
| |
| if (! CONST_INT_P (operands[1])) |
| return; |
| |
| int count = INTVAL (operands[1]); |
| |
| if (CONST_INT_P (operands[2]) |
| && (INTVAL (operands[2]) == 0 || INTVAL (operands[2]) == -1) && count > 8) |
| { |
| rtx lenw = gen_reg_rtx (SImode); |
| |
| if (align < 4) |
| { |
| emit_insn (gen_tstsi_t (dest_addr, GEN_INT (3))); |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| } |
| |
| /* word count. Do we have iterations ? */ |
| emit_insn (gen_lshrsi3 (lenw, len, GEN_INT (2))); |
| |
| dest = adjust_automodify_address (dest, SImode, dest_addr, 0); |
| |
| /* start loop. */ |
| emit_label (L_loop_word); |
| |
| if (TARGET_SH2) |
| emit_insn (gen_dect (lenw, lenw)); |
| else |
| { |
| emit_insn (gen_addsi3 (lenw, lenw, GEN_INT (-1))); |
| emit_insn (gen_tstsi_t (lenw, lenw)); |
| } |
| |
| emit_move_insn (dest, val); |
| emit_move_insn (dest_addr, plus_constant (Pmode, dest_addr, |
| GET_MODE_SIZE (SImode))); |
| |
| |
| jump = emit_jump_insn (gen_branch_false (L_loop_word)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| count = count % 4; |
| |
| dest = adjust_address (dest, QImode, 0); |
| |
| val = gen_lowpart (QImode, val); |
| |
| while (count--) |
| { |
| emit_move_insn (dest, val); |
| emit_move_insn (dest_addr, plus_constant (Pmode, dest_addr, |
| GET_MODE_SIZE (QImode))); |
| } |
| |
| jump = emit_jump_insn (gen_jump_compact (L_return)); |
| emit_barrier_after (jump); |
| } |
| |
| dest = adjust_automodify_address (dest, QImode, dest_addr, 0); |
| |
| /* start loop. */ |
| emit_label (L_loop_byte); |
| |
| if (TARGET_SH2) |
| emit_insn (gen_dect (len, len)); |
| else |
| { |
| emit_insn (gen_addsi3 (len, len, GEN_INT (-1))); |
| emit_insn (gen_tstsi_t (len, len)); |
| } |
| |
| val = gen_lowpart (QImode, val); |
| emit_move_insn (dest, val); |
| emit_move_insn (dest_addr, plus_constant (Pmode, dest_addr, |
| GET_MODE_SIZE (QImode))); |
| |
| jump = emit_jump_insn (gen_branch_false (L_loop_byte)); |
| add_int_reg_note (jump, REG_BR_PROB, prob_likely); |
| |
| emit_label (L_return); |
| } |