blob: 41de2a574769143234f905fb29a6bae8e66bea0d [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- C S T A N D --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Csets; use Csets;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Layout; use Layout;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Set_Targ; use Set_Targ;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Sem_Mech; use Sem_Mech;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body CStand is
Stloc : Source_Ptr renames Standard_Location;
Staloc : Source_Ptr renames Standard_ASCII_Location;
-- Standard abbreviations used throughout this package
Back_End_Float_Types : Elist_Id := No_Elist;
-- List used for any floating point supported by the back end. This needs
-- to be at the library level, because the call back procedures retrieving
-- this information are at that level.
-----------------------
-- Local Subprograms --
-----------------------
procedure Build_Float_Type
(E : Entity_Id;
Digs : Int;
Rep : Float_Rep_Kind;
Siz : Int;
Align : Int);
-- Procedure to build standard predefined float base type. The first
-- parameter is the entity for the type. The second parameter is the
-- digits value. The third parameter indicates the representation to
-- be used for the type. The fourth parameter is the size in bits.
-- The fifth parameter is the alignment in storage units. Each type
-- is added to the list of predefined floating point types.
--
-- Note that both RM_Size and Esize are set to the specified size, i.e.
-- we do not set the RM_Size to the precision passed by the back end.
-- This is consistent with the semantics of 'Size specified in the RM
-- because we cannot pack components of the type tighter than this size.
procedure Build_Signed_Integer_Type (E : Entity_Id; Siz : Nat);
-- Procedure to build standard predefined signed integer subtype. The
-- first parameter is the entity for the subtype. The second parameter
-- is the size in bits. The corresponding base type is not built by
-- this routine but instead must be built by the caller where needed.
procedure Build_Unsigned_Integer_Type (Uns : Entity_Id; Siz : Nat);
-- Procedure to build standard predefined unsigned integer subtype. These
-- subtypes are not user visible, but they are used internally. The first
-- parameter is the entity for the subtype. The second parameter is the
-- size in bits.
procedure Copy_Float_Type (To : Entity_Id; From : Entity_Id);
-- Build a floating point type, copying representation details from From.
-- This is used to create predefined floating point types based on
-- available types in the back end.
procedure Create_Operators;
-- Make entries for each of the predefined operators in Standard
procedure Create_Unconstrained_Base_Type
(E : Entity_Id;
K : Entity_Kind);
-- The predefined signed integer types are constrained subtypes which
-- must have a corresponding unconstrained base type. This type is almost
-- useless. The only place it has semantics is Subtypes_Statically_Match.
-- Consequently, we arrange for it to be identical apart from the setting
-- of the constrained bit. This routine takes an entity E for the Type,
-- copies it to estabish the base type, then resets the Ekind of the
-- original entity to K (the Ekind for the subtype). The Etype field of
-- E is set by the call (to point to the created base type entity), and
-- also the Is_Constrained flag of E is set.
--
-- To understand the exact requirement for this, see RM 3.5.4(11) which
-- makes it clear that Integer, for example, is constrained, with the
-- constraint bounds matching the bounds of the (unconstrained) base
-- type. The point is that Integer and Integer'Base have identical
-- bounds, but do not statically match, since a subtype with constraints
-- never matches a subtype with no constraints.
function Find_Back_End_Float_Type (Name : String) return Entity_Id;
-- Return the first float type in Back_End_Float_Types with the given name.
-- Names of entities in back end types, are either type names of C
-- predefined types (all lower case), or mode names (upper case).
-- These are not generally valid identifier names.
function Identifier_For (S : Standard_Entity_Type) return Node_Id;
-- Returns an identifier node with the same name as the defining identifier
-- corresponding to the given Standard_Entity_Type value.
procedure Make_Aliased_Component
(Rec : Entity_Id;
Typ : Entity_Id;
Nam : String);
-- Build an aliased record component with the given type and name,
-- and append to the list of components of Rec.
function Make_Formal (Typ : Entity_Id; Nam : String) return Entity_Id;
-- Construct entity for subprogram formal with given name and type
function Make_Integer (V : Uint) return Node_Id;
-- Builds integer literal with given value
function New_Operator (Op : Name_Id; Typ : Entity_Id) return Entity_Id;
-- Build entity for standard operator with given name and type
function New_Standard_Entity return Entity_Id;
-- Builds a new entity for Standard
function New_Standard_Entity (Nam : String) return Entity_Id;
-- Builds a new entity for Standard with Nkind = N_Defining_Identifier,
-- and Chars of this defining identifier set to the given string Nam.
procedure Print_Standard;
-- Print representation of package Standard if switch set
procedure Register_Float_Type
(Name : String;
Digs : Positive;
Float_Rep : Float_Rep_Kind;
Precision : Positive;
Size : Positive;
Alignment : Natural);
-- Registers a single back end floating-point type (from FPT_Mode_Table in
-- Set_Targ). This will create a predefined floating-point base type for
-- one of the floating point types reported by the back end, and add it
-- to the list of predefined float types. Name is the name of the type
-- as a normal format (non-null-terminated) string. Digs is the number of
-- digits, which is always non-zero, since non-floating-point types were
-- filtered out earlier. Float_Rep indicates the kind of floating-point
-- type, and Precision, Size and Alignment are the precision, size and
-- alignment in bits.
procedure Set_Integer_Bounds
(Id : Entity_Id;
Typ : Entity_Id;
Lb : Uint;
Hb : Uint);
-- Procedure to set bounds for integer type or subtype. Id is the entity
-- whose bounds and type are to be set. The Typ parameter is the Etype
-- value for the entity (which will be the same as Id for all predefined
-- integer base types. The third and fourth parameters are the bounds.
----------------------
-- Build_Float_Type --
----------------------
procedure Build_Float_Type
(E : Entity_Id;
Digs : Int;
Rep : Float_Rep_Kind;
Siz : Int;
Align : Int)
is
begin
Set_Type_Definition (Parent (E),
Make_Floating_Point_Definition (Stloc,
Digits_Expression => Make_Integer (UI_From_Int (Digs))));
Mutate_Ekind (E, E_Floating_Point_Type);
Set_Etype (E, E);
Set_Digits_Value (E, UI_From_Int (Digs));
Set_Float_Rep (E, Rep);
Init_Size (E, Siz);
Set_Elem_Alignment (E, Align);
Set_Float_Bounds (E);
Set_Is_Frozen (E);
Set_Is_Public (E);
Set_Size_Known_At_Compile_Time (E);
end Build_Float_Type;
------------------------------
-- Find_Back_End_Float_Type --
------------------------------
function Find_Back_End_Float_Type (Name : String) return Entity_Id is
N : Elmt_Id;
begin
N := First_Elmt (Back_End_Float_Types);
while Present (N) and then Get_Name_String (Chars (Node (N))) /= Name
loop
Next_Elmt (N);
end loop;
return Node (N);
end Find_Back_End_Float_Type;
-------------------------------
-- Build_Signed_Integer_Type --
-------------------------------
procedure Build_Signed_Integer_Type (E : Entity_Id; Siz : Nat) is
U2Siz1 : constant Uint := 2 ** (Siz - 1);
Lbound : constant Uint := -U2Siz1;
Ubound : constant Uint := U2Siz1 - 1;
begin
Set_Type_Definition (Parent (E),
Make_Signed_Integer_Type_Definition (Stloc,
Low_Bound => Make_Integer (Lbound),
High_Bound => Make_Integer (Ubound)));
Mutate_Ekind (E, E_Signed_Integer_Type);
Set_Etype (E, E);
Init_Size (E, Siz);
Set_Elem_Alignment (E);
Set_Integer_Bounds (E, E, Lbound, Ubound);
Set_Is_Frozen (E);
Set_Is_Public (E);
Set_Is_Known_Valid (E);
Set_Size_Known_At_Compile_Time (E);
end Build_Signed_Integer_Type;
---------------------------------
-- Build_Unsigned_Integer_Type --
---------------------------------
procedure Build_Unsigned_Integer_Type
(Uns : Entity_Id;
Siz : Nat)
is
Decl : constant Node_Id := New_Node (N_Full_Type_Declaration, Stloc);
R_Node : constant Node_Id := New_Node (N_Range, Stloc);
begin
Set_Defining_Identifier (Decl, Uns);
Mutate_Ekind (Uns, E_Modular_Integer_Type);
Set_Scope (Uns, Standard_Standard);
Set_Etype (Uns, Uns);
Init_Size (Uns, Siz);
Set_Elem_Alignment (Uns);
Set_Modulus (Uns, Uint_2 ** Siz);
Set_Is_Unsigned_Type (Uns);
Set_Size_Known_At_Compile_Time (Uns);
Set_Is_Known_Valid (Uns, True);
Set_Low_Bound (R_Node, Make_Integer (Uint_0));
Set_High_Bound (R_Node, Make_Integer (Modulus (Uns) - 1));
Set_Etype (Low_Bound (R_Node), Uns);
Set_Etype (High_Bound (R_Node), Uns);
Set_Scalar_Range (Uns, R_Node);
end Build_Unsigned_Integer_Type;
---------------------
-- Copy_Float_Type --
---------------------
procedure Copy_Float_Type (To : Entity_Id; From : Entity_Id) is
begin
Build_Float_Type
(To, UI_To_Int (Digits_Value (From)), Float_Rep (From),
UI_To_Int (Esize (From)), UI_To_Int (Alignment (From)));
end Copy_Float_Type;
----------------------
-- Create_Operators --
----------------------
-- Each operator has an abbreviated signature. The formals have the names
-- LEFT and RIGHT. Their types are not actually used for resolution.
procedure Create_Operators is
Op_Node : Entity_Id;
-- The following tables define the binary and unary operators and their
-- corresponding result type.
Binary_Ops : constant array (S_Binary_Ops) of Name_Id :=
-- There is one entry here for each binary operator, except for the
-- case of concatenation, where there are three entries, one for a
-- String result, one for Wide_String, and one for Wide_Wide_String.
(Name_Op_Add,
Name_Op_And,
Name_Op_Concat,
Name_Op_Concat,
Name_Op_Concat,
Name_Op_Divide,
Name_Op_Eq,
Name_Op_Expon,
Name_Op_Ge,
Name_Op_Gt,
Name_Op_Le,
Name_Op_Lt,
Name_Op_Mod,
Name_Op_Multiply,
Name_Op_Ne,
Name_Op_Or,
Name_Op_Rem,
Name_Op_Subtract,
Name_Op_Xor);
Bin_Op_Types : constant array (S_Binary_Ops) of Entity_Id :=
-- This table has the corresponding result types. The entries are
-- ordered so they correspond to the Binary_Ops array above.
(Universal_Integer, -- Add
Standard_Boolean, -- And
Standard_String, -- Concat (String)
Standard_Wide_String, -- Concat (Wide_String)
Standard_Wide_Wide_String, -- Concat (Wide_Wide_String)
Universal_Integer, -- Divide
Standard_Boolean, -- Eq
Universal_Integer, -- Expon
Standard_Boolean, -- Ge
Standard_Boolean, -- Gt
Standard_Boolean, -- Le
Standard_Boolean, -- Lt
Universal_Integer, -- Mod
Universal_Integer, -- Multiply
Standard_Boolean, -- Ne
Standard_Boolean, -- Or
Universal_Integer, -- Rem
Universal_Integer, -- Subtract
Standard_Boolean); -- Xor
Unary_Ops : constant array (S_Unary_Ops) of Name_Id :=
-- There is one entry here for each unary operator
(Name_Op_Abs,
Name_Op_Subtract,
Name_Op_Not,
Name_Op_Add);
Unary_Op_Types : constant array (S_Unary_Ops) of Entity_Id :=
-- This table has the corresponding result types. The entries are
-- ordered so they correspond to the Unary_Ops array above.
(Universal_Integer, -- Abs
Universal_Integer, -- Subtract
Standard_Boolean, -- Not
Universal_Integer); -- Add
begin
for J in S_Binary_Ops loop
Op_Node := New_Operator (Binary_Ops (J), Bin_Op_Types (J));
SE (J) := Op_Node;
Append_Entity (Make_Formal (Any_Type, "LEFT"), Op_Node);
Append_Entity (Make_Formal (Any_Type, "RIGHT"), Op_Node);
end loop;
for J in S_Unary_Ops loop
Op_Node := New_Operator (Unary_Ops (J), Unary_Op_Types (J));
SE (J) := Op_Node;
Append_Entity (Make_Formal (Any_Type, "RIGHT"), Op_Node);
end loop;
-- For concatenation, we create a separate operator for each
-- array type. This simplifies the resolution of the component-
-- component concatenation operation. In Standard, we set the types
-- of the formals for string, wide [wide]_string, concatenations.
Set_Etype (First_Entity (Standard_Op_Concat), Standard_String);
Set_Etype (Last_Entity (Standard_Op_Concat), Standard_String);
Set_Etype (First_Entity (Standard_Op_Concatw), Standard_Wide_String);
Set_Etype (Last_Entity (Standard_Op_Concatw), Standard_Wide_String);
Set_Etype (First_Entity (Standard_Op_Concatww),
Standard_Wide_Wide_String);
Set_Etype (Last_Entity (Standard_Op_Concatww),
Standard_Wide_Wide_String);
end Create_Operators;
---------------------
-- Create_Standard --
---------------------
-- The tree for the package Standard is prefixed to all compilations.
-- Several entities required by semantic analysis are denoted by global
-- variables that are initialized to point to the corresponding occurrences
-- in Standard. The visible entities of Standard are created here. Special
-- entities maybe created here as well or may be created from the semantics
-- module. By not adding them to the Decls list of Standard they will not
-- be visible to Ada programs.
procedure Create_Standard is
Decl_S : constant List_Id := New_List;
-- List of declarations in Standard
Decl_A : constant List_Id := New_List;
-- List of declarations in ASCII
Decl : Node_Id;
Pspec : Node_Id;
Tdef_Node : Node_Id;
Ident_Node : Node_Id;
Ccode : Char_Code;
E_Id : Entity_Id;
R_Node : Node_Id;
B_Node : Node_Id;
procedure Build_Exception (S : Standard_Entity_Type);
-- Procedure to declare given entity as an exception
procedure Create_Back_End_Float_Types;
-- Initialize the Back_End_Float_Types list by having the back end
-- enumerate all available types and building type entities for them.
procedure Create_Float_Types;
-- Creates entities for all predefined floating point types, and
-- adds these to the Predefined_Float_Types list in package Standard.
procedure Make_Dummy_Index (E : Entity_Id);
-- Called to provide a dummy index field value for Any_Array/Any_String
procedure Pack_String_Type (String_Type : Entity_Id);
-- Generate proper tree for pragma Pack that applies to given type, and
-- mark type as having the pragma.
---------------------
-- Build_Exception --
---------------------
procedure Build_Exception (S : Standard_Entity_Type) is
begin
Mutate_Ekind (Standard_Entity (S), E_Exception);
Set_Etype (Standard_Entity (S), Standard_Exception_Type);
Set_Is_Public (Standard_Entity (S), True);
Decl :=
Make_Exception_Declaration (Stloc,
Defining_Identifier => Standard_Entity (S));
Append (Decl, Decl_S);
end Build_Exception;
---------------------------------
-- Create_Back_End_Float_Types --
---------------------------------
procedure Create_Back_End_Float_Types is
begin
for J in 1 .. Num_FPT_Modes loop
declare
E : FPT_Mode_Entry renames FPT_Mode_Table (J);
begin
Register_Float_Type
(E.NAME.all, E.DIGS, E.FLOAT_REP, E.PRECISION, E.SIZE,
E.ALIGNMENT);
end;
end loop;
end Create_Back_End_Float_Types;
------------------------
-- Create_Float_Types --
------------------------
procedure Create_Float_Types is
begin
-- Create type definition nodes for predefined float types
Copy_Float_Type
(Standard_Short_Float,
Find_Back_End_Float_Type (C_Type_For (S_Short_Float)));
Set_Is_Implementation_Defined (Standard_Short_Float);
Copy_Float_Type (Standard_Float, Standard_Short_Float);
Copy_Float_Type
(Standard_Long_Float,
Find_Back_End_Float_Type (C_Type_For (S_Long_Float)));
Copy_Float_Type
(Standard_Long_Long_Float,
Find_Back_End_Float_Type (C_Type_For (S_Long_Long_Float)));
Set_Is_Implementation_Defined (Standard_Long_Long_Float);
Predefined_Float_Types := New_Elmt_List;
Append_Elmt (Standard_Short_Float, Predefined_Float_Types);
Append_Elmt (Standard_Float, Predefined_Float_Types);
Append_Elmt (Standard_Long_Float, Predefined_Float_Types);
Append_Elmt (Standard_Long_Long_Float, Predefined_Float_Types);
-- Any other back end types are appended at the end of the list of
-- predefined float types, and will only be selected if the none of
-- the types in Standard is suitable, or if a specific named type is
-- requested through a pragma Import.
while not Is_Empty_Elmt_List (Back_End_Float_Types) loop
declare
E : constant Elmt_Id := First_Elmt (Back_End_Float_Types);
begin
Append_Elmt (Node (E), To => Predefined_Float_Types);
Remove_Elmt (Back_End_Float_Types, E);
end;
end loop;
end Create_Float_Types;
----------------------
-- Make_Dummy_Index --
----------------------
procedure Make_Dummy_Index (E : Entity_Id) is
Index : constant Node_Id :=
Make_Range (Sloc (E),
Low_Bound => Make_Integer (Uint_0),
High_Bound => Make_Integer (Uint_2 ** Standard_Integer_Size));
-- Make sure Index is a list as required, so Next_Index is Empty
Dummy : constant List_Id := New_List (Index);
begin
Set_Etype (Index, Standard_Integer);
Set_First_Index (E, Index);
end Make_Dummy_Index;
----------------------
-- Pack_String_Type --
----------------------
procedure Pack_String_Type (String_Type : Entity_Id) is
Prag : constant Node_Id :=
Make_Pragma (Stloc,
Chars => Name_Pack,
Pragma_Argument_Associations =>
New_List (
Make_Pragma_Argument_Association (Stloc,
Expression => New_Occurrence_Of (String_Type, Stloc))));
begin
Append (Prag, Decl_S);
Record_Rep_Item (String_Type, Prag);
Set_Has_Pragma_Pack (String_Type, True);
end Pack_String_Type;
Char_Size : constant Unat := UI_From_Int (Standard_Character_Size);
-- Start of processing for Create_Standard
begin
-- First step is to create defining identifiers for each entity
for S in Standard_Entity_Type loop
declare
S_Name : constant String := Standard_Entity_Type'Image (S);
-- Name of entity (note we skip S_ at the start)
Ident_Node : Node_Id;
-- Defining identifier node
begin
Ident_Node := New_Standard_Entity (S_Name (3 .. S_Name'Length));
Standard_Entity (S) := Ident_Node;
end;
end loop;
-- Create package declaration node for package Standard
Standard_Package_Node := New_Node (N_Package_Declaration, Stloc);
Pspec := New_Node (N_Package_Specification, Stloc);
Set_Specification (Standard_Package_Node, Pspec);
Set_Defining_Unit_Name (Pspec, Standard_Standard);
Set_Visible_Declarations (Pspec, Decl_S);
Mutate_Ekind (Standard_Standard, E_Package);
Set_Is_Pure (Standard_Standard);
Set_Is_Compilation_Unit (Standard_Standard);
-- Create type/subtype declaration nodes for standard types
for S in S_Types loop
-- Subtype declaration case
if S = S_Natural or else S = S_Positive then
Decl := New_Node (N_Subtype_Declaration, Stloc);
Set_Subtype_Indication (Decl,
New_Occurrence_Of (Standard_Integer, Stloc));
-- Full type declaration case
else
Decl := New_Node (N_Full_Type_Declaration, Stloc);
end if;
Set_Is_Frozen (Standard_Entity (S));
Set_Is_Public (Standard_Entity (S));
Set_Defining_Identifier (Decl, Standard_Entity (S));
Append (Decl, Decl_S);
end loop;
Create_Back_End_Float_Types;
-- Create type definition node for type Boolean. The Size is set to
-- 1 as required by Ada 95 and current ARG interpretations for Ada/83.
-- Note: Object_Size of Boolean is 8. This means that we do NOT in
-- general know that Boolean variables have valid values, so we do
-- not set the Is_Known_Valid flag.
Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc);
Set_Literals (Tdef_Node, New_List);
Append (Standard_False, Literals (Tdef_Node));
Append (Standard_True, Literals (Tdef_Node));
Set_Type_Definition (Parent (Standard_Boolean), Tdef_Node);
Mutate_Ekind (Standard_Boolean, E_Enumeration_Type);
Set_First_Literal (Standard_Boolean, Standard_False);
Set_Etype (Standard_Boolean, Standard_Boolean);
Set_Esize (Standard_Boolean, Char_Size);
Set_RM_Size (Standard_Boolean, Uint_1);
Set_Elem_Alignment (Standard_Boolean);
Set_Is_Unsigned_Type (Standard_Boolean);
Set_Size_Known_At_Compile_Time (Standard_Boolean);
Set_Has_Pragma_Ordered (Standard_Boolean);
Mutate_Ekind (Standard_True, E_Enumeration_Literal);
Set_Etype (Standard_True, Standard_Boolean);
Set_Enumeration_Pos (Standard_True, Uint_1);
Set_Enumeration_Rep (Standard_True, Uint_1);
Set_Is_Known_Valid (Standard_True, True);
Mutate_Ekind (Standard_False, E_Enumeration_Literal);
Set_Etype (Standard_False, Standard_Boolean);
Set_Enumeration_Pos (Standard_False, Uint_0);
Set_Enumeration_Rep (Standard_False, Uint_0);
Set_Is_Known_Valid (Standard_False, True);
-- For the bounds of Boolean, we create a range node corresponding to
-- range False .. True
-- where the occurrences of the literals must point to the
-- corresponding definition.
R_Node := New_Node (N_Range, Stloc);
B_Node := New_Node (N_Identifier, Stloc);
Set_Chars (B_Node, Chars (Standard_False));
Set_Entity (B_Node, Standard_False);
Set_Etype (B_Node, Standard_Boolean);
Set_Is_Static_Expression (B_Node);
Set_Low_Bound (R_Node, B_Node);
B_Node := New_Node (N_Identifier, Stloc);
Set_Chars (B_Node, Chars (Standard_True));
Set_Entity (B_Node, Standard_True);
Set_Etype (B_Node, Standard_Boolean);
Set_Is_Static_Expression (B_Node);
Set_High_Bound (R_Node, B_Node);
Set_Scalar_Range (Standard_Boolean, R_Node);
Set_Etype (R_Node, Standard_Boolean);
Set_Parent (R_Node, Standard_Boolean);
-- Record entity identifiers for boolean literals in the
-- Boolean_Literals array, for easy reference during expansion.
Boolean_Literals := (False => Standard_False, True => Standard_True);
-- Create type definition nodes for predefined integer types
Build_Signed_Integer_Type
(Standard_Short_Short_Integer, Standard_Short_Short_Integer_Size);
Set_Is_Implementation_Defined (Standard_Short_Short_Integer);
Build_Signed_Integer_Type
(Standard_Short_Integer, Standard_Short_Integer_Size);
Set_Is_Implementation_Defined (Standard_Short_Integer);
Build_Signed_Integer_Type
(Standard_Integer, Standard_Integer_Size);
Build_Signed_Integer_Type
(Standard_Long_Integer, Standard_Long_Integer_Size);
Build_Signed_Integer_Type
(Standard_Long_Long_Integer, Standard_Long_Long_Integer_Size);
Set_Is_Implementation_Defined (Standard_Long_Long_Integer);
Build_Signed_Integer_Type
(Standard_Long_Long_Long_Integer,
Standard_Long_Long_Long_Integer_Size);
Set_Is_Implementation_Defined (Standard_Long_Long_Long_Integer);
Create_Unconstrained_Base_Type
(Standard_Short_Short_Integer, E_Signed_Integer_Subtype);
Create_Unconstrained_Base_Type
(Standard_Short_Integer, E_Signed_Integer_Subtype);
Create_Unconstrained_Base_Type
(Standard_Integer, E_Signed_Integer_Subtype);
Create_Unconstrained_Base_Type
(Standard_Long_Integer, E_Signed_Integer_Subtype);
Create_Unconstrained_Base_Type
(Standard_Long_Long_Integer, E_Signed_Integer_Subtype);
Create_Unconstrained_Base_Type
(Standard_Long_Long_Long_Integer, E_Signed_Integer_Subtype);
Create_Float_Types;
-- Create type definition node for type Character. Note that we do not
-- set the Literals field, since type Character is handled with special
-- routine that do not need a literal list.
Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc);
Set_Type_Definition (Parent (Standard_Character), Tdef_Node);
Mutate_Ekind (Standard_Character, E_Enumeration_Type);
Set_Etype (Standard_Character, Standard_Character);
Set_Esize (Standard_Character, Char_Size);
Set_RM_Size (Standard_Character, Uint_8);
Set_Elem_Alignment (Standard_Character);
Set_Has_Pragma_Ordered (Standard_Character);
Set_Is_Unsigned_Type (Standard_Character);
Set_Is_Character_Type (Standard_Character);
Set_Is_Known_Valid (Standard_Character);
Set_Size_Known_At_Compile_Time (Standard_Character);
-- Create the bounds for type Character
R_Node := New_Node (N_Range, Stloc);
-- Low bound for type Character (Standard.Nul)
B_Node := New_Node (N_Character_Literal, Stloc);
Set_Is_Static_Expression (B_Node);
Set_Chars (B_Node, No_Name);
Set_Char_Literal_Value (B_Node, Uint_0);
Set_Entity (B_Node, Empty);
Set_Etype (B_Node, Standard_Character);
Set_Low_Bound (R_Node, B_Node);
-- High bound for type Character
B_Node := New_Node (N_Character_Literal, Stloc);
Set_Is_Static_Expression (B_Node);
Set_Chars (B_Node, No_Name);
Set_Char_Literal_Value (B_Node, UI_From_Int (16#FF#));
Set_Entity (B_Node, Empty);
Set_Etype (B_Node, Standard_Character);
Set_High_Bound (R_Node, B_Node);
Set_Scalar_Range (Standard_Character, R_Node);
Set_Etype (R_Node, Standard_Character);
Set_Parent (R_Node, Standard_Character);
-- Create type definition for type Wide_Character. Note that we do not
-- set the Literals field, since type Wide_Character is handled with
-- special routines that do not need a literal list.
Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc);
Set_Type_Definition (Parent (Standard_Wide_Character), Tdef_Node);
Mutate_Ekind (Standard_Wide_Character, E_Enumeration_Type);
Set_Etype (Standard_Wide_Character, Standard_Wide_Character);
Init_Size (Standard_Wide_Character, Standard_Wide_Character_Size);
Set_Elem_Alignment (Standard_Wide_Character);
Set_Has_Pragma_Ordered (Standard_Wide_Character);
Set_Is_Unsigned_Type (Standard_Wide_Character);
Set_Is_Character_Type (Standard_Wide_Character);
Set_Is_Known_Valid (Standard_Wide_Character);
Set_Size_Known_At_Compile_Time (Standard_Wide_Character);
-- Create the bounds for type Wide_Character
R_Node := New_Node (N_Range, Stloc);
-- Low bound for type Wide_Character
B_Node := New_Node (N_Character_Literal, Stloc);
Set_Is_Static_Expression (B_Node);
Set_Chars (B_Node, No_Name);
Set_Char_Literal_Value (B_Node, Uint_0);
Set_Entity (B_Node, Empty);
Set_Etype (B_Node, Standard_Wide_Character);
Set_Low_Bound (R_Node, B_Node);
-- High bound for type Wide_Character
B_Node := New_Node (N_Character_Literal, Stloc);
Set_Is_Static_Expression (B_Node);
Set_Chars (B_Node, No_Name);
Set_Char_Literal_Value (B_Node, UI_From_Int (16#FFFF#));
Set_Entity (B_Node, Empty);
Set_Etype (B_Node, Standard_Wide_Character);
Set_High_Bound (R_Node, B_Node);
Set_Scalar_Range (Standard_Wide_Character, R_Node);
Set_Etype (R_Node, Standard_Wide_Character);
Set_Parent (R_Node, Standard_Wide_Character);
-- Create type definition for type Wide_Wide_Character. Note that we
-- do not set the Literals field, since type Wide_Wide_Character is
-- handled with special routines that do not need a literal list.
Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc);
Set_Type_Definition (Parent (Standard_Wide_Wide_Character), Tdef_Node);
Mutate_Ekind (Standard_Wide_Wide_Character, E_Enumeration_Type);
Set_Etype (Standard_Wide_Wide_Character,
Standard_Wide_Wide_Character);
Init_Size (Standard_Wide_Wide_Character,
Standard_Wide_Wide_Character_Size);
Set_Elem_Alignment (Standard_Wide_Wide_Character);
Set_Has_Pragma_Ordered (Standard_Wide_Wide_Character);
Set_Is_Unsigned_Type (Standard_Wide_Wide_Character);
Set_Is_Character_Type (Standard_Wide_Wide_Character);
Set_Is_Known_Valid (Standard_Wide_Wide_Character);
Set_Size_Known_At_Compile_Time (Standard_Wide_Wide_Character);
Set_Is_Ada_2005_Only (Standard_Wide_Wide_Character);
-- Create the bounds for type Wide_Wide_Character
R_Node := New_Node (N_Range, Stloc);
-- Low bound for type Wide_Wide_Character
B_Node := New_Node (N_Character_Literal, Stloc);
Set_Is_Static_Expression (B_Node);
Set_Chars (B_Node, No_Name);
Set_Char_Literal_Value (B_Node, Uint_0);
Set_Entity (B_Node, Empty);
Set_Etype (B_Node, Standard_Wide_Wide_Character);
Set_Low_Bound (R_Node, B_Node);
-- High bound for type Wide_Wide_Character
B_Node := New_Node (N_Character_Literal, Stloc);
Set_Is_Static_Expression (B_Node);
Set_Chars (B_Node, No_Name);
Set_Char_Literal_Value (B_Node, UI_From_Int (16#7FFF_FFFF#));
Set_Entity (B_Node, Empty);
Set_Etype (B_Node, Standard_Wide_Wide_Character);
Set_High_Bound (R_Node, B_Node);
Set_Scalar_Range (Standard_Wide_Wide_Character, R_Node);
Set_Etype (R_Node, Standard_Wide_Wide_Character);
Set_Parent (R_Node, Standard_Wide_Wide_Character);
-- Create type definition node for type String
Tdef_Node := New_Node (N_Unconstrained_Array_Definition, Stloc);
declare
CompDef_Node : Node_Id;
begin
CompDef_Node := New_Node (N_Component_Definition, Stloc);
Set_Aliased_Present (CompDef_Node, False);
Set_Access_Definition (CompDef_Node, Empty);
Set_Subtype_Indication (CompDef_Node, Identifier_For (S_Character));
Set_Component_Definition (Tdef_Node, CompDef_Node);
end;
Set_Subtype_Marks (Tdef_Node, New_List);
Append (Identifier_For (S_Positive), Subtype_Marks (Tdef_Node));
Set_Type_Definition (Parent (Standard_String), Tdef_Node);
Mutate_Ekind (Standard_String, E_Array_Type);
Set_Etype (Standard_String, Standard_String);
Set_Component_Type (Standard_String, Standard_Character);
Set_Component_Size (Standard_String, Uint_8);
Reinit_Size_Align (Standard_String);
Set_Alignment (Standard_String, Uint_1);
Pack_String_Type (Standard_String);
-- On targets where a storage unit is larger than a byte, pragma Pack
-- has a real effect on the representation of type String, and the type
-- must be marked as having a nonstandard representation.
if System_Storage_Unit > Uint_8 then
Set_Has_Non_Standard_Rep (Standard_String);
Set_Has_Pragma_Pack (Standard_String);
end if;
-- Set index type of String
E_Id :=
First (Subtype_Marks (Type_Definition (Parent (Standard_String))));
Set_First_Index (Standard_String, E_Id);
Set_Entity (E_Id, Standard_Positive);
Set_Etype (E_Id, Standard_Positive);
-- Create type definition node for type Wide_String
Tdef_Node := New_Node (N_Unconstrained_Array_Definition, Stloc);
declare
CompDef_Node : Node_Id;
begin
CompDef_Node := New_Node (N_Component_Definition, Stloc);
Set_Aliased_Present (CompDef_Node, False);
Set_Access_Definition (CompDef_Node, Empty);
Set_Subtype_Indication (CompDef_Node,
Identifier_For (S_Wide_Character));
Set_Component_Definition (Tdef_Node, CompDef_Node);
end;
Set_Subtype_Marks (Tdef_Node, New_List);
Append (Identifier_For (S_Positive), Subtype_Marks (Tdef_Node));
Set_Type_Definition (Parent (Standard_Wide_String), Tdef_Node);
Mutate_Ekind (Standard_Wide_String, E_Array_Type);
Set_Etype (Standard_Wide_String, Standard_Wide_String);
Set_Component_Type (Standard_Wide_String, Standard_Wide_Character);
Set_Component_Size (Standard_Wide_String, Uint_16);
Reinit_Size_Align (Standard_Wide_String);
Pack_String_Type (Standard_Wide_String);
-- Set index type of Wide_String
E_Id :=
First
(Subtype_Marks (Type_Definition (Parent (Standard_Wide_String))));
Set_First_Index (Standard_Wide_String, E_Id);
Set_Entity (E_Id, Standard_Positive);
Set_Etype (E_Id, Standard_Positive);
-- Create type definition node for type Wide_Wide_String
Tdef_Node := New_Node (N_Unconstrained_Array_Definition, Stloc);
declare
CompDef_Node : Node_Id;
begin
CompDef_Node := New_Node (N_Component_Definition, Stloc);
Set_Aliased_Present (CompDef_Node, False);
Set_Access_Definition (CompDef_Node, Empty);
Set_Subtype_Indication (CompDef_Node,
Identifier_For (S_Wide_Wide_Character));
Set_Component_Definition (Tdef_Node, CompDef_Node);
end;
Set_Subtype_Marks (Tdef_Node, New_List);
Append (Identifier_For (S_Positive), Subtype_Marks (Tdef_Node));
Set_Type_Definition (Parent (Standard_Wide_Wide_String), Tdef_Node);
Mutate_Ekind (Standard_Wide_Wide_String, E_Array_Type);
Set_Etype (Standard_Wide_Wide_String,
Standard_Wide_Wide_String);
Set_Component_Type (Standard_Wide_Wide_String,
Standard_Wide_Wide_Character);
Set_Component_Size (Standard_Wide_Wide_String, Uint_32);
Reinit_Size_Align (Standard_Wide_Wide_String);
Set_Is_Ada_2005_Only (Standard_Wide_Wide_String);
Pack_String_Type (Standard_Wide_Wide_String);
-- Set index type of Wide_Wide_String
E_Id :=
First
(Subtype_Marks
(Type_Definition (Parent (Standard_Wide_Wide_String))));
Set_First_Index (Standard_Wide_Wide_String, E_Id);
Set_Entity (E_Id, Standard_Positive);
Set_Etype (E_Id, Standard_Positive);
-- Setup entity for Natural
Mutate_Ekind (Standard_Natural, E_Signed_Integer_Subtype);
Set_Etype (Standard_Natural, Base_Type (Standard_Integer));
Set_Esize (Standard_Natural, UI_From_Int (Standard_Integer_Size));
Set_RM_Size (Standard_Natural, UI_From_Int (Standard_Integer_Size - 1));
Set_Elem_Alignment (Standard_Natural);
Set_Size_Known_At_Compile_Time
(Standard_Natural);
Set_Integer_Bounds (Standard_Natural,
Typ => Base_Type (Standard_Integer),
Lb => Uint_0,
Hb => Intval (High_Bound (Scalar_Range (Standard_Integer))));
Set_Is_Constrained (Standard_Natural);
-- Setup entity for Positive
Mutate_Ekind (Standard_Positive, E_Signed_Integer_Subtype);
Set_Etype (Standard_Positive, Base_Type (Standard_Integer));
Set_Esize (Standard_Positive, UI_From_Int (Standard_Integer_Size));
Set_RM_Size
(Standard_Positive, UI_From_Int (Standard_Integer_Size - 1));
Set_Elem_Alignment (Standard_Positive);
Set_Size_Known_At_Compile_Time (Standard_Positive);
Set_Integer_Bounds (Standard_Positive,
Typ => Base_Type (Standard_Integer),
Lb => Uint_1,
Hb => Intval (High_Bound (Scalar_Range (Standard_Integer))));
Set_Is_Constrained (Standard_Positive);
-- Create declaration for package ASCII
Decl := New_Node (N_Package_Declaration, Stloc);
Append (Decl, Decl_S);
Pspec := New_Node (N_Package_Specification, Stloc);
Set_Specification (Decl, Pspec);
Set_Defining_Unit_Name (Pspec, Standard_Entity (S_ASCII));
Mutate_Ekind (Standard_Entity (S_ASCII), E_Package);
Set_Visible_Declarations (Pspec, Decl_A);
-- Create control character definitions in package ASCII. Note that
-- the character literal entries created here correspond to literal
-- values that are impossible in the source, but can be represented
-- internally with no difficulties.
Ccode := 16#00#;
for S in S_ASCII_Names loop
Decl := New_Node (N_Object_Declaration, Staloc);
Set_Constant_Present (Decl, True);
declare
A_Char : constant Entity_Id := Standard_Entity (S);
Expr_Decl : Node_Id;
begin
Set_Sloc (A_Char, Staloc);
Mutate_Ekind (A_Char, E_Constant);
Set_Never_Set_In_Source (A_Char, True);
Set_Is_True_Constant (A_Char, True);
Set_Etype (A_Char, Standard_Character);
Set_Scope (A_Char, Standard_Entity (S_ASCII));
Set_Is_Immediately_Visible (A_Char, False);
Set_Is_Public (A_Char, True);
Set_Is_Known_Valid (A_Char, True);
Append_Entity (A_Char, Standard_Entity (S_ASCII));
Set_Defining_Identifier (Decl, A_Char);
Set_Object_Definition (Decl, Identifier_For (S_Character));
Expr_Decl := New_Node (N_Character_Literal, Staloc);
Set_Expression (Decl, Expr_Decl);
Set_Is_Static_Expression (Expr_Decl);
Set_Chars (Expr_Decl, No_Name);
Set_Etype (Expr_Decl, Standard_Character);
Set_Char_Literal_Value (Expr_Decl, UI_From_Int (Int (Ccode)));
end;
Append (Decl, Decl_A);
-- Increment character code, dealing with non-contiguities
Ccode := Ccode + 1;
if Ccode = 16#20# then
Ccode := 16#21#;
elsif Ccode = 16#27# then
Ccode := 16#3A#;
elsif Ccode = 16#3C# then
Ccode := 16#3F#;
elsif Ccode = 16#41# then
Ccode := 16#5B#;
end if;
end loop;
-- Create semantic phase entities
Standard_Void_Type := New_Standard_Entity ("_void_type");
pragma Assert (Ekind (Standard_Void_Type) = E_Void); -- it's the default
Set_Etype (Standard_Void_Type, Standard_Void_Type);
Set_Scope (Standard_Void_Type, Standard_Standard);
-- The type field of packages is set to void
Set_Etype (Standard_Standard, Standard_Void_Type);
Set_Etype (Standard_ASCII, Standard_Void_Type);
-- Standard_A_String is actually used in generated code, so it has a
-- type name that is reasonable, but does not overlap any Ada name.
Standard_A_String := New_Standard_Entity ("access_string");
Mutate_Ekind (Standard_A_String, E_Access_Type);
Set_Scope (Standard_A_String, Standard_Standard);
Set_Etype (Standard_A_String, Standard_A_String);
if Debug_Flag_6 then
Init_Size (Standard_A_String, System_Address_Size);
else
Init_Size (Standard_A_String, System_Address_Size * 2);
end if;
pragma Assert (not Known_Alignment (Standard_A_String));
Set_Directly_Designated_Type
(Standard_A_String, Standard_String);
Standard_A_Char := New_Standard_Entity ("access_character");
Mutate_Ekind (Standard_A_Char, E_Access_Type);
Set_Scope (Standard_A_Char, Standard_Standard);
Set_Etype (Standard_A_Char, Standard_A_String);
Init_Size (Standard_A_Char, System_Address_Size);
Set_Elem_Alignment (Standard_A_Char);
Set_Directly_Designated_Type (Standard_A_Char, Standard_Character);
-- Standard_Debug_Renaming_Type is used for the special objects created
-- to encode the names occurring in renaming declarations for use by the
-- debugger (see exp_dbug.adb). The type is a zero-sized subtype of
-- Standard.Integer.
Standard_Debug_Renaming_Type := New_Standard_Entity ("_renaming_type");
Mutate_Ekind (Standard_Debug_Renaming_Type, E_Signed_Integer_Subtype);
Set_Scope (Standard_Debug_Renaming_Type, Standard_Standard);
Set_Etype (Standard_Debug_Renaming_Type, Base_Type (Standard_Integer));
Set_Esize (Standard_Debug_Renaming_Type, Uint_0);
Set_RM_Size (Standard_Debug_Renaming_Type, Uint_0);
Set_Size_Known_At_Compile_Time (Standard_Debug_Renaming_Type);
Set_Integer_Bounds (Standard_Debug_Renaming_Type,
Typ => Base_Type (Standard_Debug_Renaming_Type),
Lb => Uint_1,
Hb => Uint_0);
Set_Is_Constrained (Standard_Debug_Renaming_Type);
Set_Has_Size_Clause (Standard_Debug_Renaming_Type);
-- Note on type names. The type names for the following special types
-- are constructed so that they will look reasonable should they ever
-- appear in error messages etc, although in practice the use of the
-- special insertion character } for types results in special handling
-- of these type names in any case. The blanks in these names would
-- trouble in Gigi, but that's OK here, since none of these types
-- should ever get through to Gigi. Attributes of these types are
-- filled out to minimize problems with cascaded errors (for example,
-- Any_Integer is given reasonable and consistent type and size values)
Any_Type := New_Standard_Entity ("any type");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Any_Type);
Set_Scope (Any_Type, Standard_Standard);
Build_Signed_Integer_Type (Any_Type, Standard_Integer_Size);
Any_Id := New_Standard_Entity ("any id");
Mutate_Ekind (Any_Id, E_Variable);
Set_Scope (Any_Id, Standard_Standard);
Set_Etype (Any_Id, Any_Type);
pragma Assert (not Known_Esize (Any_Id));
pragma Assert (not Known_Alignment (Any_Id));
Any_Access := New_Standard_Entity ("an access type");
Mutate_Ekind (Any_Access, E_Access_Type);
Set_Scope (Any_Access, Standard_Standard);
Set_Etype (Any_Access, Any_Access);
Init_Size (Any_Access, System_Address_Size);
Set_Elem_Alignment (Any_Access);
Set_Directly_Designated_Type
(Any_Access, Any_Type);
Any_Character := New_Standard_Entity ("a character type");
Mutate_Ekind (Any_Character, E_Enumeration_Type);
Set_Scope (Any_Character, Standard_Standard);
Set_Etype (Any_Character, Any_Character);
Set_Is_Unsigned_Type (Any_Character);
Set_Is_Character_Type (Any_Character);
Set_Esize (Any_Character, Char_Size);
Set_RM_Size (Any_Character, Uint_8);
Set_Elem_Alignment (Any_Character);
Set_Scalar_Range (Any_Character, Scalar_Range (Standard_Character));
Any_Array := New_Standard_Entity ("an array type");
Mutate_Ekind (Any_Array, E_Array_Type);
Set_Scope (Any_Array, Standard_Standard);
Set_Etype (Any_Array, Any_Array);
Set_Component_Type (Any_Array, Any_Character);
Reinit_Size_Align (Any_Array);
Make_Dummy_Index (Any_Array);
Any_Boolean := New_Standard_Entity ("a boolean type");
Mutate_Ekind (Any_Boolean, E_Enumeration_Type);
Set_Scope (Any_Boolean, Standard_Standard);
Set_Etype (Any_Boolean, Standard_Boolean);
Set_Esize (Any_Boolean, Char_Size);
Set_RM_Size (Any_Boolean, Uint_1);
Set_Elem_Alignment (Any_Boolean);
Set_Is_Unsigned_Type (Any_Boolean);
Set_Scalar_Range (Any_Boolean, Scalar_Range (Standard_Boolean));
Any_Composite := New_Standard_Entity ("a composite type");
Mutate_Ekind (Any_Composite, E_Array_Type);
Set_Scope (Any_Composite, Standard_Standard);
Set_Etype (Any_Composite, Any_Composite);
Set_Component_Size (Any_Composite, Uint_0);
Set_Component_Type (Any_Composite, Standard_Integer);
Reinit_Size_Align (Any_Composite);
Any_Discrete := New_Standard_Entity ("a discrete type");
Mutate_Ekind (Any_Discrete, E_Signed_Integer_Type);
Set_Scope (Any_Discrete, Standard_Standard);
Set_Etype (Any_Discrete, Any_Discrete);
Init_Size (Any_Discrete, Standard_Integer_Size);
Set_Elem_Alignment (Any_Discrete);
Any_Fixed := New_Standard_Entity ("a fixed-point type");
Mutate_Ekind (Any_Fixed, E_Ordinary_Fixed_Point_Type);
Set_Scope (Any_Fixed, Standard_Standard);
Set_Etype (Any_Fixed, Any_Fixed);
Init_Size (Any_Fixed, Standard_Integer_Size);
Set_Elem_Alignment (Any_Fixed);
Any_Integer := New_Standard_Entity ("an integer type");
Mutate_Ekind (Any_Integer, E_Signed_Integer_Type);
Set_Scope (Any_Integer, Standard_Standard);
Set_Etype (Any_Integer, Standard_Long_Long_Long_Integer);
Init_Size (Any_Integer, Standard_Long_Long_Long_Integer_Size);
Set_Elem_Alignment (Any_Integer);
Set_Integer_Bounds
(Any_Integer,
Typ => Base_Type (Standard_Integer),
Lb => Uint_0,
Hb => Intval (High_Bound (Scalar_Range (Standard_Integer))));
Any_Modular := New_Standard_Entity ("a modular type");
Mutate_Ekind (Any_Modular, E_Modular_Integer_Type);
Set_Scope (Any_Modular, Standard_Standard);
Set_Etype (Any_Modular, Standard_Long_Long_Long_Integer);
Init_Size (Any_Modular, Standard_Long_Long_Long_Integer_Size);
Set_Elem_Alignment (Any_Modular);
Set_Is_Unsigned_Type (Any_Modular);
Any_Numeric := New_Standard_Entity ("a numeric type");
Mutate_Ekind (Any_Numeric, E_Signed_Integer_Type);
Set_Scope (Any_Numeric, Standard_Standard);
Set_Etype (Any_Numeric, Standard_Long_Long_Long_Integer);
Init_Size (Any_Numeric, Standard_Long_Long_Long_Integer_Size);
Set_Elem_Alignment (Any_Numeric);
Any_Real := New_Standard_Entity ("a real type");
Mutate_Ekind (Any_Real, E_Floating_Point_Type);
Set_Scope (Any_Real, Standard_Standard);
Set_Etype (Any_Real, Standard_Long_Long_Float);
Init_Size (Any_Real,
UI_To_Int (Esize (Standard_Long_Long_Float)));
Set_Elem_Alignment (Any_Real);
Any_Scalar := New_Standard_Entity ("a scalar type");
Mutate_Ekind (Any_Scalar, E_Signed_Integer_Type);
Set_Scope (Any_Scalar, Standard_Standard);
Set_Etype (Any_Scalar, Any_Scalar);
Init_Size (Any_Scalar, Standard_Integer_Size);
Set_Elem_Alignment (Any_Scalar);
Any_String := New_Standard_Entity ("a string type");
Mutate_Ekind (Any_String, E_Array_Type);
Set_Scope (Any_String, Standard_Standard);
Set_Etype (Any_String, Any_String);
Set_Component_Type (Any_String, Any_Character);
Reinit_Size_Align (Any_String);
Make_Dummy_Index (Any_String);
Raise_Type := New_Standard_Entity ("raise type");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Raise_Type);
Set_Scope (Raise_Type, Standard_Standard);
Build_Signed_Integer_Type (Raise_Type, Standard_Integer_Size);
Standard_Integer_8 := New_Standard_Entity ("integer_8");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Standard_Integer_8);
Set_Scope (Standard_Integer_8, Standard_Standard);
Build_Signed_Integer_Type (Standard_Integer_8, 8);
Standard_Integer_16 := New_Standard_Entity ("integer_16");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Standard_Integer_16);
Set_Scope (Standard_Integer_16, Standard_Standard);
Build_Signed_Integer_Type (Standard_Integer_16, 16);
Standard_Integer_32 := New_Standard_Entity ("integer_32");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Standard_Integer_32);
Set_Scope (Standard_Integer_32, Standard_Standard);
Build_Signed_Integer_Type (Standard_Integer_32, 32);
Standard_Integer_64 := New_Standard_Entity ("integer_64");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Standard_Integer_64);
Set_Scope (Standard_Integer_64, Standard_Standard);
Build_Signed_Integer_Type (Standard_Integer_64, 64);
Standard_Integer_128 := New_Standard_Entity ("integer_128");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Standard_Integer_128);
Set_Scope (Standard_Integer_128, Standard_Standard);
Build_Signed_Integer_Type (Standard_Integer_128, 128);
-- Standard_*_Unsigned subtypes are not user visible, but they are
-- used internally. They are unsigned types with the same length as
-- the correspondingly named signed integer types.
Standard_Short_Short_Unsigned
:= New_Standard_Entity ("short_short_unsigned");
Build_Unsigned_Integer_Type
(Standard_Short_Short_Unsigned, Standard_Short_Short_Integer_Size);
Standard_Short_Unsigned := New_Standard_Entity ("short_unsigned");
Build_Unsigned_Integer_Type
(Standard_Short_Unsigned, Standard_Short_Integer_Size);
Standard_Unsigned := New_Standard_Entity ("unsigned");
Build_Unsigned_Integer_Type
(Standard_Unsigned, Standard_Integer_Size);
Standard_Long_Unsigned := New_Standard_Entity ("long_unsigned");
Build_Unsigned_Integer_Type
(Standard_Long_Unsigned, Standard_Long_Integer_Size);
Standard_Long_Long_Unsigned :=
New_Standard_Entity ("long_long_unsigned");
Build_Unsigned_Integer_Type
(Standard_Long_Long_Unsigned, Standard_Long_Long_Integer_Size);
Standard_Long_Long_Long_Unsigned :=
New_Standard_Entity ("long_long_long_unsigned");
Build_Unsigned_Integer_Type
(Standard_Long_Long_Long_Unsigned,
Standard_Long_Long_Long_Integer_Size);
-- Standard_Unsigned_64 is not user visible, but is used internally. It
-- is an unsigned type mod 2**64 with 64 bits size.
Standard_Unsigned_64 := New_Standard_Entity ("unsigned_64");
Build_Unsigned_Integer_Type (Standard_Unsigned_64, 64);
-- Standard_Address is not user visible, but is used internally. It is
-- an unsigned type mod 2**System_Address_Size with System.Address size.
Standard_Address := New_Standard_Entity ("standard_address");
Build_Unsigned_Integer_Type (Standard_Address, System_Address_Size);
-- Note: universal integer and universal real are constructed as fully
-- formed signed numeric types, with parameters corresponding to the
-- longest runtime types (Long_Long_Long_Integer and Long_Long_Float).
-- This allows Gigi to properly process references to universal types
-- that are not folded at compile time.
Universal_Integer := New_Standard_Entity ("universal_integer");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Universal_Integer);
Set_Scope (Universal_Integer, Standard_Standard);
Build_Signed_Integer_Type
(Universal_Integer, Standard_Long_Long_Long_Integer_Size);
Universal_Real := New_Standard_Entity ("universal_real");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Universal_Real);
Set_Scope (Universal_Real, Standard_Standard);
Copy_Float_Type (Universal_Real, Standard_Long_Long_Float);
-- Note: universal fixed, unlike universal integer and universal real,
-- is never used at runtime, so it does not need to have bounds set.
Universal_Fixed := New_Standard_Entity ("universal_fixed");
Decl := New_Node (N_Full_Type_Declaration, Stloc);
Set_Defining_Identifier (Decl, Universal_Fixed);
Mutate_Ekind (Universal_Fixed, E_Ordinary_Fixed_Point_Type);
Set_Etype (Universal_Fixed, Universal_Fixed);
Set_Scope (Universal_Fixed, Standard_Standard);
Init_Size (Universal_Fixed, Standard_Long_Long_Integer_Size);
Set_Elem_Alignment (Universal_Fixed);
Set_Size_Known_At_Compile_Time
(Universal_Fixed);
-- Create type declaration for Duration, using a 64-bit size. The
-- delta and size values depend on the mode set in system.ads.
Build_Duration : declare
Dlo : Uint;
Dhi : Uint;
Delta_Val : Ureal;
begin
-- In 32 bit mode, the size is 32 bits, and the delta and
-- small values are set to 20 milliseconds (20.0*(10.0**(-3)).
if Duration_32_Bits_On_Target then
Dlo := Intval (Type_Low_Bound (Standard_Integer_32));
Dhi := Intval (Type_High_Bound (Standard_Integer_32));
Delta_Val := UR_From_Components (UI_From_Int (20), Uint_3, 10);
-- In 64-bit mode, the size is 64-bits and the delta and
-- small values are set to nanoseconds (1.0*(10.0**(-9)).
else
Dlo := Intval (Type_Low_Bound (Standard_Integer_64));
Dhi := Intval (Type_High_Bound (Standard_Integer_64));
Delta_Val := UR_From_Components (Uint_1, Uint_9, 10);
end if;
Tdef_Node := Make_Ordinary_Fixed_Point_Definition (Stloc,
Delta_Expression => Make_Real_Literal (Stloc, Delta_Val),
Real_Range_Specification =>
Make_Real_Range_Specification (Stloc,
Low_Bound => Make_Real_Literal (Stloc,
Realval => Dlo * Delta_Val),
High_Bound => Make_Real_Literal (Stloc,
Realval => Dhi * Delta_Val)));
Set_Type_Definition (Parent (Standard_Duration), Tdef_Node);
Mutate_Ekind (Standard_Duration, E_Ordinary_Fixed_Point_Type);
Set_Etype (Standard_Duration, Standard_Duration);
if Duration_32_Bits_On_Target then
Init_Size (Standard_Duration, 32);
else
Init_Size (Standard_Duration, 64);
end if;
Set_Elem_Alignment (Standard_Duration);
Set_Delta_Value (Standard_Duration, Delta_Val);
Set_Small_Value (Standard_Duration, Delta_Val);
Set_Scalar_Range (Standard_Duration,
Real_Range_Specification
(Type_Definition (Parent (Standard_Duration))));
-- Normally it does not matter that nodes in package Standard are
-- not marked as analyzed. The Scalar_Range of the fixed-point type
-- Standard_Duration is an exception, because of the special test
-- made in Freeze.Freeze_Fixed_Point_Type.
Set_Analyzed (Scalar_Range (Standard_Duration));
Set_Etype (Type_High_Bound (Standard_Duration), Standard_Duration);
Set_Etype (Type_Low_Bound (Standard_Duration), Standard_Duration);
Set_Is_Static_Expression (Type_High_Bound (Standard_Duration));
Set_Is_Static_Expression (Type_Low_Bound (Standard_Duration));
Set_Corresponding_Integer_Value
(Type_High_Bound (Standard_Duration), Dhi);
Set_Corresponding_Integer_Value
(Type_Low_Bound (Standard_Duration), Dlo);
Set_Size_Known_At_Compile_Time (Standard_Duration);
end Build_Duration;
-- Build standard exception type. Note that the type name here is
-- actually used in the generated code, so it must be set correctly.
-- The type Standard_Exception_Type must be consistent with the type
-- System.Standard_Library.Exception_Data, as the latter is what is
-- known by the run-time. Components of the record are documented in
-- the declaration in System.Standard_Library.
Build_Exception_Type : declare
Comp_List : List_Id;
Comp : Entity_Id;
begin
Standard_Exception_Type := New_Standard_Entity ("exception");
Mutate_Ekind (Standard_Exception_Type, E_Record_Type);
Set_Etype (Standard_Exception_Type, Standard_Exception_Type);
Set_Scope (Standard_Exception_Type, Standard_Standard);
Set_Stored_Constraint
(Standard_Exception_Type, No_Elist);
Set_RM_Size (Standard_Exception_Type, Uint_0);
Set_Size_Known_At_Compile_Time
(Standard_Exception_Type, True);
Make_Aliased_Component (Standard_Exception_Type, Standard_Boolean,
"Not_Handled_By_Others");
Make_Aliased_Component (Standard_Exception_Type, Standard_Character,
"Lang");
Make_Aliased_Component (Standard_Exception_Type, Standard_Natural,
"Name_Length");
Make_Aliased_Component (Standard_Exception_Type, Standard_Address,
"Full_Name");
Make_Aliased_Component (Standard_Exception_Type, Standard_A_Char,
"HTable_Ptr");
Make_Aliased_Component (Standard_Exception_Type, Standard_Address,
"Foreign_Data");
Make_Aliased_Component (Standard_Exception_Type, Standard_A_Char,
"Raise_Hook");
Layout_Type (Standard_Exception_Type);
-- Build tree for record declaration, for use by the back-end
Comp := First_Entity (Standard_Exception_Type);
Comp_List := New_List;
while Present (Comp) loop
Append (
Make_Component_Declaration (Stloc,
Defining_Identifier => Comp,
Component_Definition =>
Make_Component_Definition (Stloc,
Aliased_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Etype (Comp), Stloc))),
Comp_List);
Next_Entity (Comp);
end loop;
Decl := Make_Full_Type_Declaration (Stloc,
Defining_Identifier => Standard_Exception_Type,
Type_Definition =>
Make_Record_Definition (Stloc,
End_Label => Empty,
Component_List =>
Make_Component_List (Stloc,
Component_Items => Comp_List)));
Append (Decl, Decl_S);
end Build_Exception_Type;
-- Create declarations of standard exceptions
Build_Exception (S_Constraint_Error);
Build_Exception (S_Program_Error);
Build_Exception (S_Storage_Error);
Build_Exception (S_Tasking_Error);
-- Numeric_Error is a normal exception in Ada 83, but in Ada 95
-- it is a renaming of Constraint_Error. This test is too early since
-- it doesn't handle pragma Ada_83. But it's not worth the trouble of
-- fixing this.
if Ada_Version = Ada_83 then
Build_Exception (S_Numeric_Error);
else
Decl := New_Node (N_Exception_Renaming_Declaration, Stloc);
E_Id := Standard_Entity (S_Numeric_Error);
Mutate_Ekind (E_Id, E_Exception);
Set_Etype (E_Id, Standard_Exception_Type);
Set_Is_Public (E_Id);
Set_Renamed_Entity (E_Id, Standard_Entity (S_Constraint_Error));
Set_Defining_Identifier (Decl, E_Id);
Append (Decl, Decl_S);
Ident_Node := New_Node (N_Identifier, Stloc);
Set_Chars (Ident_Node, Chars (Standard_Entity (S_Constraint_Error)));
Set_Entity (Ident_Node, Standard_Entity (S_Constraint_Error));
Set_Name (Decl, Ident_Node);
end if;
-- Abort_Signal is an entity that does not get made visible
Abort_Signal := New_Standard_Entity;
Set_Chars (Abort_Signal, Name_uAbort_Signal);
Mutate_Ekind (Abort_Signal, E_Exception);
Set_Etype (Abort_Signal, Standard_Exception_Type);
Set_Scope (Abort_Signal, Standard_Standard);
Set_Is_Public (Abort_Signal, True);
Decl :=
Make_Exception_Declaration (Stloc,
Defining_Identifier => Abort_Signal);
-- Create defining identifiers for shift operator entities. Note
-- that these entities are used only for marking shift operators
-- generated internally, and hence need no structure, just a name
-- and a unique identity.
Standard_Op_Rotate_Left := New_Standard_Entity;
Set_Chars (Standard_Op_Rotate_Left, Name_Rotate_Left);
Mutate_Ekind (Standard_Op_Rotate_Left, E_Operator);
Standard_Op_Rotate_Right := New_Standard_Entity;
Set_Chars (Standard_Op_Rotate_Right, Name_Rotate_Right);
Mutate_Ekind (Standard_Op_Rotate_Right, E_Operator);
Standard_Op_Shift_Left := New_Standard_Entity;
Set_Chars (Standard_Op_Shift_Left, Name_Shift_Left);
Mutate_Ekind (Standard_Op_Shift_Left, E_Operator);
Standard_Op_Shift_Right := New_Standard_Entity;
Set_Chars (Standard_Op_Shift_Right, Name_Shift_Right);
Mutate_Ekind (Standard_Op_Shift_Right, E_Operator);
Standard_Op_Shift_Right_Arithmetic := New_Standard_Entity;
Set_Chars (Standard_Op_Shift_Right_Arithmetic,
Name_Shift_Right_Arithmetic);
Mutate_Ekind (Standard_Op_Shift_Right_Arithmetic,
E_Operator);
-- Create standard operator declarations
Create_Operators;
-- Initialize visibility table with entities in Standard
for E in Standard_Entity_Type loop
if Ekind (Standard_Entity (E)) /= E_Operator then
Set_Name_Entity_Id
(Chars (Standard_Entity (E)), Standard_Entity (E));
Set_Homonym (Standard_Entity (E), Empty);
end if;
if E not in S_ASCII_Names then
Set_Scope (Standard_Entity (E), Standard_Standard);
Set_Is_Immediately_Visible (Standard_Entity (E));
end if;
end loop;
-- The predefined package Standard itself does not have a scope;
-- it is the only entity in the system not to have one, and this
-- is what identifies the package to Gigi.
Set_Scope (Standard_Standard, Empty);
-- Set global variables indicating last Id values and version
Last_Standard_Node_Id := Last_Node_Id;
Last_Standard_List_Id := Last_List_Id;
-- The Error node has an Etype of Any_Type to help error recovery
Set_Etype (Error, Any_Type);
-- Print representation of standard if switch set
if Opt.Print_Standard then
Print_Standard;
end if;
end Create_Standard;
------------------------------------
-- Create_Unconstrained_Base_Type --
------------------------------------
procedure Create_Unconstrained_Base_Type
(E : Entity_Id;
K : Entity_Kind)
is
New_Ent : constant Entity_Id := New_Copy (E);
begin
Mutate_Ekind (E, K);
Set_Is_Constrained (E, True);
Set_Is_First_Subtype (E, True);
Set_Etype (E, New_Ent);
Append_Entity (New_Ent, Standard_Standard);
Set_Is_Constrained (New_Ent, False);
Set_Etype (New_Ent, New_Ent);
Set_Is_Known_Valid (New_Ent, True);
if K = E_Signed_Integer_Subtype then
Set_Etype (Low_Bound (Scalar_Range (E)), New_Ent);
Set_Etype (High_Bound (Scalar_Range (E)), New_Ent);
end if;
end Create_Unconstrained_Base_Type;
--------------------
-- Identifier_For --
--------------------
function Identifier_For (S : Standard_Entity_Type) return Node_Id is
Ident_Node : constant Node_Id := New_Node (N_Identifier, Stloc);
begin
Set_Chars (Ident_Node, Chars (Standard_Entity (S)));
Set_Entity (Ident_Node, Standard_Entity (S));
return Ident_Node;
end Identifier_For;
----------------------------
-- Make_Aliased_Component --
----------------------------
procedure Make_Aliased_Component
(Rec : Entity_Id;
Typ : Entity_Id;
Nam : String)
is
Id : constant Entity_Id := New_Standard_Entity (Nam);
begin
Mutate_Ekind (Id, E_Component);
Set_Etype (Id, Typ);
Set_Scope (Id, Rec);
Reinit_Component_Location (Id);
Set_Original_Record_Component (Id, Id);
Set_Is_Aliased (Id);
Set_Is_Independent (Id);
Append_Entity (Id, Rec);
end Make_Aliased_Component;
-----------------
-- Make_Formal --
-----------------
function Make_Formal (Typ : Entity_Id; Nam : String) return Entity_Id is
Formal : constant Entity_Id := New_Standard_Entity (Nam);
begin
Mutate_Ekind (Formal, E_In_Parameter);
Set_Mechanism (Formal, Default_Mechanism);
Set_Scope (Formal, Standard_Standard);
Set_Etype (Formal, Typ);
return Formal;
end Make_Formal;
------------------
-- Make_Integer --
------------------
function Make_Integer (V : Uint) return Node_Id is
N : constant Node_Id := Make_Integer_Literal (Stloc, V);
begin
Set_Is_Static_Expression (N);
return N;
end Make_Integer;
------------------
-- New_Operator --
------------------
function New_Operator (Op : Name_Id; Typ : Entity_Id) return Entity_Id is
Ident_Node : constant Entity_Id := Make_Defining_Identifier (Stloc, Op);
begin
Set_Is_Pure (Ident_Node, True);
Mutate_Ekind (Ident_Node, E_Operator);
Set_Etype (Ident_Node, Typ);
Set_Scope (Ident_Node, Standard_Standard);
Set_Homonym (Ident_Node, Get_Name_Entity_Id (Op));
Set_Convention (Ident_Node, Convention_Intrinsic);
Set_Is_Immediately_Visible (Ident_Node, True);
Set_Is_Intrinsic_Subprogram (Ident_Node, True);
Set_Name_Entity_Id (Op, Ident_Node);
Append_Entity (Ident_Node, Standard_Standard);
return Ident_Node;
end New_Operator;
-------------------------
-- New_Standard_Entity --
-------------------------
function New_Standard_Entity return Entity_Id
is
E : constant Entity_Id := New_Entity (N_Defining_Identifier, Stloc);
begin
-- All standard entities are Pure and Public
Set_Is_Pure (E);
Set_Is_Public (E);
-- All standard entity names are analyzed manually, and are thus
-- frozen as soon as they are created.
Set_Is_Frozen (E);
-- Set debug information required for all standard types
Set_Needs_Debug_Info (E);
-- All standard entities are built with fully qualified names, so
-- set the flag to prevent an abortive attempt at requalification.
Set_Has_Qualified_Name (E);
-- Return newly created entity to be completed by caller
return E;
end New_Standard_Entity;
function New_Standard_Entity (Nam : String) return Entity_Id is
Ent : constant Entity_Id := New_Standard_Entity;
begin
for J in 1 .. Nam'Length loop
Name_Buffer (J) := Fold_Lower (Nam (Nam'First + (J - 1)));
end loop;
Name_Len := Nam'Length;
Set_Chars (Ent, Name_Find);
return Ent;
end New_Standard_Entity;
--------------------
-- Print_Standard --
--------------------
procedure Print_Standard is
procedure P (Item : String) renames Output.Write_Line;
-- Short-hand, since we do a lot of line writes here
procedure P_Int_Range (Size : Pos);
-- Prints the range of an integer based on its Size
procedure P_Float_Range (Id : Entity_Id);
-- Prints the bounds range for the given float type entity
procedure P_Float_Type (Id : Entity_Id);
-- Prints the type declaration of the given float type entity
procedure P_Mixed_Name (Id : Name_Id);
-- Prints Id in mixed case
-------------------
-- P_Float_Range --
-------------------
procedure P_Float_Range (Id : Entity_Id) is
begin
Write_Str (" range ");
UR_Write (Realval (Type_Low_Bound (Id)));
Write_Str (" .. ");
UR_Write (Realval (Type_High_Bound (Id)));
Write_Str (";");
Write_Eol;
end P_Float_Range;
------------------
-- P_Float_Type --
------------------
procedure P_Float_Type (Id : Entity_Id) is
begin
Write_Str (" type ");
P_Mixed_Name (Chars (Id));
Write_Str (" is digits ");
Write_Int (UI_To_Int (Digits_Value (Id)));
Write_Eol;
P_Float_Range (Id);
Write_Str (" for ");
P_Mixed_Name (Chars (Id));
Write_Str ("'Size use ");
Write_Int (UI_To_Int (RM_Size (Id)));
Write_Line (";");
Write_Eol;
end P_Float_Type;
-----------------
-- P_Int_Range --
-----------------
procedure P_Int_Range (Size : Pos) is
begin
Write_Str (" is range -(2 **");
Write_Int (Size - 1);
Write_Str (")");
Write_Str (" .. +(2 **");
Write_Int (Size - 1);
Write_Str (" - 1);");
Write_Eol;
end P_Int_Range;
------------------
-- P_Mixed_Name --
------------------
procedure P_Mixed_Name (Id : Name_Id) is
begin
Get_Name_String (Id);
for J in 1 .. Name_Len loop
if J = 1 or else Name_Buffer (J - 1) = '_' then
Name_Buffer (J) := Fold_Upper (Name_Buffer (J));
end if;
end loop;
Write_Str (Name_Buffer (1 .. Name_Len));
end P_Mixed_Name;
-- Start of processing for Print_Standard
begin
P ("-- Representation of package Standard");
Write_Eol;
P ("-- This is not accurate Ada, since new base types cannot be ");
P ("-- created, but the listing shows the target dependent");
P ("-- characteristics of the Standard types for this compiler");
Write_Eol;
P ("package Standard is");
P ("pragma Pure (Standard);");
Write_Eol;
P (" type Boolean is (False, True);");
P (" for Boolean'Size use 1;");
P (" for Boolean use (False => 0, True => 1);");
Write_Eol;
-- Integer types
Write_Str (" type Integer");
P_Int_Range (Standard_Integer_Size);
Write_Str (" for Integer'Size use ");
Write_Int (Standard_Integer_Size);
P (";");
Write_Eol;
P (" subtype Natural is Integer range 0 .. Integer'Last;");
P (" subtype Positive is Integer range 1 .. Integer'Last;");
Write_Eol;
Write_Str (" type Short_Short_Integer");
P_Int_Range (Standard_Short_Short_Integer_Size);
Write_Str (" for Short_Short_Integer'Size use ");
Write_Int (Standard_Short_Short_Integer_Size);
P (";");
Write_Eol;
Write_Str (" type Short_Integer");
P_Int_Range (Standard_Short_Integer_Size);
Write_Str (" for Short_Integer'Size use ");
Write_Int (Standard_Short_Integer_Size);
P (";");
Write_Eol;
Write_Str (" type Long_Integer");
P_Int_Range (Standard_Long_Integer_Size);
Write_Str (" for Long_Integer'Size use ");
Write_Int (Standard_Long_Integer_Size);
P (";");
Write_Eol;
Write_Str (" type Long_Long_Integer");
P_Int_Range (Standard_Long_Long_Integer_Size);
Write_Str (" for Long_Long_Integer'Size use ");
Write_Int (Standard_Long_Long_Integer_Size);
P (";");
Write_Eol;
Write_Str (" type Long_Long_Long_Integer");
P_Int_Range (Standard_Long_Long_Long_Integer_Size);
Write_Str (" for Long_Long_Long_Integer'Size use ");
Write_Int (Standard_Long_Long_Long_Integer_Size);
P (";");
Write_Eol;
-- Floating point types
P_Float_Type (Standard_Short_Float);
P_Float_Type (Standard_Float);
P_Float_Type (Standard_Long_Float);
P_Float_Type (Standard_Long_Long_Float);
P (" type Character is (...)");
Write_Str (" for Character'Size use ");
Write_Int (Standard_Character_Size);
P (";");
P (" -- See RM A.1(35) for details of this type");
Write_Eol;
P (" type Wide_Character is (...)");
Write_Str (" for Wide_Character'Size use ");
Write_Int (Standard_Wide_Character_Size);
P (";");
P (" -- See RM A.1(36) for details of this type");
Write_Eol;
P (" type Wide_Wide_Character is (...)");
Write_Str (" for Wide_Wide_Character'Size use ");
Write_Int (Standard_Wide_Wide_Character_Size);
P (";");
P (" -- See RM A.1(36) for details of this type");
P (" type String is array (Positive range <>) of Character;");
P (" pragma Pack (String);");
Write_Eol;
P (" type Wide_String is array (Positive range <>)" &
" of Wide_Character;");
P (" pragma Pack (Wide_String);");
Write_Eol;
P (" type Wide_Wide_String is array (Positive range <>)" &
" of Wide_Wide_Character;");
P (" pragma Pack (Wide_Wide_String);");
Write_Eol;
-- We only have one representation each for 32-bit and 64-bit sizes,
-- so select the right one based on Duration_32_Bits_On_Target.
if Duration_32_Bits_On_Target then
P (" type Duration is delta 0.020");
P (" range -((2 ** 31) * 0.020) ..");
P (" +((2 ** 31 - 1) * 0.020);");
P (" for Duration'Small use 0.020;");
else
P (" type Duration is delta 0.000000001");
P (" range -((2 ** 63) * 0.000000001) ..");
P (" +((2 ** 63 - 1) * 0.000000001);");
P (" for Duration'Small use 0.000000001;");
end if;
Write_Eol;
P (" Constraint_Error : exception;");
P (" Program_Error : exception;");
P (" Storage_Error : exception;");
P (" Tasking_Error : exception;");
P (" Numeric_Error : exception renames Constraint_Error;");
Write_Eol;
P ("end Standard;");
end Print_Standard;
-------------------------
-- Register_Float_Type --
-------------------------
procedure Register_Float_Type
(Name : String;
Digs : Positive;
Float_Rep : Float_Rep_Kind;
Precision : Positive;
Size : Positive;
Alignment : Natural)
is
pragma Unreferenced (Precision);
-- See Build_Float_Type for the rationale
Ent : constant Entity_Id := New_Standard_Entity (Name);
begin
Set_Defining_Identifier (New_Node (N_Full_Type_Declaration, Stloc), Ent);
Set_Scope (Ent, Standard_Standard);
Build_Float_Type
(Ent, Pos (Digs), Float_Rep, Int (Size), Int (Alignment / 8));
Append_New_Elmt (Ent, Back_End_Float_Types);
end Register_Float_Type;
----------------------
-- Set_Float_Bounds --
----------------------
procedure Set_Float_Bounds (Id : Entity_Id) is
L : Node_Id;
H : Node_Id;
-- Low and high bounds of literal value
R : Node_Id;
-- Range specification
Radix : constant Uint := Machine_Radix_Value (Id);
Mantissa : constant Uint := Machine_Mantissa_Value (Id);
Emax : constant Uint := Machine_Emax_Value (Id);
Significand : constant Uint := Radix ** Mantissa - 1;
Exponent : constant Uint := Emax - Mantissa;
begin
H := Make_Float_Literal (Stloc, Radix, Significand, Exponent);
L := Make_Float_Literal (Stloc, Radix, -Significand, Exponent);
Set_Etype (L, Id);
Set_Is_Static_Expression (L);
Set_Etype (H, Id);
Set_Is_Static_Expression (H);
R := New_Node (N_Range, Stloc);
Set_Low_Bound (R, L);
Set_High_Bound (R, H);
Set_Includes_Infinities (R, True);
Set_Scalar_Range (Id, R);
Set_Etype (R, Id);
Set_Parent (R, Id);
end Set_Float_Bounds;
------------------------
-- Set_Integer_Bounds --
------------------------
procedure Set_Integer_Bounds
(Id : Entity_Id;
Typ : Entity_Id;
Lb : Uint;
Hb : Uint)
is
L : Node_Id;
H : Node_Id;
-- Low and high bounds of literal value
R : Node_Id;
-- Range specification
begin
L := Make_Integer (Lb);
H := Make_Integer (Hb);
Set_Etype (L, Typ);
Set_Etype (H, Typ);
R := New_Node (N_Range, Stloc);
Set_Low_Bound (R, L);
Set_High_Bound (R, H);
Set_Scalar_Range (Id, R);
Set_Etype (R, Typ);
Set_Parent (R, Id);
Set_Is_Unsigned_Type (Id, Lb >= 0);
end Set_Integer_Bounds;
end CStand;