blob: a9394dcce7fb6bb9efdf7f3deee68c77dee445ed [file] [log] [blame]
/* Compiler implementation of the D programming language
* Copyright (C) 1999-2021 by The D Language Foundation, All Rights Reserved
* written by Walter Bright
* http://www.digitalmars.com
* Distributed under the Boost Software License, Version 1.0.
* http://www.boost.org/LICENSE_1_0.txt
* https://github.com/D-Programming-Language/dmd/blob/master/src/declaration.c
*/
#include "root/dsystem.h"
#include "root/checkedint.h"
#include "errors.h"
#include "init.h"
#include "declaration.h"
#include "attrib.h"
#include "mtype.h"
#include "template.h"
#include "scope.h"
#include "aggregate.h"
#include "module.h"
#include "import.h"
#include "id.h"
#include "expression.h"
#include "statement.h"
#include "ctfe.h"
#include "target.h"
#include "hdrgen.h"
bool checkNestedRef(Dsymbol *s, Dsymbol *p);
/************************************
* Check to see the aggregate type is nested and its context pointer is
* accessible from the current scope.
* Returns true if error occurs.
*/
bool checkFrameAccess(Loc loc, Scope *sc, AggregateDeclaration *ad, size_t iStart = 0)
{
Dsymbol *sparent = ad->toParent2();
Dsymbol *s = sc->func;
if (ad->isNested() && s)
{
//printf("ad = %p %s [%s], parent:%p\n", ad, ad->toChars(), ad->loc.toChars(), ad->parent);
//printf("sparent = %p %s [%s], parent: %s\n", sparent, sparent->toChars(), sparent->loc.toChars(), sparent->parent->toChars());
if (checkNestedRef(s, sparent))
{
error(loc, "cannot access frame pointer of %s", ad->toPrettyChars());
return true;
}
}
bool result = false;
for (size_t i = iStart; i < ad->fields.length; i++)
{
VarDeclaration *vd = ad->fields[i];
Type *tb = vd->type->baseElemOf();
if (tb->ty == Tstruct)
{
result |= checkFrameAccess(loc, sc, ((TypeStruct *)tb)->sym);
}
}
return result;
}
/********************************* Declaration ****************************/
Declaration::Declaration(Identifier *id)
: Dsymbol(id)
{
type = NULL;
originalType = NULL;
storage_class = STCundefined;
protection = Prot(Prot::undefined);
linkage = LINKdefault;
inuse = 0;
mangleOverride = NULL;
}
const char *Declaration::kind() const
{
return "declaration";
}
d_uns64 Declaration::size(Loc)
{
assert(type);
return type->size();
}
bool Declaration::isDelete()
{
return false;
}
bool Declaration::isDataseg()
{
return false;
}
bool Declaration::isThreadlocal()
{
return false;
}
bool Declaration::isCodeseg() const
{
return false;
}
Prot Declaration::prot()
{
return protection;
}
/*************************************
* Check to see if declaration can be modified in this context (sc).
* Issue error if not.
*/
int Declaration::checkModify(Loc loc, Scope *sc, Type *, Expression *e1, int flag)
{
VarDeclaration *v = isVarDeclaration();
if (v && v->canassign)
return 2;
if (isParameter() || isResult())
{
for (Scope *scx = sc; scx; scx = scx->enclosing)
{
if (scx->func == parent && (scx->flags & SCOPEcontract))
{
const char *s = isParameter() && parent->ident != Id::ensure ? "parameter" : "result";
if (!flag) error(loc, "cannot modify %s `%s` in contract", s, toChars());
return 2; // do not report type related errors
}
}
}
if (e1 && e1->op == TOKthis && isField())
{
VarDeclaration *vthis = e1->isThisExp()->var;
for (Scope *scx = sc; scx; scx = scx->enclosing)
{
if (scx->func == vthis->parent && (scx->flags & SCOPEcontract))
{
if (!flag)
error(loc, "cannot modify parameter `this` in contract");
return 2; // do not report type related errors
}
}
}
if (v && (isCtorinit() || isField()))
{
// It's only modifiable if inside the right constructor
if ((storage_class & (STCforeach | STCref)) == (STCforeach | STCref))
return 2;
return modifyFieldVar(loc, sc, v, e1) ? 2 : 1;
}
return 1;
}
/**
* Issue an error if an attempt to call a disabled method is made
*
* If the declaration is disabled but inside a disabled function,
* returns `true` but do not issue an error message.
*
* Params:
* loc = Location information of the call
* sc = Scope in which the call occurs
* isAliasedDeclaration = if `true` searches overload set
*
* Returns:
* `true` if this `Declaration` is `@disable`d, `false` otherwise.
*/
bool Declaration::checkDisabled(Loc loc, Scope *sc, bool isAliasedDeclaration)
{
if (!(storage_class & STCdisable))
return false;
if (sc->func && (sc->func->storage_class & STCdisable))
return true;
Dsymbol *p = toParent();
if (p && isPostBlitDeclaration())
{
p->error(loc, "is not copyable because it is annotated with `@disable`");
return true;
}
// if the function is @disabled, maybe there
// is an overload in the overload set that isn't
if (isAliasedDeclaration)
{
FuncDeclaration *fd = isFuncDeclaration();
if (fd)
{
for (FuncDeclaration *ovl = fd; ovl; ovl = (FuncDeclaration *)ovl->overnext)
if (!(ovl->storage_class & STCdisable))
return false;
}
}
error(loc, "cannot be used because it is annotated with `@disable`");
return true;
}
Dsymbol *Declaration::search(const Loc &loc, Identifier *ident, int flags)
{
Dsymbol *s = Dsymbol::search(loc, ident, flags);
if (!s && type)
{
s = type->toDsymbol(_scope);
if (s)
s = s->search(loc, ident, flags);
}
return s;
}
/********************************* TupleDeclaration ****************************/
TupleDeclaration::TupleDeclaration(Loc loc, Identifier *id, Objects *objects)
: Declaration(id)
{
this->loc = loc;
this->type = NULL;
this->objects = objects;
this->isexp = false;
this->tupletype = NULL;
}
Dsymbol *TupleDeclaration::syntaxCopy(Dsymbol *)
{
assert(0);
return NULL;
}
const char *TupleDeclaration::kind() const
{
return "tuple";
}
Type *TupleDeclaration::getType()
{
/* If this tuple represents a type, return that type
*/
//printf("TupleDeclaration::getType() %s\n", toChars());
if (isexp)
return NULL;
if (!tupletype)
{
/* It's only a type tuple if all the Object's are types
*/
for (size_t i = 0; i < objects->length; i++)
{
RootObject *o = (*objects)[i];
if (o->dyncast() != DYNCAST_TYPE)
{
//printf("\tnot[%d], %p, %d\n", i, o, o->dyncast());
return NULL;
}
}
/* We know it's a type tuple, so build the TypeTuple
*/
Types *types = (Types *)objects;
Parameters *args = new Parameters();
args->setDim(objects->length);
OutBuffer buf;
int hasdeco = 1;
for (size_t i = 0; i < types->length; i++)
{
Type *t = (*types)[i];
//printf("type = %s\n", t->toChars());
Parameter *arg = new Parameter(0, t, NULL, NULL, NULL);
(*args)[i] = arg;
if (!t->deco)
hasdeco = 0;
}
tupletype = new TypeTuple(args);
if (hasdeco)
return typeSemantic(tupletype, Loc(), NULL);
}
return tupletype;
}
Dsymbol *TupleDeclaration::toAlias2()
{
//printf("TupleDeclaration::toAlias2() '%s' objects = %s\n", toChars(), objects->toChars());
for (size_t i = 0; i < objects->length; i++)
{
RootObject *o = (*objects)[i];
if (Dsymbol *s = isDsymbol(o))
{
s = s->toAlias2();
(*objects)[i] = s;
}
}
return this;
}
bool TupleDeclaration::needThis()
{
//printf("TupleDeclaration::needThis(%s)\n", toChars());
for (size_t i = 0; i < objects->length; i++)
{
RootObject *o = (*objects)[i];
if (o->dyncast() == DYNCAST_EXPRESSION)
{
Expression *e = (Expression *)o;
if (e->op == TOKdsymbol)
{
DsymbolExp *ve = (DsymbolExp *)e;
Declaration *d = ve->s->isDeclaration();
if (d && d->needThis())
{
return true;
}
}
}
}
return false;
}
/********************************* AliasDeclaration ****************************/
AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Type *type)
: Declaration(id)
{
//printf("AliasDeclaration(id = '%s', type = %p)\n", id->toChars(), type);
//printf("type = '%s'\n", type->toChars());
this->loc = loc;
this->type = type;
this->aliassym = NULL;
this->_import = NULL;
this->overnext = NULL;
assert(type);
}
AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Dsymbol *s)
: Declaration(id)
{
//printf("AliasDeclaration(id = '%s', s = %p)\n", id->toChars(), s);
assert(s != this);
this->loc = loc;
this->type = NULL;
this->aliassym = s;
this->_import = NULL;
this->overnext = NULL;
assert(s);
}
AliasDeclaration *AliasDeclaration::create(Loc loc, Identifier *id, Type *type)
{
return new AliasDeclaration(loc, id, type);
}
Dsymbol *AliasDeclaration::syntaxCopy(Dsymbol *s)
{
//printf("AliasDeclaration::syntaxCopy()\n");
assert(!s);
AliasDeclaration *sa =
type ? new AliasDeclaration(loc, ident, type->syntaxCopy())
: new AliasDeclaration(loc, ident, aliassym->syntaxCopy(NULL));
sa->storage_class = storage_class;
return sa;
}
bool AliasDeclaration::overloadInsert(Dsymbol *s)
{
//printf("[%s] AliasDeclaration::overloadInsert('%s') s = %s %s @ [%s]\n",
// loc.toChars(), toChars(), s->kind(), s->toChars(), s->loc.toChars());
/** Aliases aren't overloadable themselves, but if their Aliasee is
* overloadable they are converted to an overloadable Alias (either
* FuncAliasDeclaration or OverDeclaration).
*
* This is done by moving the Aliasee into such an overloadable alias
* which is then used to replace the existing Aliasee. The original
* Alias (_this_) remains a useless shell.
*
* This is a horrible mess. It was probably done to avoid replacing
* existing AST nodes and references, but it needs a major
* simplification b/c it's too complex to maintain.
*
* A simpler approach might be to merge any colliding symbols into a
* simple Overload class (an array) and then later have that resolve
* all collisions.
*/
if (semanticRun >= PASSsemanticdone)
{
/* Semantic analysis is already finished, and the aliased entity
* is not overloadable.
*/
if (type)
return false;
/* When s is added in member scope by static if, mixin("code") or others,
* aliassym is determined already. See the case in: test/compilable/test61.d
*/
Dsymbol *sa = aliassym->toAlias();
if (FuncDeclaration *fd = sa->isFuncDeclaration())
{
FuncAliasDeclaration *fa = new FuncAliasDeclaration(ident, fd);
fa->protection = protection;
fa->parent = parent;
aliassym = fa;
return aliassym->overloadInsert(s);
}
if (TemplateDeclaration *td = sa->isTemplateDeclaration())
{
OverDeclaration *od = new OverDeclaration(ident, td);
od->protection = protection;
od->parent = parent;
aliassym = od;
return aliassym->overloadInsert(s);
}
if (OverDeclaration *od = sa->isOverDeclaration())
{
if (sa->ident != ident || sa->parent != parent)
{
od = new OverDeclaration(ident, od);
od->protection = protection;
od->parent = parent;
aliassym = od;
}
return od->overloadInsert(s);
}
if (OverloadSet *os = sa->isOverloadSet())
{
if (sa->ident != ident || sa->parent != parent)
{
os = new OverloadSet(ident, os);
// TODO: protection is lost here b/c OverloadSets have no protection attribute
// Might no be a practical issue, b/c the code below fails to resolve the overload anyhow.
// ----
// module os1;
// import a, b;
// private alias merged = foo; // private alias to overload set of a.foo and b.foo
// ----
// module os2;
// import a, b;
// public alias merged = bar; // public alias to overload set of a.bar and b.bar
// ----
// module bug;
// import os1, os2;
// void test() { merged(123); } // should only look at os2.merged
//
// os.protection = protection;
os->parent = parent;
aliassym = os;
}
os->push(s);
return true;
}
return false;
}
/* Don't know yet what the aliased symbol is, so assume it can
* be overloaded and check later for correctness.
*/
if (overnext)
return overnext->overloadInsert(s);
if (s == this)
return true;
overnext = s;
return true;
}
const char *AliasDeclaration::kind() const
{
return "alias";
}
Type *AliasDeclaration::getType()
{
if (type)
return type;
return toAlias()->getType();
}
Dsymbol *AliasDeclaration::toAlias()
{
//printf("[%s] AliasDeclaration::toAlias('%s', this = %p, aliassym = %p, kind = '%s', inuse = %d)\n",
// loc.toChars(), toChars(), this, aliassym, aliassym ? aliassym->kind() : "", inuse);
assert(this != aliassym);
//static int count; if (++count == 10) *(char*)0=0;
if (inuse == 1 && type && _scope)
{
inuse = 2;
unsigned olderrors = global.errors;
Dsymbol *s = type->toDsymbol(_scope);
//printf("[%s] type = %s, s = %p, this = %p\n", loc.toChars(), type->toChars(), s, this);
if (global.errors != olderrors)
goto Lerr;
if (s)
{
s = s->toAlias();
if (global.errors != olderrors)
goto Lerr;
aliassym = s;
inuse = 0;
}
else
{
Type *t = typeSemantic(type, loc, _scope);
if (t->ty == Terror)
goto Lerr;
if (global.errors != olderrors)
goto Lerr;
//printf("t = %s\n", t->toChars());
inuse = 0;
}
}
if (inuse)
{
error("recursive alias declaration");
Lerr:
// Avoid breaking "recursive alias" state during errors gagged
if (global.gag)
return this;
aliassym = new AliasDeclaration(loc, ident, Type::terror);
type = Type::terror;
return aliassym;
}
if (semanticRun >= PASSsemanticdone)
{
// semantic is already done.
// Do not see aliassym !is null, because of lambda aliases.
// Do not see type.deco !is null, even so "alias T = const int;` needs
// semantic analysis to take the storage class `const` as type qualifier.
}
else
{
if (_import && _import->_scope)
{
/* If this is an internal alias for selective/renamed import,
* load the module first.
*/
dsymbolSemantic(_import, NULL);
}
if (_scope)
{
aliasSemantic(this, _scope);
}
}
inuse = 1;
Dsymbol *s = aliassym ? aliassym->toAlias() : this;
inuse = 0;
return s;
}
Dsymbol *AliasDeclaration::toAlias2()
{
if (inuse)
{
error("recursive alias declaration");
return this;
}
inuse = 1;
Dsymbol *s = aliassym ? aliassym->toAlias2() : this;
inuse = 0;
return s;
}
bool AliasDeclaration::isOverloadable()
{
// assume overloadable until alias is resolved
return semanticRun < PASSsemanticdone ||
(aliassym && aliassym->isOverloadable());
}
/****************************** OverDeclaration **************************/
OverDeclaration::OverDeclaration(Identifier *ident, Dsymbol *s, bool hasOverloads)
: Declaration(ident)
{
this->overnext = NULL;
this->aliassym = s;
this->hasOverloads = hasOverloads;
if (hasOverloads)
{
if (OverDeclaration *od = aliassym->isOverDeclaration())
this->hasOverloads = od->hasOverloads;
}
else
{
// for internal use
assert(!aliassym->isOverDeclaration());
}
}
const char *OverDeclaration::kind() const
{
return "overload alias"; // todo
}
bool OverDeclaration::equals(RootObject *o)
{
if (this == o)
return true;
Dsymbol *s = isDsymbol(o);
if (!s)
return false;
OverDeclaration *od1 = this;
if (OverDeclaration *od2 = s->isOverDeclaration())
{
return od1->aliassym->equals(od2->aliassym) &&
od1->hasOverloads == od2->hasOverloads;
}
if (aliassym == s)
{
if (hasOverloads)
return true;
if (FuncDeclaration *fd = s->isFuncDeclaration())
{
return fd->isUnique() != NULL;
}
if (TemplateDeclaration *td = s->isTemplateDeclaration())
{
return td->overnext == NULL;
}
}
return false;
}
bool OverDeclaration::overloadInsert(Dsymbol *s)
{
//printf("OverDeclaration::overloadInsert('%s') aliassym = %p, overnext = %p\n", s->toChars(), aliassym, overnext);
if (overnext)
return overnext->overloadInsert(s);
if (s == this)
return true;
overnext = s;
return true;
}
Dsymbol *OverDeclaration::toAlias()
{
return this;
}
bool OverDeclaration::isOverloadable()
{
return true;
}
Dsymbol *OverDeclaration::isUnique()
{
if (!hasOverloads)
{
if (aliassym->isFuncDeclaration() ||
aliassym->isTemplateDeclaration())
{
return aliassym;
}
}
struct ParamUniqueSym
{
static int fp(void *param, Dsymbol *s)
{
Dsymbol **ps = (Dsymbol **)param;
if (*ps)
{
*ps = NULL;
return 1; // ambiguous, done
}
else
{
*ps = s;
return 0;
}
}
};
Dsymbol *result = NULL;
overloadApply(aliassym, &result, &ParamUniqueSym::fp);
return result;
}
/********************************* VarDeclaration ****************************/
VarDeclaration::VarDeclaration(Loc loc, Type *type, Identifier *id, Initializer *init)
: Declaration(id)
{
//printf("VarDeclaration('%s')\n", id->toChars());
assert(id);
assert(type || init);
this->type = type;
this->_init = init;
this->loc = loc;
offset = 0;
isargptr = false;
alignment = 0;
ctorinit = 0;
aliassym = NULL;
onstack = false;
mynew = false;
canassign = 0;
overlapped = false;
overlapUnsafe = false;
doNotInferScope = false;
isdataseg = 0;
lastVar = NULL;
endlinnum = 0;
ctfeAdrOnStack = -1;
edtor = NULL;
range = NULL;
static unsigned nextSequenceNumber = 0;
this->sequenceNumber = ++nextSequenceNumber;
}
VarDeclaration *VarDeclaration::create(Loc loc, Type *type, Identifier *id, Initializer *init)
{
return new VarDeclaration(loc, type, id, init);
}
Dsymbol *VarDeclaration::syntaxCopy(Dsymbol *s)
{
//printf("VarDeclaration::syntaxCopy(%s)\n", toChars());
assert(!s);
VarDeclaration *v = new VarDeclaration(loc,
type ? type->syntaxCopy() : NULL,
ident,
_init ? _init->syntaxCopy() : NULL);
v->storage_class = storage_class;
return v;
}
void VarDeclaration::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion)
{
//printf("VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars());
if (aliassym)
{
// If this variable was really a tuple, set the offsets for the tuple fields
TupleDeclaration *v2 = aliassym->isTupleDeclaration();
assert(v2);
for (size_t i = 0; i < v2->objects->length; i++)
{
RootObject *o = (*v2->objects)[i];
assert(o->dyncast() == DYNCAST_EXPRESSION);
Expression *e = (Expression *)o;
assert(e->op == TOKdsymbol);
DsymbolExp *se = (DsymbolExp *)e;
se->s->setFieldOffset(ad, poffset, isunion);
}
return;
}
if (!isField())
return;
assert(!(storage_class & (STCstatic | STCextern | STCparameter | STCtls)));
//printf("+VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars());
/* Fields that are tuples appear both as part of TupleDeclarations and
* as members. That means ignore them if they are already a field.
*/
if (offset)
{
// already a field
*poffset = ad->structsize; // Bugzilla 13613
return;
}
for (size_t i = 0; i < ad->fields.length; i++)
{
if (ad->fields[i] == this)
{
// already a field
*poffset = ad->structsize; // Bugzilla 13613
return;
}
}
// Check for forward referenced types which will fail the size() call
Type *t = type->toBasetype();
if (storage_class & STCref)
{
// References are the size of a pointer
t = Type::tvoidptr;
}
Type *tv = t->baseElemOf();
if (tv->ty == Tstruct)
{
TypeStruct *ts = (TypeStruct *)tv;
assert(ts->sym != ad); // already checked in ad->determineFields()
if (!ts->sym->determineSize(loc))
{
type = Type::terror;
errors = true;
return;
}
}
// List in ad->fields. Even if the type is error, it's necessary to avoid
// pointless error diagnostic "more initializers than fields" on struct literal.
ad->fields.push(this);
if (t->ty == Terror)
return;
const d_uns64 sz = t->size(loc);
assert(sz != SIZE_INVALID && sz < UINT32_MAX);
unsigned memsize = (unsigned)sz; // size of member
unsigned memalignsize = target.fieldalign(t); // size of member for alignment purposes
offset = AggregateDeclaration::placeField(poffset, memsize, memalignsize, alignment,
&ad->structsize, &ad->alignsize, isunion);
//printf("\t%s: memalignsize = %d\n", toChars(), memalignsize);
//printf(" addField '%s' to '%s' at offset %d, size = %d\n", toChars(), ad->toChars(), offset, memsize);
}
const char *VarDeclaration::kind() const
{
return "variable";
}
Dsymbol *VarDeclaration::toAlias()
{
//printf("VarDeclaration::toAlias('%s', this = %p, aliassym = %p)\n", toChars(), this, aliassym);
if ((!type || !type->deco) && _scope)
dsymbolSemantic(this, _scope);
assert(this != aliassym);
Dsymbol *s = aliassym ? aliassym->toAlias() : this;
return s;
}
AggregateDeclaration *VarDeclaration::isThis()
{
AggregateDeclaration *ad = NULL;
if (!(storage_class & (STCstatic | STCextern | STCmanifest | STCtemplateparameter |
STCtls | STCgshared | STCctfe)))
{
for (Dsymbol *s = this; s; s = s->parent)
{
ad = s->isMember();
if (ad)
break;
if (!s->parent || !s->parent->isTemplateMixin()) break;
}
}
return ad;
}
bool VarDeclaration::needThis()
{
//printf("VarDeclaration::needThis(%s, x%x)\n", toChars(), storage_class);
return isField();
}
bool VarDeclaration::isExport() const
{
return protection.kind == Prot::export_;
}
bool VarDeclaration::isImportedSymbol() const
{
if (protection.kind == Prot::export_ && !_init &&
(storage_class & STCstatic || parent->isModule()))
return true;
return false;
}
/*******************************************
* Helper function for the expansion of manifest constant.
*/
Expression *VarDeclaration::expandInitializer(Loc loc)
{
assert((storage_class & STCmanifest) && _init);
Expression *e = getConstInitializer();
if (!e)
{
::error(loc, "cannot make expression out of initializer for %s", toChars());
return new ErrorExp();
}
e = e->copy();
e->loc = loc; // for better error message
return e;
}
void VarDeclaration::checkCtorConstInit()
{
#if 0 /* doesn't work if more than one static ctor */
if (ctorinit == 0 && isCtorinit() && !isField())
error("missing initializer in static constructor for const variable");
#endif
}
bool lambdaCheckForNestedRef(Expression *e, Scope *sc);
/************************************
* Check to see if this variable is actually in an enclosing function
* rather than the current one.
* Returns true if error occurs.
*/
bool VarDeclaration::checkNestedReference(Scope *sc, Loc loc)
{
//printf("VarDeclaration::checkNestedReference() %s\n", toChars());
if (sc->intypeof == 1 || (sc->flags & SCOPEctfe))
return false;
if (!parent || parent == sc->parent)
return false;
if (isDataseg() || (storage_class & STCmanifest))
return false;
// The current function
FuncDeclaration *fdthis = sc->parent->isFuncDeclaration();
if (!fdthis)
return false; // out of function scope
Dsymbol *p = toParent2();
// Function literals from fdthis to p must be delegates
checkNestedRef(fdthis, p);
// The function that this variable is in
FuncDeclaration *fdv = p->isFuncDeclaration();
if (!fdv || fdv == fdthis)
return false;
// Add fdthis to nestedrefs[] if not already there
if (!nestedrefs.contains(fdthis))
nestedrefs.push(fdthis);
/* __require and __ensure will always get called directly,
* so they never make outer functions closure.
*/
if (fdthis->ident == Id::require || fdthis->ident == Id::ensure)
return false;
//printf("\tfdv = %s\n", fdv->toChars());
//printf("\tfdthis = %s\n", fdthis->toChars());
if (loc.filename)
{
int lv = fdthis->getLevel(loc, sc, fdv);
if (lv == -2) // error
return true;
}
// Add this to fdv->closureVars[] if not already there
if (!sc->intypeof && !(sc->flags & SCOPEcompile))
{
if (!fdv->closureVars.contains(this))
fdv->closureVars.push(this);
}
//printf("fdthis is %s\n", fdthis->toChars());
//printf("var %s in function %s is nested ref\n", toChars(), fdv->toChars());
// __dollar creates problems because it isn't a real variable Bugzilla 3326
if (ident == Id::dollar)
{
::error(loc, "cannnot use $ inside a function literal");
return true;
}
if (ident == Id::withSym) // Bugzilla 1759
{
ExpInitializer *ez = _init->isExpInitializer();
assert(ez);
Expression *e = ez->exp;
if (e->op == TOKconstruct || e->op == TOKblit)
e = ((AssignExp *)e)->e2;
return lambdaCheckForNestedRef(e, sc);
}
return false;
}
/*******************************************
* If variable has a constant expression initializer, get it.
* Otherwise, return NULL.
*/
Expression *VarDeclaration::getConstInitializer(bool needFullType)
{
assert(type && _init);
// Ungag errors when not speculative
unsigned oldgag = global.gag;
if (global.gag)
{
Dsymbol *sym = toParent()->isAggregateDeclaration();
if (sym && !sym->isSpeculative())
global.gag = 0;
}
if (_scope)
{
inuse++;
_init = initializerSemantic(_init, _scope, type, INITinterpret);
_scope = NULL;
inuse--;
}
Expression *e = initializerToExpression(_init, needFullType ? type : NULL);
global.gag = oldgag;
return e;
}
/*************************************
* Return true if we can take the address of this variable.
*/
bool VarDeclaration::canTakeAddressOf()
{
return !(storage_class & STCmanifest);
}
/*******************************
* Does symbol go into data segment?
* Includes extern variables.
*/
bool VarDeclaration::isDataseg()
{
if (isdataseg == 0) // the value is not cached
{
isdataseg = 2; // The Variables does not go into the datasegment
if (!canTakeAddressOf())
{
return false;
}
Dsymbol *parent = toParent();
if (!parent && !(storage_class & STCstatic))
{
error("forward referenced");
type = Type::terror;
}
else if (storage_class & (STCstatic | STCextern | STCtls | STCgshared) ||
parent->isModule() || parent->isTemplateInstance() || parent->isNspace())
{
assert(!isParameter() && !isResult());
isdataseg = 1; // It is in the DataSegment
}
}
return (isdataseg == 1);
}
/************************************
* Does symbol go into thread local storage?
*/
bool VarDeclaration::isThreadlocal()
{
//printf("VarDeclaration::isThreadlocal(%p, '%s')\n", this, toChars());
/* Data defaults to being thread-local. It is not thread-local
* if it is immutable, const or shared.
*/
bool i = isDataseg() &&
!(storage_class & (STCimmutable | STCconst | STCshared | STCgshared));
//printf("\treturn %d\n", i);
return i;
}
/********************************************
* Can variable be read and written by CTFE?
*/
bool VarDeclaration::isCTFE()
{
return (storage_class & STCctfe) != 0; // || !isDataseg();
}
bool VarDeclaration::isOverlappedWith(VarDeclaration *v)
{
const d_uns64 vsz = v->type->size();
const d_uns64 tsz = type->size();
assert(vsz != SIZE_INVALID && tsz != SIZE_INVALID);
return offset < v->offset + vsz &&
v->offset < offset + tsz;
}
bool VarDeclaration::hasPointers()
{
//printf("VarDeclaration::hasPointers() %s, ty = %d\n", toChars(), type->ty);
return (!isDataseg() && type->hasPointers());
}
/******************************************
* Return true if variable needs to call the destructor.
*/
bool VarDeclaration::needsScopeDtor()
{
//printf("VarDeclaration::needsScopeDtor() %s\n", toChars());
return edtor && !(storage_class & STCnodtor);
}
/******************************************
* If a variable has a scope destructor call, return call for it.
* Otherwise, return NULL.
*/
Expression *VarDeclaration::callScopeDtor(Scope *)
{
//printf("VarDeclaration::callScopeDtor() %s\n", toChars());
// Destruction of STCfield's is handled by buildDtor()
if (storage_class & (STCnodtor | STCref | STCout | STCfield))
{
return NULL;
}
Expression *e = NULL;
// Destructors for structs and arrays of structs
Type *tv = type->baseElemOf();
if (tv->ty == Tstruct)
{
StructDeclaration *sd = ((TypeStruct *)tv)->sym;
if (!sd->dtor || sd->errors)
return NULL;
const d_uns64 sz = type->size();
assert(sz != SIZE_INVALID);
if (!sz)
return NULL;
if (type->toBasetype()->ty == Tstruct)
{
// v.__xdtor()
e = new VarExp(loc, this);
/* This is a hack so we can call destructors on const/immutable objects.
* Need to add things like "const ~this()" and "immutable ~this()" to
* fix properly.
*/
e->type = e->type->mutableOf();
// Enable calling destructors on shared objects.
// The destructor is always a single, non-overloaded function,
// and must serve both shared and non-shared objects.
e->type = e->type->unSharedOf();
e = new DotVarExp(loc, e, sd->dtor, false);
e = new CallExp(loc, e);
}
else
{
// __ArrayDtor(v[0 .. n])
e = new VarExp(loc, this);
const d_uns64 sdsz = sd->type->size();
assert(sdsz != SIZE_INVALID && sdsz != 0);
const d_uns64 n = sz / sdsz;
e = new SliceExp(loc, e, new IntegerExp(loc, 0, Type::tsize_t),
new IntegerExp(loc, n, Type::tsize_t));
// Prevent redundant bounds check
((SliceExp *)e)->upperIsInBounds = true;
((SliceExp *)e)->lowerIsLessThanUpper = true;
// This is a hack so we can call destructors on const/immutable objects.
e->type = sd->type->arrayOf();
e = new CallExp(loc, new IdentifierExp(loc, Id::__ArrayDtor), e);
}
return e;
}
// Destructors for classes
if (storage_class & (STCauto | STCscope) && !(storage_class & STCparameter))
{
for (ClassDeclaration *cd = type->isClassHandle();
cd;
cd = cd->baseClass)
{
/* We can do better if there's a way with onstack
* classes to determine if there's no way the monitor
* could be set.
*/
//if (cd->isInterfaceDeclaration())
//error("interface %s cannot be scope", cd->toChars());
// Destroying C++ scope classes crashes currently. Since C++ class dtors are not currently supported, simply do not run dtors for them.
// See https://issues.dlang.org/show_bug.cgi?id=13182
if (cd->isCPPclass())
{
break;
}
if (mynew || onstack) // if any destructors
{
// delete this;
Expression *ec;
ec = new VarExp(loc, this);
e = new DeleteExp(loc, ec, true);
e->type = Type::tvoid;
break;
}
}
}
return e;
}
/**********************************
* Determine if `this` has a lifetime that lasts past
* the destruction of `v`
* Params:
* v = variable to test against
* Returns:
* true if it does
*/
bool VarDeclaration::enclosesLifetimeOf(VarDeclaration *v) const
{
return sequenceNumber < v->sequenceNumber;
}
/******************************************
*/
void ObjectNotFound(Identifier *id)
{
Type::error(Loc(), "%s not found. object.d may be incorrectly installed or corrupt.", id->toChars());
fatal();
}
/******************************** SymbolDeclaration ********************************/
SymbolDeclaration::SymbolDeclaration(Loc loc, StructDeclaration *dsym)
: Declaration(dsym->ident)
{
this->loc = loc;
this->dsym = dsym;
storage_class |= STCconst;
}
/********************************* TypeInfoDeclaration ****************************/
TypeInfoDeclaration::TypeInfoDeclaration(Type *tinfo)
: VarDeclaration(Loc(), Type::dtypeinfo->type, tinfo->getTypeInfoIdent(), NULL)
{
this->tinfo = tinfo;
storage_class = STCstatic | STCgshared;
protection = Prot(Prot::public_);
linkage = LINKc;
alignment = target.ptrsize;
}
TypeInfoDeclaration *TypeInfoDeclaration::create(Type *tinfo)
{
return new TypeInfoDeclaration(tinfo);
}
Dsymbol *TypeInfoDeclaration::syntaxCopy(Dsymbol *)
{
assert(0); // should never be produced by syntax
return NULL;
}
const char *TypeInfoDeclaration::toChars()
{
//printf("TypeInfoDeclaration::toChars() tinfo = %s\n", tinfo->toChars());
OutBuffer buf;
buf.writestring("typeid(");
buf.writestring(tinfo->toChars());
buf.writeByte(')');
return buf.extractChars();
}
/***************************** TypeInfoConstDeclaration **********************/
TypeInfoConstDeclaration::TypeInfoConstDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoconst)
{
ObjectNotFound(Id::TypeInfo_Const);
}
type = Type::typeinfoconst->type;
}
TypeInfoConstDeclaration *TypeInfoConstDeclaration::create(Type *tinfo)
{
return new TypeInfoConstDeclaration(tinfo);
}
/***************************** TypeInfoInvariantDeclaration **********************/
TypeInfoInvariantDeclaration::TypeInfoInvariantDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoinvariant)
{
ObjectNotFound(Id::TypeInfo_Invariant);
}
type = Type::typeinfoinvariant->type;
}
TypeInfoInvariantDeclaration *TypeInfoInvariantDeclaration::create(Type *tinfo)
{
return new TypeInfoInvariantDeclaration(tinfo);
}
/***************************** TypeInfoSharedDeclaration **********************/
TypeInfoSharedDeclaration::TypeInfoSharedDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoshared)
{
ObjectNotFound(Id::TypeInfo_Shared);
}
type = Type::typeinfoshared->type;
}
TypeInfoSharedDeclaration *TypeInfoSharedDeclaration::create(Type *tinfo)
{
return new TypeInfoSharedDeclaration(tinfo);
}
/***************************** TypeInfoWildDeclaration **********************/
TypeInfoWildDeclaration::TypeInfoWildDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfowild)
{
ObjectNotFound(Id::TypeInfo_Wild);
}
type = Type::typeinfowild->type;
}
TypeInfoWildDeclaration *TypeInfoWildDeclaration::create(Type *tinfo)
{
return new TypeInfoWildDeclaration(tinfo);
}
/***************************** TypeInfoStructDeclaration **********************/
TypeInfoStructDeclaration::TypeInfoStructDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfostruct)
{
ObjectNotFound(Id::TypeInfo_Struct);
}
type = Type::typeinfostruct->type;
}
TypeInfoStructDeclaration *TypeInfoStructDeclaration::create(Type *tinfo)
{
return new TypeInfoStructDeclaration(tinfo);
}
/***************************** TypeInfoClassDeclaration ***********************/
TypeInfoClassDeclaration::TypeInfoClassDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoclass)
{
ObjectNotFound(Id::TypeInfo_Class);
}
type = Type::typeinfoclass->type;
}
TypeInfoClassDeclaration *TypeInfoClassDeclaration::create(Type *tinfo)
{
return new TypeInfoClassDeclaration(tinfo);
}
/***************************** TypeInfoInterfaceDeclaration *******************/
TypeInfoInterfaceDeclaration::TypeInfoInterfaceDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfointerface)
{
ObjectNotFound(Id::TypeInfo_Interface);
}
type = Type::typeinfointerface->type;
}
TypeInfoInterfaceDeclaration *TypeInfoInterfaceDeclaration::create(Type *tinfo)
{
return new TypeInfoInterfaceDeclaration(tinfo);
}
/***************************** TypeInfoPointerDeclaration *********************/
TypeInfoPointerDeclaration::TypeInfoPointerDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfopointer)
{
ObjectNotFound(Id::TypeInfo_Pointer);
}
type = Type::typeinfopointer->type;
}
TypeInfoPointerDeclaration *TypeInfoPointerDeclaration::create(Type *tinfo)
{
return new TypeInfoPointerDeclaration(tinfo);
}
/***************************** TypeInfoArrayDeclaration ***********************/
TypeInfoArrayDeclaration::TypeInfoArrayDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoarray)
{
ObjectNotFound(Id::TypeInfo_Array);
}
type = Type::typeinfoarray->type;
}
TypeInfoArrayDeclaration *TypeInfoArrayDeclaration::create(Type *tinfo)
{
return new TypeInfoArrayDeclaration(tinfo);
}
/***************************** TypeInfoStaticArrayDeclaration *****************/
TypeInfoStaticArrayDeclaration::TypeInfoStaticArrayDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfostaticarray)
{
ObjectNotFound(Id::TypeInfo_StaticArray);
}
type = Type::typeinfostaticarray->type;
}
TypeInfoStaticArrayDeclaration *TypeInfoStaticArrayDeclaration::create(Type *tinfo)
{
return new TypeInfoStaticArrayDeclaration(tinfo);
}
/***************************** TypeInfoAssociativeArrayDeclaration ************/
TypeInfoAssociativeArrayDeclaration::TypeInfoAssociativeArrayDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoassociativearray)
{
ObjectNotFound(Id::TypeInfo_AssociativeArray);
}
type = Type::typeinfoassociativearray->type;
}
TypeInfoAssociativeArrayDeclaration *TypeInfoAssociativeArrayDeclaration::create(Type *tinfo)
{
return new TypeInfoAssociativeArrayDeclaration(tinfo);
}
/***************************** TypeInfoVectorDeclaration ***********************/
TypeInfoVectorDeclaration::TypeInfoVectorDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfovector)
{
ObjectNotFound(Id::TypeInfo_Vector);
}
type = Type::typeinfovector->type;
}
TypeInfoVectorDeclaration *TypeInfoVectorDeclaration::create(Type *tinfo)
{
return new TypeInfoVectorDeclaration(tinfo);
}
/***************************** TypeInfoEnumDeclaration ***********************/
TypeInfoEnumDeclaration::TypeInfoEnumDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfoenum)
{
ObjectNotFound(Id::TypeInfo_Enum);
}
type = Type::typeinfoenum->type;
}
TypeInfoEnumDeclaration *TypeInfoEnumDeclaration::create(Type *tinfo)
{
return new TypeInfoEnumDeclaration(tinfo);
}
/***************************** TypeInfoFunctionDeclaration ********************/
TypeInfoFunctionDeclaration::TypeInfoFunctionDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfofunction)
{
ObjectNotFound(Id::TypeInfo_Function);
}
type = Type::typeinfofunction->type;
}
TypeInfoFunctionDeclaration *TypeInfoFunctionDeclaration::create(Type *tinfo)
{
return new TypeInfoFunctionDeclaration(tinfo);
}
/***************************** TypeInfoDelegateDeclaration ********************/
TypeInfoDelegateDeclaration::TypeInfoDelegateDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfodelegate)
{
ObjectNotFound(Id::TypeInfo_Delegate);
}
type = Type::typeinfodelegate->type;
}
TypeInfoDelegateDeclaration *TypeInfoDelegateDeclaration::create(Type *tinfo)
{
return new TypeInfoDelegateDeclaration(tinfo);
}
/***************************** TypeInfoTupleDeclaration **********************/
TypeInfoTupleDeclaration::TypeInfoTupleDeclaration(Type *tinfo)
: TypeInfoDeclaration(tinfo)
{
if (!Type::typeinfotypelist)
{
ObjectNotFound(Id::TypeInfo_Tuple);
}
type = Type::typeinfotypelist->type;
}
TypeInfoTupleDeclaration *TypeInfoTupleDeclaration::create(Type *tinfo)
{
return new TypeInfoTupleDeclaration(tinfo);
}
/********************************* ThisDeclaration ****************************/
// For the "this" parameter to member functions
ThisDeclaration::ThisDeclaration(Loc loc, Type *t)
: VarDeclaration(loc, t, Id::This, NULL)
{
storage_class |= STCnodtor;
}
Dsymbol *ThisDeclaration::syntaxCopy(Dsymbol *)
{
assert(0); // should never be produced by syntax
return NULL;
}