blob: 4a7deb8e8269c9d7237f95b6036c880079f5fc6d [file] [log] [blame]
// Test exercising SFINAE depending on the well-definedness of constexpr
// functions.
// { dg-do compile { target c++14 } }
#define Assert(e) static_assert ((e), #e)
// Exercise SFINAE based on the absence of integer division by zero.
namespace DivByZero {
// Define a pair of functions that have undefined and well-defined
// behavior, respectively, due to division by zero, depending on
// their arguments.
// The following function is undefined when I is zero, well defined
// otherwise.
constexpr bool div_zero_0 (int i, int j) { return 1 + j / (i == 0); }
// The following function is undefined when I is non-zero, and well
// defined otherwise.
constexpr bool div_zero_1 (int i, int j) { return 1 + j / (i != 0); }
// Define a pair of overfloads each of which is viable when the constexpr
// function it invokes has well-defined semantics and not otherwise.
template <int I>
constexpr int f (int (*)[div_zero_0 (I, 0)] = 0) { return 0; }
template <int I>
constexpr int f (int (*)[div_zero_1 (I, 0)] = 0) { return 1; }
// Verify that the correct overload is selected based on the template
// argument and without triggering a compilation error for the undefined
// behavior in the non-viable constexpr function above.
Assert (f<0>() == 0);
Assert (f<1>() == 1);
}
// Exercise SFINAE based on the absence of signed integer overflow
// in addition.
namespace IntAddOverflow {
constexpr int a [] = { 1234, __INT_MAX__ / 2 };
constexpr int vflow_0 (int i) { return a [!i] * 7; }
constexpr int vflow_1 (int i) { return a [i] * 11; }
template <int I>
constexpr int f (int (*)[vflow_0 (I)] = 0) { return 1; }
template <int I>
constexpr int f (int (*)[vflow_1 (I)] = 0) { return 0; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 0);
Assert (n1 == 1);
}
// Exercise SFINAE based on the absence of signed integer overflow
// in multiplication.
namespace IntMulOverflow {
constexpr long a [] = { 1234, __LONG_MAX__ / 2 };
constexpr long vflow_0 (int i) { return a [!i] * 3; }
constexpr long vflow_1 (int i) { return a [i] * 7; }
template <int I>
constexpr int f (int (*)[vflow_0 (I)] = 0) { return 1; }
template <int I>
constexpr int f (int (*)[vflow_1 (I)] = 0) { return 0; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 0);
Assert (n1 == 1);
}
// Exercise SFINAE based on the absence of undefined pointer arithmetic
// involving null pointers. Subtracting one null pointer from another
// is well-defined, but subtracting a null pointer from a non-null one
// is not.
namespace NullPointerArithmetic {
constexpr int i = 0;
constexpr const int* a[] = { 0, &i };
// Well-defined core constant expressions involving null pointers.
constexpr __PTRDIFF_TYPE__ d00 = a [0] - a [0];
constexpr __PTRDIFF_TYPE__ d11 = a [1] - a [1];
// Undefined core constant expressions involving null pointers.
// constexpr __PTRDIFF_TYPE__ d01 = a [0] - a [1];
// constexpr __PTRDIFF_TYPE__ d10 = a [1] - a [0];
// Valid when i == j.
constexpr bool
nullptr_sub_0 (bool i, bool j) { return 1 + a [!i] - a [!j]; }
// Valid when i != j.
constexpr bool
nullptr_sub_1 (bool i, bool j) { return 1 + a [i] - a [!j]; }
// Selected when I == 0.
template <bool I>
constexpr int f (int (*)[nullptr_sub_0 (I, 0)] = 0) { return 0; }
// Selected when I != 0.
template <bool I>
constexpr int f (int (*)[nullptr_sub_1 (I, 0)] = 0) { return 1; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 0);
Assert (n1 == 1);
}
// Exercise SFINAE based on the absence of undefined pointer arithmetic
// involving null poiinters. Subtracting one null pointer from another
// is well-defined, but subtracting a null pointer from a non-null one
// is not.
namespace NullPointerDereference {
struct S { int a, b; };
constexpr S s = { };
constexpr const S* a[] = { 0, &s };
constexpr bool nullptr_ref_0 (int i) { return &a [i != 0]->b == &s.b; }
constexpr bool nullptr_ref_1 (int i) { return &a [i == 0]->b == &s.b; }
template <int I>
constexpr int f (int (*)[nullptr_ref_0 (I)] = 0) { return 1; }
template <int I>
constexpr int f (int (*)[nullptr_ref_1 (I)] = 0) { return 0; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 0);
Assert (n1 == 1);
}
// Exercise SFINAE based on whether or not two constexpr function
// calls have a circular depency on one another such that a call
// to one would not terminate.
namespace CircularDependency {
constexpr bool call_me (int i, bool (*f)(int)) { return f (i); }
constexpr bool undefined_if_0 (int i) {
return i ? 1 : call_me (i, undefined_if_0);
}
constexpr bool undefined_if_1 (int i) {
return i ? call_me (i, undefined_if_1) : 1;
}
template <int I>
constexpr int f (int (*)[undefined_if_0 (I)] = 0) { return 0; }
template <int I>
constexpr int f (int (*)[undefined_if_1 (I)] = 0) { return 1; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 1);
Assert (n1 == 0);
}
// Exercise SFINAE based on whether constexpr functions flow off
// the end without returning a value.
namespace FlowOffTheEnd {
constexpr bool undefined_if_0 (int i) { switch (i) case 1: return 1; }
constexpr bool undefined_if_1 (int i) { switch (i) case 0: return 1; }
template <int I>
constexpr int f (int (*)[undefined_if_0 (I)] = 0) { return 1; }
template <int I>
constexpr int f (int (*)[undefined_if_1 (I)] = 0) { return 0; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 0);
Assert (n1 == 1);
}
// Exercise SFINAE based on the presence and absence of a left shift
// expression with a negative second operand.
namespace NegativeLeftShift {
constexpr int a [] = { -1, 1 };
constexpr int undefined_if_0 (int i) { return 1 << a [i]; }
constexpr int undefined_if_1 (int i) { return 1 << a [!i]; }
template <int I>
constexpr int f (int (*)[undefined_if_0 (I)] = 0) { return 0; }
template <int I>
constexpr int f (int (*)[undefined_if_1 (I)] = 0) { return 1; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 1);
Assert (n1 == 0);
}
// Exercise SFINAE based on the presence and absence of a right shift
// expression with a negative second operand.
namespace NegativeRightShift {
constexpr int a [] = { -1, 1 };
constexpr int undefined_if_0 (int i) { return 2 >> a [i]; }
constexpr int undefined_if_1 (int i) { return 2 >> a [!i]; }
template <int I>
constexpr int f (int (*)[undefined_if_0 (I)] = 0) { return 0; }
template <int I>
constexpr int f (int (*)[undefined_if_1 (I)] = 0) { return 1; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 1);
Assert (n1 == 0);
}
// Exercise SFINAE based on the absence of signed integer overflow
// in a signed left shift expression.
namespace LeftShiftOverflow {
constexpr int a[] = { 1234, 1 };
constexpr int undefined_if_0 (int i) { return 1 << a [i]; }
constexpr int undefined_if_1 (int i) { return 1 << a [!i]; }
template <int I>
constexpr int f (int (*)[undefined_if_0 (I)] = 0) { return 0; }
template <int I>
constexpr int f (int (*)[undefined_if_1 (I)] = 0) { return 1; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 1);
Assert (n1 == 0);
}
// Exercise SFINAE based on the absence of using a negative array
// index.
namespace NegativeArrayIndex {
constexpr int a [] = { -1, 1 };
constexpr int undefined_if_0 (int i) { return 2 + a [a [i]]; }
constexpr int undefined_if_1 (int i) { return 2 + a [a [!i]]; }
template <int I>
constexpr int f (int (*)[undefined_if_0 (I)] = 0) { return 0; }
template <int I>
constexpr int f (int (*)[undefined_if_1 (I)] = 0) { return 1; }
constexpr int n0 = f<0>();
constexpr int n1 = f<1>();
Assert (n0 == 1);
Assert (n1 == 0);
}