blob: afab30a5e1eabb11ef8670cc5586f1bde4424989 [file] [log] [blame]
// { dg-do compile }
// { dg-options "-O3 -floop-nest-optimize -Wno-conversion-null -Wno-return-type" }
void __throw_bad_alloc ();
template <typename _Tp> void
swap (_Tp & __a, _Tp __b)
{
__a = __b;
}
template <typename _Category> struct iterator
{
typedef _Category iterator_category;
};
template <typename _Tp> struct allocator
{
typedef __SIZE_TYPE__ size_type;
typedef _Tp pointer;
pointer allocate (size_type)
{
__throw_bad_alloc ();
return __null;
}
};
template <class T, class = allocator <T> >class unbounded_array;
template <class T, class = unbounded_array <T> >class vector;
template <class = int> class scalar_vector;
template <class IC> struct random_access_iterator_base : public iterator <IC>
{
};
template <class X, class> struct promote_traits
{
typedef __typeof__ ((X ())) promote_type;
};
template <class T> struct scalar_traits
{
typedef T const_reference;
typedef T reference;
};
template <class T> struct type_traits : scalar_traits <T>
{
};
struct dense_proxy_tag
{
};
template <class> struct iterator_base_traits;
template <> struct iterator_base_traits <dense_proxy_tag>
{
template <class, class> struct iterator_base
{
typedef random_access_iterator_base <dense_proxy_tag> type;
};
};
template <class I1, class> struct iterator_restrict_traits
{
typedef I1 iterator_category;
};
template <class> class storage_array
{
};
template <class T, class ALLOC> struct unbounded_array : public storage_array <unbounded_array <ALLOC> >
{
typedef typename ALLOC::size_type size_type;
typedef T & reference;
typedef T *pointer;
unbounded_array (size_type size, ALLOC = ALLOC ()) : alloc_ (), size_ (size)
{
alloc_.allocate (size_);
}
~unbounded_array ()
{
if (size_)
for (;;);
}
size_type
size () const
{
return size_;
}
reference
operator[] (size_type i)
{
return data_[i];
}
void
swap (unbounded_array & a)
{
::swap (size_, a.size_);
}
ALLOC alloc_;
size_type size_;
pointer data_;
};
template <class T1, class T2> struct scalar_binary_functor
{
typedef typename promote_traits <T1, T2>::promote_type result_type;
};
template <class T1, class T2> struct scalar_plus : public scalar_binary_functor <T1, T2>
{
};
template <class T1, class T2> struct scalar_multiplies : public scalar_binary_functor <T1, T2>
{
};
template <class T1, class T2> struct scalar_binary_assign_functor
{
typedef typename type_traits <T1>::reference argument1_type;
typedef typename type_traits <T2>::const_reference argument2_type;
};
template <class T1, class T2> struct scalar_assign : public scalar_binary_assign_functor <T1, T2>
{
typedef typename scalar_binary_assign_functor <T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_assign_functor <T1, T2>::argument2_type argument2_type;
static const bool computed = false;
static void
apply (argument1_type t1, argument2_type t2)
{
t1 = t2;
}
};
template <class E> struct vector_expression
{
typedef E expression_type;
const expression_type &
operator () () const
{
return *static_cast <const expression_type *>(this);
}
};
template <class C> class vector_container : public vector_expression <C>
{
};
template <class E> struct vector_reference : public vector_expression <vector_reference <E> >
{
typedef typename E::size_type size_type;
typename E::const_reference const_reference;
typedef E referred_type;
vector_reference (referred_type & e) : e_ (e)
{
}
size_type
size () const
{
return expression ().size ();
}
referred_type &
expression () const
{
return e_;
}
referred_type &e_;
};
template <class E1, class E2, class F> struct vector_binary : public vector_expression <vector_binary <E1, E2, F> >
{
typedef E1 expression1_type;
typedef E2 expression2_type;
typedef typename E1::const_closure_type expression1_closure_type;
typedef typename E2::const_closure_type expression2_closure_type;
typedef typename promote_traits <typename E1::size_type, typename E2::size_type>::promote_type size_type;
typedef typename F::result_type value_type;
vector_binary (const expression1_type & e1, expression2_type e2) : e1_ (e1), e2_ (e2)
{
}
size_type
size () const
{
return e1_.size ();
}
class const_iterator : public iterator_base_traits <typename iterator_restrict_traits <typename E1::const_iterator::iterator_category, const_iterator>::iterator_category>::template iterator_base <const_iterator, value_type>::type
{
};
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template <class E1, class E2, class F> struct vector_binary_traits
{
typedef vector_binary <E1, E2, F> expression_type;
typedef expression_type result_type;
};
template <class E1, class E2> typename vector_binary_traits <E1, E2, scalar_plus <typename E1::value_type, typename E2::value_type> >::result_type
operator + (vector_expression <E1> &e1, const vector_expression <E2> &e2)
{
typedef typename vector_binary_traits <E1, E2, scalar_plus <typename E1::value_type, typename E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
template <class E1, class E2, class F> struct vector_binary_scalar2 : public vector_expression <vector_binary_scalar2 <E1, E2, F> >
{
typedef vector_binary_scalar2 <E1, E2, F> self_type;
typedef typename E1::size_type size_type;
typedef typename F::result_type value_type;
typedef self_type const_closure_type;
};
template <class E1, class E2, class F> struct vector_binary_scalar2_traits
{
typedef vector_binary_scalar2 <E1, E2, F> result_type;
};
template <class E1, class T2>
typename vector_binary_scalar2_traits <E1, T2, scalar_multiplies <typename E1::value_type, T2> >::result_type
operator * (vector_expression <E1>, T2)
{
}
template <class SC> struct vector_assign_traits
{
typedef SC storage_category;
};
template <template <class, class> class F, class V, class E> void
indexing_vector_assign (V & v, vector_expression <E>)
{
typedef F <typename V::reference, typename E::value_type> functor_type;
typedef typename V::size_type size_type;
size_type size (v.size ());
for (size_type i; i <size; ++i)
functor_type::apply (v (i), (i));
}
template <template <class, class> class F, class V, class E> void
vector_assign (V & v, const vector_expression <E> &e, dense_proxy_tag)
{
indexing_vector_assign <F> (v, e);
}
template <template <class, class> class F, class V, class E> void
vector_assign (V & v, const vector_expression <E> &e)
{
typedef typename vector_assign_traits <typename V::storage_category>::storage_category storage_category;
vector_assign <F> (v, e, storage_category ());
}
template <class T, class A> struct vector : public vector_container <vector <T> >
{
typedef vector <T> self_type;
typedef typename A::size_type size_type;
typedef T value_type;
typedef typename type_traits <T>::const_reference const_reference;
typedef T &reference;
typedef A array_type;
typedef vector_reference <const self_type> const_closure_type;
typedef dense_proxy_tag storage_category;
vector (size_type size):vector_container <self_type> (), data_ (size)
{
}
vector (size_type size, value_type):vector_container <self_type> (), data_ (size)
{
}
template <class AE> vector (const vector_expression <AE> &ae) : vector_container <self_type> (), data_ (ae ().size ())
{
vector_assign <scalar_assign> (*this, ae);
}
size_type
size () const
{
return data_.size ();
}
array_type &
data ()
{
return data_;
}
reference
operator () (size_type i)
{
return data ()[i];
}
template <class AE> vector operator += (const vector_expression <AE> &ae)
{
self_type temporary (*this + ae);
data_.swap (temporary.data ());
return *this;
}
class const_iterator : public random_access_iterator_base <dense_proxy_tag>
{
};
array_type data_;
};
template <class T> struct scalar_vector : public vector_container <scalar_vector <> >
{
typedef scalar_vector self_type;
typedef __SIZE_TYPE__ size_type;
typedef T value_type;
typedef T const_reference;
typedef vector_reference <self_type> const_closure_type;
};
void
bar (vector <double>)
{
}
void
foo (int n_samp)
{
vector <double> xi (n_samp, 0);
for (int n = 0; n <n_samp; ++n)
{
vector <double> cos_w_n (n_samp);
xi += cos_w_n * 6.0;
}
vector <double> cos_wd (n_samp);
xi += cos_wd;
bar (xi + scalar_vector <> ());
}