blob: a8e97833ad023f529bebd623d246b3a896037235 [file] [log] [blame]
/* Compiler implementation of the D programming language
* Copyright (C) 1999-2021 by The D Language Foundation, All Rights Reserved
* written by Walter Bright
* http://www.digitalmars.com
* Distributed under the Boost Software License, Version 1.0.
* http://www.boost.org/LICENSE_1_0.txt
* https://github.com/D-Programming-Language/dmd/blob/master/src/ctfeexpr.c
*/
#include "root/dsystem.h" // mem{cpy|set}()
#include "root/rmem.h"
#include "mars.h"
#include "expression.h"
#include "declaration.h"
#include "aggregate.h"
// for AssocArray
#include "id.h"
#include "utf.h"
#include "template.h"
#include "ctfe.h"
int RealEquals(real_t x1, real_t x2);
/************** ClassReferenceExp ********************************************/
ClassReferenceExp::ClassReferenceExp(Loc loc, StructLiteralExp *lit, Type *type)
: Expression(loc, TOKclassreference, sizeof(ClassReferenceExp))
{
assert(lit && lit->sd && lit->sd->isClassDeclaration());
this->value = lit;
this->type = type;
}
ClassDeclaration *ClassReferenceExp::originalClass()
{
return value->sd->isClassDeclaration();
}
// Return index of the field, or -1 if not found
int ClassReferenceExp::getFieldIndex(Type *fieldtype, unsigned fieldoffset)
{
ClassDeclaration *cd = originalClass();
unsigned fieldsSoFar = 0;
for (size_t j = 0; j < value->elements->length; j++)
{
while (j - fieldsSoFar >= cd->fields.length)
{
fieldsSoFar += cd->fields.length;
cd = cd->baseClass;
}
VarDeclaration *v2 = cd->fields[j - fieldsSoFar];
if (fieldoffset == v2->offset &&
fieldtype->size() == v2->type->size())
{
return (int)(value->elements->length - fieldsSoFar - cd->fields.length + (j-fieldsSoFar));
}
}
return -1;
}
// Return index of the field, or -1 if not found
// Same as getFieldIndex, but checks for a direct match with the VarDeclaration
int ClassReferenceExp::findFieldIndexByName(VarDeclaration *v)
{
ClassDeclaration *cd = originalClass();
size_t fieldsSoFar = 0;
for (size_t j = 0; j < value->elements->length; j++)
{
while (j - fieldsSoFar >= cd->fields.length)
{
fieldsSoFar += cd->fields.length;
cd = cd->baseClass;
}
VarDeclaration *v2 = cd->fields[j - fieldsSoFar];
if (v == v2)
{
return (int)(value->elements->length - fieldsSoFar - cd->fields.length + (j-fieldsSoFar));
}
}
return -1;
}
/************** VoidInitExp ********************************************/
VoidInitExp::VoidInitExp(VarDeclaration *var, Type *)
: Expression(var->loc, TOKvoid, sizeof(VoidInitExp))
{
this->var = var;
this->type = var->type;
}
const char *VoidInitExp::toChars()
{
return "void";
}
// Return index of the field, or -1 if not found
// Same as getFieldIndex, but checks for a direct match with the VarDeclaration
int findFieldIndexByName(StructDeclaration *sd, VarDeclaration *v)
{
for (size_t i = 0; i < sd->fields.length; ++i)
{
if (sd->fields[i] == v)
return (int)i;
}
return -1;
}
/************** ThrownExceptionExp ********************************************/
ThrownExceptionExp::ThrownExceptionExp(Loc loc, ClassReferenceExp *victim) : Expression(loc, TOKthrownexception, sizeof(ThrownExceptionExp))
{
this->thrown = victim;
this->type = victim->type;
}
const char *ThrownExceptionExp::toChars()
{
return "CTFE ThrownException";
}
// Generate an error message when this exception is not caught
void ThrownExceptionExp::generateUncaughtError()
{
UnionExp ue;
Expression *e = resolveSlice((*thrown->value->elements)[0], &ue);
StringExp *se = e->toStringExp();
thrown->error("uncaught CTFE exception %s(%s)", thrown->type->toChars(), se ? se->toChars() : e->toChars());
/* Also give the line where the throw statement was. We won't have it
* in the case where the ThrowStatement is generated internally
* (eg, in ScopeStatement)
*/
if (loc.filename && !loc.equals(thrown->loc))
errorSupplemental(loc, "thrown from here");
}
// True if 'e' is CTFEExp::cantexp, or an exception
bool exceptionOrCantInterpret(Expression *e)
{
return e && (e->op == TOKcantexp || e->op == TOKthrownexception);
}
/********************** CTFEExp ******************************************/
CTFEExp *CTFEExp::cantexp;
CTFEExp *CTFEExp::voidexp;
CTFEExp *CTFEExp::breakexp;
CTFEExp *CTFEExp::continueexp;
CTFEExp *CTFEExp::gotoexp;
CTFEExp::CTFEExp(TOK tok)
: Expression(Loc(), tok, sizeof(CTFEExp))
{
type = Type::tvoid;
}
const char *CTFEExp::toChars()
{
switch (op)
{
case TOKcantexp: return "<cant>";
case TOKvoidexp: return "cast(void)0";
case TOKbreak: return "<break>";
case TOKcontinue: return "<continue>";
case TOKgoto: return "<goto>";
default: assert(0); return NULL;
}
}
Expression *UnionExp::copy()
{
Expression *e = exp();
//if (e->size > sizeof(u)) printf("%s\n", Token::toChars(e->op));
assert(e->size <= sizeof(u));
if (e->op == TOKcantexp) return CTFEExp::cantexp;
if (e->op == TOKvoidexp) return CTFEExp::voidexp;
if (e->op == TOKbreak) return CTFEExp::breakexp;
if (e->op == TOKcontinue) return CTFEExp::continueexp;
if (e->op == TOKgoto) return CTFEExp::gotoexp;
return e->copy();
}
/************** Aggregate literals (AA/string/array/struct) ******************/
// Given expr, which evaluates to an array/AA/string literal,
// return true if it needs to be copied
bool needToCopyLiteral(Expression *expr)
{
for (;;)
{
switch (expr->op)
{
case TOKarrayliteral:
return ((ArrayLiteralExp *)expr)->ownedByCtfe == OWNEDcode;
case TOKassocarrayliteral:
return ((AssocArrayLiteralExp *)expr)->ownedByCtfe == OWNEDcode;
case TOKstructliteral:
return ((StructLiteralExp *)expr)->ownedByCtfe == OWNEDcode;
case TOKstring:
case TOKthis:
case TOKvar:
return false;
case TOKassign:
return false;
case TOKindex:
case TOKdotvar:
case TOKslice:
case TOKcast:
expr = ((UnaExp *)expr)->e1;
continue;
case TOKcat:
return needToCopyLiteral(((BinExp *)expr)->e1) ||
needToCopyLiteral(((BinExp *)expr)->e2);
case TOKcatass:
expr = ((BinExp *)expr)->e2;
continue;
default:
return false;
}
}
}
Expressions *copyLiteralArray(Expressions *oldelems, Expression *basis = NULL)
{
if (!oldelems)
return oldelems;
CtfeStatus::numArrayAllocs++;
Expressions *newelems = new Expressions();
newelems->setDim(oldelems->length);
for (size_t i = 0; i < oldelems->length; i++)
{
Expression *el = (*oldelems)[i];
if (!el)
el = basis;
(*newelems)[i] = copyLiteral(el).copy();
}
return newelems;
}
// Make a copy of the ArrayLiteral, AALiteral, String, or StructLiteral.
// This value will be used for in-place modification.
UnionExp copyLiteral(Expression *e)
{
UnionExp ue;
if (e->op == TOKstring) // syntaxCopy doesn't make a copy for StringExp!
{
StringExp *se = (StringExp *)e;
utf8_t *s = (utf8_t *)mem.xcalloc(se->len + 1, se->sz);
memcpy(s, se->string, se->len * se->sz);
new(&ue) StringExp(se->loc, s, se->len);
StringExp *se2 = (StringExp *)ue.exp();
se2->committed = se->committed;
se2->postfix = se->postfix;
se2->type = se->type;
se2->sz = se->sz;
se2->ownedByCtfe = OWNEDctfe;
return ue;
}
if (e->op == TOKarrayliteral)
{
ArrayLiteralExp *ale = (ArrayLiteralExp *)e;
Expressions *elements = copyLiteralArray(ale->elements, ale->basis);
new(&ue) ArrayLiteralExp(e->loc, e->type, elements);
ArrayLiteralExp *r = (ArrayLiteralExp *)ue.exp();
r->ownedByCtfe = OWNEDctfe;
return ue;
}
if (e->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)e;
new(&ue) AssocArrayLiteralExp(e->loc, copyLiteralArray(aae->keys), copyLiteralArray(aae->values));
AssocArrayLiteralExp *r = (AssocArrayLiteralExp *)ue.exp();
r->type = e->type;
r->ownedByCtfe = OWNEDctfe;
return ue;
}
if (e->op == TOKstructliteral)
{
/* syntaxCopy doesn't work for struct literals, because of a nasty special
* case: block assignment is permitted inside struct literals, eg,
* an int[4] array can be initialized with a single int.
*/
StructLiteralExp *sle = (StructLiteralExp *)e;
Expressions *oldelems = sle->elements;
Expressions * newelems = new Expressions();
newelems->setDim(oldelems->length);
for (size_t i = 0; i < newelems->length; i++)
{
// We need the struct definition to detect block assignment
VarDeclaration *v = sle->sd->fields[i];
Expression *m = (*oldelems)[i];
// If it is a void assignment, use the default initializer
if (!m)
m = voidInitLiteral(v->type, v).copy();
if (v->type->ty == Tarray || v->type->ty == Taarray)
{
// Don't have to copy array references
}
else
{
// Buzilla 15681: Copy the source element always.
m = copyLiteral(m).copy();
// Block assignment from inside struct literals
if (v->type->ty != m->type->ty && v->type->ty == Tsarray)
{
TypeSArray *tsa = (TypeSArray *)v->type;
size_t len = (size_t)tsa->dim->toInteger();
UnionExp uex;
m = createBlockDuplicatedArrayLiteral(&uex, e->loc, v->type, m, len);
if (m == uex.exp())
m = uex.copy();
}
}
(*newelems)[i] = m;
}
new(&ue) StructLiteralExp(e->loc, sle->sd, newelems, sle->stype);
StructLiteralExp *r = (StructLiteralExp *)ue.exp();
r->type = e->type;
r->ownedByCtfe = OWNEDctfe;
r->origin = ((StructLiteralExp *)e)->origin;
return ue;
}
if (e->op == TOKfunction || e->op == TOKdelegate ||
e->op == TOKsymoff || e->op == TOKnull ||
e->op == TOKvar || e->op == TOKdotvar ||
e->op == TOKint64 || e->op == TOKfloat64 ||
e->op == TOKchar || e->op == TOKcomplex80 ||
e->op == TOKvoid || e->op == TOKvector ||
e->op == TOKtypeid)
{
// Simple value types
// Keep e1 for DelegateExp and DotVarExp
new(&ue) UnionExp(e);
Expression *r = ue.exp();
r->type = e->type;
return ue;
}
if (e->op == TOKslice)
{
SliceExp *se = (SliceExp *)e;
if (se->type->toBasetype()->ty == Tsarray)
{
// same with resolveSlice()
if (se->e1->op == TOKnull)
{
new(&ue) NullExp(se->loc, se->type);
return ue;
}
ue = Slice(se->type, se->e1, se->lwr, se->upr);
assert(ue.exp()->op == TOKarrayliteral);
ArrayLiteralExp *r = (ArrayLiteralExp *)ue.exp();
r->elements = copyLiteralArray(r->elements);
r->ownedByCtfe = OWNEDctfe;
return ue;
}
else
{
// Array slices only do a shallow copy
new(&ue) SliceExp(e->loc, se->e1, se->lwr, se->upr);
Expression *r = ue.exp();
r->type = e->type;
return ue;
}
}
if (isPointer(e->type))
{
// For pointers, we only do a shallow copy.
if (e->op == TOKaddress)
new(&ue) AddrExp(e->loc, ((AddrExp *)e)->e1);
else if (e->op == TOKindex)
new(&ue) IndexExp(e->loc, ((IndexExp *)e)->e1, ((IndexExp *)e)->e2);
else if (e->op == TOKdotvar)
{
new(&ue) DotVarExp(e->loc, ((DotVarExp *)e)->e1,
((DotVarExp *)e)->var, ((DotVarExp *)e)->hasOverloads);
}
else
assert(0);
Expression *r = ue.exp();
r->type = e->type;
return ue;
}
if (e->op == TOKclassreference)
{
new(&ue) ClassReferenceExp(e->loc, ((ClassReferenceExp *)e)->value, e->type);
return ue;
}
if (e->op == TOKerror)
{
new(&ue) UnionExp(e);
return ue;
}
e->error("CTFE internal error: literal %s", e->toChars());
assert(0);
return ue;
}
/* Deal with type painting.
* Type painting is a major nuisance: we can't just set
* e->type = type, because that would change the original literal.
* But, we can't simply copy the literal either, because that would change
* the values of any pointers.
*/
Expression *paintTypeOntoLiteral(Type *type, Expression *lit)
{
if (lit->type->equals(type))
return lit;
return paintTypeOntoLiteralCopy(type, lit).copy();
}
Expression *paintTypeOntoLiteral(UnionExp *pue, Type *type, Expression *lit)
{
if (lit->type->equals(type))
return lit;
*pue = paintTypeOntoLiteralCopy(type, lit);
return pue->exp();
}
UnionExp paintTypeOntoLiteralCopy(Type *type, Expression *lit)
{
UnionExp ue;
if (lit->type->equals(type))
{
new(&ue) UnionExp(lit);
return ue;
}
// If it is a cast to inout, retain the original type of the referenced part.
if (type->hasWild() && type->hasPointers())
{
new(&ue) UnionExp(lit);
ue.exp()->type = type;
return ue;
}
if (lit->op == TOKslice)
{
SliceExp *se = (SliceExp *)lit;
new(&ue) SliceExp(lit->loc, se->e1, se->lwr, se->upr);
}
else if (lit->op == TOKindex)
{
IndexExp *ie = (IndexExp *)lit;
new(&ue) IndexExp(lit->loc, ie->e1, ie->e2);
}
else if (lit->op == TOKarrayliteral)
{
new(&ue) SliceExp(lit->loc, lit,
new IntegerExp(Loc(), 0, Type::tsize_t), ArrayLength(Type::tsize_t, lit).copy());
}
else if (lit->op == TOKstring)
{
// For strings, we need to introduce another level of indirection
new(&ue) SliceExp(lit->loc, lit,
new IntegerExp(Loc(), 0, Type::tsize_t), ArrayLength(Type::tsize_t, lit).copy());
}
else if (lit->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)lit;
// TODO: we should be creating a reference to this AAExp, not
// just a ref to the keys and values.
OwnedBy wasOwned = aae->ownedByCtfe;
new(&ue) AssocArrayLiteralExp(lit->loc, aae->keys, aae->values);
aae = (AssocArrayLiteralExp *)ue.exp();
aae->ownedByCtfe = wasOwned;
}
else
{
// Can't type paint from struct to struct*; this needs another
// level of indirection
if (lit->op == TOKstructliteral && isPointer(type))
lit->error("CTFE internal error: painting %s", type->toChars());
ue = copyLiteral(lit);
}
ue.exp()->type = type;
return ue;
}
/*************************************
* If e is a SliceExp, constant fold it.
* Params:
* e = expression to resolve
* pue = if not null, store resulting expression here
* Returns:
* resulting expression
*/
Expression *resolveSlice(Expression *e, UnionExp *pue)
{
if (e->op != TOKslice)
return e;
SliceExp *se = (SliceExp *)e;
if (se->e1->op == TOKnull)
return se->e1;
if (pue)
{
*pue = Slice(e->type, se->e1, se->lwr, se->upr);
return pue->exp();
}
else
return Slice(e->type, se->e1, se->lwr, se->upr).copy();
}
/* Determine the array length, without interpreting it.
* e must be an array literal, or a slice
* It's very wasteful to resolve the slice when we only
* need the length.
*/
uinteger_t resolveArrayLength(Expression *e)
{
if (e->op == TOKvector)
return ((VectorExp *)e)->dim;
if (e->op == TOKnull)
return 0;
if (e->op == TOKslice)
{
uinteger_t ilo = ((SliceExp *)e)->lwr->toInteger();
uinteger_t iup = ((SliceExp *)e)->upr->toInteger();
return iup - ilo;
}
if (e->op == TOKstring)
{
return ((StringExp *)e)->len;
}
if (e->op == TOKarrayliteral)
{
ArrayLiteralExp *ale = (ArrayLiteralExp *)e;
return ale->elements ? ale->elements->length : 0;
}
if (e->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *ale = (AssocArrayLiteralExp *)e;
return ale->keys->length;
}
assert(0);
return 0;
}
/******************************
* Helper for NewExp
* Create an array literal consisting of 'elem' duplicated 'dim' times.
* Params:
* pue = where to store result
* loc = source location where the interpretation occurs
* type = target type of the result
* elem = the source of array element, it will be owned by the result
* dim = element number of the result
* Returns:
* Constructed ArrayLiteralExp
*/
ArrayLiteralExp *createBlockDuplicatedArrayLiteral(UnionExp *pue, Loc loc, Type *type,
Expression *elem, size_t dim)
{
if (type->ty == Tsarray && type->nextOf()->ty == Tsarray && elem->type->ty != Tsarray)
{
// If it is a multidimensional array literal, do it recursively
TypeSArray *tsa = (TypeSArray *)type->nextOf();
size_t len = (size_t)tsa->dim->toInteger();
UnionExp ue;
elem = createBlockDuplicatedArrayLiteral(&ue, loc, type->nextOf(), elem, len);
if (elem == ue.exp())
elem = ue.copy();
}
// Buzilla 15681
Type *tb = elem->type->toBasetype();
const bool mustCopy = tb->ty == Tstruct || tb->ty == Tsarray;
Expressions *elements = new Expressions();
elements->setDim(dim);
for (size_t i = 0; i < dim; i++)
{
(*elements)[i] = mustCopy ? copyLiteral(elem).copy() : elem;
}
new(pue) ArrayLiteralExp(loc, type, elements);
ArrayLiteralExp *ale = (ArrayLiteralExp *)pue->exp();
ale->ownedByCtfe = OWNEDctfe;
return ale;
}
/******************************
* Helper for NewExp
* Create a string literal consisting of 'value' duplicated 'dim' times.
*/
StringExp *createBlockDuplicatedStringLiteral(UnionExp *pue, Loc loc, Type *type,
unsigned value, size_t dim, unsigned char sz)
{
utf8_t *s = (utf8_t *)mem.xcalloc(dim + 1, sz);
for (size_t elemi = 0; elemi < dim; ++elemi)
{
switch (sz)
{
case 1: s[elemi] = (utf8_t)value; break;
case 2: ((unsigned short *)s)[elemi] = (unsigned short)value; break;
case 4: ((unsigned *)s)[elemi] = value; break;
default: assert(0);
}
}
new(pue) StringExp(loc, s, dim);
StringExp *se = (StringExp *)pue->exp();
se->type = type;
se->sz = sz;
se->committed = true;
se->ownedByCtfe = OWNEDctfe;
return se;
}
// Return true if t is an AA
bool isAssocArray(Type *t)
{
t = t->toBasetype();
if (t->ty == Taarray)
return true;
return false;
}
// Given a template AA type, extract the corresponding built-in AA type
TypeAArray *toBuiltinAAType(Type *t)
{
t = t->toBasetype();
if (t->ty == Taarray)
return (TypeAArray *)t;
assert(0);
return NULL;
}
/************** TypeInfo operations ************************************/
// Return true if type is TypeInfo_Class
bool isTypeInfo_Class(Type *type)
{
return type->ty == Tclass &&
(Type::dtypeinfo == ((TypeClass *)type)->sym ||
Type::dtypeinfo->isBaseOf(((TypeClass *)type)->sym, NULL));
}
/************** Pointer operations ************************************/
// Return true if t is a pointer (not a function pointer)
bool isPointer(Type *t)
{
Type * tb = t->toBasetype();
return tb->ty == Tpointer && tb->nextOf()->ty != Tfunction;
}
// For CTFE only. Returns true if 'e' is true or a non-null pointer.
bool isTrueBool(Expression *e)
{
return e->isBool(true) ||
((e->type->ty == Tpointer || e->type->ty == Tclass) && e->op != TOKnull);
}
/* Is it safe to convert from srcPointee* to destPointee* ?
* srcPointee is the genuine type (never void).
* destPointee may be void.
*/
bool isSafePointerCast(Type *srcPointee, Type *destPointee)
{
// It's safe to cast S** to D** if it's OK to cast S* to D*
while (srcPointee->ty == Tpointer && destPointee->ty == Tpointer)
{
srcPointee = srcPointee->nextOf();
destPointee = destPointee->nextOf();
}
// It's OK if both are the same (modulo const)
if (srcPointee->constConv(destPointee))
return true;
// It's OK if function pointers differ only in safe/pure/nothrow
if (srcPointee->ty == Tfunction && destPointee->ty == Tfunction)
return srcPointee->covariant(destPointee) == 1;
// it's OK to cast to void*
if (destPointee->ty == Tvoid)
return true;
// It's OK to cast from V[K] to void*
if (srcPointee->ty == Taarray && destPointee == Type::tvoidptr)
return true;
// It's OK if they are the same size (static array of) integers, eg:
// int* --> uint*
// int[5][] --> uint[5][]
if (srcPointee->ty == Tsarray && destPointee->ty == Tsarray)
{
if (srcPointee->size() != destPointee->size())
return false;
srcPointee = srcPointee->baseElemOf();
destPointee = destPointee->baseElemOf();
}
return srcPointee->isintegral() &&
destPointee->isintegral() &&
srcPointee->size() == destPointee->size();
}
Expression *getAggregateFromPointer(Expression *e, dinteger_t *ofs)
{
*ofs = 0;
if (e->op == TOKaddress)
e = ((AddrExp *)e)->e1;
if (e->op == TOKsymoff)
*ofs = ((SymOffExp *)e)->offset;
if (e->op == TOKdotvar)
{
Expression *ex = ((DotVarExp *)e)->e1;
VarDeclaration *v = ((DotVarExp *)e)->var->isVarDeclaration();
assert(v);
StructLiteralExp *se = ex->op == TOKclassreference ? ((ClassReferenceExp *)ex)->value : (StructLiteralExp *)ex;
// We can't use getField, because it makes a copy
unsigned i;
if (ex->op == TOKclassreference)
i = ((ClassReferenceExp *)ex)->getFieldIndex(e->type, v->offset);
else
i = se->getFieldIndex(e->type, v->offset);
e = (*se->elements)[i];
}
if (e->op == TOKindex)
{
IndexExp *ie = (IndexExp *)e;
// Note that each AA element is part of its own memory block
if ((ie->e1->type->ty == Tarray ||
ie->e1->type->ty == Tsarray ||
ie->e1->op == TOKstring ||
ie->e1->op == TOKarrayliteral) &&
ie->e2->op == TOKint64)
{
*ofs = ie->e2->toInteger();
return ie->e1;
}
}
if (e->op == TOKslice && e->type->toBasetype()->ty == Tsarray)
{
SliceExp *se = (SliceExp *)e;
if ((se->e1->type->ty == Tarray ||
se->e1->type->ty == Tsarray ||
se->e1->op == TOKstring ||
se->e1->op == TOKarrayliteral) &&
se->lwr->op == TOKint64)
{
*ofs = se->lwr->toInteger();
return se->e1;
}
}
return e;
}
/** Return true if agg1 and agg2 are pointers to the same memory block
*/
bool pointToSameMemoryBlock(Expression *agg1, Expression *agg2)
{
if (agg1 == agg2)
return true;
// For integers cast to pointers, we regard them as non-comparable
// unless they are identical. (This may be overly strict).
if (agg1->op == TOKint64 && agg2->op == TOKint64 &&
agg1->toInteger() == agg2->toInteger())
{
return true;
}
// Note that type painting can occur with VarExp, so we
// must compare the variables being pointed to.
if (agg1->op == TOKvar && agg2->op == TOKvar &&
((VarExp *)agg1)->var == ((VarExp *)agg2)->var)
{
return true;
}
if (agg1->op == TOKsymoff && agg2->op == TOKsymoff &&
((SymOffExp *)agg1)->var == ((SymOffExp *)agg2)->var)
{
return true;
}
return false;
}
// return e1 - e2 as an integer, or error if not possible
UnionExp pointerDifference(Loc loc, Type *type, Expression *e1, Expression *e2)
{
UnionExp ue;
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(e1, &ofs1);
Expression *agg2 = getAggregateFromPointer(e2, &ofs2);
if (agg1 == agg2)
{
Type *pointee = ((TypePointer *)agg1->type)->next;
dinteger_t sz = pointee->size();
new(&ue) IntegerExp(loc, (ofs1 - ofs2) * sz, type);
}
else if (agg1->op == TOKstring && agg2->op == TOKstring)
{
if (((StringExp *)agg1)->string == ((StringExp *)agg2)->string)
{
Type *pointee = ((TypePointer *)agg1->type)->next;
dinteger_t sz = pointee->size();
new(&ue) IntegerExp(loc, (ofs1 - ofs2) * sz, type);
}
}
else if (agg1->op == TOKsymoff && agg2->op == TOKsymoff &&
((SymOffExp *)agg1)->var == ((SymOffExp *)agg2)->var)
{
new(&ue) IntegerExp(loc, ofs1 - ofs2, type);
}
else
{
error(loc, "%s - %s cannot be interpreted at compile time: cannot subtract "
"pointers to two different memory blocks",
e1->toChars(), e2->toChars());
new(&ue) CTFEExp(TOKcantexp);
}
return ue;
}
// Return eptr op e2, where eptr is a pointer, e2 is an integer,
// and op is TOKadd or TOKmin
UnionExp pointerArithmetic(Loc loc, TOK op, Type *type,
Expression *eptr, Expression *e2)
{
UnionExp ue;
if (eptr->type->nextOf()->ty == Tvoid)
{
error(loc, "cannot perform arithmetic on void* pointers at compile time");
Lcant:
new(&ue) CTFEExp(TOKcantexp);
return ue;
}
dinteger_t ofs1;
if (eptr->op == TOKaddress)
eptr = ((AddrExp *)eptr)->e1;
Expression *agg1 = getAggregateFromPointer(eptr, &ofs1);
if (agg1->op == TOKsymoff)
{
if (((SymOffExp *)agg1)->var->type->ty != Tsarray)
{
error(loc, "cannot perform pointer arithmetic on arrays of unknown length at compile time");
goto Lcant;
}
}
else if (agg1->op != TOKstring && agg1->op != TOKarrayliteral)
{
error(loc, "cannot perform pointer arithmetic on non-arrays at compile time");
goto Lcant;
}
dinteger_t ofs2 = e2->toInteger();
Type *pointee = ((TypeNext *)agg1->type->toBasetype())->next;
dinteger_t sz = pointee->size();
sinteger_t indx;
dinteger_t len;
if (agg1->op == TOKsymoff)
{
indx = ofs1 / sz;
len = ((TypeSArray *)((SymOffExp *)agg1)->var->type)->dim->toInteger();
}
else
{
Expression *dollar = ArrayLength(Type::tsize_t, agg1).copy();
assert(!CTFEExp::isCantExp(dollar));
indx = ofs1;
len = dollar->toInteger();
}
if (op == TOKadd || op == TOKaddass || op == TOKplusplus)
indx += ofs2 / sz;
else if (op == TOKmin || op == TOKminass || op == TOKminusminus)
indx -= ofs2 / sz;
else
{
error(loc, "CTFE internal error: bad pointer operation");
goto Lcant;
}
if (indx < 0 || len < (dinteger_t)indx)
{
error(loc, "cannot assign pointer to index %lld inside memory block [0..%lld]", (ulonglong)indx, (ulonglong)len);
goto Lcant;
}
if (agg1->op == TOKsymoff)
{
new(&ue) SymOffExp(loc, ((SymOffExp *)agg1)->var, indx * sz);
SymOffExp *se = (SymOffExp *)ue.exp();
se->type = type;
return ue;
}
if (agg1->op != TOKarrayliteral && agg1->op != TOKstring)
{
error(loc, "CTFE internal error: pointer arithmetic %s", agg1->toChars());
goto Lcant;
}
if (eptr->type->toBasetype()->ty == Tsarray)
{
dinteger_t dim = ((TypeSArray *)eptr->type->toBasetype())->dim->toInteger();
// Create a CTFE pointer &agg1[indx .. indx+dim]
SliceExp *se = new SliceExp(loc, agg1,
new IntegerExp(loc, indx, Type::tsize_t),
new IntegerExp(loc, indx + dim, Type::tsize_t));
se->type = type->toBasetype()->nextOf();
new(&ue) AddrExp(loc, se);
ue.exp()->type = type;
return ue;
}
// Create a CTFE pointer &agg1[indx]
IntegerExp *ofs = new IntegerExp(loc, indx, Type::tsize_t);
Expression *ie = new IndexExp(loc, agg1, ofs);
ie->type = type->toBasetype()->nextOf(); // Bugzilla 13992
new(&ue) AddrExp(loc, ie);
ue.exp()->type = type;
return ue;
}
// Return 1 if true, 0 if false
// -1 if comparison is illegal because they point to non-comparable memory blocks
int comparePointers(TOK op, Expression *agg1, dinteger_t ofs1, Expression *agg2, dinteger_t ofs2)
{
if (pointToSameMemoryBlock(agg1, agg2))
{
int n;
switch (op)
{
case TOKlt: n = (ofs1 < ofs2); break;
case TOKle: n = (ofs1 <= ofs2); break;
case TOKgt: n = (ofs1 > ofs2); break;
case TOKge: n = (ofs1 >= ofs2); break;
case TOKidentity:
case TOKequal: n = (ofs1 == ofs2); break;
case TOKnotidentity:
case TOKnotequal: n = (ofs1 != ofs2); break;
default:
assert(0);
}
return n;
}
bool null1 = (agg1->op == TOKnull);
bool null2 = (agg2->op == TOKnull);
int cmp;
if (null1 || null2)
{
switch (op)
{
case TOKlt: cmp = null1 && !null2; break;
case TOKgt: cmp = !null1 && null2; break;
case TOKle: cmp = null1; break;
case TOKge: cmp = null2; break;
case TOKidentity:
case TOKequal:
case TOKnotidentity: // 'cmp' gets inverted below
case TOKnotequal:
cmp = (null1 == null2);
break;
default:
assert(0);
}
}
else
{
switch (op)
{
case TOKidentity:
case TOKequal:
case TOKnotidentity: // 'cmp' gets inverted below
case TOKnotequal:
cmp = 0;
break;
default:
return -1; // memory blocks are different
}
}
if (op == TOKnotidentity || op == TOKnotequal)
cmp ^= 1;
return cmp;
}
// True if conversion from type 'from' to 'to' involves a reinterpret_cast
// floating point -> integer or integer -> floating point
bool isFloatIntPaint(Type *to, Type *from)
{
return from->size() == to->size() &&
((from->isintegral() && to->isfloating()) ||
(from->isfloating() && to->isintegral()));
}
// Reinterpret float/int value 'fromVal' as a float/integer of type 'to'.
Expression *paintFloatInt(UnionExp *pue, Expression *fromVal, Type *to)
{
if (exceptionOrCantInterpret(fromVal))
return fromVal;
assert(to->size() == 4 || to->size() == 8);
return Compiler::paintAsType(pue, fromVal, to);
}
/******** Constant folding, with support for CTFE ***************************/
/// Return true if non-pointer expression e can be compared
/// with >,is, ==, etc, using ctfeCmp, ctfeEqual, ctfeIdentity
bool isCtfeComparable(Expression *e)
{
if (e->op == TOKslice)
e = ((SliceExp *)e)->e1;
if (e->isConst() != 1)
{
if (e->op == TOKnull ||
e->op == TOKstring ||
e->op == TOKfunction ||
e->op == TOKdelegate ||
e->op == TOKarrayliteral ||
e->op == TOKstructliteral ||
e->op == TOKassocarrayliteral ||
e->op == TOKclassreference)
{
return true;
}
// Bugzilla 14123: TypeInfo object is comparable in CTFE
if (e->op == TOKtypeid)
return true;
return false;
}
return true;
}
/// Map TOK comparison ops
template <typename N>
static bool numCmp(TOK op, N n1, N n2)
{
switch (op)
{
case TOKlt:
return n1 < n2;
case TOKle:
return n1 <= n2;
case TOKgt:
return n1 > n2;
case TOKge:
return n1 >= n2;
default:
assert(0);
}
return false;
}
/// Returns cmp OP 0; where OP is ==, !=, <, >=, etc. Result is 0 or 1
int specificCmp(TOK op, int rawCmp)
{
return numCmp<int>(op, rawCmp, 0);
}
/// Returns e1 OP e2; where OP is ==, !=, <, >=, etc. Result is 0 or 1
int intUnsignedCmp(TOK op, dinteger_t n1, dinteger_t n2)
{
return numCmp<dinteger_t>(op, n1, n2);
}
/// Returns e1 OP e2; where OP is ==, !=, <, >=, etc. Result is 0 or 1
int intSignedCmp(TOK op, sinteger_t n1, sinteger_t n2)
{
return numCmp<sinteger_t>(op, n1, n2);
}
/// Returns e1 OP e2; where OP is ==, !=, <, >=, etc. Result is 0 or 1
int realCmp(TOK op, real_t r1, real_t r2)
{
// Don't rely on compiler, handle NAN arguments separately
if (CTFloat::isNaN(r1) || CTFloat::isNaN(r2)) // if unordered
{
switch (op)
{
case TOKlt:
case TOKle:
case TOKgt:
case TOKge:
break;
default:
assert(0);
}
return 0;
}
else
{
return numCmp<real_t>(op, r1, r2);
}
}
int ctfeRawCmp(Loc loc, Expression *e1, Expression *e2);
/* Conceptually the same as memcmp(e1, e2).
* e1 and e2 may be strings, arrayliterals, or slices.
* For string types, return <0 if e1 < e2, 0 if e1==e2, >0 if e1 > e2.
* For all other types, return 0 if e1 == e2, !=0 if e1 != e2.
*/
int ctfeCmpArrays(Loc loc, Expression *e1, Expression *e2, uinteger_t len)
{
// Resolve slices, if necessary
uinteger_t lo1 = 0;
uinteger_t lo2 = 0;
Expression *x = e1;
if (x->op == TOKslice)
{
lo1 = ((SliceExp *)x)->lwr->toInteger();
x = ((SliceExp *)x)->e1;
}
StringExp *se1 = (x->op == TOKstring) ? (StringExp *)x : NULL;
ArrayLiteralExp *ae1 = (x->op == TOKarrayliteral) ? (ArrayLiteralExp *)x : NULL;
x = e2;
if (x->op == TOKslice)
{
lo2 = ((SliceExp *)x)->lwr->toInteger();
x = ((SliceExp *)x)->e1;
}
StringExp *se2 = (x->op == TOKstring) ? (StringExp *)x : NULL;
ArrayLiteralExp *ae2 = (x->op == TOKarrayliteral) ? (ArrayLiteralExp *)x : NULL;
// Now both must be either TOKarrayliteral or TOKstring
if (se1 && se2)
return sliceCmpStringWithString(se1, se2, (size_t)lo1, (size_t)lo2, (size_t)len);
if (se1 && ae2)
return sliceCmpStringWithArray(se1, ae2, (size_t)lo1, (size_t)lo2, (size_t)len);
if (se2 && ae1)
return -sliceCmpStringWithArray(se2, ae1, (size_t)lo2, (size_t)lo1, (size_t)len);
assert (ae1 && ae2);
// Comparing two array literals. This case is potentially recursive.
// If they aren't strings, we just need an equality check rather than
// a full cmp.
bool needCmp = ae1->type->nextOf()->isintegral();
for (size_t i = 0; i < (size_t)len; i++)
{
Expression *ee1 = (*ae1->elements)[(size_t)(lo1 + i)];
Expression *ee2 = (*ae2->elements)[(size_t)(lo2 + i)];
if (needCmp)
{
sinteger_t c = ee1->toInteger() - ee2->toInteger();
if (c > 0)
return 1;
if (c < 0)
return -1;
}
else
{
if (ctfeRawCmp(loc, ee1, ee2))
return 1;
}
}
return 0;
}
/* Given a delegate expression e, return .funcptr.
* If e is NullExp, return NULL.
*/
FuncDeclaration *funcptrOf(Expression *e)
{
assert(e->type->ty == Tdelegate);
if (e->op == TOKdelegate)
return ((DelegateExp *)e)->func;
if (e->op == TOKfunction)
return ((FuncExp *)e)->fd;
assert(e->op == TOKnull);
return NULL;
}
bool isArray(Expression *e)
{
return e->op == TOKarrayliteral || e->op == TOKstring ||
e->op == TOKslice || e->op == TOKnull;
}
/* For strings, return <0 if e1 < e2, 0 if e1==e2, >0 if e1 > e2.
* For all other types, return 0 if e1 == e2, !=0 if e1 != e2.
*/
int ctfeRawCmp(Loc loc, Expression *e1, Expression *e2)
{
if (e1->op == TOKclassreference || e2->op == TOKclassreference)
{
if (e1->op == TOKclassreference && e2->op == TOKclassreference &&
((ClassReferenceExp *)e1)->value == ((ClassReferenceExp *)e2)->value)
return 0;
return 1;
}
if (e1->op == TOKtypeid && e2->op == TOKtypeid)
{
// printf("e1: %s\n", e1->toChars());
// printf("e2: %s\n", e2->toChars());
Type *t1 = isType(((TypeidExp *)e1)->obj);
Type *t2 = isType(((TypeidExp *)e2)->obj);
assert(t1);
assert(t2);
return t1 != t2;
}
// null == null, regardless of type
if (e1->op == TOKnull && e2->op == TOKnull)
return 0;
if (e1->type->ty == Tpointer && e2->type->ty == Tpointer)
{
// Can only be an equality test.
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(e1, &ofs1);
Expression *agg2 = getAggregateFromPointer(e2, &ofs2);
if ((agg1 == agg2) || (agg1->op == TOKvar && agg2->op == TOKvar &&
((VarExp *)agg1)->var == ((VarExp *)agg2)->var))
{
if (ofs1 == ofs2)
return 0;
}
return 1;
}
if (e1->type->ty == Tdelegate && e2->type->ty == Tdelegate)
{
// If .funcptr isn't the same, they are not equal
if (funcptrOf(e1) != funcptrOf(e2))
return 1;
// If both are delegate literals, assume they have the
// same closure pointer. TODO: We don't support closures yet!
if (e1->op == TOKfunction && e2->op == TOKfunction)
return 0;
assert(e1->op == TOKdelegate && e2->op == TOKdelegate);
// Same .funcptr. Do they have the same .ptr?
Expression * ptr1 = ((DelegateExp *)e1)->e1;
Expression * ptr2 = ((DelegateExp *)e2)->e1;
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(ptr1, &ofs1);
Expression *agg2 = getAggregateFromPointer(ptr2, &ofs2);
// If they are TOKvar, it means they are FuncDeclarations
if ((agg1 == agg2 && ofs1 == ofs2) ||
(agg1->op == TOKvar && agg2->op == TOKvar &&
((VarExp *)agg1)->var == ((VarExp *)agg2)->var))
{
return 0;
}
return 1;
}
if (isArray(e1) && isArray(e2))
{
uinteger_t len1 = resolveArrayLength(e1);
uinteger_t len2 = resolveArrayLength(e2);
// workaround for dmc optimizer bug calculating wrong len for
// uinteger_t len = (len1 < len2 ? len1 : len2);
// if (len == 0) ...
if (len1 > 0 && len2 > 0)
{
uinteger_t len = (len1 < len2 ? len1 : len2);
int res = ctfeCmpArrays(loc, e1, e2, len);
if (res != 0)
return res;
}
return (int)(len1 - len2);
}
if (e1->type->isintegral())
{
return e1->toInteger() != e2->toInteger();
}
real_t r1;
real_t r2;
if (e1->type->isreal())
{
r1 = e1->toReal();
r2 = e2->toReal();
goto L1;
}
else if (e1->type->isimaginary())
{
r1 = e1->toImaginary();
r2 = e2->toImaginary();
L1:
if (CTFloat::isNaN(r1) || CTFloat::isNaN(r2)) // if unordered
{
return 1;
}
else
{
return (r1 != r2);
}
}
else if (e1->type->iscomplex())
{
return e1->toComplex() != e2->toComplex();
}
if (e1->op == TOKstructliteral && e2->op == TOKstructliteral)
{
StructLiteralExp *es1 = (StructLiteralExp *)e1;
StructLiteralExp *es2 = (StructLiteralExp *)e2;
// For structs, we only need to return 0 or 1 (< and > aren't legal).
if (es1->sd != es2->sd)
return 1;
else if ((!es1->elements || !es1->elements->length) &&
(!es2->elements || !es2->elements->length))
return 0; // both arrays are empty
else if (!es1->elements || !es2->elements)
return 1;
else if (es1->elements->length != es2->elements->length)
return 1;
else
{
for (size_t i = 0; i < es1->elements->length; i++)
{
Expression *ee1 = (*es1->elements)[i];
Expression *ee2 = (*es2->elements)[i];
if (ee1 == ee2)
continue;
if (!ee1 || !ee2)
return 1;
int cmp = ctfeRawCmp(loc, ee1, ee2);
if (cmp)
return 1;
}
return 0; // All elements are equal
}
}
if (e1->op == TOKassocarrayliteral && e2->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *es1 = (AssocArrayLiteralExp *)e1;
AssocArrayLiteralExp *es2 = (AssocArrayLiteralExp *)e2;
size_t dim = es1->keys->length;
if (es2->keys->length != dim)
return 1;
bool *used = (bool *)mem.xmalloc(sizeof(bool) * dim);
memset(used, 0, sizeof(bool) * dim);
for (size_t i = 0; i < dim; ++i)
{
Expression *k1 = (*es1->keys)[i];
Expression *v1 = (*es1->values)[i];
Expression *v2 = NULL;
for (size_t j = 0; j < dim; ++j)
{
if (used[j])
continue;
Expression *k2 = (*es2->keys)[j];
if (ctfeRawCmp(loc, k1, k2))
continue;
used[j] = true;
v2 = (*es2->values)[j];
break;
}
if (!v2 || ctfeRawCmp(loc, v1, v2))
{
mem.xfree(used);
return 1;
}
}
mem.xfree(used);
return 0;
}
error(loc, "CTFE internal error: bad compare of `%s` and `%s`", e1->toChars(), e2->toChars());
assert(0);
return 0;
}
/// Evaluate ==, !=. Resolves slices before comparing. Returns 0 or 1
int ctfeEqual(Loc loc, TOK op, Expression *e1, Expression *e2)
{
int cmp = !ctfeRawCmp(loc, e1, e2);
if (op == TOKnotequal)
cmp ^= 1;
return cmp;
}
/// Evaluate is, !is. Resolves slices before comparing. Returns 0 or 1
int ctfeIdentity(Loc loc, TOK op, Expression *e1, Expression *e2)
{
//printf("ctfeIdentity op = '%s', e1 = %s %s, e2 = %s %s\n", Token::toChars(op),
// Token::toChars(e1->op), e1->toChars(), Token::toChars(e2->op), e1->toChars());
int cmp;
if (e1->op == TOKnull)
{
cmp = (e2->op == TOKnull);
}
else if (e2->op == TOKnull)
{
cmp = 0;
}
else if (e1->op == TOKsymoff && e2->op == TOKsymoff)
{
SymOffExp *es1 = (SymOffExp *)e1;
SymOffExp *es2 = (SymOffExp *)e2;
cmp = (es1->var == es2->var && es1->offset == es2->offset);
}
else if (e1->type->isreal())
cmp = RealEquals(e1->toReal(), e2->toReal());
else if (e1->type->isimaginary())
cmp = RealEquals(e1->toImaginary(), e2->toImaginary());
else if (e1->type->iscomplex())
{
complex_t v1 = e1->toComplex();
complex_t v2 = e2->toComplex();
cmp = RealEquals(creall(v1), creall(v2)) &&
RealEquals(cimagl(v1), cimagl(v1));
}
else
cmp = !ctfeRawCmp(loc, e1, e2);
if (op == TOKnotidentity || op == TOKnotequal)
cmp ^= 1;
return cmp;
}
/// Evaluate >,<=, etc. Resolves slices before comparing. Returns 0 or 1
int ctfeCmp(Loc loc, TOK op, Expression *e1, Expression *e2)
{
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
if (t1->isString() && t2->isString())
return specificCmp(op, ctfeRawCmp(loc, e1, e2));
else if (t1->isreal())
return realCmp(op, e1->toReal(), e2->toReal());
else if (t1->isimaginary())
return realCmp(op, e1->toImaginary(), e2->toImaginary());
else if (t1->isunsigned() || t2->isunsigned())
return intUnsignedCmp(op, e1->toInteger(), e2->toInteger());
else
return intSignedCmp(op, e1->toInteger(), e2->toInteger());
}
UnionExp ctfeCat(Loc loc, Type *type, Expression *e1, Expression *e2)
{
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
UnionExp ue;
if (e2->op == TOKstring && e1->op == TOKarrayliteral &&
t1->nextOf()->isintegral())
{
// [chars] ~ string => string (only valid for CTFE)
StringExp *es1 = (StringExp *)e2;
ArrayLiteralExp *es2 = (ArrayLiteralExp *)e1;
size_t len = es1->len + es2->elements->length;
unsigned char sz = es1->sz;
void *s = mem.xmalloc((len + 1) * sz);
memcpy((char *)s + sz * es2->elements->length, es1->string, es1->len * sz);
for (size_t i = 0; i < es2->elements->length; i++)
{
Expression *es2e = (*es2->elements)[i];
if (es2e->op != TOKint64)
{
new(&ue) CTFEExp(TOKcantexp);
return ue;
}
dinteger_t v = es2e->toInteger();
Port::valcpy((utf8_t *)s + i * sz, v, sz);
}
// Add terminating 0
memset((utf8_t *)s + len * sz, 0, sz);
new(&ue) StringExp(loc, s, len);
StringExp *es = (StringExp *)ue.exp();
es->sz = sz;
es->committed = 0;
es->type = type;
return ue;
}
if (e1->op == TOKstring && e2->op == TOKarrayliteral &&
t2->nextOf()->isintegral())
{
// string ~ [chars] => string (only valid for CTFE)
// Concatenate the strings
StringExp *es1 = (StringExp *)e1;
ArrayLiteralExp *es2 = (ArrayLiteralExp *)e2;
size_t len = es1->len + es2->elements->length;
unsigned char sz = es1->sz;
void *s = mem.xmalloc((len + 1) * sz);
memcpy(s, es1->string, es1->len * sz);
for (size_t i = 0; i < es2->elements->length; i++)
{
Expression *es2e = (*es2->elements)[i];
if (es2e->op != TOKint64)
{
new(&ue) CTFEExp(TOKcantexp);
return ue;
}
dinteger_t v = es2e->toInteger();
Port::valcpy((utf8_t *)s + (es1->len + i) * sz, v, sz);
}
// Add terminating 0
memset((utf8_t *)s + len * sz, 0, sz);
new(&ue) StringExp(loc, s, len);
StringExp *es = (StringExp *)ue.exp();
es->sz = sz;
es->committed = 0; //es1->committed;
es->type = type;
return ue;
}
if (e1->op == TOKarrayliteral && e2->op == TOKarrayliteral &&
t1->nextOf()->equals(t2->nextOf()))
{
// [ e1 ] ~ [ e2 ] ---> [ e1, e2 ]
ArrayLiteralExp *es1 = (ArrayLiteralExp *)e1;
ArrayLiteralExp *es2 = (ArrayLiteralExp *)e2;
new(&ue) ArrayLiteralExp(es1->loc, type, copyLiteralArray(es1->elements));
es1 = (ArrayLiteralExp *)ue.exp();
es1->elements->insert(es1->elements->length, copyLiteralArray(es2->elements));
return ue;
}
if (e1->op == TOKarrayliteral && e2->op == TOKnull &&
t1->nextOf()->equals(t2->nextOf()))
{
// [ e1 ] ~ null ----> [ e1 ].dup
ue = paintTypeOntoLiteralCopy(type, copyLiteral(e1).copy());
return ue;
}
if (e1->op == TOKnull && e2->op == TOKarrayliteral &&
t1->nextOf()->equals(t2->nextOf()))
{
// null ~ [ e2 ] ----> [ e2 ].dup
ue = paintTypeOntoLiteralCopy(type, copyLiteral(e2).copy());
return ue;
}
ue = Cat(type, e1, e2);
return ue;
}
/* Given an AA literal 'ae', and a key 'e2':
* Return ae[e2] if present, or NULL if not found.
*/
Expression *findKeyInAA(Loc loc, AssocArrayLiteralExp *ae, Expression *e2)
{
/* Search the keys backwards, in case there are duplicate keys
*/
for (size_t i = ae->keys->length; i;)
{
i--;
Expression *ekey = (*ae->keys)[i];
int eq = ctfeEqual(loc, TOKequal, ekey, e2);
if (eq)
{
return (*ae->values)[i];
}
}
return NULL;
}
/* Same as for constfold.Index, except that it only works for static arrays,
* dynamic arrays, and strings. We know that e1 is an
* interpreted CTFE expression, so it cannot have side-effects.
*/
Expression *ctfeIndex(Loc loc, Type *type, Expression *e1, uinteger_t indx)
{
//printf("ctfeIndex(e1 = %s)\n", e1->toChars());
assert(e1->type);
if (e1->op == TOKstring)
{
StringExp *es1 = (StringExp *)e1;
if (indx >= es1->len)
{
error(loc, "string index %llu is out of bounds [0 .. %llu]", (ulonglong)indx, (ulonglong)es1->len);
return CTFEExp::cantexp;
}
return new IntegerExp(loc, es1->charAt(indx), type);
}
assert(e1->op == TOKarrayliteral);
{
ArrayLiteralExp *ale = (ArrayLiteralExp *)e1;
if (indx >= ale->elements->length)
{
error(loc, "array index %llu is out of bounds %s[0 .. %llu]", (ulonglong)indx, e1->toChars(), (ulonglong)ale->elements->length);
return CTFEExp::cantexp;
}
Expression *e = (*ale->elements)[(size_t)indx];
return paintTypeOntoLiteral(type, e);
}
}
Expression *ctfeCast(UnionExp *pue, Loc loc, Type *type, Type *to, Expression *e)
{
if (e->op == TOKnull)
return paintTypeOntoLiteral(pue, to, e);
if (e->op == TOKclassreference)
{
// Disallow reinterpreting class casts. Do this by ensuring that
// the original class can implicitly convert to the target class
ClassDeclaration *originalClass = ((ClassReferenceExp *)e)->originalClass();
if (originalClass->type->implicitConvTo(to->mutableOf()))
return paintTypeOntoLiteral(pue, to, e);
else
{
new(pue) NullExp(loc, to);
return pue->exp();
}
}
// Allow TypeInfo type painting
if (isTypeInfo_Class(e->type) && e->type->implicitConvTo(to))
return paintTypeOntoLiteral(pue, to, e);
// Allow casting away const for struct literals
if (e->op == TOKstructliteral &&
e->type->toBasetype()->castMod(0) == to->toBasetype()->castMod(0))
return paintTypeOntoLiteral(pue, to, e);
Expression *r;
if (e->type->equals(type) && type->equals(to))
{
// necessary not to change e's address for pointer comparisons
r = e;
}
else if (to->toBasetype()->ty == Tarray &&
type->toBasetype()->ty == Tarray &&
to->toBasetype()->nextOf()->size() == type->toBasetype()->nextOf()->size())
{
// Bugzilla 12495: Array reinterpret casts: eg. string to immutable(ubyte)[]
return paintTypeOntoLiteral(pue, to, e);
}
else
{
*pue = Cast(loc, type, to, e);
r = pue->exp();
}
if (CTFEExp::isCantExp(r))
error(loc, "cannot cast %s to %s at compile time", e->toChars(), to->toChars());
if (e->op == TOKarrayliteral)
((ArrayLiteralExp *)e)->ownedByCtfe = OWNEDctfe;
if (e->op == TOKstring)
((StringExp *)e)->ownedByCtfe = OWNEDctfe;
return r;
}
/******** Assignment helper functions ***************************/
/* Set dest = src, where both dest and src are container value literals
* (ie, struct literals, or static arrays (can be an array literal or a string))
* Assignment is recursively in-place.
* Purpose: any reference to a member of 'dest' will remain valid after the
* assignment.
*/
void assignInPlace(Expression *dest, Expression *src)
{
assert(dest->op == TOKstructliteral ||
dest->op == TOKarrayliteral ||
dest->op == TOKstring);
Expressions *oldelems;
Expressions *newelems;
if (dest->op == TOKstructliteral)
{
assert(dest->op == src->op);
oldelems = ((StructLiteralExp *)dest)->elements;
newelems = ((StructLiteralExp *)src)->elements;
if (((StructLiteralExp *)dest)->sd->isNested() && oldelems->length == newelems->length - 1)
oldelems->push(NULL);
}
else if (dest->op == TOKarrayliteral && src->op==TOKarrayliteral)
{
oldelems = ((ArrayLiteralExp *)dest)->elements;
newelems = ((ArrayLiteralExp *)src)->elements;
}
else if (dest->op == TOKstring && src->op == TOKstring)
{
sliceAssignStringFromString((StringExp *)dest, (StringExp *)src, 0);
return;
}
else if (dest->op == TOKarrayliteral && src->op == TOKstring)
{
sliceAssignArrayLiteralFromString((ArrayLiteralExp *)dest, (StringExp *)src, 0);
return;
}
else if (src->op == TOKarrayliteral && dest->op == TOKstring)
{
sliceAssignStringFromArrayLiteral((StringExp *)dest, (ArrayLiteralExp *)src, 0);
return;
}
else
assert(0);
assert(oldelems->length == newelems->length);
for (size_t i= 0; i < oldelems->length; ++i)
{
Expression *e = (*newelems)[i];
Expression *o = (*oldelems)[i];
if (e->op == TOKstructliteral)
{
assert(o->op == e->op);
assignInPlace(o, e);
}
else if (e->type->ty == Tsarray && e->op != TOKvoid &&
o->type->ty == Tsarray)
{
assignInPlace(o, e);
}
else
{
(*oldelems)[i] = (*newelems)[i];
}
}
}
// Duplicate the elements array, then set field 'indexToChange' = newelem.
Expressions *changeOneElement(Expressions *oldelems, size_t indexToChange, Expression *newelem)
{
Expressions *expsx = new Expressions();
++CtfeStatus::numArrayAllocs;
expsx->setDim(oldelems->length);
for (size_t j = 0; j < expsx->length; j++)
{
if (j == indexToChange)
(*expsx)[j] = newelem;
else
(*expsx)[j] = (*oldelems)[j];
}
return expsx;
}
// Given an AA literal aae, set aae[index] = newval and return newval.
Expression *assignAssocArrayElement(Loc loc, AssocArrayLiteralExp *aae,
Expression *index, Expression *newval)
{
/* Create new associative array literal reflecting updated key/value
*/
Expressions *keysx = aae->keys;
Expressions *valuesx = aae->values;
int updated = 0;
for (size_t j = valuesx->length; j; )
{
j--;
Expression *ekey = (*aae->keys)[j];
int eq = ctfeEqual(loc, TOKequal, ekey, index);
if (eq)
{
(*valuesx)[j] = newval;
updated = 1;
}
}
if (!updated)
{
// Append index/newval to keysx[]/valuesx[]
valuesx->push(newval);
keysx->push(index);
}
return newval;
}
/// Given array literal oldval of type ArrayLiteralExp or StringExp, of length
/// oldlen, change its length to newlen. If the newlen is longer than oldlen,
/// all new elements will be set to the default initializer for the element type.
UnionExp changeArrayLiteralLength(Loc loc, TypeArray *arrayType,
Expression *oldval, size_t oldlen, size_t newlen)
{
UnionExp ue;
Type *elemType = arrayType->next;
assert(elemType);
Expression *defaultElem = elemType->defaultInitLiteral(loc);
Expressions *elements = new Expressions();
elements->setDim(newlen);
// Resolve slices
size_t indxlo = 0;
if (oldval->op == TOKslice)
{
indxlo = (size_t)((SliceExp *)oldval)->lwr->toInteger();
oldval = ((SliceExp *)oldval)->e1;
}
size_t copylen = oldlen < newlen ? oldlen : newlen;
if (oldval->op == TOKstring)
{
StringExp *oldse = (StringExp *)oldval;
void *s = mem.xcalloc(newlen + 1, oldse->sz);
memcpy(s, oldse->string, copylen * oldse->sz);
unsigned defaultValue = (unsigned)(defaultElem->toInteger());
for (size_t elemi = copylen; elemi < newlen; ++elemi)
{
switch (oldse->sz)
{
case 1: (( utf8_t *)s)[(size_t)(indxlo + elemi)] = ( utf8_t)defaultValue; break;
case 2: ((utf16_t *)s)[(size_t)(indxlo + elemi)] = (utf16_t)defaultValue; break;
case 4: ((utf32_t *)s)[(size_t)(indxlo + elemi)] = (utf32_t)defaultValue; break;
default: assert(0);
}
}
new(&ue) StringExp(loc, s, newlen);
StringExp *se = (StringExp *)ue.exp();
se->type = arrayType;
se->sz = oldse->sz;
se->committed = oldse->committed;
se->ownedByCtfe = OWNEDctfe;
}
else
{
if (oldlen != 0)
{
assert(oldval->op == TOKarrayliteral);
ArrayLiteralExp *ae = (ArrayLiteralExp *)oldval;
for (size_t i = 0; i < copylen; i++)
(*elements)[i] = (*ae->elements)[indxlo + i];
}
if (elemType->ty == Tstruct || elemType->ty == Tsarray)
{
/* If it is an aggregate literal representing a value type,
* we need to create a unique copy for each element
*/
for (size_t i = copylen; i < newlen; i++)
(*elements)[i] = copyLiteral(defaultElem).copy();
}
else
{
for (size_t i = copylen; i < newlen; i++)
(*elements)[i] = defaultElem;
}
new(&ue) ArrayLiteralExp(loc, arrayType, elements);
ArrayLiteralExp *aae = (ArrayLiteralExp *)ue.exp();
aae->ownedByCtfe = OWNEDctfe;
}
return ue;
}
/*************************** CTFE Sanity Checks ***************************/
bool isCtfeValueValid(Expression *newval)
{
Type *tb = newval->type->toBasetype();
if (newval->op == TOKint64 ||
newval->op == TOKfloat64 ||
newval->op == TOKchar ||
newval->op == TOKcomplex80)
{
return tb->isscalar();
}
if (newval->op == TOKnull)
{
return tb->ty == Tnull ||
tb->ty == Tpointer ||
tb->ty == Tarray ||
tb->ty == Taarray ||
tb->ty == Tclass ||
tb->ty == Tdelegate;
}
if (newval->op == TOKstring)
return true; // CTFE would directly use the StringExp in AST.
if (newval->op == TOKarrayliteral)
return true; //((ArrayLiteralExp *)newval)->ownedByCtfe;
if (newval->op == TOKassocarrayliteral)
return true; //((AssocArrayLiteralExp *)newval)->ownedByCtfe;
if (newval->op == TOKstructliteral)
return true; //((StructLiteralExp *)newval)->ownedByCtfe;
if (newval->op == TOKclassreference)
return true;
if (newval->op == TOKvector)
return true; // vector literal
if (newval->op == TOKfunction)
return true; // function literal or delegate literal
if (newval->op == TOKdelegate)
{
// &struct.func or &clasinst.func
// &nestedfunc
Expression *ethis = ((DelegateExp *)newval)->e1;
return (ethis->op == TOKstructliteral ||
ethis->op == TOKclassreference ||
(ethis->op == TOKvar && ((VarExp *)ethis)->var == ((DelegateExp *)newval)->func));
}
if (newval->op == TOKsymoff)
{
// function pointer, or pointer to static variable
Declaration *d = ((SymOffExp *)newval)->var;
return d->isFuncDeclaration() || d->isDataseg();
}
if (newval->op == TOKtypeid)
{
// always valid
return true;
}
if (newval->op == TOKaddress)
{
// e1 should be a CTFE reference
Expression *e1 = ((AddrExp *)newval)->e1;
return tb->ty == Tpointer &&
(((e1->op == TOKstructliteral || e1->op == TOKarrayliteral) && isCtfeValueValid(e1)) ||
(e1->op == TOKvar) ||
(e1->op == TOKdotvar && isCtfeReferenceValid(e1)) ||
(e1->op == TOKindex && isCtfeReferenceValid(e1)) ||
(e1->op == TOKslice && e1->type->toBasetype()->ty == Tsarray));
}
if (newval->op == TOKslice)
{
// e1 should be an array aggregate
SliceExp *se = (SliceExp *)newval;
assert(se->lwr && se->lwr->op == TOKint64);
assert(se->upr && se->upr->op == TOKint64);
return (tb->ty == Tarray ||
tb->ty == Tsarray) &&
(se->e1->op == TOKstring ||
se->e1->op == TOKarrayliteral);
}
if (newval->op == TOKvoid)
return true; // uninitialized value
newval->error("CTFE internal error: illegal CTFE value %s", newval->toChars());
return false;
}
bool isCtfeReferenceValid(Expression *newval)
{
if (newval->op == TOKthis)
return true;
if (newval->op == TOKvar)
{
VarDeclaration *v = ((VarExp *)newval)->var->isVarDeclaration();
assert(v);
// Must not be a reference to a reference
return true;
}
if (newval->op == TOKindex)
{
Expression *eagg = ((IndexExp *)newval)->e1;
return eagg->op == TOKstring ||
eagg->op == TOKarrayliteral ||
eagg->op == TOKassocarrayliteral;
}
if (newval->op == TOKdotvar)
{
Expression *eagg = ((DotVarExp *)newval)->e1;
return (eagg->op == TOKstructliteral || eagg->op == TOKclassreference) &&
isCtfeValueValid(eagg);
}
// Internally a ref variable may directly point a stack memory.
// e.g. ref int v = 1;
return isCtfeValueValid(newval);
}
// Used for debugging only
void showCtfeExpr(Expression *e, int level)
{
for (int i = level; i > 0; --i) printf(" ");
Expressions *elements = NULL;
// We need the struct definition to detect block assignment
StructDeclaration *sd = NULL;
ClassDeclaration *cd = NULL;
if (e->op == TOKstructliteral)
{
elements = ((StructLiteralExp *)e)->elements;
sd = ((StructLiteralExp *)e)->sd;
printf("STRUCT type = %s %p:\n", e->type->toChars(),
e);
}
else if (e->op == TOKclassreference)
{
elements = ((ClassReferenceExp *)e)->value->elements;
cd = ((ClassReferenceExp *)e)->originalClass();
printf("CLASS type = %s %p:\n", e->type->toChars(),
((ClassReferenceExp *)e)->value);
}
else if (e->op == TOKarrayliteral)
{
elements = ((ArrayLiteralExp *)e)->elements;
printf("ARRAY LITERAL type=%s %p:\n", e->type->toChars(),
e);
}
else if (e->op == TOKassocarrayliteral)
{
printf("AA LITERAL type=%s %p:\n", e->type->toChars(),
e);
}
else if (e->op == TOKstring)
{
printf("STRING %s %p\n", e->toChars(),
((StringExp *)e)->string);
}
else if (e->op == TOKslice)
{
printf("SLICE %p: %s\n", e, e->toChars());
showCtfeExpr(((SliceExp *)e)->e1, level + 1);
}
else if (e->op == TOKvar)
{
printf("VAR %p %s\n", e, e->toChars());
VarDeclaration *v = ((VarExp *)e)->var->isVarDeclaration();
if (v && getValue(v))
showCtfeExpr(getValue(v), level + 1);
}
else if (e->op == TOKaddress)
{
// This is potentially recursive. We mustn't try to print the thing we're pointing to.
printf("POINTER %p to %p: %s\n", e, ((AddrExp *)e)->e1, e->toChars());
}
else
printf("VALUE %p: %s\n", e, e->toChars());
if (elements)
{
size_t fieldsSoFar = 0;
for (size_t i = 0; i < elements->length; i++)
{
Expression *z = NULL;
VarDeclaration *v = NULL;
if (i > 15)
{
printf("...(total %d elements)\n", (int)elements->length);
return;
}
if (sd)
{
v = sd->fields[i];
z = (*elements)[i];
}
else if (cd)
{
while (i - fieldsSoFar >= cd->fields.length)
{
fieldsSoFar += cd->fields.length;
cd = cd->baseClass;
for (int j = level; j > 0; --j) printf(" ");
printf(" BASE CLASS: %s\n", cd->toChars());
}
v = cd->fields[i - fieldsSoFar];
assert((elements->length + i) >= (fieldsSoFar + cd->fields.length));
size_t indx = (elements->length - fieldsSoFar)- cd->fields.length + i;
assert(indx < elements->length);
z = (*elements)[indx];
}
if (!z)
{
for (int j = level; j > 0; --j) printf(" ");
printf(" void\n");
continue;
}
if (v)
{
// If it is a void assignment, use the default initializer
if ((v->type->ty != z->type->ty) && v->type->ty == Tsarray)
{
for (int j = level; --j; ) printf(" ");
printf(" field: block initalized static array\n");
continue;
}
}
showCtfeExpr(z, level + 1);
}
}
}
/*************************** Void initialization ***************************/
UnionExp voidInitLiteral(Type *t, VarDeclaration *var)
{
UnionExp ue;
if (t->ty == Tsarray)
{
TypeSArray *tsa = (TypeSArray *)t;
Expression *elem = voidInitLiteral(tsa->next, var).copy();
// For aggregate value types (structs, static arrays) we must
// create an a separate copy for each element.
bool mustCopy = (elem->op == TOKarrayliteral || elem->op == TOKstructliteral);
Expressions *elements = new Expressions();
size_t d = (size_t)tsa->dim->toInteger();
elements->setDim(d);
for (size_t i = 0; i < d; i++)
{
if (mustCopy && i > 0)
elem = copyLiteral(elem).copy();
(*elements)[i] = elem;
}
new(&ue) ArrayLiteralExp(var->loc, tsa, elements);
ArrayLiteralExp *ae = (ArrayLiteralExp *)ue.exp();
ae->ownedByCtfe = OWNEDctfe;
}
else if (t->ty == Tstruct)
{
TypeStruct *ts = (TypeStruct *)t;
Expressions *exps = new Expressions();
exps->setDim(ts->sym->fields.length);
for (size_t i = 0; i < ts->sym->fields.length; i++)
{
(*exps)[i] = voidInitLiteral(ts->sym->fields[i]->type, ts->sym->fields[i]).copy();
}
new(&ue) StructLiteralExp(var->loc, ts->sym, exps);
StructLiteralExp *se = (StructLiteralExp *)ue.exp();
se->type = ts;
se->ownedByCtfe = OWNEDctfe;
}
else
new(&ue) VoidInitExp(var, t);
return ue;
}