blob: f4b41664f6018d98a8f9017706569d55d1bd981a [file] [log] [blame]
<chapter xmlns="http://docbook.org/ns/docbook" version="5.0"
xml:id="std.support" xreflabel="Support">
<?dbhtml filename="support.html"?>
<info><title>
Support
<indexterm><primary>Support</primary></indexterm>
</title>
<keywordset>
<keyword>ISO C++</keyword>
<keyword>library</keyword>
</keywordset>
</info>
<para>
This part deals with the functions called and objects created
automatically during the course of a program's existence.
</para>
<para>
While we can't reproduce the contents of the Standard here (you
need to get your own copy from your nation's member body; see our
homepage for help), we can mention a couple of changes in what
kind of support a C++ program gets from the Standard Library.
</para>
<section xml:id="std.support.types" xreflabel="Types"><info><title>Types</title></info>
<?dbhtml filename="fundamental_types.html"?>
<section xml:id="std.support.types.fundamental" xreflabel="Fundamental Types"><info><title>Fundamental Types</title></info>
<para>
C++ has the following builtin types:
</para>
<itemizedlist>
<listitem><para>
char
</para></listitem>
<listitem><para>
signed char
</para></listitem>
<listitem><para>
unsigned char
</para></listitem>
<listitem><para>
signed short
</para></listitem>
<listitem><para>
signed int
</para></listitem>
<listitem><para>
signed long
</para></listitem>
<listitem><para>
unsigned short
</para></listitem>
<listitem><para>
unsigned int
</para></listitem>
<listitem><para>
unsigned long
</para></listitem>
<listitem><para>
bool
</para></listitem>
<listitem><para>
wchar_t
</para></listitem>
<listitem><para>
float
</para></listitem>
<listitem><para>
double
</para></listitem>
<listitem><para>
long double
</para></listitem>
</itemizedlist>
<para>
These fundamental types are always available, without having to
include a header file. These types are exactly the same in
either C++ or in C.
</para>
<para>
Specializing parts of the library on these types is prohibited:
instead, use a POD.
</para>
</section>
<section xml:id="std.support.types.numeric_limits" xreflabel="Numeric Properties"><info><title>Numeric Properties</title></info>
<para>
The header <filename class="headerfile">&lt;limits&gt;</filename> defines
traits classes to give access to various implementation
defined-aspects of the fundamental types. The traits classes --
fourteen in total -- are all specializations of the class template
<classname>numeric_limits</classname>
and defined as follows:
</para>
<programlisting>
template&lt;typename T&gt;
struct class
{
static const bool is_specialized;
static T max() throw();
static T min() throw();
static const int digits;
static const int digits10;
static const bool is_signed;
static const bool is_integer;
static const bool is_exact;
static const int radix;
static T epsilon() throw();
static T round_error() throw();
static const int min_exponent;
static const int min_exponent10;
static const int max_exponent;
static const int max_exponent10;
static const bool has_infinity;
static const bool has_quiet_NaN;
static const bool has_signaling_NaN;
static const float_denorm_style has_denorm;
static const bool has_denorm_loss;
static T infinity() throw();
static T quiet_NaN() throw();
static T denorm_min() throw();
static const bool is_iec559;
static const bool is_bounded;
static const bool is_modulo;
static const bool traps;
static const bool tinyness_before;
static const float_round_style round_style;
};
</programlisting>
</section>
<section xml:id="std.support.types.null" xreflabel="NULL"><info><title>NULL</title></info>
<para>
The only change that might affect people is the type of
<constant>NULL</constant>: while it is required to be a macro,
the definition of that macro is <emphasis>not</emphasis> allowed
to be an expression with pointer type such as
<constant>(void*)0</constant>, which is often used in C.
</para>
<para>
For <command>g++</command>, <constant>NULL</constant> is
<code>#define</code>'d to be
<constant>__null</constant>, a magic keyword extension of
<command>g++</command> that is slightly safer than a plain integer.
</para>
<para>
The biggest problem of #defining <constant>NULL</constant> to be
something like <quote>0L</quote> is that the compiler will view
that as a long integer before it views it as a pointer, so
overloading won't do what you expect. It might not even have the
same size as a pointer, so passing <constant>NULL</constant> to a
varargs function where a pointer is expected might not even work
correctly if <code>sizeof(NULL) &lt; sizeof(void*)</code>.
The G++ <constant>__null</constant> extension is defined so that
<code>sizeof(__null) == sizeof(void*)</code> to avoid this problem.
</para>
<para>
Scott Meyers explains this in more detail in his book
<link xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="https://www.aristeia.com/books.html"><emphasis>Effective
Modern C++</emphasis></link> and as a guideline to solve this problem
recommends to not overload on pointer-vs-integer types to begin with.
</para>
<para>
The C++ 2011 standard added the <constant>nullptr</constant> keyword,
which is a null pointer constant of a special type,
<classname>std::nullptr_t</classname>. Values of this type can be
implicitly converted to <emphasis>any</emphasis> pointer type,
and cannot convert to integer types or be deduced as an integer type.
Unless you need to be compatible with C++98/C++03 or C you should prefer
to use <constant>nullptr</constant> instead of <constant>NULL</constant>.
</para>
</section>
</section>
<section xml:id="std.support.memory" xreflabel="Dynamic Memory"><info><title>Dynamic Memory</title></info>
<?dbhtml filename="dynamic_memory.html"?>
<para>
In C++98 there are six flavors each of <function>operator new</function>
and <function>operator delete</function>, so make certain that you're
using the right ones.
Here are quickie descriptions of <function>operator new</function>:
</para>
<variablelist>
<varlistentry>
<term><code>void* operator new(std::size_t);</code></term>
<listitem>
Single object form.
Throws <classname>std::bad_alloc</classname> on error.
This is what most people are used to using.
</listitem>
</varlistentry>
<varlistentry>
<term><code>void* operator new(std::size_t, std::nothrow_t) noexcept;</code></term>
<listitem>
Single object <quote>nothrow</quote> form.
Calls <code>operator new(std::size_t)</code> but if that throws,
returns a null pointer instead.
</listitem>
</varlistentry>
<varlistentry>
<term><code>void* operator new[](std::size_t);</code></term>
<listitem>
Array <function>new</function>.
Calls <code>operator new(std::size_t)</code> and so
throws <classname>std::bad_alloc</classname> on error.
</listitem>
</varlistentry>
<varlistentry>
<term><code>void* operator new[](std::size_t, std::nothrow_t) noexcept;</code></term>
<listitem>
Array <quote>nothrow</quote> <function>new</function>.
Calls <code>operator new[](std::size_t)</code> but if that throws,
returns a null pointer instead.
</listitem>
</varlistentry>
<varlistentry>
<term><code>void* operator new(std::size_t, void*) noexcept;</code></term>
<listitem>
Non-allocating, <quote>placement</quote> single-object <function>new</function>,
which does nothing except return its argument.
This function cannot be replaced.
</listitem>
</varlistentry>
<varlistentry>
<term><code>void* operator new[](std::size_t, void*) noexcept;</code></term>
<listitem>
Non-allocating, <quote>placement</quote> array <function>new</function>,
which also does nothing except return its argument.
This function cannot be replaced.
</listitem>
</varlistentry>
</variablelist>
<para>
They are distinguished by the arguments that you pass to them, like
any other overloaded function. The six flavors of
<function>operator delete</function>
are distinguished the same way, but none of them are allowed to throw
an exception under any circumstances anyhow. (The overloads match up
with the ones above, for completeness' sake.)
</para>
<para>
The C++ 2014 revision of the standard added two additional overloads of
<function>operator delete</function> for <quote>sized deallocation</quote>,
allowing the compiler to provide the size of the storage being freed.
</para>
<para>
The C++ 2017 standard added even more overloads of both
<function>operator new</function> and <function>operator delete</function>
for allocating and deallocating storage for overaligned types.
These overloads correspond to each of the allocating forms of
<function>operator new</function> and <function>operator delete</function>
but with an additional parameter of type <type>std::align_val_t</type>.
These new overloads are not interchangeable with the versions without
an aligment parameter, so if memory was allocated by an overload of
<function>operator new</function> taking an alignment parameter,
then it must be decallocated by the corresponding overload of
<function>operator delete</function> that takes an alignment parameter.
</para>
<para>
Apart from the non-allocating forms, the default versions of the array
and nothrow <function>operator new</function> functions will all result
in a call to either <function>operator new(std::size_t)</function> or
<function>operator new(std::size_t, std::align_val_t)</function>,
and similarly the default versions of the array and nothrow
<function>operator delete</function> functions will result in a call to
either <function>operator delete(void*)</function> or
<function>operator delete(void*, std::align_val_t)</function>
(or the sized versions of those).
</para>
<para>
Apart from the non-allocating forms, any of these functions can be
replaced by defining a function with the same signature in your program.
Replacement versions must preserve certain guarantees, such as memory
obtained from a nothrow <function>operator new</function> being free-able
by the normal (non-nothrow) <function>operator delete</function>,
and the sized and unsized forms of <function>operator delete</function>
being interchangeable (because it's unspecified whether
the compiler calls the sized delete instead of the normal one).
The simplest way to meet the guarantees is to only replace the ordinary
<function>operator new(size_t)</function> and
<function>operator delete(void*)</function> and
<function>operator delete(void*, std::size_t)</function>
functions, and the replaced versions will be used by all of
<function>operator new(size_t, nothrow_t)</function>,
<function>operator new[](size_t)</function> and
<function>operator new[](size_t, nothrow_t)</function>
and the corresponding <function>operator delete</function> functions.
To support types with extended alignment you may also need to replace
<function>operator new(size_t, align_val_t)</function> and
<function>operator delete(void*, align_val_t)</function>
<function>operator delete(void*, size_t, align_val_t)</function>
(which will then be used by the nothrow and array forms for
extended alignments).
If you do need to replace other forms (e.g. to define the nothrow
<function>operator new</function> to allocate memory directly, so it
works with exceptions disabled) then make sure the memory it allocates
can still be freed by the non-nothrow forms of
<function>operator delete</function>.
</para>
<para>
If the default versions of <function>operator new(std::size_t)</function>
and <function>operator new(size_t, std::align_val_t)</function>
can't allocate the memory requested, they usually throw an exception
object of type <classname>std::bad_alloc</classname> (or some class
derived from that). However, the program can influence that behavior
by registering a <quote>new-handler</quote>, because what
<function>operator new</function> actually does is something like:
</para>
<programlisting>
while (true)
{
if (void* p = /* try to allocate memory */)
return p;
else if (std::new_handler h = std::get_new_handler ())
h ();
else
throw bad_alloc{};
}
</programlisting>
<para>
This means you can influence what happens on allocation failure by
writing your own new-handler and then registering it with
<function>std::set_new_handler</function>:
</para>
<programlisting>
typedef void (*PFV)();
static char* safety;
static PFV old_handler;
void my_new_handler ()
{
delete[] safety;
safety = nullptr;
popup_window ("Dude, you are running low on heap memory. You"
" should, like, close some windows, or something."
" The next time you run out, we're gonna burn!");
set_new_handler (old_handler);
return;
}
int main ()
{
safety = new char[500000];
old_handler = set_new_handler (&amp;my_new_handler);
...
}
</programlisting>
<section xml:id="std.support.memory.notes" xreflabel="Dynamic Memory Notes"><info><title>Additional Notes</title></info>
<para>
Remember that it is perfectly okay to <function>delete</function> a
null pointer! Nothing happens, by definition. That is not the
same thing as deleting a pointer twice.
</para>
<para>
<classname>std::bad_alloc</classname> is derived from the base
<classname>std::exception</classname> class,
see <xref linkend="std.diagnostics.exceptions"/>.
</para>
</section>
</section>
<section xml:id="std.support.termination" xreflabel="Termination"><info><title>Termination</title></info>
<?dbhtml filename="termination.html"?>
<section xml:id="support.termination.handlers" xreflabel="Termination Handlers"><info><title>Termination Handlers</title></info>
<para>
Not many changes here to
<filename class="headerfile">&lt;cstdlib&gt;</filename>.
You should note that the
<function>abort()</function> function does not call the
destructors of automatic nor static objects, so if you're
depending on those to do cleanup, it isn't going to happen.
(The functions registered with <function>atexit()</function>
don't get called either, so you can forget about that
possibility, too.)
</para>
<para>
The good old <function>exit()</function> function can be a bit
funky, too, until you look closer. Basically, three points to
remember are:
</para>
<orderedlist inheritnum="ignore" continuation="restarts">
<listitem>
<para>
Static objects are destroyed in reverse order of their creation.
</para>
</listitem>
<listitem>
<para>
Functions registered with <function>atexit()</function> are called in
reverse order of registration, once per registration call.
(This isn't actually new.)
</para>
</listitem>
<listitem>
<para>
The previous two actions are <quote>interleaved,</quote> that is,
given this pseudocode:
</para>
<programlisting>
extern "C or C++" void f1 ();
extern "C or C++" void f2 ();
static Thing obj1;
atexit(f1);
static Thing obj2;
atexit(f2);
</programlisting>
<para>
then at a call of <function>exit()</function>,
<varname>f2</varname> will be called, then
<varname>obj2</varname> will be destroyed, then
<varname>f1</varname> will be called, and finally
<varname>obj1</varname> will be destroyed. If
<varname>f1</varname> or <varname>f2</varname> allow an
exception to propagate out of them, Bad Things happen.
</para>
</listitem>
</orderedlist>
<para>
Note also that <function>atexit()</function> is only required to store 32
functions, and the compiler/library might already be using some of
those slots. If you think you may run out, we recommend using
the <function>xatexit</function>/<function>xexit</function> combination
from <literal>libiberty</literal>, which has no such limit.
</para>
</section>
<section xml:id="support.termination.verbose" xreflabel="Verbose Terminate Handler"><info><title>Verbose Terminate Handler</title></info>
<?dbhtml filename="verbose_termination.html"?>
<para>
If you are having difficulty with uncaught exceptions and want a
little bit of help debugging the causes of the core dumps, you can
make use of a GNU extension, the verbose terminate handler.
</para>
<para>
The verbose terminate handler is only available for hosted environments
(see <xref linkend="manual.intro.setup.configure"/>) and will be used
by default unless the library is built with
<option>--disable-libstdcxx-verbose</option>
or with exceptions disabled.
If you need to enable it explicitly you can do so by calling the
<function>std::set_terminate</function> function.
</para>
<programlisting>
#include &lt;exception&gt;
int main()
{
std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
...
throw <replaceable>anything</replaceable>;
}
</programlisting>
<para>
The <function>__verbose_terminate_handler</function> function
obtains the name of the current exception, attempts to demangle
it, and prints it to <literal>stderr</literal>.
If the exception is derived from
<classname>std::exception</classname> then the output from
<function>what()</function> will be included.
</para>
<para>
Any replacement termination function is required to kill the
program without returning; this one calls <function>std::abort</function>.
</para>
<para>
For example:
</para>
<programlisting>
#include &lt;exception&gt;
#include &lt;stdexcept&gt;
struct argument_error : public std::runtime_error
{
argument_error(const std::string&amp; s): std::runtime_error(s) { }
};
int main(int argc)
{
std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
if (argc &gt; 5)
throw argument_error("argc is greater than 5!");
else
throw argc;
}
</programlisting>
<para>
With the verbose terminate handler active, this gives:
</para>
<screen>
<computeroutput>
% ./a.out
terminate called after throwing a `int'
Aborted
% ./a.out f f f f f f f f f f f
terminate called after throwing an instance of `argument_error'
what(): argc is greater than 5!
Aborted
</computeroutput>
</screen>
<para>
The 'Aborted' line is printed by the shell after the process exits
by calling <function>abort()</function>.
</para>
<para>
As this is the default termination handler, nothing need be done to
use it. To go back to the previous <quote>silent death</quote>
method, simply include
<filename class="headerfile">&lt;exception&gt;</filename> and
<filename class="headerfile">&lt;cstdlib&gt;</filename>, and call
</para>
<programlisting>
std::set_terminate(std::abort);
</programlisting>
<para>
After this, all calls to <function>terminate</function> will use
<function>abort</function> as the terminate handler.
</para>
<para>
Note: the verbose terminate handler will attempt to write to
<literal>stderr</literal>. If your application closes
<literal>stderr</literal> or redirects it to an inappropriate location,
<function>__verbose_terminate_handler</function> will behave in
an unspecified manner.
</para>
</section>
</section>
</chapter>