| /* Definitions of target machine for GNU compiler. Gmicro (TRON) version. |
| Copyright (C) 1987, 88, 89, 95, 96, 1997 Free Software Foundation, Inc. |
| Contributed by Masanobu Yuhara, Fujitsu Laboratories LTD. |
| (yuhara@flab.fujitsu.co.jp) |
| |
| This file is part of GNU CC. |
| |
| GNU CC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GNU CC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU CC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| |
| /* Note that some other tm.h files include this one and then override |
| many of the definitions that relate to assembler syntax. */ |
| |
| |
| /* Names to predefine in the preprocessor for this target machine. */ |
| |
| #define CPP_PREDEFINES "-Dgmicro -Acpu(tron) -Amachine(tron)" |
| |
| /* #define CPP_SPEC ** currently not defined **/ |
| |
| /* #define CC1_SPEC ** currently not defined **/ |
| |
| |
| /* Print subsidiary information on the compiler version in use. */ |
| /* |
| #define TARGET_VERSION fprintf (stderr, " (Gmicro syntax)"); |
| */ |
| |
| /* Run-time compilation parameters selecting different hardware subsets. */ |
| |
| extern int target_flags; |
| |
| /* Macros used in the machine description to test the flags. */ |
| |
| /* Compile for a Gmicro/300. */ |
| #define TARGET_G300 (target_flags & 1) |
| /* Compile for a Gmicro/200. */ |
| #define TARGET_G200 (target_flags & 2) |
| /* Compile for a Gmicro/100. */ |
| #define TARGET_G100 (target_flags & 4) |
| |
| /* Compile FPU insns for floating point (not library calls). */ |
| #define TARGET_FPU (target_flags & 8) |
| |
| /* Pop up arguments by called function. */ |
| #define TARGET_RTD (target_flags & 0x10) |
| |
| /* Compile passing first args in regs 0 and 1. |
| This exists only to test compiler features that will be needed for |
| RISC chips. It is not usable and is not intended to be usable on |
| this cpu ;-< */ |
| #define TARGET_REGPARM (target_flags & 0x20) |
| |
| #define TARGET_BITFIELD (target_flags & 0x40) |
| |
| #define TARGET_NEWRETURN (target_flags & 0x80) |
| |
| /* Do not expand __builtin_smov (strcpy) to multiple movs. |
| Use the smov instruction. */ |
| #define TARGET_FORCE_SMOV (target_flags & 0x100) |
| |
| /* default options are -m300, -mFPU, |
| with bitfield instructions added because it won't always work otherwise. |
| If there are versions of the gmicro that don't support bitfield instructions |
| then it will take some thinking to figure out how to make them work. */ |
| #define TARGET_DEFAULT 0x49 |
| |
| /* Macro to define tables used to set the flags. |
| This is a list in braces of pairs in braces, |
| each pair being { "NAME", VALUE } |
| where VALUE is the bits to set or minus the bits to clear. |
| An empty string NAME is used to identify the default VALUE. */ |
| |
| #define TARGET_SWITCHES \ |
| { { "g300", 1}, \ |
| { "g200", 2}, \ |
| { "g100", 4}, \ |
| { "fpu", 8}, \ |
| { "soft-float", -8}, \ |
| { "rtd", 0x10}, \ |
| { "no-rtd", -0x10}, \ |
| { "regparm", 0x20}, \ |
| { "no-regparm", -0x20}, \ |
| #if 0 /* Since we don't define PCC_BITFIELD_TYPE_MATTERS or use a large |
| STRUCTURE_SIZE_BOUNDARY, we must have bitfield instructions. */ |
| { "bitfield", 0x40}, \ |
| { "no-bitfield", -0x40}, \ |
| #endif |
| { "newreturn", 0x80}, \ |
| { "no-newreturn", -0x80}, \ |
| { "force-smov", 0x100}, \ |
| { "no-force-smov", -0x100}, \ |
| { "", TARGET_DEFAULT}} |
| |
| |
| /* Blow away G100 flag silently off TARGET_fpu (since we can't clear |
| any bits in TARGET_SWITCHES above) */ |
| #define OVERRIDE_OPTIONS \ |
| { \ |
| if (TARGET_G100) target_flags &= ~8; \ |
| } |
| |
| /* target machine storage layout */ |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. |
| This is true for Gmicro insns. |
| We make it true always by avoiding using the single-bit insns |
| except in special cases with constant bit numbers. */ |
| #define BITS_BIG_ENDIAN 1 |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| /* That is true on the Gmicro. */ |
| #define BYTES_BIG_ENDIAN 1 |
| |
| /* Define this if most significant word of a multiword number is the lowest |
| numbered. */ |
| /* For Gmicro we can decide arbitrarily |
| since there are no machine instructions for them. ????? */ |
| #define WORDS_BIG_ENDIAN 0 |
| |
| /* number of bits in an addressable storage unit */ |
| #define BITS_PER_UNIT 8 |
| |
| /* Width in bits of a "word", which is the contents of a machine register. */ |
| #define BITS_PER_WORD 32 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD 4 |
| |
| /* Width in bits of a pointer. |
| See also the macro `Pmode' defined below. */ |
| #define POINTER_SIZE 32 |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY 32 |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY 32 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| /* Instructions of the Gmicro should be on half-word boundary */ |
| /* But word boundary gets better performance */ |
| #define FUNCTION_BOUNDARY 32 |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* No data type wants to be aligned rounder than this. */ |
| /* This is not necessarily 32 on the Gmicro */ |
| #define BIGGEST_ALIGNMENT 32 |
| |
| /* Set this non-zero if move instructions will actually fail to work |
| when given unaligned data. |
| Unaligned data is allowed on Gmicro, though the access is slow. */ |
| |
| #define STRICT_ALIGNMENT 1 |
| #define SLOW_UNALIGNED_ACCESS 1 |
| |
| /* Make strings word-aligned so strcpy from constants will be faster. */ |
| #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ |
| (TREE_CODE (EXP) == STRING_CST \ |
| && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) |
| |
| /* Make arrays of chars word-aligned for the same reasons. */ |
| #define DATA_ALIGNMENT(TYPE, ALIGN) \ |
| (TREE_CODE (TYPE) == ARRAY_TYPE \ |
| && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ |
| && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) |
| |
| /* Define number of bits in most basic integer type. |
| (If undefined, default is BITS_PER_WORD). */ |
| #define INT_TYPE_SIZE 32 |
| |
| /* #define PCC_BITFIELD_TYPE_MATTERS 1 ????? */ |
| |
| /* #define CHECK_FLOAT_VALUE (MODE, VALUE) ????? */ |
| |
| |
| /* Standard register usage. */ |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. |
| For the Gmicro, we give the general registers numbers 0-15, |
| and the FPU floating point registers numbers 16-31. */ |
| #define FIRST_PSEUDO_REGISTER 32 |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. |
| On the Gmicro, the stack pointer and the frame pointer are |
| such registers. */ |
| /* frame pointer is not indicated as fixed, because fp may be used freely |
| when a frame is not built. */ |
| #define FIXED_REGISTERS \ |
| {0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 1, \ |
| /* FPU registers. */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, } |
| |
| /* 1 for registers not available across function calls. |
| These must include the FIXED_REGISTERS and also any |
| registers that can be used without being saved. |
| The latter must include the registers where values are returned |
| and the register where structure-value addresses are passed. |
| Aside from that, you can include as many other registers as you like. */ |
| #define CALL_USED_REGISTERS \ |
| {1, 1, 1, 1, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 1, \ |
| /* FPU registers. */ \ |
| 1, 1, 1, 1, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, } |
| |
| |
| /* Make sure everything's fine if we *don't* have a given processor. |
| This assumes that putting a register in fixed_regs will keep the |
| compilers mitt's completely off it. We don't bother to zero it out |
| of register classes. If TARGET_FPU is not set, |
| the compiler won't touch since no instructions that use these |
| registers will be valid. */ |
| /* This Macro is not defined now. |
| #define CONDITIONAL_REGISTER_USAGE */ |
| |
| /* The Gmicro has no overlapping register */ |
| /* #define OVERLAPPING_REGNO_P(REGNO) */ |
| |
| /* #define INSN_CLOBBERS_REGNO_P(INSN,REGNO) */ |
| /* #define PRESERVE_DEATH_INFO_REGNO_P(REGNO) */ |
| |
| /* Return number of consecutive hard regs needed starting at reg REGNO |
| to hold something of mode MODE. |
| This is ordinarily the length in words of a value of mode MODE |
| but can be less for certain modes in special long registers. |
| |
| On the Gmicro, ordinary registers hold 32 bits worth; |
| for the Gmicro/FPU registers, a single register is always enough for |
| anything that can be stored in them at all. */ |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| ((REGNO) >= 16 ? 1 \ |
| : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. |
| On the Gmicro, the cpu registers can hold any mode but the FPU registers |
| can hold only SFmode or DFmode. And the FPU registers can't hold anything |
| if FPU use is disabled. */ |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
| ((REGNO) < 16 \ |
| || ((REGNO) < 32 \ |
| ? TARGET_FPU && (GET_MODE_CLASS (MODE) == MODE_FLOAT || \ |
| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ |
| : 0 )) |
| |
| /* Value is 1 if it is a good idea to tie two pseudo registers |
| when one has mode MODE1 and one has mode MODE2. |
| If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, |
| for any hard reg, then this must be 0 for correct output. */ |
| #define MODES_TIEABLE_P(MODE1, MODE2) \ |
| (! TARGET_FPU \ |
| || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \ |
| GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \ |
| == ((MODE2) == SFmode || (MODE2) == DFmode))) |
| |
| /* Specify the registers used for certain standard purposes. |
| The values of these macros are register numbers. */ |
| |
| /* Gmicro pc isn't overloaded on a register. */ |
| /* #define PC_REGNUM */ |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM 15 |
| |
| /* Base register for access to local variables of the function. */ |
| #define FRAME_POINTER_REGNUM 14 |
| |
| /* Value should be nonzero if functions must have frame pointers. |
| Zero means the frame pointer need not be set up (and parms |
| may be accessed via the stack pointer) in functions that seem suitable. |
| This is computed in `reload', in reload1.c. */ |
| #define FRAME_POINTER_REQUIRED 0 |
| |
| /* Base register for access to arguments of the function. */ |
| /* The Gmicro does not have hardware ap. Fp is treated as ap */ |
| #define ARG_POINTER_REGNUM 14 |
| |
| /* Register in which static-chain is passed to a function. */ |
| #define STATIC_CHAIN_REGNUM 0 |
| |
| /* Register in which address to store a structure value |
| is passed to a function. */ |
| #define STRUCT_VALUE_REGNUM 1 |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. Also define ranges of constants. |
| |
| One of the classes must always be named ALL_REGS and include all hard regs. |
| If there is more than one class, another class must be named NO_REGS |
| and contain no registers. |
| |
| The name GENERAL_REGS must be the name of a class (or an alias for |
| another name such as ALL_REGS). This is the class of registers |
| that is allowed by "g" or "r" in a register constraint. |
| Also, registers outside this class are allocated only when |
| instructions express preferences for them. |
| |
| The classes must be numbered in nondecreasing order; that is, |
| a larger-numbered class must never be contained completely |
| in a smaller-numbered class. |
| |
| For any two classes, it is very desirable that there be another |
| class that represents their union. */ |
| |
| /* The Gmicro has two kinds of registers, so four classes would be |
| a complete set. */ |
| |
| enum reg_class { NO_REGS, FPU_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES }; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| /* Give names of register classes as strings for dump file. */ |
| |
| #define REG_CLASS_NAMES \ |
| { "NO_REGS", "FPU_REGS", "GENERAL_REGS", "ALL_REGS" } |
| |
| /* Define which registers fit in which classes. |
| This is an initializer for a vector of HARD_REG_SET |
| of length N_REG_CLASSES. */ |
| |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| 0, /* NO_REGS */ \ |
| 0xffff0000, /* FPU_REGS */ \ |
| 0x0000ffff, /* GENERAL_REGS */ \ |
| 0xffffffff /* ALL_REGS */ \ |
| } |
| |
| /* The same information, inverted: |
| Return the class number of the smallest class containing |
| reg number REGNO. This could be a conditional expression |
| or could index an array. */ |
| |
| extern enum reg_class regno_reg_class[]; |
| #define REGNO_REG_CLASS(REGNO) ( (REGNO < 16) ? GENERAL_REGS : FPU_REGS ) |
| |
| /* The class value for index registers, and the one for base regs. */ |
| |
| #define INDEX_REG_CLASS GENERAL_REGS |
| #define BASE_REG_CLASS GENERAL_REGS |
| |
| /* Get reg_class from a letter such as appears in the machine description. |
| We do a trick here to modify the effective constraints on the |
| machine description; we zorch the constraint letters that aren't |
| appropriate for a specific target. This allows us to guarantee |
| that a specific kind of register will not be used for a given target |
| without fiddling with the register classes above. */ |
| |
| #define REG_CLASS_FROM_LETTER(C) \ |
| ((C) == 'r' ? GENERAL_REGS : \ |
| ((C) == 'f' ? (TARGET_FPU ? FPU_REGS : NO_REGS) : \ |
| NO_REGS)) |
| |
| /* The letters I, J, K, L and M in a register constraint string |
| can be used to stand for particular ranges of immediate operands. |
| This macro defines what the ranges are. |
| C is the letter, and VALUE is a constant value. |
| Return 1 if VALUE is in the range specified by C. |
| |
| For the Gmicro, all immediate value optimizations are done |
| by assembler, so no machine dependent definition is necessary ??? */ |
| |
| /* #define CONST_OK_FOR_LETTER_P(VALUE, C) ((C) == 'I') */ |
| #define CONST_OK_FOR_LETTER_P(VALUE, C) 0 |
| |
| /* |
| * The letters G defines all of the floating constants tha are *NOT* |
| * Gmicro-FPU constant. |
| */ |
| |
| #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ |
| ((C) == 'F' || \ |
| (C) == 'G' && !(TARGET_FPU && standard_fpu_constant_p (VALUE))) |
| |
| /* Given an rtx X being reloaded into a reg required to be |
| in class CLASS, return the class of reg to actually use. |
| In general this is just CLASS; but on some machines |
| in some cases it is preferable to use a more restrictive class. */ |
| /* On the Gmicro series, there is no restriction on GENERAL_REGS, |
| so CLASS is returned. I do not know whether I should treat FPU_REGS |
| specially or not (at least, m68k does not). */ |
| |
| #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS |
| |
| /* Return the maximum number of consecutive registers |
| needed to represent mode MODE in a register of class CLASS. */ |
| /* On the Gmicro, this is the size of MODE in words, |
| except in the FPU regs, where a single reg is always enough. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) \ |
| ((CLASS) == FPU_REGS ? \ |
| 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| /* Define this if pushing a word on the stack |
| makes the stack pointer a smaller address. */ |
| #define STACK_GROWS_DOWNWARD |
| |
| /* Define this if the nominal address of the stack frame |
| is at the high-address end of the local variables; |
| that is, each additional local variable allocated |
| goes at a more negative offset in the frame. */ |
| #define FRAME_GROWS_DOWNWARD |
| |
| /* Offset within stack frame to start allocating local variables at. |
| If FRAME_GROWS_DOWNWARD, this is the offset to the END of the |
| first local allocated. Otherwise, it is the offset to the BEGINNING |
| of the first local allocated. */ |
| /* On the Gmicro, FP points to the old FP and the first local variables are |
| at (FP - 4). */ |
| #define STARTING_FRAME_OFFSET 0 |
| |
| /* If we generate an insn to push BYTES bytes, |
| this says how many the stack pointer really advances by. */ |
| /* On the Gmicro, sp is decremented by the exact size of the operand */ |
| #define PUSH_ROUNDING(BYTES) (BYTES) |
| |
| /* Offset of first parameter from the argument pointer register value. */ |
| /* On the Gmicro, the first argument is found at (ap + 8) where ap is fp. */ |
| #define FIRST_PARM_OFFSET(FNDECL) 8 |
| |
| /* Value is the number of byte of arguments automatically |
| popped when returning from a subroutine call. |
| FUNDECL is the declaration node of the function (as a tree), |
| FUNTYPE is the data type of the function (as a tree), |
| or for a library call it is an identifier node for the subroutine name. |
| SIZE is the number of bytes of arguments passed on the stack. |
| |
| On the Gmicro, the EXITD insn may be used to pop them if the number |
| of args is fixed, but if the number is variable then the caller must pop |
| them all. The adjsp operand of the EXITD insn can't be used for library |
| calls now because the library is compiled with the standard compiler. |
| Use of adjsp operand is a selectable option, since it is incompatible with |
| standard Unix calling sequences. If the option is not selected, |
| the caller must always pop the args. |
| On the m68k this is an RTD option, so I use the same name |
| for the Gmicro. The option name may be changed in the future. */ |
| |
| #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \ |
| ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \ |
| && (TYPE_ARG_TYPES (FUNTYPE) == 0 \ |
| || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \ |
| == void_type_node))) \ |
| ? (SIZE) : 0) |
| |
| /* Define how to find the value returned by a function. |
| VALTYPE is the data type of the value (as a tree). |
| If the precise function being called is known, FUNC is its FUNCTION_DECL; |
| otherwise, FUNC is 0. */ |
| |
| /* On the Gmicro the floating return value is in fr0 not r0. */ |
| |
| #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE)) |
| |
| /* Define how to find the value returned by a library function |
| assuming the value has mode MODE. */ |
| |
| #define LIBCALL_VALUE(MODE) \ |
| (gen_rtx (REG, (MODE), \ |
| ((TARGET_FPU && ((MODE) == SFmode || (MODE) == DFmode)) ? 16 : 0))) |
| |
| |
| /* 1 if N is a possible register number for a function value. |
| On the Gmicro, r0 and fp0 are the possible registers. */ |
| |
| #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 16) |
| |
| /* Define this if PCC uses the nonreentrant convention for returning |
| structure and union values. */ |
| |
| #define PCC_STATIC_STRUCT_RETURN |
| |
| /* 1 if N is a possible register number for function argument passing. |
| On the Gmicro, no registers are used in this way. */ |
| /* Really? For the performance improvement, registers should be used !! */ |
| |
| #define FUNCTION_ARG_REGNO_P(N) 0 |
| |
| /* Define a data type for recording info about an argument list |
| during the scan of that argument list. This data type should |
| hold all necessary information about the function itself |
| and about the args processed so far, enough to enable macros |
| such as FUNCTION_ARG to determine where the next arg should go. |
| |
| On the Gmicro, this is a single integer, which is a number of bytes |
| of arguments scanned so far. */ |
| |
| #define CUMULATIVE_ARGS int |
| |
| /* Initialize a variable CUM of type CUMULATIVE_ARGS |
| for a call to a function whose data type is FNTYPE. |
| For a library call, FNTYPE is 0. |
| |
| On the Gmicro, the offset starts at 0. */ |
| |
| #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ |
| ((CUM) = 0) |
| |
| /* Update the data in CUM to advance over an argument |
| of mode MODE and data type TYPE. |
| (TYPE is null for libcalls where that information may not be available.) */ |
| |
| #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ |
| ((CUM) += ((MODE) != BLKmode \ |
| ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ |
| : (int_size_in_bytes (TYPE) + 3) & ~3)) |
| |
| /* Define where to put the arguments to a function. |
| Value is zero to push the argument on the stack, |
| or a hard register in which to store the argument. |
| |
| MODE is the argument's machine mode. |
| TYPE is the data type of the argument (as a tree). |
| This is null for libcalls where that information may |
| not be available. |
| CUM is a variable of type CUMULATIVE_ARGS which gives info about |
| the preceding args and about the function being called. |
| NAMED is nonzero if this argument is a named parameter |
| (otherwise it is an extra parameter matching an ellipsis). */ |
| |
| /* On the Gmicro all args are pushed, except if -mregparm is specified |
| then the first two words of arguments are passed in d0, d1. |
| *NOTE* -mregparm does not work. |
| It exists only to test register calling conventions. */ |
| |
| #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ |
| ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0) |
| |
| /* For an arg passed partly in registers and partly in memory, |
| this is the number of registers used. |
| For args passed entirely in registers or entirely in memory, zero. */ |
| |
| #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ |
| ((TARGET_REGPARM && (CUM) < 8 \ |
| && 8 < ((CUM) + ((MODE) == BLKmode \ |
| ? int_size_in_bytes (TYPE) \ |
| : GET_MODE_SIZE (MODE)))) \ |
| ? 2 - (CUM) / 4 : 0) |
| |
| /* The following macro is defined to output register list. |
| The LSB of Mask is the lowest number register. |
| Regoff is MY_GREG_OFF or MY_FREG_OFF. |
| Do NOT use <i> in File, Mask, Regoff !! |
| Should be changed from macros to functions. M.Yuhara */ |
| |
| #define MY_GREG_OFF 0 |
| #define MY_FREG_OFF 16 |
| |
| #define MY_PRINT_MASK(File, Mask, Regoff) \ |
| { \ |
| int i, first = -1; \ |
| if ((Mask) == 0) { \ |
| fprintf(File, "#0"); \ |
| } else { \ |
| fprintf(File, "("); \ |
| for (i = 0; i < 16; i++) { \ |
| if ( (Mask) & (1 << i) ) { \ |
| if (first < 0) { \ |
| if (first == -2) { \ |
| fprintf(File, ","); \ |
| } \ |
| first = i; \ |
| fprintf(File, "%s", reg_names[Regoff + i]); \ |
| } \ |
| } else if (first >= 0) { \ |
| if (i > first + 1) { \ |
| fprintf(File, "-%s", reg_names[Regoff + i - 1]); \ |
| } \ |
| first = -2; \ |
| } \ |
| } \ |
| if ( (first >= 0) && (first != 15) ) \ |
| fprintf(File, "-%s", reg_names[Regoff + 15]);\ |
| fprintf(File, ")"); \ |
| } \ |
| } |
| |
| |
| #define MY_PRINT_ONEREG_L(FILE,MASK) \ |
| { register int i; \ |
| for (i = 0; i < 16; i++) \ |
| if ( (1 << i) & (MASK)) { \ |
| fprintf(FILE, "%s", reg_names[i]); \ |
| (MASK) &= ~(1 << i); \ |
| break; \ |
| } \ |
| } |
| |
| |
| #define MY_PRINT_ONEREG_H(FILE,MASK) \ |
| { register int i; \ |
| for (i = 15; i >= 0; i--) \ |
| if ( (1 << i) & (MASK)) { \ |
| fprintf(FILE, "%s", reg_names[i]); \ |
| (MASK) &= ~(1 << i); \ |
| break; \ |
| } \ |
| } |
| |
| /* This macro generates the assembly code for function entry. |
| FILE is a stdio stream to output the code to. |
| SIZE is an int: how many units of temporary storage to allocate. |
| Refer to the array `regs_ever_live' to determine which registers |
| to save; `regs_ever_live[I]' is nonzero if register number I |
| is ever used in the function. This macro is responsible for |
| knowing which registers should not be saved even if used. */ |
| |
| /* The next macro needs much optimization !! |
| M.Yuhara */ |
| |
| #define FUNCTION_PROLOGUE(FILE, SIZE) \ |
| { register int regno; \ |
| register int mask = 0; \ |
| register int nregs = 0; \ |
| static char *reg_names[] = REGISTER_NAMES; \ |
| extern char call_used_regs[]; \ |
| int fsize = ((SIZE) + 3) & -4; \ |
| for (regno = 0; regno < 16; regno++) \ |
| if (regs_ever_live[regno] && !call_used_regs[regno]) { \ |
| mask |= (1 << regno); \ |
| nregs++; \ |
| } \ |
| if (frame_pointer_needed) { \ |
| mask &= ~(1 << FRAME_POINTER_REGNUM); \ |
| if (nregs > 4) { \ |
| fprintf(FILE, "\tenter.w #%d,", fsize); \ |
| MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \ |
| fprintf(FILE,"\n"); \ |
| } else { \ |
| fprintf(FILE, "\tmov.w fp,@-sp\n"); \ |
| fprintf(FILE, "\tmov.w sp,fp\n"); \ |
| if (fsize > 0) \ |
| myoutput_sp_adjust(FILE, "sub", fsize); \ |
| while (nregs--) { \ |
| fprintf(FILE, "\tmov.w "); \ |
| MY_PRINT_ONEREG_H(FILE, mask); \ |
| fprintf(FILE, ",@-sp\n"); \ |
| } \ |
| } \ |
| } else { \ |
| if (fsize > 0) \ |
| myoutput_sp_adjust(FILE, "sub", fsize); \ |
| if (mask != 0) { \ |
| if (nregs > 4) { \ |
| fprintf(FILE, "\tstm.w "); \ |
| MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \ |
| fprintf(FILE, ",@-sp\n"); \ |
| } else { \ |
| while (nregs--) { \ |
| fprintf(FILE, "\tmov.w "); \ |
| MY_PRINT_ONEREG_H(FILE, mask); \ |
| fprintf(FILE, ",@-sp\n"); \ |
| } \ |
| } \ |
| } \ |
| } \ |
| mask = 0; \ |
| for (regno = 16; regno < 32; regno++) \ |
| if (regs_ever_live[regno] && !call_used_regs[regno]) \ |
| mask |= 1 << (regno - 16); \ |
| if (mask != 0) { \ |
| fprintf(FILE, "\tfstm.w "); \ |
| MY_PRINT_MASK(FILE, mask, MY_FREG_OFF); \ |
| fprintf(FILE, ",@-sp\n", mask); \ |
| } \ |
| } |
| |
| |
| /* Output assembler code to FILE to increment profiler label # LABELNO |
| for profiling a function entry. */ |
| /* ??? M.Yuhara */ |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| fprintf (FILE, "\tmova @LP%d,r0\n\tjsr mcount\n", (LABELNO)) |
| |
| /* Output assembler code to FILE to initialize this source file's |
| basic block profiling info, if that has not already been done. */ |
| |
| #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \ |
| fprintf (FILE, "\tcmp #0,@LPBX0\n\tbne LPI%d\n\tpusha @LPBX0\n\tjsr ___bb_init_func\n\tadd #4,sp\nLPI%d:\n", \ |
| LABELNO, LABELNO); |
| |
| /* Output assembler code to FILE to increment the entry-count for |
| the BLOCKNO'th basic block in this source file. */ |
| |
| #define BLOCK_PROFILER(FILE, BLOCKNO) \ |
| fprintf (FILE, "\tadd #1,@(LPBX2+%d)\n", 4 * BLOCKNO) |
| |
| /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
| the stack pointer does not matter. The value is tested only in |
| functions that have frame pointers. |
| No definition is equivalent to always zero. */ |
| |
| #define EXIT_IGNORE_STACK 1 |
| |
| /* This macro generates the assembly code for function exit, |
| on machines that need it. If FUNCTION_EPILOGUE is not defined |
| then individual return instructions are generated for each |
| return statement. Args are same as for FUNCTION_PROLOGUE. |
| |
| The function epilogue should not depend on the current stack pointer (when |
| frame_pinter_needed) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| It should use the frame pointer only. This is mandatory because |
| of alloca; we also take advantage of it to omit stack adjustments |
| before returning. */ |
| |
| /* The Gmicro FPU seems to be unable to fldm/fstm double or single |
| floating. It only allows extended !! */ |
| /* Optimization is not enough, especially FREGs load !! M.Yuhara */ |
| |
| #define FUNCTION_EPILOGUE(FILE, SIZE) \ |
| { register int regno; \ |
| register int mask, fmask; \ |
| register int nregs, nfregs; \ |
| int offset, foffset; \ |
| extern char call_used_regs[]; \ |
| static char *reg_names[] = REGISTER_NAMES; \ |
| int fsize = ((SIZE) + 3) & -4; \ |
| FUNCTION_EXTRA_EPILOGUE (FILE, SIZE); \ |
| nfregs = 0; fmask = 0; \ |
| for (regno = 16; regno < 31; regno++) \ |
| if (regs_ever_live[regno] && ! call_used_regs[regno]) \ |
| { nfregs++; fmask |= 1 << (regno - 16); } \ |
| foffset = nfregs * 12; \ |
| nregs = 0; mask = 0; \ |
| if (frame_pointer_needed) regs_ever_live[FRAME_POINTER_REGNUM] = 0; \ |
| for (regno = 0; regno < 16; regno++) \ |
| if (regs_ever_live[regno] && ! call_used_regs[regno]) \ |
| { nregs++; mask |= 1 << regno; } \ |
| if (frame_pointer_needed) { \ |
| offset = nregs * 4 + fsize; \ |
| if (nfregs > 0) { \ |
| fprintf(FILE, "\tfldm.x @(%d,fp),", -(foffset + offset));\ |
| MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF); \ |
| fprintf(FILE, "\n"); \ |
| } \ |
| if (nregs > 4 \ |
| || current_function_pops_args) { \ |
| fprintf(FILE, "\tmova @(%d,fp),sp\n", -offset); \ |
| fprintf(FILE, "\texitd "); \ |
| MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \ |
| fprintf(FILE, ",#%d\n", current_function_pops_args); \ |
| } else { \ |
| while (nregs--) { \ |
| fprintf(FILE, "\tmov:l.w @(%d,fp),", -offset); \ |
| MY_PRINT_ONEREG_L(FILE, mask); \ |
| fprintf(FILE, "\n"); \ |
| offset -= 4; \ |
| } \ |
| if (TARGET_NEWRETURN) { \ |
| fprintf(FILE, "\tmova.w @(4,fp),sp\n"); \ |
| fprintf(FILE, "\tmov:l.w @fp,fp\n"); \ |
| } else { \ |
| fprintf(FILE, "\tmov.w fp,sp\n"); \ |
| fprintf(FILE, "\tmov.w @sp+,fp\n"); \ |
| } \ |
| fprintf(FILE, "\trts\n"); \ |
| } \ |
| } else { \ |
| if (nfregs > 0) { \ |
| fprintf(FILE, "\tfldm.w @sp+,"); \ |
| MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF); \ |
| fprintf(FILE, "\n"); \ |
| } \ |
| if (nregs > 4) { \ |
| fprintf(FILE, "\tldm.w @sp+,"); \ |
| MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \ |
| fprintf(FILE, "\n"); \ |
| } else { \ |
| while (nregs--) { \ |
| fprintf(FILE, "\tmov.w @sp+,"); \ |
| MY_PRINT_ONEREG_L(FILE,mask); \ |
| fprintf(FILE, "\n"); \ |
| } \ |
| } \ |
| if (current_function_pops_args) { \ |
| myoutput_sp_adjust(FILE, "add", \ |
| (fsize + 4 + current_function_pops_args)); \ |
| fprintf(FILE, "\tjmp @(%d,sp)\n", current_function_pops_args);\ |
| } else { \ |
| if (fsize > 0) \ |
| myoutput_sp_adjust(FILE, "add", fsize); \ |
| fprintf(FILE, "\trts\n"); \ |
| } \ |
| } \ |
| } |
| |
| /* This is a hook for other tm files to change. */ |
| #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) |
| |
| /* If the memory address ADDR is relative to the frame pointer, |
| correct it to be relative to the stack pointer instead. |
| This is for when we don't use a frame pointer. |
| ADDR should be a variable name. */ |
| |
| /* You have to change the next macro if you want to use more complex |
| addressing modes (such as double indirection and more than one |
| chain-addressing stages). */ |
| |
| #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \ |
| { int offset = -1; \ |
| rtx regs = stack_pointer_rtx; \ |
| if (ADDR == frame_pointer_rtx) \ |
| offset = 0; \ |
| else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \ |
| && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \ |
| offset = INTVAL (XEXP (ADDR, 1)); \ |
| else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \ |
| { rtx other_reg = XEXP (ADDR, 1); \ |
| offset = 0; \ |
| regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \ |
| else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \ |
| { rtx other_reg = XEXP (ADDR, 0); \ |
| offset = 0; \ |
| regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \ |
| else if (GET_CODE (ADDR) == PLUS \ |
| && GET_CODE (XEXP (ADDR, 0)) == PLUS \ |
| && XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx \ |
| && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \ |
| { rtx other_reg = XEXP (XEXP (ADDR, 0), 1); \ |
| offset = INTVAL (XEXP (ADDR, 1)); \ |
| regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \ |
| else if (GET_CODE (ADDR) == PLUS \ |
| && GET_CODE (XEXP (ADDR, 0)) == PLUS \ |
| && XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx \ |
| && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \ |
| { rtx other_reg = XEXP (XEXP (ADDR, 0), 0); \ |
| offset = INTVAL (XEXP (ADDR, 1)); \ |
| regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \ |
| if (offset >= 0) \ |
| { int regno; \ |
| extern char call_used_regs[]; \ |
| for (regno = 16; regno < 32; regno++) \ |
| if (regs_ever_live[regno] && ! call_used_regs[regno]) \ |
| offset += 12; \ |
| for (regno = 0; regno < 16; regno++) \ |
| if (regs_ever_live[regno] && ! call_used_regs[regno]) \ |
| offset += 4; \ |
| offset -= 4; \ |
| ADDR = plus_constant (regs, offset + (DEPTH)); } } |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| /* #define HAVE_POST_INCREMENT */ |
| /* #define HAVE_POST_DECREMENT */ |
| |
| /* #define HAVE_PRE_DECREMENT */ |
| /* #define HAVE_PRE_INCREMENT */ |
| |
| /* Macros to check register numbers against specific register classes. */ |
| |
| /* These assume that REGNO is a hard or pseudo reg number. |
| They give nonzero only if REGNO is a hard reg of the suitable class |
| or a pseudo reg currently allocated to a suitable hard reg. |
| Since they use reg_renumber, they are safe only once reg_renumber |
| has been allocated, which happens in local-alloc.c. */ |
| |
| /* Gmicro */ |
| #define REGNO_OK_FOR_GREG_P(REGNO) \ |
| ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) |
| #define REGNO_OK_FOR_FPU_P(REGNO) \ |
| (((REGNO) ^ 0x10) < 16 || (unsigned) (reg_renumber[REGNO] ^ 0x10) < 16) |
| |
| #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO) |
| #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO) |
| |
| /* Now macros that check whether X is a register and also, |
| strictly, whether it is in a specified class. |
| |
| These macros are specific to the Gmicro, and may be used only |
| in code for printing assembler insns and in conditions for |
| define_optimization. */ |
| |
| /* 1 if X is an fpu register. */ |
| |
| #define FPU_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPU_P (REGNO (X))) |
| |
| /* I used GREG_P in the gmicro.md file. */ |
| |
| #ifdef REG_OK_STRICT |
| #define GREG_P(X) (REG_P (X) && REGNO_OK_FOR_GREG_P (REGNO(X))) |
| #else |
| #define GREG_P(X) (REG_P (X) && ((REGNO (X) & ~0xf) != 0x10)) |
| #endif |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| |
| /* The Gmicro allows more registers in the chained addressing mode. |
| But I do not know gcc supports such an architecture. */ |
| |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* Recognize any constant value that is a valid address. */ |
| |
| #define CONSTANT_ADDRESS_P(X) \ |
| (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ |
| || GET_CODE (X) == HIGH) |
| |
| /* Nonzero if the constant value X is a legitimate general operand. |
| It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ |
| |
| #define LEGITIMATE_CONSTANT_P(X) 1 |
| |
| /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx |
| and check its validity for a certain class. |
| We have two alternate definitions for each of them. |
| The usual definition accepts all pseudo regs; the other rejects |
| them unless they have been allocated suitable hard regs. |
| The symbol REG_OK_STRICT causes the latter definition to be used. |
| |
| Most source files want to accept pseudo regs in the hope that |
| they will get allocated to the class that the insn wants them to be in. |
| Source files for reload pass need to be strict. |
| After reload, it makes no difference, since pseudo regs have |
| been eliminated by then. */ |
| |
| #ifndef REG_OK_STRICT |
| |
| /* Nonzero if X is a hard reg that can be used as an index |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) & ~0xf) != 0x10) |
| /* Nonzero if X is a hard reg that can be used as a base reg |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~0xf) != 0x10) |
| |
| #else |
| |
| /* Nonzero if X is a hard reg that can be used as an index. */ |
| #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) |
| /* Nonzero if X is a hard reg that can be used as a base reg. */ |
| #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) |
| |
| #endif |
| |
| /* The gcc uses the following effective address of the Gmicro. |
| (without using PC!!). |
| {@} ( {Rbase} + {Disp} + {Rindex * [1,2,4,8]} ) |
| where |
| @: memory indirection. |
| Rbase: Base Register = General Register. |
| Disp: Displacement (up to 32bits) |
| Rindex: Index Register = General Register. |
| [1,2,4,8]: Scale of Index. 1 or 2 or 4 or 8. |
| The inside of { } can be omitted. |
| This restricts the chained addressing up to 1 stage. */ |
| |
| |
| |
| /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression |
| that is a valid memory address for an instruction. |
| The MODE argument is the machine mode for the MEM expression |
| that wants to use this address. |
| |
| The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, |
| except for CONSTANT_ADDRESS_P which is actually machine-independent. */ |
| |
| #define REG_CODE_BASE_P(X) \ |
| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) |
| |
| #define REG_CODE_INDEX_P(X) \ |
| (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) |
| |
| /* GET_CODE(X) must be PLUS. This macro does not check for PLUS! */ |
| #define BASE_PLUS_DISP_P(X) \ |
| ( REG_CODE_BASE_P (XEXP (X, 0)) \ |
| && CONSTANT_ADDRESS_P (XEXP (X, 1)) \ |
| || \ |
| REG_CODE_BASE_P (XEXP (X, 1)) \ |
| && CONSTANT_ADDRESS_P (XEXP (X, 0)) ) |
| |
| /* 1 if X is {0,Rbase} + {0,disp}. */ |
| #define BASED_ADDRESS_P(X) \ |
| (CONSTANT_ADDRESS_P (X) \ |
| || REG_CODE_BASE_P (X) \ |
| || (GET_CODE (X) == PLUS) \ |
| && BASE_PLUS_DISP_P (X)) |
| |
| /* 1 if X is 1 or 2 or 4 or 8. GET_CODE(X) must be CONST_INT. */ |
| #define SCALE_OF_INDEX_P(X) \ |
| ( INTVAL(X) == 4 \ |
| || INTVAL(X) == 2 \ |
| || INTVAL(X) == 8 \ |
| || INTVAL(X) == 1 ) |
| |
| /* #define INDEX_TERM_P(X,MODE) */ |
| #define INDEX_TERM_P(X) \ |
| ( REG_CODE_INDEX_P(X) \ |
| || (GET_CODE (X) == MULT \ |
| && ( (xfoo0 = XEXP (X, 0)), (xfoo1 = XEXP(X, 1)), \ |
| ( ( (GET_CODE (xfoo0) == CONST_INT) \ |
| && SCALE_OF_INDEX_P (xfoo0) \ |
| && REG_CODE_INDEX_P (xfoo1) ) \ |
| || \ |
| ( (GET_CODE (xfoo1) == CONST_INT) \ |
| && SCALE_OF_INDEX_P (xfoo1) \ |
| && REG_CODE_INDEX_P (xfoo0) ) )))) |
| |
| /* Assumes there are no cases such that X = (Ireg + Disp) + Disp */ |
| #define BASE_DISP_INDEX_P(X) \ |
| ( BASED_ADDRESS_P (X) \ |
| || ( (GET_CODE (X) == PLUS) \ |
| && ( ( (xboo0 = XEXP (X, 0)), (xboo1 = XEXP (X, 1)), \ |
| (REG_CODE_BASE_P (xboo0) \ |
| && (GET_CODE (xboo1) == PLUS) \ |
| && ( ( CONSTANT_ADDRESS_P (XEXP (xboo1, 0)) \ |
| && INDEX_TERM_P (XEXP (xboo1, 1)) ) \ |
| || ( CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) \ |
| && INDEX_TERM_P (XEXP (xboo1, 0))) ))) \ |
| || \ |
| (CONSTANT_ADDRESS_P (xboo0) \ |
| && (GET_CODE (xboo1) == PLUS) \ |
| && ( ( REG_CODE_BASE_P (XEXP (xboo1, 0)) \ |
| && INDEX_TERM_P (XEXP (xboo1, 1)) ) \ |
| || ( REG_CODE_BASE_P (XEXP (xboo1, 1)) \ |
| && INDEX_TERM_P (XEXP (xboo1, 0))) )) \ |
| || \ |
| (INDEX_TERM_P (xboo0) \ |
| && ( ( (GET_CODE (xboo1) == PLUS) \ |
| && ( ( REG_CODE_BASE_P (XEXP (xboo1, 0)) \ |
| && CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) ) \ |
| || ( REG_CODE_BASE_P (XEXP (xboo1, 1)) \ |
| && CONSTANT_ADDRESS_P (XEXP (xboo1, 0))) )) \ |
| || \ |
| (CONSTANT_ADDRESS_P (xboo1)) \ |
| || \ |
| (REG_CODE_BASE_P (xboo1)) ))))) |
| |
| /* |
| If you want to allow double-indirection, |
| you have to change the <fp-relative> => <sp-relative> conversion |
| routine. M.Yuhara |
| |
| #ifdef REG_OK_STRICT |
| #define DOUBLE_INDIRECTION(X,ADDR) {\ |
| if (BASE_DISP_INDEX_P (XEXP (XEXP (X, 0), 0) )) goto ADDR; \ |
| } |
| #else |
| #define DOUBLE_INDIRECTION(X,ADDR) { } |
| #endif |
| */ |
| |
| |
| #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) {\ |
| register rtx xboo0, xboo1, xfoo0, xfoo1; \ |
| if (GET_CODE (X) == MEM) { \ |
| /* \ |
| if (GET_CODE (XEXP (X,0)) == MEM) { \ |
| DOUBLE_INDIRECTION(X,ADDR); \ |
| } else { \ |
| if (BASE_DISP_INDEX_P (XEXP (X, 0))) goto ADDR; \ |
| } \ |
| */ \ |
| } else { \ |
| if (BASE_DISP_INDEX_P (X)) goto ADDR; \ |
| if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ |
| && REG_P (XEXP (X, 0)) \ |
| && (REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM)) \ |
| goto ADDR; \ |
| } \ |
| } |
| |
| |
| /* Try machine-dependent ways of modifying an illegitimate address |
| to be legitimate. If we find one, return the new, valid address. |
| This macro is used in only one place: `memory_address' in explow.c. |
| |
| OLDX is the address as it was before break_out_memory_refs was called. |
| In some cases it is useful to look at this to decide what needs to be done. |
| |
| MODE and WIN are passed so that this macro can use |
| GO_IF_LEGITIMATE_ADDRESS. |
| |
| It is always safe for this macro to do nothing. It exists to recognize |
| opportunities to optimize the output. |
| |
| For the Gmicro, nothing is done now. */ |
| |
| #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {} |
| |
| /* Go to LABEL if ADDR (a legitimate address expression) |
| has an effect that depends on the machine mode it is used for. |
| On the VAX, the predecrement and postincrement address depend thus |
| (the amount of decrement or increment being the length of the operand) |
| and all indexed address depend thus (because the index scale factor |
| is the length of the operand). |
| The Gmicro mimics the VAX now. Since ADDE is legitimate, it cannot |
| include auto-inc/dec. */ |
| |
| /* Unnecessary ??? */ |
| #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ |
| { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \ |
| goto LABEL; } |
| |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| /* #define CASE_VECTOR_MODE HImode */ |
| #define CASE_VECTOR_MODE SImode |
| |
| /* Define this if the tablejump instruction expects the table |
| to contain offsets from the address of the table. |
| Do not define this if the table should contain absolute addresses. */ |
| #define CASE_VECTOR_PC_RELATIVE |
| |
| /* Specify the tree operation to be used to convert reals to integers. */ |
| #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR |
| |
| /* This is the kind of divide that is easiest to do in the general case. */ |
| #define EASY_DIV_EXPR TRUNC_DIV_EXPR |
| |
| /* Define this as 1 if `char' should by default be signed; else as 0. */ |
| #define DEFAULT_SIGNED_CHAR 1 |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX 4 |
| |
| /* Define this if zero-extension is slow (more than one real instruction). */ |
| /* #define SLOW_ZERO_EXTEND */ |
| |
| /* Nonzero if access to memory by bytes is slow and undesirable. */ |
| #define SLOW_BYTE_ACCESS 0 |
| |
| /* Define if shifts truncate the shift count |
| which implies one can omit a sign-extension or zero-extension |
| of a shift count. */ |
| /* #define SHIFT_COUNT_TRUNCATED */ |
| |
| /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
| is done just by pretending it is already truncated. */ |
| #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 |
| |
| /* We assume that the store-condition-codes instructions store 0 for false |
| and some other value for true. This is the value stored for true. */ |
| |
| /* #define STORE_FLAG_VALUE -1 */ |
| |
| /* When a prototype says `char' or `short', really pass an `int'. */ |
| #define PROMOTE_PROTOTYPES |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode SImode |
| |
| /* A function address in a call instruction |
| is a byte address (for indexing purposes) |
| so give the MEM rtx a byte's mode. */ |
| #define FUNCTION_MODE QImode |
| |
| /* Compute the cost of computing a constant rtl expression RTX |
| whose rtx-code is CODE. The body of this macro is a portion |
| of a switch statement. If the code is computed here, |
| return it with a return statement. Otherwise, break from the switch. */ |
| |
| #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
| case CONST_INT: \ |
| if ((unsigned) INTVAL (RTX) < 8) return 0; \ |
| if ((unsigned) (INTVAL (RTX) + 0x80) < 0x100) return 1; \ |
| if ((unsigned) (INTVAL (RTX) + 0x8000) < 0x10000) return 2; \ |
| case CONST: \ |
| case LABEL_REF: \ |
| case SYMBOL_REF: \ |
| return 3; \ |
| case CONST_DOUBLE: \ |
| return 5; |
| |
| /* Define subroutines to call to handle multiply and divide. |
| The `*' prevents an underscore from being prepended by the compiler. */ |
| /* Use libgcc on Gmicro */ |
| /* #define UDIVSI3_LIBCALL "*udiv" */ |
| /* #define UMODSI3_LIBCALL "*urem" */ |
| |
| |
| /* Tell final.c how to eliminate redundant test instructions. */ |
| |
| /* Here we define machine-dependent flags and fields in cc_status |
| (see `conditions.h'). */ |
| |
| /* Set if the cc value is actually in the FPU, so a floating point |
| conditional branch must be output. */ |
| #define CC_IN_FPU 04000 |
| |
| /* Store in cc_status the expressions |
| that the condition codes will describe |
| after execution of an instruction whose pattern is EXP. |
| Do not alter them if the instruction would not alter the cc's. */ |
| |
| /* Since Gmicro's compare instructions depend on the branch condition, |
| all branch should be kept. |
| More work must be done to optimize condition code !! M.Yuhara */ |
| |
| #define NOTICE_UPDATE_CC(EXP, INSN) {CC_STATUS_INIT;} |
| |
| /* The skeleton of the next macro is taken from "vax.h". |
| FPU-reg manipulation is added. M.Yuhara */ |
| /* Now comment out. |
| #define NOTICE_UPDATE_CC(EXP, INSN) { \ |
| if (GET_CODE (EXP) == SET) { \ |
| if ( !FPU_REG_P (XEXP (EXP, 0)) \ |
| && (XEXP (EXP, 0) != cc0_rtx) \ |
| && (FPU_REG_P (XEXP (EXP, 1)) \ |
| || GET_CODE (XEXP (EXP, 1)) == FIX \ |
| || GET_CODE (XEXP (EXP, 1)) == FLOAT_TRUNCATE \ |
| || GET_CODE (XEXP (EXP, 1)) == FLOAT_EXTEND)) { \ |
| CC_STATUS_INIT; \ |
| } else if (GET_CODE (SET_SRC (EXP)) == CALL) { \ |
| CC_STATUS_INIT; \ |
| } else if (GET_CODE (SET_DEST (EXP)) != PC) { \ |
| cc_status.flags = 0; \ |
| cc_status.value1 = SET_DEST (EXP); \ |
| cc_status.value2 = SET_SRC (EXP); \ |
| } \ |
| } else if (GET_CODE (EXP) == PARALLEL \ |
| && GET_CODE (XVECEXP (EXP, 0, 0)) == SET \ |
| && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) {\ |
| cc_status.flags = 0; \ |
| cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \ |
| cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \ |
| /* PARALLELs whose first element sets the PC are aob, sob VAX insns. \ |
| They do change the cc's. So drop through and forget the cc's. * / \ |
| } else CC_STATUS_INIT; \ |
| if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ |
| && cc_status.value2 \ |
| && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ |
| cc_status.value2 = 0; \ |
| if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \ |
| && cc_status.value2 \ |
| && GET_CODE (cc_status.value2) == MEM) \ |
| cc_status.value2 = 0; \ |
| if ( (cc_status.value1 && FPU_REG_P (cc_status.value1)) \ |
| || (cc_status.value2 && FPU_REG_P (cc_status.value2))) \ |
| cc_status.flags = CC_IN_FPU; \ |
| } |
| */ |
| |
| #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ |
| { if (cc_prev_status.flags & CC_IN_FPU) \ |
| return FLOAT; \ |
| if (cc_prev_status.flags & CC_NO_OVERFLOW) \ |
| return NO_OV; \ |
| return NORMAL; } |
| |
| /* Control the assembler format that we output. */ |
| |
| /* Output before read-only data. */ |
| |
| #define TEXT_SECTION_ASM_OP ".section text,code,align=4" |
| |
| /* Output before writable data. */ |
| |
| #define DATA_SECTION_ASM_OP ".section data,data,align=4" |
| |
| /* Output before uninitialized data. */ |
| |
| #define BSS_SECTION_ASM_OP ".section bss,data,align=4" |
| |
| /* Output at beginning of assembler file. |
| It is not appropriate for this to print a list of the options used, |
| since that's not the convention that we use. */ |
| |
| #define ASM_FILE_START(FILE) |
| |
| /* Output at the end of assembler file. */ |
| |
| #define ASM_FILE_END(FILE) fprintf (FILE, "\t.end\n"); |
| |
| |
| /* Don't try to define `gcc_compiled.' since the assembler do not |
| accept symbols with periods and GDB doesn't run on this machine anyway. */ |
| #define ASM_IDENTIFY_GCC(FILE) |
| |
| |
| /* Output to assembler file text saying following lines |
| may contain character constants, extra white space, comments, etc. */ |
| |
| #define ASM_APP_ON "" |
| /* #define ASM_APP_ON "#APP\n" */ |
| |
| /* Output to assembler file text saying following lines |
| no longer contain unusual constructs. */ |
| |
| #define ASM_APP_OFF "" |
| /* #define ASM_APP_OFF ";#NO_APP\n" */ |
| |
| /* How to refer to registers in assembler output. |
| This sequence is indexed by compiler's hard-register-number (see above). */ |
| |
| #define REGISTER_NAMES \ |
| {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ |
| "r8", "r9", "r10", "r11", "r12", "r13", "fp", "sp", \ |
| "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \ |
| "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15"} |
| |
| /* How to renumber registers for dbx and gdb. */ |
| |
| #define DBX_REGISTER_NUMBER(REGNO) (REGNO) |
| |
| /* Define this if gcc should produce debugging output for dbx in response |
| to the -g flag. This does not work for the Gmicro now */ |
| |
| #define DBX_DEBUGGING_INFO |
| |
| /* This is how to output the definition of a user-level label named NAME, |
| such as the label on a static function or variable NAME. */ |
| |
| #define ASM_OUTPUT_LABEL(FILE,NAME) { \ |
| assemble_name (FILE, NAME); \ |
| fputs (":\n", FILE); \ |
| } |
| |
| /* This is how to output a command to make the user-level label named NAME |
| defined for reference from other files. */ |
| |
| #define ASM_GLOBALIZE_LABEL(FILE,NAME) {\ |
| fputs ("\t.global ", FILE); \ |
| assemble_name (FILE, NAME); \ |
| fputs ("\n", FILE); \ |
| } |
| |
| /* This is how to output a command to make the external label named NAME |
| which are not defined in the file to be referable */ |
| /* ".import" does not work ??? */ |
| |
| #define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) { \ |
| fputs ("\t.global ", FILE); \ |
| assemble_name (FILE, NAME); \ |
| fputs ("\n", FILE); \ |
| } |
| |
| |
| /* The prefix to add to user-visible assembler symbols. */ |
| |
| #define USER_LABEL_PREFIX "_" |
| |
| /* This is how to output an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. */ |
| |
| #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ |
| fprintf (FILE, "%s%d:\n", PREFIX, NUM) |
| |
| /* This is how to store into the string LABEL |
| the symbol_ref name of an internal numbered label where |
| PREFIX is the class of label and NUM is the number within the class. |
| This is suitable for output with `assemble_name'. */ |
| |
| #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ |
| sprintf (LABEL, "*%s%d", PREFIX, NUM) |
| |
| /* This is how to output an assembler line defining a `double' constant. */ |
| |
| /* do {...} while(0) is necessary, because these macros are used as |
| if (xxx) MACRO; else .... |
| ^ |
| */ |
| |
| |
| #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ |
| do { union { double d; long l[2];} tem; \ |
| tem.d = (VALUE); \ |
| fprintf (FILE, "\t.fdata.d h'%x%08x.d\n", tem.l[0], tem.l[1]); \ |
| } while(0) |
| |
| |
| /* This is how to output an assembler line defining a `float' constant. */ |
| |
| #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ |
| do { union { float f; long l;} tem; \ |
| tem.f = (VALUE); \ |
| fprintf (FILE, "\t.fdata.s h'%x.s\n", tem.l); \ |
| } while(0) |
| |
| /* This is how to output an assembler line defining an `int' constant. */ |
| |
| #define ASM_OUTPUT_INT(FILE,VALUE) \ |
| ( fprintf (FILE, "\t.data.w "), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fprintf (FILE, "\n")) |
| |
| /* Likewise for `char' and `short' constants. */ |
| |
| #define ASM_OUTPUT_SHORT(FILE,VALUE) \ |
| ( fprintf (FILE, "\t.data.h "), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fprintf (FILE, "\n")) |
| |
| #define ASM_OUTPUT_CHAR(FILE,VALUE) \ |
| ( fprintf (FILE, "\t.data.b "), \ |
| output_addr_const (FILE, (VALUE)), \ |
| fprintf (FILE, "\n")) |
| |
| /* This is how to output an assembler line for a numeric constant byte. */ |
| |
| #define ASM_OUTPUT_BYTE(FILE,VALUE) \ |
| fprintf (FILE, "\t.data.b h'%x\n", (VALUE)) |
| |
| #define ASM_OUTPUT_ASCII(FILE,P,SIZE) \ |
| output_ascii ((FILE), (P), (SIZE)) |
| |
| /* This is how to output an insn to push a register on the stack. |
| It need not be very fast code. */ |
| |
| #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ |
| fprintf (FILE, "\tmov %s,@-sp\n", reg_names[REGNO]) |
| |
| /* This is how to output an insn to pop a register from the stack. |
| It need not be very fast code. */ |
| |
| #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ |
| fprintf (FILE, "\tmov @sp+,%s\n", reg_names[REGNO]) |
| |
| /* This is how to output an element of a case-vector that is absolute. |
| (The Gmicro does not use such vectors, |
| but we must define this macro anyway.) */ |
| |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| fprintf (FILE, "\t.data.w L%d\n", VALUE) |
| |
| |
| /* This is how to output an element of a case-vector that is relative. */ |
| |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ |
| fprintf (FILE, "\t.data.w L%d-L%d\n", VALUE, REL) |
| |
| |
| /* This is how to output an assembler line |
| that says to advance the location counter |
| to a multiple of 2**LOG bytes. */ |
| |
| #define ASM_OUTPUT_ALIGN(FILE,LOG) \ |
| fprintf (FILE, "\t.align %d\n", (1 << (LOG))); |
| |
| #define ASM_OUTPUT_SKIP(FILE,SIZE) \ |
| fprintf (FILE, "\t.res.b %d\n", (SIZE)) |
| |
| /* This says how to output an assembler line |
| to define a global common symbol. */ |
| |
| #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ |
| ( bss_section (), \ |
| assemble_name ((FILE), (NAME)), \ |
| fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)),\ |
| fprintf ((FILE), "\t.export "), \ |
| assemble_name ((FILE), (NAME)), \ |
| fprintf ((FILE), "\n") ) |
| |
| /* This says how to output an assembler line |
| to define a local common symbol. */ |
| |
| #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ |
| ( bss_section (), \ |
| assemble_name ((FILE), (NAME)), \ |
| fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED))) |
| |
| /* Store in OUTPUT a string (made with alloca) containing |
| an assembler-name for a local static variable named NAME. |
| LABELNO is an integer which is different for each call. */ |
| |
| /* $__ is unique ????? M.Yuhara */ |
| #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ |
| ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \ |
| sprintf ((OUTPUT), "$__%s%d", (NAME), (LABELNO))) |
| |
| /* Define the parentheses used to group arithmetic operations |
| in assembler code. */ |
| |
| #define ASM_OPEN_PAREN "(" |
| #define ASM_CLOSE_PAREN ")" |
| |
| /* Define results of standard character escape sequences. */ |
| #define TARGET_BELL 007 |
| #define TARGET_BS 010 |
| #define TARGET_TAB 011 |
| #define TARGET_NEWLINE 012 |
| #define TARGET_VT 013 |
| #define TARGET_FF 014 |
| #define TARGET_CR 015 |
| |
| /* Output a float value (represented as a C double) as an immediate operand. |
| This macro is a Gmicro/68k-specific macro. */ |
| |
| #define ASM_OUTPUT_FLOAT_OPERAND(FILE,VALUE) \ |
| do { union { float f; long l;} tem; \ |
| tem.f = (VALUE); \ |
| fprintf (FILE, "#h'%x.s", tem.l); \ |
| } while(0) |
| |
| |
| /* Output a double value (represented as a C double) as an immediate operand. |
| This macro is a 68k-specific macro. */ |
| #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \ |
| do { union { double d; long l[2];} tem; \ |
| tem.d = (VALUE); \ |
| fprintf (FILE, "#h'%x%08x.d", tem.l[0], tem.l[1]); \ |
| } while(0) |
| |
| /* Print operand X (an rtx) in assembler syntax to file FILE. |
| CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. |
| For `%' followed by punctuation, CODE is the punctuation and X is null. |
| |
| On the Gmicro, we use several CODE characters: |
| 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex) |
| 'b' for branch target label. |
| '-' for an operand pushing on the stack. |
| '+' for an operand pushing on the stack. |
| '#' for an immediate operand prefix |
| */ |
| |
| #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ |
| ( (CODE) == '#' || (CODE) == '-' \ |
| || (CODE) == '+' || (CODE) == '@' || (CODE) == '!') |
| |
| |
| #define PRINT_OPERAND(FILE, X, CODE) \ |
| { int i; \ |
| static char *reg_name[] = REGISTER_NAMES; \ |
| /* fprintf (stderr, "PRINT_OPERAND CODE=%c(0x%x), ", CODE, CODE);\ |
| myprcode(GET_CODE(X)); */ \ |
| if (CODE == '#') fprintf (FILE, "#"); \ |
| else if (CODE == '-') fprintf (FILE, "@-sp"); \ |
| else if (CODE == '+') fprintf (FILE, "@sp+"); \ |
| else if (CODE == 's') fprintf (stderr, "err: PRINT_OPERAND <s>\n"); \ |
| else if (CODE == '!') fprintf (stderr, "err: PRINT_OPERAND <!>\n"); \ |
| else if (CODE == '.') fprintf (stderr, "err: PRINT_OPERAND <.>\n"); \ |
| else if (CODE == 'b') { \ |
| if (GET_CODE (X) == MEM) \ |
| output_addr_const (FILE, XEXP (X, 0)); /* for bsr */ \ |
| else \ |
| output_addr_const (FILE, X); /* for bcc */ \ |
| } \ |
| else if (CODE == 'p') \ |
| print_operand_address (FILE, X); \ |
| else if (GET_CODE (X) == REG) \ |
| fprintf (FILE, "%s", reg_name[REGNO (X)]); \ |
| else if (GET_CODE (X) == MEM) \ |
| output_address (XEXP (X, 0)); \ |
| else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \ |
| { union { double d; int i[2]; } u; \ |
| union { float f; int i; } u1; \ |
| u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ |
| u1.f = u.d; \ |
| if (CODE == 'f') \ |
| ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f); \ |
| else \ |
| fprintf (FILE, "#h'%x", u1.i); } \ |
| else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \ |
| { union { double d; int i[2]; } u; \ |
| u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ |
| ASM_OUTPUT_DOUBLE_OPERAND (FILE, u.d); } \ |
| else { putc ('#', FILE); \ |
| output_addr_const (FILE, X); }} |
| |
| /* Note that this contains a kludge that knows that the only reason |
| we have an address (plus (label_ref...) (reg...)) |
| is in the insn before a tablejump, and we know that m68k.md |
| generates a label LInnn: on such an insn. */ |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ |
| { print_operand_address (FILE, ADDR); } |
| |
| /* |
| Local variables: |
| version-control: t |
| End: |
| */ |