blob: 9dd189bde2f70557c89a91d1d058f7841f6988da [file] [log] [blame]
/* Subroutines for insn-output.c for Tahoe.
Copyright (C) 1989, 1991, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
/*
* File: output-tahoe.c
*
* Original port made at the University of Buffalo by Devon Bowen,
* Dale Wiles and Kevin Zachmann.
*
* Changes for HCX by Piet van Oostrum,
* University of Utrecht, The Netherlands (piet@cs.ruu.nl)
*
* Speed tweaks by Michael Tiemann (tiemann@lurch.stanford.edu).
*
* Mail bugs reports or fixes to: gcc@cs.buffalo.edu
*/
/* On tahoe, you have to go to memory to convert a register
from sub-word to word. */
rtx tahoe_reg_conversion_loc;
int
extensible_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if ((GET_CODE (op) == REG
|| (GET_CODE (op) == SUBREG
&& GET_CODE (SUBREG_REG (op)) == REG))
&& tahoe_reg_conversion_loc == 0)
tahoe_reg_conversion_loc = assign_stack_local (SImode, GET_MODE_SIZE (SImode));
return general_operand (op, mode);
}
/* most of the print_operand_address function was taken from the vax */
/* since the modes are basically the same. I had to add a special case, */
/* though, for symbol references with offsets. */
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
register rtx reg1, reg2, breg, ireg;
rtx offset;
static char *reg_name[] = REGISTER_NAMES;
retry:
switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "*");
addr = XEXP (addr, 0);
goto retry;
case REG:
fprintf (file, "(%s)", reg_name [REGNO (addr)]);
break;
case PRE_DEC:
fprintf (file, "-(%s)", reg_name [REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "(%s)+", reg_name [REGNO (XEXP (addr, 0))]);
break;
case PLUS:
reg1 = 0; reg2 = 0;
ireg = 0; breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
&& GET_CODE (XEXP (addr, 1)) == CONST_INT)
output_addr_const (file, addr);
if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
&& GET_CODE (XEXP (addr, 0)) == CONST_INT)
output_addr_const (file, addr);
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| GET_CODE (XEXP (addr, 0)) == MEM)
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| GET_CODE (XEXP (addr, 1)) == MEM)
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != PLUS)
;
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
{
if (reg1 == 0)
reg1 = addr;
else
reg2 = addr;
addr = 0;
}
if (offset != 0)
{
if (addr != 0) abort ();
addr = offset;
}
if (reg1 != 0 && GET_CODE (reg1) == MULT)
{
breg = reg2;
ireg = reg1;
}
else if (reg2 != 0 && GET_CODE (reg2) == MULT)
{
breg = reg1;
ireg = reg2;
}
else if (reg2 != 0 || GET_CODE (addr) == MEM)
{
breg = reg2;
ireg = reg1;
}
else
{
breg = reg1;
ireg = reg2;
}
if (addr != 0)
output_address (offset);
if (breg != 0)
{
if (GET_CODE (breg) != REG)
abort ();
fprintf (file, "(%s)", reg_name[REGNO (breg)]);
}
if (ireg != 0)
{
if (GET_CODE (ireg) == MULT)
ireg = XEXP (ireg, 0);
if (GET_CODE (ireg) != REG)
abort ();
fprintf (file, "[%s]", reg_name[REGNO (ireg)]);
}
break;
default:
output_addr_const (file, addr);
}
}
/* Do a quick check and find out what the best way to do the */
/* mini-move is. Could be a push or a move..... */
static char *
singlemove_string (operands)
rtx *operands;
{
if (operands[1] == const0_rtx)
return "clrl %0";
if (push_operand (operands[0], SImode))
return "pushl %1";
return "movl %1,%0";
}
/* given the rtx for an address, return true if the given */
/* register number is used in the address somewhere. */
regisused(addr,regnum)
rtx addr;
int regnum;
{
if (GET_CODE(addr) == REG)
if (REGNO(addr) == regnum)
return (1);
else
return (0);
if (GET_CODE(addr) == MEM)
return regisused(XEXP(addr,0),regnum);
if ((GET_CODE(addr) == MULT) || (GET_CODE(addr) == PLUS))
return ((regisused(XEXP(addr,0),regnum)) ||
(regisused(XEXP(addr,1),regnum)));
return 0;
}
/* Given some rtx, traverse it and return the register used in a */
/* index. If no index is found, return 0. */
rtx
index_reg(addr)
rtx addr;
{
rtx temp;
if (GET_CODE(addr) == MEM)
return index_reg(XEXP(addr,0));
if (GET_CODE(addr) == MULT)
if (GET_CODE(XEXP(addr,0)) == REG)
return XEXP(addr,0);
else
return XEXP(addr,1);
if (GET_CODE(addr) == PLUS)
if (temp = index_reg(XEXP(addr,0)))
return temp;
else
return index_reg(XEXP(addr,1));
return 0;
}
/* simulate the move double by generating two movl's. You have */
/* to be careful about mixing modes here. */
char *
output_move_double (operands)
rtx *operands;
{
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, INDOP, CNSTOP, RNDOP }
optype0, optype1;
rtx latehalf[2];
rtx shftreg0 = 0, shftreg1 = 0;
rtx temp0 = 0, temp1 = 0;
rtx addreg0 = 0, addreg1 = 0;
int dohighfirst = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if ((GET_CODE(operands[0])==MEM) && (shftreg0=index_reg(operands[0])))
optype0 = INDOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) {
optype0 = PUSHOP;
dohighfirst++;
} else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if ((GET_CODE(operands[1])==MEM) && (shftreg1=index_reg(operands[1])))
optype1 = INDOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else
optype1 = RNDOP;
/* set up for the high byte move for operand zero */
switch (optype0) {
/* if it's a register, just use the next highest in the */
/* high address move. */
case REGOP : latehalf[0] = gen_rtx (REG,SImode,REGNO(operands[0])+1);
break;
/* for an offsettable address, use the gcc function to */
/* modify the operand to get an offset of 4 higher for */
/* the second move. */
case OFFSOP : latehalf[0] = adj_offsettable_operand (operands[0], 4);
break;
/* if the operand is MEMOP type, it must be a pointer */
/* to a pointer. So just remember to increase the mem */
/* location and use the same operand. */
case MEMOP : latehalf[0] = operands[0];
addreg0 = XEXP(operands[0],0);
break;
/* if we're dealing with a push instruction, just leave */
/* the operand alone since it auto-increments. */
case PUSHOP : latehalf[0] = operands[0];
break;
/* YUCK! Indexed addressing!! If the address is considered */
/* offsettable, go use the offset in the high part. Otherwise */
/* find what exactly is being added to the multiplication. If */
/* it's a mem reference, increment that with the high part */
/* being unchanged to cause the shift. If it's a reg, do the */
/* same. If you can't identify it, abort. Remember that the */
/* shift register was already set during identification. */
case INDOP : if (offsettable_memref_p(operands[0])) {
latehalf[0] = adj_offsettable_operand(operands[0],4);
break;
}
latehalf[0] = operands[0];
temp0 = XEXP(XEXP(operands[0],0),0);
if (GET_CODE(temp0) == MULT) {
temp1 = temp0;
temp0 = XEXP(XEXP(operands[0],0),1);
} else {
temp1 = XEXP(XEXP(operands[0],0),1);
if (GET_CODE(temp1) != MULT)
abort();
}
if (GET_CODE(temp0) == MEM)
addreg0 = temp0;
else if (GET_CODE(temp0) == REG)
addreg0 = temp0;
else
abort();
break;
/* if we don't know the operand type, print a friendly */
/* little error message... 8-) */
case RNDOP :
default : abort();
}
/* do the same setup for operand one */
switch (optype1) {
case REGOP : latehalf[1] = gen_rtx(REG,SImode,REGNO(operands[1])+1);
break;
case OFFSOP : latehalf[1] = adj_offsettable_operand (operands[1], 4);
break;
case MEMOP : latehalf[1] = operands[1];
addreg1 = XEXP(operands[1],0);
break;
case POPOP : latehalf[1] = operands[1];
break;
case INDOP : if (offsettable_memref_p(operands[1])) {
latehalf[1] = adj_offsettable_operand(operands[1],4);
break;
}
latehalf[1] = operands[1];
temp0 = XEXP(XEXP(operands[1],0),0);
if (GET_CODE(temp0) == MULT) {
temp1 = temp0;
temp0 = XEXP(XEXP(operands[1],0),1);
} else {
temp1 = XEXP(XEXP(operands[1],0),1);
if (GET_CODE(temp1) != MULT)
abort();
}
if (GET_CODE(temp0) == MEM)
addreg1 = temp0;
else if (GET_CODE(temp0) == REG)
addreg1 = temp0;
else
abort();
break;
case CNSTOP :
if (GET_CODE (operands[1]) == CONST_DOUBLE)
split_double (operands[1], &operands[1], &latehalf[1]);
else if (CONSTANT_P (operands[1]))
latehalf[1] = const0_rtx;
else abort ();
break;
case RNDOP :
default : abort();
}
/* double the register used for shifting in both of the operands */
/* but make sure the same register isn't doubled twice! */
if (shftreg0 && shftreg1 && (rtx_equal_p(shftreg0,shftreg1)))
output_asm_insn("addl2 %0,%0", &shftreg0);
else {
if (shftreg0)
output_asm_insn("addl2 %0,%0", &shftreg0);
if (shftreg1)
output_asm_insn("addl2 %0,%0", &shftreg1);
}
/* if the destination is a register and that register is needed in */
/* the source addressing mode, swap the order of the moves since we */
/* don't want this destroyed til last. If both regs are used, not */
/* much we can do, so abort. If these becomes a problem, maybe we */
/* can do it on the stack? */
if (GET_CODE(operands[0])==REG && regisused(operands[1],REGNO(operands[0])))
if (regisused(latehalf[1],REGNO(latehalf[0])))
8;
else
dohighfirst++;
/* if we're pushing, do the high address part first. */
if (dohighfirst) {
if (addreg0 && addreg1 && (rtx_equal_p(addreg0,addreg1)))
output_asm_insn("addl2 $4,%0", &addreg0);
else {
if (addreg0)
output_asm_insn("addl2 $4,%0", &addreg0);
if (addreg1)
output_asm_insn("addl2 $4,%0", &addreg1);
}
output_asm_insn(singlemove_string(latehalf), latehalf);
if (addreg0 && addreg1 && (rtx_equal_p(addreg0,addreg1)))
output_asm_insn("subl2 $4,%0", &addreg0);
else {
if (addreg0)
output_asm_insn("subl2 $4,%0", &addreg0);
if (addreg1)
output_asm_insn("subl2 $4,%0", &addreg1);
}
return singlemove_string(operands);
}
output_asm_insn(singlemove_string(operands), operands);
if (addreg0 && addreg1 && (rtx_equal_p(addreg0,addreg1)))
output_asm_insn("addl2 $4,%0", &addreg0);
else {
if (addreg0)
output_asm_insn("addl2 $4,%0", &addreg0);
if (addreg1)
output_asm_insn("addl2 $4,%0", &addreg1);
}
output_asm_insn(singlemove_string(latehalf), latehalf);
if (addreg0 && addreg1 && (rtx_equal_p(addreg0,addreg1)))
output_asm_insn("subl2 $4,%0", &addreg0);
else {
if (addreg0)
output_asm_insn("subl2 $4,%0", &addreg0);
if (addreg1)
output_asm_insn("subl2 $4,%0", &addreg1);
}
if (shftreg0 && shftreg1 && (rtx_equal_p(shftreg0,shftreg1)))
output_asm_insn("shar $1,%0,%0", &shftreg0);
else {
if (shftreg0)
output_asm_insn("shar $1,%0,%0", &shftreg0);
if (shftreg1)
output_asm_insn("shar $1,%0,%0", &shftreg1);
}
return "";
}
/* This checks if a zero_extended cmp[bw] can be replaced by a sign_extended
cmp[bw]. This can be done if the operand is a constant that fits in a
byte/word or a memory operand. Besides that the next instruction must be an
unsigned compare. Some of these tests are done by the machine description */
int
tahoe_cmp_check (insn, op, max)
rtx insn, op; int max;
{
if (GET_CODE (op) == CONST_INT
&& ( INTVAL (op) < 0 || INTVAL (op) > max ))
return 0;
{
register rtx next = NEXT_INSN (insn);
if ((GET_CODE (next) == JUMP_INSN
|| GET_CODE (next) == INSN
|| GET_CODE (next) == CALL_INSN))
{
next = PATTERN (next);
if (GET_CODE (next) == SET
&& SET_DEST (next) == pc_rtx
&& GET_CODE (SET_SRC (next)) == IF_THEN_ELSE)
switch (GET_CODE (XEXP (SET_SRC (next), 0)))
{
case EQ:
case NE:
case LTU:
case GTU:
case LEU:
case GEU:
return 1;
}
}
}
return 0;
}