blob: 09e4d500249bdb7d4aed0a8fb65d8ac157f5d106 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- P A R _ S C O --
-- --
-- B o d y --
-- --
-- Copyright (C) 2009-2021, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Debug; use Debug;
with Errout; use Errout;
with Lib; use Lib;
with Lib.Util; use Lib.Util;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Output; use Output;
with Put_SCOs;
with SCOs; use SCOs;
with Sem; use Sem;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Table;
with GNAT.HTable; use GNAT.HTable;
with GNAT.Heap_Sort_G;
package body Par_SCO is
--------------------------
-- First-pass SCO table --
--------------------------
-- The Short_Circuit_And_Or pragma enables one to use AND and OR operators
-- in source code while the ones used with booleans will be interpreted as
-- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
-- meaning of these operators is known only after the semantic analysis.
-- However, decision SCOs include short circuit operators only. The SCO
-- information generation pass must be done before expansion, hence before
-- the semantic analysis. Because of this, the SCO information generation
-- is done in two passes.
-- The first one (SCO_Record_Raw, before semantic analysis) completes the
-- SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
-- Then, the semantic analysis determines which operators are promoted to
-- short circuit ones. Finally, the second pass (SCO_Record_Filtered)
-- translates the SCO_Raw_Table to SCO_Table, taking care of removing the
-- remaining AND/OR operators and of adjusting decisions accordingly
-- (splitting decisions, removing empty ones, etc.).
type SCO_Generation_State_Type is (None, Raw, Filtered);
SCO_Generation_State : SCO_Generation_State_Type := None;
-- Keep track of the SCO generation state: this will prevent us from
-- running some steps multiple times (the second pass has to be started
-- from multiple places).
package SCO_Raw_Table is new Table.Table
(Table_Component_Type => SCO_Table_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 500,
Table_Increment => 300,
Table_Name => "Raw_Table");
-----------------------
-- Unit Number Table --
-----------------------
-- This table parallels the SCO_Unit_Table, keeping track of the unit
-- numbers corresponding to the entries made in this table, so that before
-- writing out the SCO information to the ALI file, we can fill in the
-- proper dependency numbers and file names.
-- Note that the zeroth entry is here for convenience in sorting the table;
-- the real lower bound is 1.
package SCO_Unit_Number_Table is new Table.Table
(Table_Component_Type => Unit_Number_Type,
Table_Index_Type => SCO_Unit_Index,
Table_Low_Bound => 0, -- see note above on sort
Table_Initial => 20,
Table_Increment => 200,
Table_Name => "SCO_Unit_Number_Entry");
------------------------------------------
-- Condition/Operator/Pragma Hash Table --
------------------------------------------
-- We need to be able to get to conditions quickly for handling the calls
-- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
-- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
-- Set_SCO_Logical_Operator). For this purpose we identify the conditions,
-- operators and pragmas in the table by their starting sloc, and use this
-- hash table to map from these sloc values to SCO_Table indexes.
type Header_Num is new Integer range 0 .. 996;
-- Type for hash table headers
function Hash (F : Source_Ptr) return Header_Num;
-- Function to Hash source pointer value
function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
-- Function to test two keys for equality
function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
-- Function to test for source locations order
package SCO_Raw_Hash_Table is new Simple_HTable
(Header_Num, Int, 0, Source_Ptr, Hash, Equal);
-- The actual hash table
--------------------------
-- Internal Subprograms --
--------------------------
function Has_Decision (N : Node_Id) return Boolean;
-- N is the node for a subexpression. Returns True if the subexpression
-- contains a nested decision (i.e. either is a logical operator, or
-- contains a logical operator in its subtree).
--
-- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
-- operators are considered as short circuit, just in case the
-- Short_Circuit_And_Or pragma is used: only real short circuit operations
-- will be kept in the secord pass.
type Tristate is (False, True, Unknown);
function Is_Logical_Operator (N : Node_Id) return Tristate;
-- N is the node for a subexpression. This procedure determines whether N
-- is a logical operator: True for short circuit conditions, Unknown for OR
-- and AND (the Short_Circuit_And_Or pragma may be used) and False
-- otherwise. Note that in cases where True is returned, callers assume
-- Nkind (N) in N_Op.
function To_Source_Location (S : Source_Ptr) return Source_Location;
-- Converts Source_Ptr value to Source_Location (line/col) format
procedure Process_Decisions
(N : Node_Id;
T : Character;
Pragma_Sloc : Source_Ptr);
-- If N is Empty, has no effect. Otherwise scans the tree for the node N,
-- to output any decisions it contains. T is one of IEGPWX (for context of
-- expression: if/exit when/entry guard/pragma/while/expression). If T is
-- other than X, the node N is the if expression involved, and a decision
-- is always present (at the very least a simple decision is present at the
-- top level).
procedure Process_Decisions
(L : List_Id;
T : Character;
Pragma_Sloc : Source_Ptr);
-- Calls above procedure for each element of the list L
procedure Set_Raw_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean;
Pragma_Sloc : Source_Ptr := No_Location;
Pragma_Aspect_Name : Name_Id := No_Name);
-- Append an entry to SCO_Raw_Table with fields set as per arguments
type Dominant_Info is record
K : Character;
-- F/T/S/E for a valid dominance marker, or ' ' for no dominant
N : Node_Id;
-- Node providing the Sloc(s) for the dominance marker
end record;
No_Dominant : constant Dominant_Info := (' ', Empty);
procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
-- Add one entry from the instance table to the corresponding SCO table
procedure Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty);
-- Process L, a list of statements or declarations dominated by D. If P is
-- present, it is processed as though it had been prepended to L.
function Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty) return Dominant_Info;
-- Same as above, and returns dominant information corresponding to the
-- last node with SCO in L.
-- The following Traverse_* routines perform appropriate calls to
-- Traverse_Declarations_Or_Statements to traverse specific node kinds.
-- Parameter D, when present, indicates the dominant of the first
-- declaration or statement within N.
procedure Traverse_Generic_Package_Declaration (N : Node_Id);
procedure Traverse_Handled_Statement_Sequence
(N : Node_Id;
D : Dominant_Info := No_Dominant);
procedure Traverse_Package_Body (N : Node_Id);
procedure Traverse_Package_Declaration
(N : Node_Id;
D : Dominant_Info := No_Dominant);
procedure Traverse_Subprogram_Or_Task_Body
(N : Node_Id;
D : Dominant_Info := No_Dominant);
procedure Traverse_Protected_Or_Task_Definition (N : Node_Id);
-- Note regarding traversals: In a few cases where an Alternatives list is
-- involved, pragmas such as "pragma Page" may show up before the first
-- alternative. We skip them because we're out of statement or declaration
-- context, so these can't be pragmas of interest for SCO purposes, and
-- the regular alternative processing typically involves attribute queries
-- which aren't valid for a pragma.
procedure Write_SCOs_To_ALI_File is new Put_SCOs;
-- Write SCO information to the ALI file using routines in Lib.Util
----------
-- dsco --
----------
procedure dsco is
procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
-- Dump a SCO table entry
----------------
-- Dump_Entry --
----------------
procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
begin
Write_Str (" ");
Write_Int (Index);
Write_Char ('.');
if T.C1 /= ' ' then
Write_Str (" C1 = '");
Write_Char (T.C1);
Write_Char (''');
end if;
if T.C2 /= ' ' then
Write_Str (" C2 = '");
Write_Char (T.C2);
Write_Char (''');
end if;
if T.From /= No_Source_Location then
Write_Str (" From = ");
Write_Int (Int (T.From.Line));
Write_Char (':');
Write_Int (Int (T.From.Col));
end if;
if T.To /= No_Source_Location then
Write_Str (" To = ");
Write_Int (Int (T.To.Line));
Write_Char (':');
Write_Int (Int (T.To.Col));
end if;
if T.Last then
Write_Str (" True");
else
Write_Str (" False");
end if;
Write_Eol;
end Dump_Entry;
-- Start of processing for dsco
begin
-- Dump SCO unit table
Write_Line ("SCO Unit Table");
Write_Line ("--------------");
for Index in 1 .. SCO_Unit_Table.Last loop
declare
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
begin
Write_Str (" ");
Write_Int (Int (Index));
Write_Str (" Dep_Num = ");
Write_Int (Int (UTE.Dep_Num));
Write_Str (" From = ");
Write_Int (Int (UTE.From));
Write_Str (" To = ");
Write_Int (Int (UTE.To));
Write_Str (" File_Name = """);
if UTE.File_Name /= null then
Write_Str (UTE.File_Name.all);
end if;
Write_Char ('"');
Write_Eol;
end;
end loop;
-- Dump SCO Unit number table if it contains any entries
if SCO_Unit_Number_Table.Last >= 1 then
Write_Eol;
Write_Line ("SCO Unit Number Table");
Write_Line ("---------------------");
for Index in 1 .. SCO_Unit_Number_Table.Last loop
Write_Str (" ");
Write_Int (Int (Index));
Write_Str (". Unit_Number = ");
Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
Write_Eol;
end loop;
end if;
-- Dump SCO raw-table
Write_Eol;
Write_Line ("SCO Raw Table");
Write_Line ("---------");
if SCO_Generation_State = Filtered then
Write_Line ("Empty (free'd after second pass)");
else
for Index in 1 .. SCO_Raw_Table.Last loop
Dump_Entry (Index, SCO_Raw_Table.Table (Index));
end loop;
end if;
-- Dump SCO table itself
Write_Eol;
Write_Line ("SCO Filtered Table");
Write_Line ("---------");
for Index in 1 .. SCO_Table.Last loop
Dump_Entry (Index, SCO_Table.Table (Index));
end loop;
end dsco;
-----------
-- Equal --
-----------
function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
begin
return F1 = F2;
end Equal;
-------
-- < --
-------
function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
begin
return S1.Line < S2.Line
or else (S1.Line = S2.Line and then S1.Col < S2.Col);
end "<";
------------------
-- Has_Decision --
------------------
function Has_Decision (N : Node_Id) return Boolean is
function Check_Node (N : Node_Id) return Traverse_Result;
-- Determine if Nkind (N) indicates the presence of a decision (i.e. N
-- is a logical operator, which is a decision in itself, or an
-- IF-expression whose Condition attribute is a decision).
----------------
-- Check_Node --
----------------
function Check_Node (N : Node_Id) return Traverse_Result is
begin
-- If we are not sure this is a logical operator (AND and OR may be
-- turned into logical operators with the Short_Circuit_And_Or
-- pragma), assume it is. Putative decisions will be discarded if
-- needed in the secord pass.
if Is_Logical_Operator (N) /= False
or else Nkind (N) = N_If_Expression
then
return Abandon;
else
return OK;
end if;
end Check_Node;
function Traverse is new Traverse_Func (Check_Node);
-- Start of processing for Has_Decision
begin
return Traverse (N) = Abandon;
end Has_Decision;
----------
-- Hash --
----------
function Hash (F : Source_Ptr) return Header_Num is
begin
return Header_Num (Nat (F) mod 997);
end Hash;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
SCO_Unit_Number_Table.Init;
-- The SCO_Unit_Number_Table entry with index 0 is intentionally set
-- aside to be used as temporary for sorting.
SCO_Unit_Number_Table.Increment_Last;
end Initialize;
-------------------------
-- Is_Logical_Operator --
-------------------------
function Is_Logical_Operator (N : Node_Id) return Tristate is
begin
if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then
return True;
elsif Nkind (N) in N_Op_And | N_Op_Or then
return Unknown;
else
return False;
end if;
end Is_Logical_Operator;
-----------------------
-- Process_Decisions --
-----------------------
-- Version taking a list
procedure Process_Decisions
(L : List_Id;
T : Character;
Pragma_Sloc : Source_Ptr)
is
N : Node_Id;
begin
if L /= No_List then
N := First (L);
while Present (N) loop
Process_Decisions (N, T, Pragma_Sloc);
Next (N);
end loop;
end if;
end Process_Decisions;
-- Version taking a node
Current_Pragma_Sloc : Source_Ptr := No_Location;
-- While processing a pragma, this is set to the sloc of the N_Pragma node
procedure Process_Decisions
(N : Node_Id;
T : Character;
Pragma_Sloc : Source_Ptr)
is
Mark : Nat;
-- This is used to mark the location of a decision sequence in the SCO
-- table. We use it for backing out a simple decision in an expression
-- context that contains only NOT operators.
Mark_Hash : Nat;
-- Likewise for the putative SCO_Raw_Hash_Table entries: see below
type Hash_Entry is record
Sloc : Source_Ptr;
SCO_Index : Nat;
end record;
-- We must register all conditions/pragmas in SCO_Raw_Hash_Table.
-- However we cannot register them in the same time we are adding the
-- corresponding SCO entries to the raw table since we may discard them
-- later on. So instead we put all putative conditions into Hash_Entries
-- (see below) and register them once we are sure we keep them.
--
-- This data structure holds the conditions/pragmas to register in
-- SCO_Raw_Hash_Table.
package Hash_Entries is new Table.Table
(Table_Component_Type => Hash_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 10,
Table_Increment => 10,
Table_Name => "Hash_Entries");
-- Hold temporarily (i.e. free'd before returning) the Hash_Entry before
-- they are registered in SCO_Raw_Hash_Table.
X_Not_Decision : Boolean;
-- This flag keeps track of whether a decision sequence in the SCO table
-- contains only NOT operators, and is for an expression context (T=X).
-- The flag will be set False if T is other than X, or if an operator
-- other than NOT is in the sequence.
procedure Output_Decision_Operand (N : Node_Id);
-- The node N is the top level logical operator of a decision, or it is
-- one of the operands of a logical operator belonging to a single
-- complex decision. This routine outputs the sequence of table entries
-- corresponding to the node. Note that we do not process the sub-
-- operands to look for further decisions, that processing is done in
-- Process_Decision_Operand, because we can't get decisions mixed up in
-- the global table. Call has no effect if N is Empty.
procedure Output_Element (N : Node_Id);
-- Node N is an operand of a logical operator that is not itself a
-- logical operator, or it is a simple decision. This routine outputs
-- the table entry for the element, with C1 set to ' '. Last is set
-- False, and an entry is made in the condition hash table.
procedure Output_Header (T : Character);
-- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
-- PRAGMA, and 'X' for the expression case.
procedure Process_Decision_Operand (N : Node_Id);
-- This is called on node N, the top level node of a decision, or on one
-- of its operands or suboperands after generating the full output for
-- the complex decision. It process the suboperands of the decision
-- looking for nested decisions.
function Process_Node (N : Node_Id) return Traverse_Result;
-- Processes one node in the traversal, looking for logical operators,
-- and if one is found, outputs the appropriate table entries.
-----------------------------
-- Output_Decision_Operand --
-----------------------------
procedure Output_Decision_Operand (N : Node_Id) is
C1 : Character;
C2 : Character;
-- C1 holds a character that identifies the operation while C2
-- indicates whether we are sure (' ') or not ('?') this operation
-- belongs to the decision. '?' entries will be filtered out in the
-- second (SCO_Record_Filtered) pass.
L : Node_Id;
T : Tristate;
begin
if No (N) then
return;
end if;
T := Is_Logical_Operator (N);
-- Logical operator
if T /= False then
if Nkind (N) = N_Op_Not then
C1 := '!';
L := Empty;
else
L := Left_Opnd (N);
if Nkind (N) in N_Op_Or | N_Or_Else then
C1 := '|';
else pragma Assert (Nkind (N) in N_Op_And | N_And_Then);
C1 := '&';
end if;
end if;
if T = True then
C2 := ' ';
else
C2 := '?';
end if;
Set_Raw_Table_Entry
(C1 => C1,
C2 => C2,
From => Sloc (N),
To => No_Location,
Last => False);
Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
Output_Decision_Operand (L);
Output_Decision_Operand (Right_Opnd (N));
-- Not a logical operator
else
Output_Element (N);
end if;
end Output_Decision_Operand;
--------------------
-- Output_Element --
--------------------
procedure Output_Element (N : Node_Id) is
FSloc : Source_Ptr;
LSloc : Source_Ptr;
begin
Sloc_Range (N, FSloc, LSloc);
Set_Raw_Table_Entry
(C1 => ' ',
C2 => 'c',
From => FSloc,
To => LSloc,
Last => False);
Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
end Output_Element;
-------------------
-- Output_Header --
-------------------
procedure Output_Header (T : Character) is
Loc : Source_Ptr := No_Location;
-- Node whose Sloc is used for the decision
Nam : Name_Id := No_Name;
-- For the case of an aspect, aspect name
begin
case T is
when 'I' | 'E' | 'W' | 'a' | 'A' =>
-- For IF, EXIT, WHILE, or aspects, the token SLOC is that of
-- the parent of the expression.
Loc := Sloc (Parent (N));
if T = 'a' or else T = 'A' then
Nam := Chars (Identifier (Parent (N)));
end if;
when 'G' | 'P' =>
-- For entry guard, the token sloc is from the N_Entry_Body.
-- For PRAGMA, we must get the location from the pragma node.
-- Argument N is the pragma argument, and we have to go up
-- two levels (through the pragma argument association) to
-- get to the pragma node itself. For the guard on a select
-- alternative, we do not have access to the token location for
-- the WHEN, so we use the first sloc of the condition itself.
-- First_Sloc gives the most sensible result, but we have to
-- beware of also using it when computing the dominance marker
-- sloc (in the Set_Statement_Entry procedure), as this is not
-- fully equivalent to the "To" sloc computed by
-- Sloc_Range (Guard, To, From).
if Nkind (Parent (N)) in N_Accept_Alternative
| N_Delay_Alternative
| N_Terminate_Alternative
then
Loc := First_Sloc (N);
else
Loc := Sloc (Parent (Parent (N)));
end if;
when 'X' =>
-- For an expression, no Sloc
null;
-- No other possibilities
when others =>
raise Program_Error;
end case;
Set_Raw_Table_Entry
(C1 => T,
C2 => ' ',
From => Loc,
To => No_Location,
Last => False,
Pragma_Sloc => Pragma_Sloc,
Pragma_Aspect_Name => Nam);
-- For an aspect specification, which will be rewritten into a
-- pragma, enter a hash table entry now.
if T = 'a' then
Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
end if;
end Output_Header;
------------------------------
-- Process_Decision_Operand --
------------------------------
procedure Process_Decision_Operand (N : Node_Id) is
begin
if Is_Logical_Operator (N) /= False then
if Nkind (N) /= N_Op_Not then
Process_Decision_Operand (Left_Opnd (N));
X_Not_Decision := False;
end if;
Process_Decision_Operand (Right_Opnd (N));
else
Process_Decisions (N, 'X', Pragma_Sloc);
end if;
end Process_Decision_Operand;
------------------
-- Process_Node --
------------------
function Process_Node (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
-- Logical operators, output table entries and then process
-- operands recursively to deal with nested conditions.
when N_And_Then
| N_Op_And
| N_Op_Not
| N_Op_Or
| N_Or_Else
=>
declare
T : Character;
begin
-- If outer level, then type comes from call, otherwise it
-- is more deeply nested and counts as X for expression.
if N = Process_Decisions.N then
T := Process_Decisions.T;
else
T := 'X';
end if;
-- Output header for sequence
X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
Mark := SCO_Raw_Table.Last;
Mark_Hash := Hash_Entries.Last;
Output_Header (T);
-- Output the decision
Output_Decision_Operand (N);
-- If the decision was in an expression context (T = 'X')
-- and contained only NOT operators, then we don't output
-- it, so delete it.
if X_Not_Decision then
SCO_Raw_Table.Set_Last (Mark);
Hash_Entries.Set_Last (Mark_Hash);
-- Otherwise, set Last in last table entry to mark end
else
SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
end if;
-- Process any embedded decisions
Process_Decision_Operand (N);
return Skip;
end;
-- Case expression
-- Really hard to believe this is correct given the special
-- handling for if expressions below ???
when N_Case_Expression =>
return OK; -- ???
-- If expression, processed like an if statement
when N_If_Expression =>
declare
Cond : constant Node_Id := First (Expressions (N));
Thnx : constant Node_Id := Next (Cond);
Elsx : constant Node_Id := Next (Thnx);
begin
Process_Decisions (Cond, 'I', Pragma_Sloc);
Process_Decisions (Thnx, 'X', Pragma_Sloc);
Process_Decisions (Elsx, 'X', Pragma_Sloc);
return Skip;
end;
when N_Quantified_Expression =>
declare
Cond : constant Node_Id := Condition (N);
begin
Process_Decisions (Cond, 'W', Pragma_Sloc);
return Skip;
end;
-- All other cases, continue scan
when others =>
return OK;
end case;
end Process_Node;
procedure Traverse is new Traverse_Proc (Process_Node);
-- Start of processing for Process_Decisions
begin
if No (N) then
return;
end if;
Hash_Entries.Init;
-- See if we have simple decision at outer level and if so then
-- generate the decision entry for this simple decision. A simple
-- decision is a boolean expression (which is not a logical operator
-- or short circuit form) appearing as the operand of an IF, WHILE,
-- EXIT WHEN, or special PRAGMA construct.
if T /= 'X' and then Is_Logical_Operator (N) = False then
Output_Header (T);
Output_Element (N);
-- Change Last in last table entry to True to mark end of
-- sequence, which is this case is only one element long.
SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
end if;
Traverse (N);
-- Now we have the definitive set of SCO entries, register them in the
-- corresponding hash table.
for J in 1 .. Hash_Entries.Last loop
SCO_Raw_Hash_Table.Set
(Hash_Entries.Table (J).Sloc,
Hash_Entries.Table (J).SCO_Index);
end loop;
Hash_Entries.Free;
end Process_Decisions;
-----------
-- pscos --
-----------
procedure pscos is
procedure Write_Info_Char (C : Character) renames Write_Char;
-- Write one character;
procedure Write_Info_Initiate (Key : Character) renames Write_Char;
-- Start new one and write one character;
procedure Write_Info_Nat (N : Nat);
-- Write value of N
procedure Write_Info_Terminate renames Write_Eol;
-- Terminate current line
--------------------
-- Write_Info_Nat --
--------------------
procedure Write_Info_Nat (N : Nat) is
begin
Write_Int (N);
end Write_Info_Nat;
procedure Debug_Put_SCOs is new Put_SCOs;
-- Start of processing for pscos
begin
Debug_Put_SCOs;
end pscos;
---------------------
-- Record_Instance --
---------------------
procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
Inst_Src : constant Source_File_Index :=
Get_Source_File_Index (Inst_Sloc);
begin
SCO_Instance_Table.Append
((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)),
Inst_Loc => To_Source_Location (Inst_Sloc),
Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
pragma Assert
(SCO_Instance_Table.Last = SCO_Instance_Index (Id));
end Record_Instance;
----------------
-- SCO_Output --
----------------
procedure SCO_Output is
procedure Populate_SCO_Instance_Table is
new Sinput.Iterate_On_Instances (Record_Instance);
begin
pragma Assert (SCO_Generation_State = Filtered);
if Debug_Flag_Dot_OO then
dsco;
end if;
Populate_SCO_Instance_Table;
-- Sort the unit tables based on dependency numbers
Unit_Table_Sort : declare
function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
-- Comparison routine for sort call
procedure Move (From : Natural; To : Natural);
-- Move routine for sort call
--------
-- Lt --
--------
function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
begin
return
Dependency_Num
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
<
Dependency_Num
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
SCO_Unit_Table.Table (SCO_Unit_Index (From));
SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
end Move;
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-- Start of processing for Unit_Table_Sort
begin
Sorting.Sort (Integer (SCO_Unit_Table.Last));
end Unit_Table_Sort;
-- Loop through entries in the unit table to set file name and
-- dependency number entries.
for J in 1 .. SCO_Unit_Table.Last loop
declare
U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
begin
Get_Name_String (Reference_Name (Source_Index (U)));
UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
UTE.Dep_Num := Dependency_Num (U);
end;
end loop;
-- Now the tables are all setup for output to the ALI file
Write_SCOs_To_ALI_File;
end SCO_Output;
-------------------------
-- SCO_Pragma_Disabled --
-------------------------
function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
Index : Nat;
begin
if Loc = No_Location then
return False;
end if;
Index := SCO_Raw_Hash_Table.Get (Loc);
-- The test here for zero is to deal with possible previous errors, and
-- for the case of pragma statement SCOs, for which we always set the
-- Pragma_Sloc even if the particular pragma cannot be specifically
-- disabled.
if Index /= 0 then
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
begin
case T.C1 is
when 'S' =>
-- Pragma statement
return T.C2 = 'p';
when 'A' =>
-- Aspect decision (enabled)
return False;
when 'a' =>
-- Aspect decision (not enabled)
return True;
when ASCII.NUL =>
-- Nullified disabled SCO
return True;
when others =>
raise Program_Error;
end case;
end;
else
return False;
end if;
end SCO_Pragma_Disabled;
--------------------
-- SCO_Record_Raw --
--------------------
procedure SCO_Record_Raw (U : Unit_Number_Type) is
procedure Traverse_Aux_Decls (N : Node_Id);
-- Traverse the Aux_Decls_Node of compilation unit N
------------------------
-- Traverse_Aux_Decls --
------------------------
procedure Traverse_Aux_Decls (N : Node_Id) is
ADN : constant Node_Id := Aux_Decls_Node (N);
begin
Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
-- Declarations and Actions do not correspond to source constructs,
-- they contain only nodes from expansion, so at this point they
-- should still be empty:
pragma Assert (No (Declarations (ADN)));
pragma Assert (No (Actions (ADN)));
end Traverse_Aux_Decls;
-- Local variables
From : Nat;
Lu : Node_Id;
-- Start of processing for SCO_Record_Raw
begin
-- It is legitimate to run this pass multiple times (once per unit) so
-- run it even if it was already run before.
pragma Assert (SCO_Generation_State in None .. Raw);
SCO_Generation_State := Raw;
-- Ignore call if not generating code and generating SCO's
if not (Generate_SCO and then Operating_Mode = Generate_Code) then
return;
end if;
-- Ignore call if this unit already recorded
for J in 1 .. SCO_Unit_Number_Table.Last loop
if U = SCO_Unit_Number_Table.Table (J) then
return;
end if;
end loop;
-- Otherwise record starting entry
From := SCO_Raw_Table.Last + 1;
-- Get Unit (checking case of subunit)
Lu := Unit (Cunit (U));
if Nkind (Lu) = N_Subunit then
Lu := Proper_Body (Lu);
end if;
-- Traverse the unit
Traverse_Aux_Decls (Cunit (U));
case Nkind (Lu) is
when N_Generic_Instantiation
| N_Generic_Package_Declaration
| N_Package_Body
| N_Package_Declaration
| N_Protected_Body
| N_Subprogram_Body
| N_Subprogram_Declaration
| N_Task_Body
=>
Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
-- All other cases of compilation units (e.g. renamings), generate no
-- SCO information.
when others =>
null;
end case;
-- Make entry for new unit in unit tables, we will fill in the file
-- name and dependency numbers later.
SCO_Unit_Table.Append (
(Dep_Num => 0,
File_Name => null,
File_Index => Get_Source_File_Index (Sloc (Lu)),
From => From,
To => SCO_Raw_Table.Last));
SCO_Unit_Number_Table.Append (U);
end SCO_Record_Raw;
-----------------------
-- Set_SCO_Condition --
-----------------------
procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
-- SCO annotations are not processed after the filtering pass
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
Constant_Condition_Code : constant array (Boolean) of Character :=
(False => 'f', True => 't');
Orig : constant Node_Id := Original_Node (Cond);
Dummy : Source_Ptr;
Index : Nat;
Start : Source_Ptr;
begin
Sloc_Range (Orig, Start, Dummy);
Index := SCO_Raw_Hash_Table.Get (Start);
-- Index can be zero for boolean expressions that do not have SCOs
-- (simple decisions outside of a control flow structure), or in case
-- of a previous error.
if Index = 0 then
return;
else
pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
end if;
end Set_SCO_Condition;
------------------------------
-- Set_SCO_Logical_Operator --
------------------------------
procedure Set_SCO_Logical_Operator (Op : Node_Id) is
-- SCO annotations are not processed after the filtering pass
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
Orig : constant Node_Id := Original_Node (Op);
Orig_Sloc : constant Source_Ptr := Sloc (Orig);
Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc);
begin
-- All (putative) logical operators are supposed to have their own entry
-- in the SCOs table. However, the semantic analysis may invoke this
-- subprogram with nodes that are out of the SCO generation scope.
if Index /= 0 then
SCO_Raw_Table.Table (Index).C2 := ' ';
end if;
end Set_SCO_Logical_Operator;
----------------------------
-- Set_SCO_Pragma_Enabled --
----------------------------
procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
-- SCO annotations are not processed after the filtering pass
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
Index : Nat;
begin
-- Nothing to do if not generating SCO, or if we're not processing the
-- original source occurrence of the pragma.
if not (Generate_SCO
and then In_Extended_Main_Source_Unit (Loc)
and then not (In_Instance or In_Inlined_Body))
then
return;
end if;
-- Note: the reason we use the Sloc value as the key is that in the
-- generic case, the call to this procedure is made on a copy of the
-- original node, so we can't use the Node_Id value.
Index := SCO_Raw_Hash_Table.Get (Loc);
-- A zero index here indicates that semantic analysis found an
-- activated pragma at Loc which does not have a corresponding pragma
-- or aspect at the syntax level. This may occur in legitimate cases
-- because of expanded code (such are Pre/Post conditions generated for
-- formal parameter validity checks), or as a consequence of a previous
-- error.
if Index = 0 then
return;
else
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
begin
-- Note: may be called multiple times for the same sloc, so
-- account for the fact that the entry may already have been
-- marked enabled.
case T.C1 is
-- Aspect (decision SCO)
when 'a' =>
T.C1 := 'A';
when 'A' =>
null;
-- Pragma (statement SCO)
when 'S' =>
pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
T.C2 := 'P';
when others =>
raise Program_Error;
end case;
end;
end if;
end Set_SCO_Pragma_Enabled;
-------------------------
-- Set_Raw_Table_Entry --
-------------------------
procedure Set_Raw_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean;
Pragma_Sloc : Source_Ptr := No_Location;
Pragma_Aspect_Name : Name_Id := No_Name)
is
pragma Assert (SCO_Generation_State = Raw);
begin
SCO_Raw_Table.Append
((C1 => C1,
C2 => C2,
From => To_Source_Location (From),
To => To_Source_Location (To),
Last => Last,
Pragma_Sloc => Pragma_Sloc,
Pragma_Aspect_Name => Pragma_Aspect_Name));
end Set_Raw_Table_Entry;
------------------------
-- To_Source_Location --
------------------------
function To_Source_Location (S : Source_Ptr) return Source_Location is
begin
if S = No_Location then
return No_Source_Location;
else
return
(Line => Get_Logical_Line_Number (S),
Col => Get_Column_Number (S));
end if;
end To_Source_Location;
-----------------------------------------
-- Traverse_Declarations_Or_Statements --
-----------------------------------------
-- Tables used by Traverse_Declarations_Or_Statements for temporarily
-- holding statement and decision entries. These are declared globally
-- since they are shared by recursive calls to this procedure.
type SC_Entry is record
N : Node_Id;
From : Source_Ptr;
To : Source_Ptr;
Typ : Character;
end record;
-- Used to store a single entry in the following table, From:To represents
-- the range of entries in the CS line entry, and typ is the type, with
-- space meaning that no type letter will accompany the entry.
package SC is new Table.Table
(Table_Component_Type => SC_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "SCO_SC");
-- Used to store statement components for a CS entry to be output as a
-- result of the call to this procedure. SC.Last is the last entry stored,
-- so the current statement sequence is represented by SC_Array (SC_First
-- .. SC.Last), where SC_First is saved on entry to each recursive call to
-- the routine.
--
-- Extend_Statement_Sequence adds an entry to this array, and then
-- Set_Statement_Entry clears the entries starting with SC_First, copying
-- these entries to the main SCO output table. The reason that we do the
-- temporary caching of results in this array is that we want the SCO table
-- entries for a given CS line to be contiguous, and the processing may
-- output intermediate entries such as decision entries.
type SD_Entry is record
Nod : Node_Id;
Lst : List_Id;
Typ : Character;
Plo : Source_Ptr;
end record;
-- Used to store a single entry in the following table. Nod is the node to
-- be searched for decisions for the case of Process_Decisions_Defer with a
-- node argument (with Lst set to No_List. Lst is the list to be searched
-- for decisions for the case of Process_Decisions_Defer with a List
-- argument (in which case Nod is set to Empty). Plo is the sloc of the
-- enclosing pragma, if any.
package SD is new Table.Table
(Table_Component_Type => SD_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "SCO_SD");
-- Used to store possible decision information. Instead of calling the
-- Process_Decisions procedures directly, we call Process_Decisions_Defer,
-- which simply stores the arguments in this table. Then when we clear
-- out a statement sequence using Set_Statement_Entry, after generating
-- the CS lines for the statements, the entries in this table result in
-- calls to Process_Decision. The reason for doing things this way is to
-- ensure that decisions are output after the CS line for the statements
-- in which the decisions occur.
procedure Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty)
is
Discard_Dom : Dominant_Info;
pragma Warnings (Off, Discard_Dom);
begin
Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
end Traverse_Declarations_Or_Statements;
function Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty) return Dominant_Info
is
Current_Dominant : Dominant_Info := D;
-- Dominance information for the current basic block
Current_Test : Node_Id;
-- Conditional node (N_If_Statement or N_Elsif being processed)
N : Node_Id;
SC_First : constant Nat := SC.Last + 1;
SD_First : constant Nat := SD.Last + 1;
-- Record first entries used in SC/SD at this recursive level
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
-- Extend the current statement sequence to encompass the node N. Typ is
-- the letter that identifies the type of statement/declaration that is
-- being added to the sequence.
procedure Process_Decisions_Defer (N : Node_Id; T : Character);
pragma Inline (Process_Decisions_Defer);
-- This routine is logically the same as Process_Decisions, except that
-- the arguments are saved in the SD table for later processing when
-- Set_Statement_Entry is called, which goes through the saved entries
-- making the corresponding calls to Process_Decision. Note: the
-- enclosing statement must have already been added to the current
-- statement sequence, so that nested decisions are properly
-- identified as such.
procedure Process_Decisions_Defer (L : List_Id; T : Character);
pragma Inline (Process_Decisions_Defer);
-- Same case for list arguments, deferred call to Process_Decisions
procedure Set_Statement_Entry;
-- Output CS entries for all statements saved in table SC, and end the
-- current CS sequence. Then output entries for all decisions nested in
-- these statements, which have been deferred so far.
procedure Traverse_One (N : Node_Id);
-- Traverse one declaration or statement
procedure Traverse_Aspects (N : Node_Id);
-- Helper for Traverse_One: traverse N's aspect specifications
procedure Traverse_Degenerate_Subprogram (N : Node_Id);
-- Common code to handle null procedures and expression functions. Emit
-- a SCO of the given Kind and N outside of the dominance flow.
-------------------------------
-- Extend_Statement_Sequence --
-------------------------------
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
Dummy : Source_Ptr;
F : Source_Ptr;
T : Source_Ptr;
To_Node : Node_Id := Empty;
begin
Sloc_Range (N, F, T);
case Nkind (N) is
when N_Accept_Statement =>
if Present (Parameter_Specifications (N)) then
To_Node := Last (Parameter_Specifications (N));
elsif Present (Entry_Index (N)) then
To_Node := Entry_Index (N);
else
To_Node := Entry_Direct_Name (N);
end if;
when N_Case_Statement =>
To_Node := Expression (N);
when N_Elsif_Part
| N_If_Statement
=>
To_Node := Condition (N);
when N_Extended_Return_Statement =>
To_Node := Last (Return_Object_Declarations (N));
when N_Loop_Statement =>
To_Node := Iteration_Scheme (N);
when N_Asynchronous_Select
| N_Conditional_Entry_Call
| N_Selective_Accept
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Timed_Entry_Call
=>
T := F;
when N_Protected_Type_Declaration
| N_Task_Type_Declaration
=>
if Has_Aspects (N) then
To_Node := Last (Aspect_Specifications (N));
elsif Present (Discriminant_Specifications (N)) then
To_Node := Last (Discriminant_Specifications (N));
else
To_Node := Defining_Identifier (N);
end if;
when N_Subexpr =>
To_Node := N;
when others =>
null;
end case;
if Present (To_Node) then
Sloc_Range (To_Node, Dummy, T);
end if;
SC.Append ((N, F, T, Typ));
end Extend_Statement_Sequence;
-----------------------------
-- Process_Decisions_Defer --
-----------------------------
procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
begin
SD.Append ((N, No_List, T, Current_Pragma_Sloc));
end Process_Decisions_Defer;
procedure Process_Decisions_Defer (L : List_Id; T : Character) is
begin
SD.Append ((Empty, L, T, Current_Pragma_Sloc));
end Process_Decisions_Defer;
-------------------------
-- Set_Statement_Entry --
-------------------------
procedure Set_Statement_Entry is
SC_Last : constant Int := SC.Last;
SD_Last : constant Int := SD.Last;
begin
-- Output statement entries from saved entries in SC table
for J in SC_First .. SC_Last loop
if J = SC_First then
if Current_Dominant /= No_Dominant then
declare
From : Source_Ptr;
To : Source_Ptr;
begin
Sloc_Range (Current_Dominant.N, From, To);
if Current_Dominant.K /= 'E' then
To := No_Location;
end if;
-- Be consistent with the location determined in
-- Output_Header.
if Current_Dominant.K = 'T'
and then Nkind (Parent (Current_Dominant.N))
in N_Accept_Alternative
| N_Delay_Alternative
| N_Terminate_Alternative
then
From := First_Sloc (Current_Dominant.N);
end if;
Set_Raw_Table_Entry
(C1 => '>',
C2 => Current_Dominant.K,
From => From,
To => To,
Last => False,
Pragma_Sloc => No_Location,
Pragma_Aspect_Name => No_Name);
end;
end if;
end if;
declare
SCE : SC_Entry renames SC.Table (J);
Pragma_Sloc : Source_Ptr := No_Location;
Pragma_Aspect_Name : Name_Id := No_Name;
begin
-- For the case of a statement SCO for a pragma controlled by
-- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
-- those of any nested decision) is emitted only if the pragma
-- is enabled.
if SCE.Typ = 'p' then
Pragma_Sloc := SCE.From;
SCO_Raw_Hash_Table.Set
(Pragma_Sloc, SCO_Raw_Table.Last + 1);
Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
pragma Assert (Pragma_Aspect_Name /= No_Name);
elsif SCE.Typ = 'P' then
Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
pragma Assert (Pragma_Aspect_Name /= No_Name);
end if;
Set_Raw_Table_Entry
(C1 => 'S',
C2 => SCE.Typ,
From => SCE.From,
To => SCE.To,
Last => (J = SC_Last),
Pragma_Sloc => Pragma_Sloc,
Pragma_Aspect_Name => Pragma_Aspect_Name);
end;
end loop;
-- Last statement of basic block, if present, becomes new current
-- dominant.
if SC_Last >= SC_First then
Current_Dominant := ('S', SC.Table (SC_Last).N);
end if;
-- Clear out used section of SC table
SC.Set_Last (SC_First - 1);
-- Output any embedded decisions
for J in SD_First .. SD_Last loop
declare
SDE : SD_Entry renames SD.Table (J);
begin
if Present (SDE.Nod) then
Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
else
Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
end if;
end;
end loop;
-- Clear out used section of SD table
SD.Set_Last (SD_First - 1);
end Set_Statement_Entry;
----------------------
-- Traverse_Aspects --
----------------------
procedure Traverse_Aspects (N : Node_Id) is
AE : Node_Id;
AN : Node_Id;
C1 : Character;
begin
AN := First (Aspect_Specifications (N));
while Present (AN) loop
AE := Expression (AN);
-- SCOs are generated before semantic analysis/expansion:
-- PPCs are not split yet.
pragma Assert (not Split_PPC (AN));
C1 := ASCII.NUL;
case Get_Aspect_Id (AN) is
-- Aspects rewritten into pragmas controlled by a Check_Policy:
-- Current_Pragma_Sloc must be set to the sloc of the aspect
-- specification. The corresponding pragma will have the same
-- sloc. Note that Invariant, Pre, and Post will be enabled if
-- the policy is Check; on the other hand, predicate aspects
-- will be enabled for Check and Ignore (when Add_Predicate
-- is called) because the actual checks occur in client units.
-- When the assertion policy for Predicate is Disable, the
-- SCO remains disabled, because Add_Predicate is never called.
-- Pre/post can have checks in client units too because of
-- inheritance, so should they receive the same treatment???
when Aspect_Dynamic_Predicate
| Aspect_Invariant
| Aspect_Post
| Aspect_Postcondition
| Aspect_Pre
| Aspect_Precondition
| Aspect_Predicate
| Aspect_Static_Predicate
| Aspect_Type_Invariant
=>
C1 := 'a';
-- Other aspects: just process any decision nested in the
-- aspect expression.
when others =>
if Has_Decision (AE) then
C1 := 'X';
end if;
end case;
if C1 /= ASCII.NUL then
pragma Assert (Current_Pragma_Sloc = No_Location);
if C1 = 'a' or else C1 = 'A' then
Current_Pragma_Sloc := Sloc (AN);
end if;
Process_Decisions_Defer (AE, C1);
Current_Pragma_Sloc := No_Location;
end if;
Next (AN);
end loop;
end Traverse_Aspects;
------------------------------------
-- Traverse_Degenerate_Subprogram --
------------------------------------
procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
begin
-- Complete current sequence of statements
Set_Statement_Entry;
declare
Saved_Dominant : constant Dominant_Info := Current_Dominant;
-- Save last statement in current sequence as dominant
begin
-- Output statement SCO for degenerate subprogram body (null
-- statement or freestanding expression) outside of the dominance
-- chain.
Current_Dominant := No_Dominant;
Extend_Statement_Sequence (N, Typ => 'X');
-- For the case of an expression-function, collect decisions
-- embedded in the expression now.
if Nkind (N) in N_Subexpr then
Process_Decisions_Defer (N, 'X');
end if;
Set_Statement_Entry;
-- Restore current dominant information designating last statement
-- in previous sequence (i.e. make the dominance chain skip over
-- the degenerate body).
Current_Dominant := Saved_Dominant;
end;
end Traverse_Degenerate_Subprogram;
------------------
-- Traverse_One --
------------------
procedure Traverse_One (N : Node_Id) is
begin
-- Initialize or extend current statement sequence. Note that for
-- special cases such as IF and Case statements we will modify
-- the range to exclude internal statements that should not be
-- counted as part of the current statement sequence.
case Nkind (N) is
-- Package declaration
when N_Package_Declaration =>
Set_Statement_Entry;
Traverse_Package_Declaration (N, Current_Dominant);
-- Generic package declaration
when N_Generic_Package_Declaration =>
Set_Statement_Entry;
Traverse_Generic_Package_Declaration (N);
-- Package body
when N_Package_Body =>
Set_Statement_Entry;
Traverse_Package_Body (N);
-- Subprogram declaration or subprogram body stub
when N_Expression_Function
| N_Subprogram_Body_Stub
| N_Subprogram_Declaration
=>
declare
Spec : constant Node_Id := Specification (N);
begin
Process_Decisions_Defer
(Parameter_Specifications (Spec), 'X');
-- Case of a null procedure: generate SCO for fictitious
-- NULL statement located at the NULL keyword in the
-- procedure specification.
if Nkind (N) = N_Subprogram_Declaration
and then Nkind (Spec) = N_Procedure_Specification
and then Null_Present (Spec)
then
Traverse_Degenerate_Subprogram (Null_Statement (Spec));
-- Case of an expression function: generate a statement SCO
-- for the expression (and then decision SCOs for any nested
-- decisions).
elsif Nkind (N) = N_Expression_Function then
Traverse_Degenerate_Subprogram (Expression (N));
end if;
end;
-- Entry declaration
when N_Entry_Declaration =>
Process_Decisions_Defer (Parameter_Specifications (N), 'X');
-- Generic subprogram declaration
when N_Generic_Subprogram_Declaration =>
Process_Decisions_Defer
(Generic_Formal_Declarations (N), 'X');
Process_Decisions_Defer
(Parameter_Specifications (Specification (N)), 'X');
-- Task or subprogram body
when N_Subprogram_Body
| N_Task_Body
=>
Set_Statement_Entry;
Traverse_Subprogram_Or_Task_Body (N);
-- Entry body
when N_Entry_Body =>
declare
Cond : constant Node_Id :=
Condition (Entry_Body_Formal_Part (N));
Inner_Dominant : Dominant_Info := No_Dominant;
begin
Set_Statement_Entry;
if Present (Cond) then
Process_Decisions_Defer (Cond, 'G');
-- For an entry body with a barrier, the entry body
-- is dominated by a True evaluation of the barrier.
Inner_Dominant := ('T', N);
end if;
Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
end;
-- Protected body
when N_Protected_Body =>
Set_Statement_Entry;
Traverse_Declarations_Or_Statements (Declarations (N));
-- Exit statement, which is an exit statement in the SCO sense,
-- so it is included in the current statement sequence, but
-- then it terminates this sequence. We also have to process
-- any decisions in the exit statement expression.
when N_Exit_Statement =>
Extend_Statement_Sequence (N, 'E');
Process_Decisions_Defer (Condition (N), 'E');
Set_Statement_Entry;
-- If condition is present, then following statement is
-- only executed if the condition evaluates to False.
if Present (Condition (N)) then
Current_Dominant := ('F', N);
else
Current_Dominant := No_Dominant;
end if;
-- Label, which breaks the current statement sequence, but the
-- label itself is not included in the next statement sequence,
-- since it generates no code.
when N_Label =>
Set_Statement_Entry;
Current_Dominant := No_Dominant;
-- Block statement, which breaks the current statement sequence
when N_Block_Statement =>
Set_Statement_Entry;
-- The first statement in the handled sequence of statements
-- is dominated by the elaboration of the last declaration.
Current_Dominant := Traverse_Declarations_Or_Statements
(L => Declarations (N),
D => Current_Dominant);
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Current_Dominant);
-- If statement, which breaks the current statement sequence,
-- but we include the condition in the current sequence.
when N_If_Statement =>
Current_Test := N;
Extend_Statement_Sequence (N, 'I');
Process_Decisions_Defer (Condition (N), 'I');
Set_Statement_Entry;
-- Now we traverse the statements in the THEN part
Traverse_Declarations_Or_Statements
(L => Then_Statements (N),
D => ('T', N));
-- Loop through ELSIF parts if present
if Present (Elsif_Parts (N)) then
declare
Saved_Dominant : constant Dominant_Info :=
Current_Dominant;
Elif : Node_Id := First (Elsif_Parts (N));
begin
while Present (Elif) loop
-- An Elsif is executed only if the previous test
-- got a FALSE outcome.
Current_Dominant := ('F', Current_Test);
-- Now update current test information
Current_Test := Elif;
-- We generate a statement sequence for the
-- construct "ELSIF condition", so that we have
-- a statement for the resulting decisions.
Extend_Statement_Sequence (Elif, 'I');
Process_Decisions_Defer (Condition (Elif), 'I');
Set_Statement_Entry;
-- An ELSIF part is never guaranteed to have
-- been executed, following statements are only
-- dominated by the initial IF statement.
Current_Dominant := Saved_Dominant;
-- Traverse the statements in the ELSIF
Traverse_Declarations_Or_Statements
(L => Then_Statements (Elif),
D => ('T', Elif));
Next (Elif);
end loop;
end;
end if;
-- Finally traverse the ELSE statements if present
Traverse_Declarations_Or_Statements
(L => Else_Statements (N),
D => ('F', Current_Test));
-- CASE statement, which breaks the current statement sequence,
-- but we include the expression in the current sequence.
when N_Case_Statement =>
Extend_Statement_Sequence (N, 'C');
Process_Decisions_Defer (Expression (N), 'X');
Set_Statement_Entry;
-- Process case branches, all of which are dominated by the
-- CASE statement.
declare
Alt : Node_Id;
begin
Alt := First_Non_Pragma (Alternatives (N));
while Present (Alt) loop
Traverse_Declarations_Or_Statements
(L => Statements (Alt),
D => Current_Dominant);
Next (Alt);
end loop;
end;
-- ACCEPT statement
when N_Accept_Statement =>
Extend_Statement_Sequence (N, 'A');
Set_Statement_Entry;
-- Process sequence of statements, dominant is the ACCEPT
-- statement.
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Current_Dominant);
-- SELECT
when N_Selective_Accept =>
Extend_Statement_Sequence (N, 'S');
Set_Statement_Entry;
-- Process alternatives
declare
Alt : Node_Id;
Guard : Node_Id;
S_Dom : Dominant_Info;
begin
Alt := First (Select_Alternatives (N));
while Present (Alt) loop
S_Dom := Current_Dominant;
Guard := Condition (Alt);
if Present (Guard) then
Process_Decisions
(Guard,
'G',
Pragma_Sloc => No_Location);
Current_Dominant := ('T', Guard);
end if;
Traverse_One (Alt);
Current_Dominant := S_Dom;
Next (Alt);
end loop;
end;
Traverse_Declarations_Or_Statements
(L => Else_Statements (N),
D => Current_Dominant);
when N_Conditional_Entry_Call
| N_Timed_Entry_Call
=>
Extend_Statement_Sequence (N, 'S');
Set_Statement_Entry;
-- Process alternatives
Traverse_One (Entry_Call_Alternative (N));
if Nkind (N) = N_Timed_Entry_Call then
Traverse_One (Delay_Alternative (N));
else
Traverse_Declarations_Or_Statements
(L => Else_Statements (N),
D => Current_Dominant);
end if;
when N_Asynchronous_Select =>
Extend_Statement_Sequence (N, 'S');
Set_Statement_Entry;
Traverse_One (Triggering_Alternative (N));
Traverse_Declarations_Or_Statements
(L => Statements (Abortable_Part (N)),
D => Current_Dominant);
when N_Accept_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Accept_Statement (N));
when N_Entry_Call_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Entry_Call_Statement (N));
when N_Delay_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Delay_Statement (N));
when N_Triggering_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Triggering_Statement (N));
when N_Terminate_Alternative =>
-- It is dubious to emit a statement SCO for a TERMINATE
-- alternative, since no code is actually executed if the
-- alternative is selected -- the tasking runtime call just
-- never returns???
Extend_Statement_Sequence (N, ' ');
Set_Statement_Entry;
-- Unconditional exit points, which are included in the current
-- statement sequence, but then terminate it
when N_Goto_Statement
| N_Raise_Statement
| N_Requeue_Statement
=>
Extend_Statement_Sequence (N, ' ');
Set_Statement_Entry;
Current_Dominant := No_Dominant;
-- Simple return statement. which is an exit point, but we
-- have to process the return expression for decisions.
when N_Simple_Return_Statement =>
Extend_Statement_Sequence (N, ' ');
Process_Decisions_Defer (Expression (N), 'X');
Set_Statement_Entry;
Current_Dominant := No_Dominant;
-- Extended return statement
when N_Extended_Return_Statement =>
Extend_Statement_Sequence (N, 'R');
Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
Set_Statement_Entry;
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Current_Dominant);
Current_Dominant := No_Dominant;
-- Loop ends the current statement sequence, but we include
-- the iteration scheme if present in the current sequence.
-- But the body of the loop starts a new sequence, since it
-- may not be executed as part of the current sequence.
when N_Loop_Statement =>
declare
ISC : constant Node_Id := Iteration_Scheme (N);
Inner_Dominant : Dominant_Info := No_Dominant;
begin
if Present (ISC) then
-- If iteration scheme present, extend the current
-- statement sequence to include the iteration scheme
-- and process any decisions it contains.
-- While loop
if Present (Condition (ISC)) then
Extend_Statement_Sequence (N, 'W');
Process_Decisions_Defer (Condition (ISC), 'W');
-- Set more specific dominant for inner statements
-- (the control sloc for the decision is that of
-- the WHILE token).
Inner_Dominant := ('T', ISC);
-- For loop
else
Extend_Statement_Sequence (N, 'F');
Process_Decisions_Defer
(Loop_Parameter_Specification (ISC), 'X');
end if;
end if;
Set_Statement_Entry;
if Inner_Dominant = No_Dominant then
Inner_Dominant := Current_Dominant;
end if;
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Inner_Dominant);
end;
-- Pragma
when N_Pragma =>
-- Record sloc of pragma (pragmas don't nest)
pragma Assert (Current_Pragma_Sloc = No_Location);
Current_Pragma_Sloc := Sloc (N);
-- Processing depends on the kind of pragma
declare
Nam : constant Name_Id := Pragma_Name_Unmapped (N);
Arg : Node_Id :=
First (Pragma_Argument_Associations (N));
Typ : Character;
begin
case Nam is
when Name_Assert
| Name_Assert_And_Cut
| Name_Assume
| Name_Check
| Name_Loop_Invariant
| Name_Postcondition
| Name_Precondition
| Name_Type_Invariant
| Name_Invariant
=>
-- For Assert/Check/Precondition/Postcondition, we
-- must generate a P entry for the decision. Note
-- that this is done unconditionally at this stage.
-- Output for disabled pragmas is suppressed later
-- on when we output the decision line in Put_SCOs,
-- depending on setting by Set_SCO_Pragma_Enabled.
if Nam = Name_Check
or else Nam = Name_Type_Invariant
or else Nam = Name_Invariant
then
Next (Arg);
end if;
Process_Decisions_Defer (Expression (Arg), 'P');
Typ := 'p';
-- Pre/postconditions can be inherited so SCO should
-- never be deactivated???
when Name_Debug =>
if Present (Arg) and then Present (Next (Arg)) then
-- Case of a dyadic pragma Debug: first argument
-- is a P decision, any nested decision in the
-- second argument is an X decision.
Process_Decisions_Defer (Expression (Arg), 'P');
Next (Arg);
end if;
Process_Decisions_Defer (Expression (Arg), 'X');
Typ := 'p';
-- For all other pragmas, we generate decision entries
-- for any embedded expressions, and the pragma is
-- never disabled.
-- Should generate P decisions (not X) for assertion
-- related pragmas: [{Static,Dynamic}_]Predicate???
when others =>
Process_Decisions_Defer (N, 'X');
Typ := 'P';
end case;
-- Add statement SCO
Extend_Statement_Sequence (N, Typ);
Current_Pragma_Sloc := No_Location;
end;
-- Object declaration. Ignored if Prev_Ids is set, since the
-- parser generates multiple instances of the whole declaration
-- if there is more than one identifier declared, and we only
-- want one entry in the SCOs, so we take the first, for which
-- Prev_Ids is False.
when N_Number_Declaration
| N_Object_Declaration
=>
if not Prev_Ids (N) then
Extend_Statement_Sequence (N, 'o');
if Has_Decision (N) then
Process_Decisions_Defer (N, 'X');
end if;
end if;
-- All other cases, which extend the current statement sequence
-- but do not terminate it, even if they have nested decisions.
when N_Protected_Type_Declaration
| N_Task_Type_Declaration
=>
Extend_Statement_Sequence (N, 't');
Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
Set_Statement_Entry;
Traverse_Protected_Or_Task_Definition (N);
when N_Single_Protected_Declaration
| N_Single_Task_Declaration
=>
Extend_Statement_Sequence (N, 'o');
Set_Statement_Entry;
Traverse_Protected_Or_Task_Definition (N);
when others =>
-- Determine required type character code, or ASCII.NUL if
-- no SCO should be generated for this node.
declare
NK : constant Node_Kind := Nkind (N);
Typ : Character;
begin
case NK is
when N_Full_Type_Declaration
| N_Incomplete_Type_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
=>
Typ := 't';
when N_Subtype_Declaration =>
Typ := 's';
when N_Renaming_Declaration =>
Typ := 'r';
when N_Generic_Instantiation =>
Typ := 'i';
when N_Package_Body_Stub
| N_Protected_Body_Stub
| N_Representation_Clause
| N_Task_Body_Stub
| N_Use_Package_Clause
| N_Use_Type_Clause
=>
Typ := ASCII.NUL;
when N_Procedure_Call_Statement =>
Typ := ' ';
when others =>
if NK in N_Statement_Other_Than_Procedure_Call then
Typ := ' ';
else
Typ := 'd';
end if;
end case;
if Typ /= ASCII.NUL then
Extend_Statement_Sequence (N, Typ);
end if;
end;
-- Process any embedded decisions
if Has_Decision (N) then
Process_Decisions_Defer (N, 'X');
end if;
end case;
-- Process aspects if present
Traverse_Aspects (N);
end Traverse_One;
-- Start of processing for Traverse_Declarations_Or_Statements
begin
-- Process single prefixed node
if Present (P) then
Traverse_One (P);
end if;
-- Loop through statements or declarations
if Is_Non_Empty_List (L) then
N := First (L);
while Present (N) loop
-- Note: For separate bodies, we see the tree after Par.Labl has
-- introduced implicit labels, so we need to ignore those nodes.
if Nkind (N) /= N_Implicit_Label_Declaration then
Traverse_One (N);
end if;
Next (N);
end loop;
end if;
-- End sequence of statements and flush deferred decisions
if Present (P) or else Is_Non_Empty_List (L) then
Set_Statement_Entry;
end if;
return Current_Dominant;
end Traverse_Declarations_Or_Statements;
------------------------------------------
-- Traverse_Generic_Package_Declaration --
------------------------------------------
procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
begin
Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
Traverse_Package_Declaration (N);
end Traverse_Generic_Package_Declaration;
-----------------------------------------
-- Traverse_Handled_Statement_Sequence --
-----------------------------------------
procedure Traverse_Handled_Statement_Sequence
(N : Node_Id;
D : Dominant_Info := No_Dominant)
is
Handler : Node_Id;
begin
-- For package bodies without a statement part, the parser adds an empty
-- one, to normalize the representation. The null statement therein,
-- which does not come from source, does not get a SCO.
if Present (N) and then Comes_From_Source (N) then
Traverse_Declarations_Or_Statements (Statements (N), D);
if Present (Exception_Handlers (N)) then
Handler := First_Non_Pragma (Exception_Handlers (N));
while Present (Handler) loop
Traverse_Declarations_Or_Statements
(L => Statements (Handler),
D => ('E', Handler));
Next (Handler);
end loop;
end if;
end if;
end Traverse_Handled_Statement_Sequence;
---------------------------
-- Traverse_Package_Body --
---------------------------
procedure Traverse_Package_Body (N : Node_Id) is
Dom : Dominant_Info;
begin
-- The first statement in the handled sequence of statements is
-- dominated by the elaboration of the last declaration.
Dom := Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence
(Handled_Statement_Sequence (N), Dom);
end Traverse_Package_Body;
----------------------------------
-- Traverse_Package_Declaration --
----------------------------------
procedure Traverse_Package_Declaration
(N : Node_Id;
D : Dominant_Info := No_Dominant)
is
Spec : constant Node_Id := Specification (N);
Dom : Dominant_Info;
begin
Dom :=
Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
-- First private declaration is dominated by last visible declaration
Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
end Traverse_Package_Declaration;
-------------------------------------------
-- Traverse_Protected_Or_Task_Definition --
-------------------------------------------
procedure Traverse_Protected_Or_Task_Definition (N : Node_Id) is
Dom_Info : Dominant_Info := ('S', N);
-- The first declaration is dominated by the protected or task [type]
-- declaration.
Sync_Def : Node_Id;
-- N's protected or task definition
Priv_Decl : List_Id;
Vis_Decl : List_Id;
-- Sync_Def's Visible_Declarations and Private_Declarations
begin
case Nkind (N) is
when N_Protected_Type_Declaration
| N_Single_Protected_Declaration
=>
Sync_Def := Protected_Definition (N);
when N_Single_Task_Declaration
| N_Task_Type_Declaration
=>
Sync_Def := Task_Definition (N);
when others =>
raise Program_Error;
end case;
-- Sync_Def may be Empty at least for empty Task_Type_Declarations.
-- Querying Visible or Private_Declarations is invalid in this case.
if Present (Sync_Def) then
Vis_Decl := Visible_Declarations (Sync_Def);
Priv_Decl := Private_Declarations (Sync_Def);
else
Vis_Decl := No_List;
Priv_Decl := No_List;
end if;
Dom_Info := Traverse_Declarations_Or_Statements
(L => Vis_Decl,
D => Dom_Info);
-- If visible declarations are present, the first private declaration
-- is dominated by the last visible declaration.
Traverse_Declarations_Or_Statements
(L => Priv_Decl,
D => Dom_Info);
end Traverse_Protected_Or_Task_Definition;
--------------------------------------
-- Traverse_Subprogram_Or_Task_Body --
--------------------------------------
procedure Traverse_Subprogram_Or_Task_Body
(N : Node_Id;
D : Dominant_Info := No_Dominant)
is
Decls : constant List_Id := Declarations (N);
Dom_Info : Dominant_Info := D;
begin
-- If declarations are present, the first statement is dominated by the
-- last declaration.
Dom_Info := Traverse_Declarations_Or_Statements
(L => Decls, D => Dom_Info);
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Dom_Info);
end Traverse_Subprogram_Or_Task_Body;
-------------------------
-- SCO_Record_Filtered --
-------------------------
procedure SCO_Record_Filtered is
type Decision is record
Kind : Character;
-- Type of the SCO decision (see comments for SCO_Table_Entry.C1)
Sloc : Source_Location;
Top : Nat;
-- Index in the SCO_Raw_Table for the root operator/condition for the
-- expression that controls the decision.
end record;
-- Decision descriptor: used to gather information about a candidate
-- SCO decision.
package Pending_Decisions is new Table.Table
(Table_Component_Type => Decision,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "Filter_Pending_Decisions");
-- Table used to hold decisions to process during the collection pass
procedure Add_Expression_Tree (Idx : in out Nat);
-- Add SCO raw table entries for the decision controlling expression
-- tree starting at Idx to the filtered SCO table.
procedure Collect_Decisions
(D : Decision;
Next : out Nat);
-- Collect decisions to add to the filtered SCO table starting at the
-- D decision (including it and its nested operators/conditions). Set
-- Next to the first node index passed the whole decision.
procedure Compute_Range
(Idx : in out Nat;
From : out Source_Location;
To : out Source_Location);
-- Compute the source location range for the expression tree starting at
-- Idx in the SCO raw table. Store its bounds in From and To.
function Is_Decision (Idx : Nat) return Boolean;
-- Return if the expression tree starting at Idx has adjacent nested
-- nodes that make a decision.
procedure Process_Pending_Decisions
(Original_Decision : SCO_Table_Entry);
-- Complete the filtered SCO table using collected decisions. Output
-- decisions inherit the pragma information from the original decision.
procedure Search_Nested_Decisions (Idx : in out Nat);
-- Collect decisions to add to the filtered SCO table starting at the
-- node at Idx in the SCO raw table. This node must not be part of an
-- already-processed decision. Set Idx to the first node index passed
-- the whole expression tree.
procedure Skip_Decision
(Idx : in out Nat;
Process_Nested_Decisions : Boolean);
-- Skip all the nodes that belong to the decision starting at Idx. If
-- Process_Nested_Decision, call Search_Nested_Decisions on the first
-- nested nodes that do not belong to the decision. Set Idx to the first
-- node index passed the whole expression tree.
-------------------------
-- Add_Expression_Tree --
-------------------------
procedure Add_Expression_Tree (Idx : in out Nat) is
Node_Idx : constant Nat := Idx;
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
From : Source_Location;
To : Source_Location;
begin
case T.C1 is
when ' ' =>
-- This is a single condition. Add an entry for it and move on
SCO_Table.Append (T);
Idx := Idx + 1;
when '!' =>
-- This is a NOT operator: add an entry for it and browse its
-- only child.
SCO_Table.Append (T);
Idx := Idx + 1;
Add_Expression_Tree (Idx);
when others =>
-- This must be an AND/OR/AND THEN/OR ELSE operator
if T.C2 = '?' then
-- This is not a short circuit operator: consider this one
-- and all its children as a single condition.
Compute_Range (Idx, From, To);
SCO_Table.Append
((From => From,
To => To,
C1 => ' ',
C2 => 'c',
Last => False,
Pragma_Sloc => No_Location,
Pragma_Aspect_Name => No_Name));
else
-- This is a real short circuit operator: add an entry for
-- it and browse its children.
SCO_Table.Append (T);
Idx := Idx + 1;
Add_Expression_Tree (Idx);
Add_Expression_Tree (Idx);
end if;
end case;
end Add_Expression_Tree;
-----------------------
-- Collect_Decisions --
-----------------------
procedure Collect_Decisions
(D : Decision;
Next : out Nat)
is
Idx : Nat := D.Top;
begin
if D.Kind /= 'X' or else Is_Decision (D.Top) then
Pending_Decisions.Append (D);
end if;
Skip_Decision (Idx, True);
Next := Idx;
end Collect_Decisions;
-------------------
-- Compute_Range --
-------------------
procedure Compute_Range
(Idx : in out Nat;
From : out Source_Location;
To : out Source_Location)
is
Sloc_F : Source_Location := No_Source_Location;
Sloc_T : Source_Location := No_Source_Location;
procedure Process_One;
-- Process one node of the tree, and recurse over children. Update
-- Idx during the traversal.
-----------------
-- Process_One --
-----------------
procedure Process_One is
begin
if Sloc_F = No_Source_Location
or else
SCO_Raw_Table.Table (Idx).From < Sloc_F
then
Sloc_F := SCO_Raw_Table.Table (Idx).From;
end if;
if Sloc_T = No_Source_Location
or else
Sloc_T < SCO_Raw_Table.Table (Idx).To
then
Sloc_T := SCO_Raw_Table.Table (Idx).To;
end if;
if SCO_Raw_Table.Table (Idx).C1 = ' ' then
-- This is a condition: nothing special to do
Idx := Idx + 1;
elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
-- The "not" operator has only one operand
Idx := Idx + 1;
Process_One;
else
-- This is an AND THEN or OR ELSE logical operator: follow the
-- left, then the right operands.
Idx := Idx + 1;
Process_One;
Process_One;
end if;
end Process_One;
-- Start of processing for Compute_Range
begin
Process_One;
From := Sloc_F;
To := Sloc_T;
end Compute_Range;
-----------------
-- Is_Decision --
-----------------
function Is_Decision (Idx : Nat) return Boolean is
Index : Nat := Idx;
begin
loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
begin
case T.C1 is
when ' ' =>
return False;
when '!' =>
-- This is a decision iff the only operand of the NOT
-- operator could be a standalone decision.
Index := Idx + 1;
when others =>
-- This node is a logical operator (and thus could be a
-- standalone decision) iff it is a short circuit
-- operator.
return T.C2 /= '?';
end case;
end;
end loop;
end Is_Decision;
-------------------------------
-- Process_Pending_Decisions --
-------------------------------
procedure Process_Pending_Decisions
(Original_Decision : SCO_Table_Entry)
is
begin
for Index in 1 .. Pending_Decisions.Last loop
declare
D : Decision renames Pending_Decisions.Table (Index);
Idx : Nat := D.Top;
begin
-- Add a SCO table entry for the decision itself
pragma Assert (D.Kind /= ' ');
SCO_Table.Append
((To => No_Source_Location,
From => D.Sloc,
C1 => D.Kind,
C2 => ' ',
Last => False,
Pragma_Sloc => Original_Decision.Pragma_Sloc,
Pragma_Aspect_Name =>
Original_Decision.Pragma_Aspect_Name));
-- Then add ones for its nested operators/operands. Do not
-- forget to tag its *last* entry as such.
Add_Expression_Tree (Idx);
SCO_Table.Table (SCO_Table.Last).Last := True;
end;
end loop;
-- Clear the pending decisions list
Pending_Decisions.Set_Last (0);
end Process_Pending_Decisions;
-----------------------------
-- Search_Nested_Decisions --
-----------------------------
procedure Search_Nested_Decisions (Idx : in out Nat) is
begin
loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
begin
case T.C1 is
when ' ' =>
Idx := Idx + 1;
exit;
when '!' =>
Collect_Decisions
((Kind => 'X',
Sloc => T.From,
Top => Idx),
Idx);
exit;
when others =>
if T.C2 = '?' then
-- This is not a logical operator: start looking for
-- nested decisions from here. Recurse over the left
-- child and let the loop take care of the right one.
Idx := Idx + 1;
Search_Nested_Decisions (Idx);
else
-- We found a nested decision
Collect_Decisions
((Kind => 'X',
Sloc => T.From,
Top => Idx),
Idx);
exit;
end if;
end case;
end;
end loop;
end Search_Nested_Decisions;
-------------------
-- Skip_Decision --
-------------------
procedure Skip_Decision
(Idx : in out Nat;
Process_Nested_Decisions : Boolean)
is
begin
loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
begin
Idx := Idx + 1;
case T.C1 is
when ' ' =>
exit;
when '!' =>
-- This NOT operator belongs to the outside decision:
-- just skip it.
null;
when others =>
if T.C2 = '?' and then Process_Nested_Decisions then
-- This is not a logical operator: start looking for
-- nested decisions from here. Recurse over the left
-- child and let the loop take care of the right one.
Search_Nested_Decisions (Idx);
else
-- This is a logical operator, so it belongs to the
-- outside decision: skip its left child, then let the
-- loop take care of the right one.
Skip_Decision (Idx, Process_Nested_Decisions);
end if;
end case;
end;
end loop;
end Skip_Decision;
-- Start of processing for SCO_Record_Filtered
begin
-- Filtering must happen only once: do nothing if it this pass was
-- already run.
if SCO_Generation_State = Filtered then
return;
else
pragma Assert (SCO_Generation_State = Raw);
SCO_Generation_State := Filtered;
end if;
-- Loop through all SCO entries under SCO units
for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
declare
Unit : SCO_Unit_Table_Entry
renames SCO_Unit_Table.Table (Unit_Idx);
Idx : Nat := Unit.From;
-- Index of the current SCO raw table entry
New_From : constant Nat := SCO_Table.Last + 1;
-- After copying SCO enties of interest to the final table, we
-- will have to change the From/To indexes this unit targets.
-- This constant keeps track of the new From index.
begin
while Idx <= Unit.To loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
begin
case T.C1 is
-- Decision (of any kind, including pragmas and aspects)
when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
if SCO_Pragma_Disabled (T.Pragma_Sloc) then
-- Skip SCO entries for decisions in disabled
-- constructs (pragmas or aspects).
Idx := Idx + 1;
Skip_Decision (Idx, False);
else
Collect_Decisions
((Kind => T.C1,
Sloc => T.From,
Top => Idx + 1),
Idx);
Process_Pending_Decisions (T);
end if;
-- There is no translation/filtering to do for other kind
-- of SCO items (statements, dominance markers, etc.).
when '|' | '&' | '!' | ' ' =>
-- SCO logical operators and conditions cannot exist
-- on their own: they must be inside a decision (such
-- entries must have been skipped by
-- Collect_Decisions).
raise Program_Error;
when others =>
SCO_Table.Append (T);
Idx := Idx + 1;
end case;
end;
end loop;
-- Now, update the SCO entry indexes in the unit entry
Unit.From := New_From;
Unit.To := SCO_Table.Last;
end;
end loop;
-- Then clear the raw table to free bytes
SCO_Raw_Table.Free;
end SCO_Record_Filtered;
end Par_SCO;